1
|
Ji L, Huang J, Yu L, Jin H, Hu X, Sun Y, Yin F, Cai Y. Recent advances in nanoagents delivery system-based phototherapy for osteosarcoma treatment. Int J Pharm 2024; 665:124633. [PMID: 39187032 DOI: 10.1016/j.ijpharm.2024.124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Osteosarcoma (OS) is a prevalent and highly malignant bone tumor, characterized by its aggressive nature, invasiveness, and rapid progression, contributing to a high mortality rate, particularly among adolescents. Traditional treatment modalities, including surgical resection, radiotherapy, and chemotherapy, face significant challenges, especially in addressing chemotherapy resistance and managing postoperative recurrence and metastasis. Phototherapy (PT), encompassing photodynamic therapy (PDT) and photothermal therapy (PTT), offers unique advantages such as low toxicity, minimal drug resistance, selective destruction, and temporal control, making it a promising approach for the clinical treatment of various malignant tumors. Constructing multifunctional delivery systems presents an opportunity to effectively combine tumor PDT, PTT, and chemotherapy, creating a synergistic anti-tumor effect. This review aims to consolidate the progress in the application of novel delivery system-mediated phototherapy in osteosarcoma. By summarizing advancements in this field, the objective is to propose a rational combination therapy involving targeted delivery systems and phototherapy for tumors, thereby expanding treatment options and enhancing the prognosis for osteosarcoma patients. In conclusion, the integration of innovative delivery systems with phototherapy represents a promising avenue in osteosarcoma treatment, offering a comprehensive approach to overcome challenges associated with conventional treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Lichen Ji
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jiaqing Huang
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Liting Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huihui Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xuanhan Hu
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuan Sun
- College of Chemistry Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yu Cai
- Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
2
|
Panghal A, Flora SJS. Nano-based approaches for the treatment of neuro-immunological disorders: a special emphasis on multiple sclerosis. DISCOVER NANO 2024; 19:171. [PMID: 39466516 PMCID: PMC11519283 DOI: 10.1186/s11671-024-04135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Multiple sclerosis (MS) is a neuroimmunological disorder which causes axonal damage, demyelination and paralysis. Although numerous therapeutics have been developed for the effective treatment of MS and a few have been approved in recent decades, complete remission and treatment of MS remain a matter of concern. Nanotechnology is a potential approach for manipulating the properties of materials at the molecular level to attain desired properties. This approach is effective in the treatment of several CNS disorders by enhancing drug delivery, bioavailability and efficacy. We have briefly discussed the neuroimmunological disorders with a particular emphasis on MS. We also explored nanoengineered drug delivery systems, describing several nano-formulations for the treatment of MS, challenges and future of nanotechnology.
Collapse
Affiliation(s)
- Archna Panghal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-SAS Nagar, Mohali, 160102, India
| | - S J S Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-SAS Nagar, Mohali, 160102, India.
- Era College of Pharmaceutical Sciences, Era Lucknow Medical University, Sarfarajgang, Lucknow, 226002, India.
| |
Collapse
|
3
|
Jia Y, Li Y, Wang M, Wang F, Liu Q, Song Z. Lecithin-based mixed polymeric micelles for activity improvement of curcumin against Staphylococcus aureus. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-18. [PMID: 39460953 DOI: 10.1080/09205063.2024.2421089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Considering cellular uptake promotion of lecithin and high expression of phospholipase in S. aureus, we designed curcumin (Cur)-loaded soy lecithin-based mPEG-PVL copolymer micelles (MPPC). The effect of soy lecithin on the anti-S. aureus activity of the formulation was studied with cur-loaded mPEG-PVL micelles (MPC without soy lecithin) as control. It was found that MPPC enhanced the water-solubility of Cur, and showed slow and sustained release behavior of Cur. Although MPPC had the same anti-S. aureus activity as Cur, its activity was significantly higher than MPC due to the cellular uptake promotion of soybean lecithin. It was noted that MPPC had good inhibition or destruction effect on biofilm, significant cell membrane damage, strong inhibition effect on protease or lipase production, and obvious induction effect on ROS expression when compared with Cur and MPC. So, the introduction of soy lecithin could improve the antibacterial activity of Cur. The lecithin-based micelles would offer potential to deliver antibacterial drugs for improved therapeutic action.
Collapse
Affiliation(s)
- Yunjing Jia
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Yuli Li
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Mingzhu Wang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Fuyou Wang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Qingmin Liu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| |
Collapse
|
4
|
Vo Y, Raveendran R, Cao C, Lai RY, Lossa M, Foster H, Stenzel MH. Solvent Choice during Flow Assembly of Photocross-Linked Single-Chain Nanoparticles and Micelles Affects Cellular Uptake. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39450994 DOI: 10.1021/acsami.4c12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Polymeric micelles have widely been used as drug delivery carriers, and recently, single-chain nanoparticles (SCNPs) emerged as potential, smaller-sized, alternatives. In this work, we are comparing both NPs side by side and evaluate their ability to be internalized by breast cancer cells (MCF-7) and macrophages (RAW 264.7). To be able to generate these NPs on demand, the polymers were assembled by flow, followed by the stabilization of the structures by photocross-linking using blue light. The central aim of this work is to evaluate how the type of solvent affects self-assembly and ultimately the structure of the final NP. Therefore, a library of copolymers with different sequences, including block copolymers (AB, ABA, BAB), and statistical copolymers (rAB and rAC) was synthesized using PET-RAFT with A denoting poly(ethylene glycol) methyl ether acrylate (PEGMEA), B as 2-hydroxyethyl acrylate (HEA), and C as 4-hydroxybutyl acrylate (HBA). The polymers were conjugated with a quinoline derivative to enable the formation of cross-linked structures by photocross-linking during flow assembly. Using water as the dispersant for photocross-linking led to the preassembly of these amphiphilic polymers into compact SCNPs and cross-linked micelles, resulting in a quick photoreaction. In contrast, acetonitrile led to fully dissolved polymers but a low rate of the photoreaction. These intramolecularly cross-linked polymers were then placed in water to result in more dynamic micelles and looser SCNPs. Small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and size exclusion chromatography (SEC) coupled with a viscosity detector show that cross-linking in acetonitrile results in better-defined NPs with a shell rich in PEGMEA. Cross-linking in acetonitrile led to NPs with significantly higher cellular uptake. Interestingly, passive transport was identified as the main pathway for the delivery of our NPs on MCF-7 cells, confirmed by the uptake of NPs on cells treated with inhibitors and by red blood cells. This work underscored the importance of the polymer precursor's structure and the choice of solvent during intramolecular cross-linking in determining the drug delivery efficiency and biological behavior of SCNPs.
Collapse
Affiliation(s)
- Yen Vo
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Radhika Raveendran
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Cheng Cao
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rebecca Y Lai
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Miriam Lossa
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Henry Foster
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Chen S, Yang J, Liu F. ROS-responsive nanomicelles encapsulating celastrol ameliorate pressure overload-induced cardiac hypertrophy by regulating the NF-κB signaling pathway. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-19. [PMID: 39400040 DOI: 10.1080/09205063.2024.2411095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Celastrol (CEL) belongs to the group of non-steroidal immunosuppressants with the potential to improve cardiac hypertrophy (CH). However, the poor biocompatibility and low bioavailability of CEL limit its in vivo application. This study was aimed to develop a targeted drug delivery system that can efficiently and safely deliver CEL to target tissues, providing a research basis for the application of CEL in CH therapy. A novel ROS-sensitive drug-loaded nanomicelle, dodecanoic acid (DA)-phenylboronic acid pinacol ester-dextran polymer encapsulating CEL (DBD@CEL), was synthesized using chemical synthesis. Then, the morphology, particle size, drug-loaded content, and ROS-responsive release behavior of DBD@CEL were studied. Pharmacokinetics and biocompatibility were evaluated using healthy mice. Finally, the ability and mechanism of DBD@CEL in improving CH in vivo were investigated using a mouse CH model. DBD@CEL was successfully prepared with a drug loading of 18.9%. It exhibited excellent stability with an average particle size of 110.0 ± 1.7 nm. Within 48 h, DBD@CEL released only 19.4% in the absence of H2O2, while in the presence of 1 mM H2O2, the release rate increased to 71.5%. Biocompatibility studies indicated that DBD@CEL did not cause blood cell hemolysis, had no impact on normal organs, and did not result in abnormal blood biochemical indicators, demonstrating excellent biocompatibility. In vivo studies revealed that DBD@CEL regulated the activation of NF-κB signaling, inhibits pyroptosis and oxidative stress, and thereby ameliorates CH. The ROS-responsive DBD@CEL nanodrug delivery system enhances the therapeutic activity of CEL for CH, providing a promising drug delivery system for the clinical treatment of CH.
Collapse
Affiliation(s)
- Shanjiang Chen
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Jianjian Yang
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Fuli Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Liang N, Zhao W, Li S, Li X, Liu Z, Jiang K, Sun S. Tumor targeting pH-triggered fluorescence-switchable hyaluronic acid-based micelles with aggregation-induced emission activity for tracing drug release and intelligent drug delivery. Int J Biol Macromol 2024; 277:134386. [PMID: 39111498 DOI: 10.1016/j.ijbiomac.2024.134386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024]
Abstract
In this study, an amphiphilic polymer (Bio-HA(TPE-CN)-mPEG) was designed and synthesized, which was fabricated by introducing hydrophobic aggregation-induced emission (AIE) fluorophore, acid-labile imine bond, methoxy poly (ethylene glycol) (mPEG) and tumor targeting ligand biotin to the backbone of hyaluronic acid. The polymer could self-assemble into micelles and solubilize hydrophobic anticancer drugs. In vitro drug release study indicated that the micelles could disassemble rapidly under acidic environment. The involvement of biotin and HA could enhance the cellular uptake of micelles by tumor cells. Modification of micelles by mPEG could minimize non-specific protein adsorption. Fluorescence studies indicated that the micelles exhibited excellent AIE features and emitted intense long-wavelength fluorescence. More excitingly, the micelles were red emissive in the normal physiological environment, but switched to blue fluorescence in the acidic tumor environment, which could be further applied for real-time monitoring and quantification of the drug release. The in vivo antitumor efficacy study demonstrated the superior antitumor activity of the PTX-loaded micelles. The Bio-HA(TPE-CN)-mPEG micelles were promising drug carriers for chemotherapy and bioimaging.
Collapse
Affiliation(s)
- Na Liang
- College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Wei Zhao
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Siyi Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Xiaoxin Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Zhenrong Liu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Kun Jiang
- College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Shaoping Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
7
|
Diwan R, Gaytan SL, Bhatt HN, Pena-Zacarias J, Nurunnabi M. Liver fibrosis pathologies and potentials of RNA based therapeutics modalities. Drug Deliv Transl Res 2024; 14:2743-2770. [PMID: 38446352 DOI: 10.1007/s13346-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
Liver fibrosis (LF) occurs when the liver tissue responds to injury or inflammation by producing excessive amounts of scar tissue, known as the extracellular matrix. This buildup stiffens the liver tissue, hinders blood flow, and ultimately impairs liver function. Various factors can trigger this process, including bloodborne pathogens, genetic predisposition, alcohol abuse, non-steroidal anti-inflammatory drugs, non-alcoholic steatohepatitis, and non-alcoholic fatty liver disease. While some existing small-molecule therapies offer limited benefits, there is a pressing need for more effective treatments that can truly cure LF. RNA therapeutics have emerged as a promising approach, as they can potentially downregulate cytokine levels in cells responsible for liver fibrosis. Researchers are actively exploring various RNA-based therapeutics, such as mRNA, siRNA, miRNA, lncRNA, and oligonucleotides, to assess their efficacy in animal models. Furthermore, targeted drug delivery systems hold immense potential in this field. By utilizing lipid nanoparticles, exosomes, nanocomplexes, micelles, and polymeric nanoparticles, researchers aim to deliver therapeutic agents directly to specific biomarkers or cytokines within the fibrotic liver, increasing their effectiveness and reducing side effects. In conclusion, this review highlights the complex nature of liver fibrosis, its underlying causes, and the promising potential of RNA-based therapeutics and targeted delivery systems. Continued research in these areas could lead to the development of more effective and personalized treatment options for LF patients.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Samantha Lynn Gaytan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Himanshu Narendrakumar Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Jacqueline Pena-Zacarias
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biological Sciences, College of Science, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA.
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA.
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA.
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
8
|
Obata M, Yamaguchi S, Yoshimura T. A Stochastic FRET Study on the Core Dimension of Polystyrene- block-Poly(Polyethylene Glycol Monomethyl Ether Acrylate) Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20596-20603. [PMID: 39292970 DOI: 10.1021/acs.langmuir.4c02374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Polystyrene-b-poly(polyethylene glycol monomethyl ether acrylate) (PSt-b-PPEGA) copolymers featuring pyrene and perylene as the Förster resonance energy transfer (FRET) donor (denoted as D-BCP) and acceptor (denoted as A-BCP), respectively, were synthesized via the reversible addition and fragmentation chain transfer (RAFT) polymerization. These copolymers were then used to form DA-mixed micelles via a dialysis method. The micelles consisted of D-BCP (mole fraction fD = 0.04), A-BCP (fA = 0.04), and label-free PSt-b-PPEGA (fN = 0.92). The decrease in fluorescence intensity of pyrene in the micelles confirmed the occurrence of FRET, with an observed efficiency of 0.32. A Monte Carlo approach was employed to estimate the expected FRET efficiency, assuming the random fractional distribution of D-BCP and A-BCP, along with the random spatial distribution of pyrene and perylene within the micellar core. The observed FRET efficiency suggested a core radius (Rc) of 0.95R0, where R0 was the Förster critical distance. With R0 calculated to be 3.2 nm based on Förster theory, Rc was determined to be approximately 3.0 nm, aligning closely with the dried-out core radius estimated from aggregation number and polystyrene density. This stochastic FRET methodology was further applied to investigate the swelling behavior of the polymer micelles in a mixture of N,N-dimethylformamide (DMF) and water. Dynamic light scattering analysis revealed minimal change in core dimension below 60 vol % DMF content. However, FRET analysis provided a deeper insight, showing an increase in core radius with DMF content up to 20 vol %, followed by saturation up to 50 vol %, offering a more comprehensive understanding of the micelle swelling behavior.
Collapse
Affiliation(s)
- Makoto Obata
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| | - Shougo Yamaguchi
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| | - Tomokazu Yoshimura
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| |
Collapse
|
9
|
Wu X, Wang F, Yang X, Gong Y, Niu T, Chu B, Qu Y, Qian Z. Advances in Drug Delivery Systems for the Treatment of Acute Myeloid Leukemia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403409. [PMID: 38934349 DOI: 10.1002/smll.202403409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Acute myeloid leukemia (AML) is a common and catastrophic hematological neoplasm with high mortality rates. Conventional therapies, including chemotherapy, hematopoietic stem cell transplantation (HSCT), immune therapy, and targeted agents, have unsatisfactory outcomes for AML patients due to drug toxicity, off-target effects, drug resistance, drug side effects, and AML relapse and refractoriness. These intrinsic limitations of current treatments have promoted the development and application of nanomedicine for more effective and safer leukemia therapy. In this review, the classification of nanoparticles applied in AML therapy, including liposomes, polymersomes, micelles, dendrimers, and inorganic nanoparticles, is reviewed. In addition, various strategies for enhancing therapeutic targetability in nanomedicine, including the use of conjugating ligands, biomimetic-nanotechnology, and bone marrow targeting, which indicates the potential to reverse drug resistance, are discussed. The application of nanomedicine for assisting immunotherapy is also involved. Finally, the advantages and possible challenges of nanomedicine for the transition from the preclinical phase to the clinical phase are discussed.
Collapse
Affiliation(s)
- Xia Wu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Fangfang Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xijing Yang
- The Experimental Animal Center of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuping Gong
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bingyang Chu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ying Qu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
10
|
Macêdo HLRDQ, de Oliveira LL, de Oliveira DN, Lima KFA, Cavalcanti IMF, Campos LADA. Nanostructures for Delivery of Flavonoids with Antibacterial Potential against Klebsiella pneumoniae. Antibiotics (Basel) 2024; 13:844. [PMID: 39335017 PMCID: PMC11428843 DOI: 10.3390/antibiotics13090844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Flavonoids are secondary metabolites that exhibit remarkable biological activities, including antimicrobial properties against Klebsiella pneumoniae, a pathogen responsible for several serious nosocomial infections. However, oral administration of these compounds faces considerable challenges, such as low bioavailability and chemical instability. Thus, the encapsulation of flavonoids in nanosystems emerges as a promising strategy to mitigate these limitations, offering protection against degradation; greater solubility; and, in some cases, controlled and targeted release. Different types of nanocarriers, such as polymeric nanoparticles, liposomes, and polymeric micelles, among others, have shown potential to increase the antimicrobial efficacy of flavonoids by reducing the therapeutic dose required and minimizing side effects. In addition, advances in nanotechnology enable co-encapsulation with other therapeutic agents and the development of systems responsive to more specific stimuli, optimizing treatment. In this context, the present article provides an updated review of the literature on flavonoids and the main nanocarriers used for delivering flavonoids with antibacterial properties against Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Hanne Lazla Rafael de Queiroz Macêdo
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| | - Lara Limeira de Oliveira
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| | - David Nattan de Oliveira
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| | - Karitas Farias Alves Lima
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
- Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 50670-901, PE, Brazil
| | - Luís André de Almeida Campos
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (H.L.R.d.Q.M.); (L.L.d.O.); (D.N.d.O.); (K.F.A.L.); (L.A.d.A.C.)
| |
Collapse
|
11
|
Hu Y, Lan T, Li J, Li L, Song J. Glycyrrhetinic acid-modified redox-sensitive polymeric mixed micelles for tumor-specific intracellular delivery of cantharidin. RSC Adv 2024; 14:28753-28767. [PMID: 39257662 PMCID: PMC11386168 DOI: 10.1039/d4ra03171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Cantharidin (CTD) has been widely used to treat hepatocellular carcinoma (HCC) in clinical practice. However, the current CTD preparations may induce hepatic and renal damage due to their non-specific distribution. Therefore, redox-sensitive polymer Pluronic F127-disulfide bond-poly(d,l-lactide) (F127-SS-PDLA) and active targeting polymer F127-glycyrrhetinic acid (F127-GA) were synthesized to prepare mixed micelles (GA/F127-SS-PDLA/CTD) for effective delivery of CTD. Fourier transform infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance (1H-NMR) spectroscopy were used to verify the successful synthesis of F127-SS-PDLA and F127-GA. During the preparation, this study was the first to screen the density of GA by cellular uptake assay. The results indicated that mixed micelles with 10% and 15% F127-GA (weight fraction) exhibited superior cellular uptake in comparison to micelles with 5% and 20% F127-GA. GA/F127-SS-PDLA/CTD micelles prepared by thin film hydration method demonstrated excellent drug loading capacity for CTD (16.12 ± 0.11%). The particle size and zeta potential of GA/F127-SS-PDLA/CTD micelles were 85.17 ± 1.24 nm and -11.71 ± 0.86 mV, respectively. Hemolysis and stability assay showed that the mixed micelles had good blood compatibility and could remain stable for 30 days at 4 °C. The redox-sensitivity of GA/F127-SS-PDLA/CTD micelles in vitro was verified under reducing conditions through dynamic light scattering (DLS) and an in vitro drug release experiment, which showed obvious particle size variation and rapid drug release ability. In cellular experiments, GA/F127-SS-PDLA/CTD micelles could induce superior cytotoxicity, apoptosis and intracellular reactive oxygen species (ROS) levels compared with free CTD, non-sensitive F127-PDLA/CTD micelles and redox-sensitive F127-SS-PDLA/CTD micelles. The cellular uptake ability of nile red-labeled GA/F127-SS-PDLA micelles, which was evaluated via fluorescent microscope and flow cytometry, indicated that the modification of GA significantly increased micelle uptake in HepG-2 cells. Consequently, GA/F127-SS-PDLA/CTD micelles could be considered as a satisfactory drug administration strategy in the treatment of HCC.
Collapse
Affiliation(s)
- Yu Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM) 250355 Jinan Shandong China
| | - Tian Lan
- Innovative Institute of Chinese Medicine, Shandong University of TCM 250355 Jinan Shandong China
| | - Ji Li
- Affiliated Hospital of Shandong University of TCM 250011 Jinan Shandong China
| | - Lingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM) 250355 Jinan Shandong China
| | - Jizheng Song
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM) 250355 Jinan Shandong China
| |
Collapse
|
12
|
Yang H, Wang S. Actively Targeted Nanomedicines: A New Perspective for the Treatment of Pregnancy-Related Diseases. Reprod Sci 2024; 31:2560-2575. [PMID: 38553575 DOI: 10.1007/s43032-024-01520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/13/2024] [Indexed: 09/14/2024]
Abstract
More than 20% of pregnant women experience serious complications during pregnancy, that gravely affect the safety of both the mother and the child. Due to the unique state of pregnancy, medication during pregnancy is subject to various restrictions. Nanotechnology is an emerging technology that has been the focus of extensive medical research, and great progress has recently been made in developing sensitive diagnostic modalities and efficient medical treatment. Accumulating evidence has shown that nanodrug delivery systems can significantly improve the targeting, reduce the toxicity and improve the bioavailability of drugs. Recently, some actively targeted nanomedicines have been explored in the treatment of pregnancy-related diseases. This article reviews common types of nanocarriers and active targeting ligands in common pregnancy-related diseases and complications such as preeclampsia, preterm birth, fetal growth restriction, and choriocarcinoma. Finally, the challenges and future prospects in the development of these nanomaterials are discussed, with the aim of providing guidance for future research directions.
Collapse
Affiliation(s)
- Hui Yang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Road, Jinan, 250021, China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, China.
| |
Collapse
|
13
|
Chen W, Yan A, Sun T, Wang X, Sun W, Pan B. Self-nanomicellizing solid dispersion: A promising platform for oral drug delivery. Colloids Surf B Biointerfaces 2024; 241:114057. [PMID: 38924852 DOI: 10.1016/j.colsurfb.2024.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Amorphous solid dispersion (ASD) has been widely used to enhance the oral bioavailability of water-insoluble drugs for oral delivery because of its advantages of enhancing solubility and dissolution rate. However, the problems related to drug recrystallization after drug dissolution in media or body fluid have constrained its application. Recently, a self-nanomicellizing solid dispersion (SNMSD) has been developed by incorporating self-micellizing polymers as carriers to settle the problems, markedly improving the ability of supersaturation maintenance and enhancing the oral bioavailability of drug. Spontaneous formation and stability of the self-nanomicelle (SNM) have been proved to be the key to supersaturation maintenance of SNMSD system. This offers a novel research direction for maintaining supersaturation and enhancing the bioavailability of ASDs. To delve into the advantages of SNMSDs, we provide a concise review introducing the formation mechanism, characterization methods and stability of SNMs, emphasizing the advantages of SNMSDs for oral drug delivery facilitated by SNM formation, and discussing relevant research prospects.
Collapse
Affiliation(s)
- Weitao Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - An Yan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Tiancong Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Xu Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
14
|
Nie W, He Y, Mi X, He S, Chen J, Zhang Y, Wang B, Zheng S, Qian Z, Gao X. Immunostimulatory CKb11 gene combined with immune checkpoint PD-1/PD-L1 blockade activates immune response and simultaneously overcomes the immunosuppression of cancer. Bioact Mater 2024; 39:239-254. [PMID: 38832303 PMCID: PMC11145080 DOI: 10.1016/j.bioactmat.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 06/05/2024] Open
Abstract
Immunosuppression tumor microenvironment (TME) seriously impedes anti-tumor immune response, resulting in poor immunotherapy effect of cancer. This study develops a folate-modified delivery system to transport the plasmids encoding immune stimulatory chemokine CKb11 and PD-L1 inhibitors to tumor cells, resulting in high CKb11 secretion from tumor cells, successfully activating immune cells and increasing cytokine secretion to reshape the TME, and ultimately delaying tumor progression. The chemokine CKb11 enhances the effectiveness of tumor immunotherapy by increasing the infiltration of immune cells in TME. It can cause high expression of IFN-γ, which is a double-edged sword that inhibits tumor growth while causing an increase in the expression of PD-L1 on tumor cells. Therefore, combining CKb11 with PD-L1 inhibitors can counterbalance the suppressive impact of PD-L1 on anti-cancer defense, leading to a collaborative anti-tumor outcome. Thus, utilizing nanotechnology to achieve targeted delivery of immune stimulatory chemokines and immune checkpoint inhibitors to tumor sites, thereby reshaping immunosuppressive TME for cancer treatment, has great potential as an immunogene therapy in clinical applications.
Collapse
Affiliation(s)
- Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Yihong He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Xue Mi
- Department of Pharmacy, West China Second University Hospital of Sichuan University, 610041, Chengdu, PR China
| | - Shi He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Yunchu Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Bilan Wang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, 610041, Chengdu, PR China
| | - Songping Zheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| |
Collapse
|
15
|
Jiang K, Wang Q, Chen XL, Wang X, Gu X, Feng S, Wu J, Shang H, Ba X, Zhang Y, Tang K. Nanodelivery Optimization of IDO1 Inhibitors in Tumor Immunotherapy: Challenges and Strategies. Int J Nanomedicine 2024; 19:8847-8882. [PMID: 39220190 PMCID: PMC11366248 DOI: 10.2147/ijn.s458086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tryptophan (Trp) metabolism plays a vital role in cancer immunity. Indoleamine 2.3-dioxygenase 1 (IDO1), is a crucial enzyme in the metabolic pathway by which Trp is degraded to kynurenine (Kyn). IDO1-mediated Trp metabolites can inhibit tumor immunity and facilitate immune evasion by cancer cells; thus, targeting IDO1 is a potential tumor immunotherapy strategy. Recently, numerous IDO1 inhibitors have been introduced into clinical trials as immunotherapeutic agents for cancer treatment. However, drawbacks such as low oral bioavailability, slow onset of action, and high toxicity are associated with these drugs. With the continuous development of nanotechnology, medicine is gradually entering an era of precision healthcare. Nanodrugs carried by inorganic, lipid, and polymer nanoparticles (NPs) have shown great potential for tumor therapy, providing new ways to overcome tumor diversity and improve therapeutic efficacy. Compared to traditional drugs, nanomedicines offer numerous significant advantages, including a prolonged half-life, low toxicity, targeted delivery, and responsive release. Moreover, based on the physicochemical properties of these nanomaterials (eg, photothermal, ultrasonic response, and chemocatalytic properties), various combination therapeutic strategies have been developed to synergize the effects of IDO1 inhibitors and enhance their anticancer efficacy. This review is an overview of the mechanism by which the Trp-IDO1-Kyn pathway acts in tumor immune escape. The classification of IDO1 inhibitors, their clinical applications, and barriers for translational development are discussed, the use of IDO1 inhibitor-based nanodrug delivery systems as combination therapy strategies is summarized, and the issues faced in their clinical application are elucidated. We expect that this review will provide guidance for the development of IDO1 inhibitor-based nanoparticle nanomedicines that can overcome the limitations of current treatments, improve the efficacy of cancer immunotherapy, and lead to new breakthroughs in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiao-Long Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaodong Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaoya Gu
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Shuangshuang Feng
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yanlong Zhang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
16
|
Saddam Hussain M, Khetan R, Albrecht H, Krasowska M, Blencowe A. Oligoelectrolyte-mediated, pH-triggered release of hydrophobic drugs from non-responsive micelles: Influence of oligo(2-vinyl pyridine)-loading on drug-loading, release and cytotoxicity. Int J Pharm 2024; 661:124368. [PMID: 38925236 DOI: 10.1016/j.ijpharm.2024.124368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
pH-responsive polymeric micelles have been extensively studied for nanomedicine and take advantage of pH differentials in tissues for the delivery of large doses of cytotoxic drugs at specific target sites. Despite significant advances in this area, there is a lack of versatile and adaptable strategies to render micelles pH-responsive that could be widely applied to different payloads and applications. To address this deficiency, we introduce the concept of oligoelectrolyte-mediated, pH-triggered release of hydrophobic drugs from non-responsive polymeric micelles as a highly effective approach with broad scope. Herein, we investigate the influence of the oligoelectrolyte, oligo(2-vinyl pyridine) (OVP), loading and polymer molecular weight on the pH-sensitivity, drug loading/release and cytotoxicity of poly(ethylene glycol-b-ε-caprolactone) (PEG-b-PCL) micelles using copolymers with either short or long hydrophobic blocks (PEG4PCL4 and PEG10PCL10, respectively). The micelles were characterized as a function of pH (7.4 to 3.5). Dynamic light scattering (DLS) revealed narrow particle size distributions (PSDs) for both the blank and OVP-loaded micelles at pH 7.4. While OVP encapsulation resulted in an increase in the hydrodynamic diameter (Dh) (cf. blank micelles), a decrease in the pH below 6.5 led to a decrease in the Dh consistent with the ionization and release of OVP and core collapse, which were further supported by proton nuclear magnetic resonance (1H NMR) spectroscopy and UV-visible (UV-vis) spectrophotometry. The change in zeta potential (ζ) with pH for the OVP-loaded PEG4PCL4 and PEG10PCL10 micelles was different, suggesting that the location/distribution of OVP in the micelles is influenced by the polymer molecular weight. In general, co-encapsulation of drugs (doxorubicin (DOX), gossypol (GP), paclitaxel (PX) or 7-ethyl-10-hydroxycamptothecin (SN38)) and OVP in the micelles proceeded efficiently with high encapsulation efficiency percentages (EE%). In vitro release studies revealed the rapid, pH-triggered release of drugs from OVP-loaded PEG10PCL10 micelles within hours, with higher OVP loadings providing faster and more complete release. In comparison, no triggered release was observed for the OVP-loaded PEG4PCL4 micelles, implying a strong molecular weight dependency. In metabolic assays the drug- and OVP-loaded PEG10PCL10 micelles were found to result in significant enhancement of the cytotoxicity compared to drug-loaded micelles (no OVP) or other controls. Importantly, micelles with low OVP loadings were found to be nearly as effective as those with high OVP loadings. These results provide key insights into the tunability of the oligoelectrolyte-mediated approach for the effective formulation of pH-responsive micelles and pH-triggered drug release.
Collapse
Affiliation(s)
- Md Saddam Hussain
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, SA 5000, Australia; Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Riya Khetan
- Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, SA, 5000, Australia
| | - Hugo Albrecht
- Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, SA, 5000, Australia
| | - Marta Krasowska
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
17
|
Yang Y, Li P, Feng H, Zeng R, Li S, Zhang Q. Macrocycle-Based Supramolecular Drug Delivery Systems: A Concise Review. Molecules 2024; 29:3828. [PMID: 39202907 PMCID: PMC11357536 DOI: 10.3390/molecules29163828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Efficient delivery of therapeutic agents to the lesion site or specific cells is an important way to achieve "toxicity reduction and efficacy enhancement". Macrocycles have always provided many novel ideas for drug or gene loading and delivery processes. Specifically, macrocycles represented by crown ethers, cyclodextrins, cucurbit[n]urils, calix[n]arenes, and pillar[n]arenes have unique properties, which are different cavity structures, good biocompatibility, and good stability. Benefited from these diverse properties, a variety of supramolecular drug delivery systems can be designed and constructed to effectively improve the physical and chemical properties of guest molecules as needed. This review provides an outlook on the current application status and main limitations of macrocycles in supramolecular drug delivery systems.
Collapse
Affiliation(s)
- Yanrui Yang
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Pengcheng Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Department of Pharmacy, Sichuan Provincial People’s Hospital Chuandong Hospital & Dazhou First People’s Hospital, Dazhou 635000, China
| |
Collapse
|
18
|
Sipos B, Földes F, Budai-Szűcs M, Katona G, Csóka I. Comparative Study of TPGS and Soluplus Polymeric Micelles Embedded in Poloxamer 407 In Situ Gels for Intranasal Administration. Gels 2024; 10:521. [PMID: 39195050 DOI: 10.3390/gels10080521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
This study aims to highlight the importance of choosing the appropriate co-polymer or co-polymer mixed combinations in order to design value-added nasal dosage forms. Local therapy of upper respiratory tract-related infections, such as nasal rhinosinusitis is of paramount importance, thus advanced local therapeutic options are required. Dexamethasone was encapsulated into three different polymeric micelle formulations: Soluplus or TPGS-only and their mixed combinations. Dynamic light scattering measurements proved that the particles have a micelle size less than 100 nm in monodisperse distribution, with high encapsulation efficiency above 80% and an at least 7-fold water solubility increase. Tobramycin, as an antimicrobial agent, was co-formulated into the in situ gelling systems which were optimized based on gelation time and gelation temperature. The sol-gel transition takes place between 32-35 °C, which is optimally below the temperature of the nasal cavity in a quick manner below 5 min, a suitable strategic criterion against the mucociliary clearance. In vitro drug release and permeability studies confirmed a rapid kinetics in the case of the encapsulated dexamethasone accompanied with a sustained release of tobramycin, as the hydrophilic drug.
Collapse
Affiliation(s)
- Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Frézia Földes
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| |
Collapse
|
19
|
Shin YB, Choi JY, Yoon MS, Yoo MK, Shin DH, Lee JW. Evaluation of Anticancer Efficacy of D-α-Tocopheryl Polyethylene-Glycol Succinate and Soluplus ® Mixed Micelles Loaded with Olaparib and Rapamycin Against Ovarian Cancer. Int J Nanomedicine 2024; 19:7871-7893. [PMID: 39114180 PMCID: PMC11304412 DOI: 10.2147/ijn.s468935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose Ovarian cancer has the highest mortality rate and lowest survival rate among female reproductive system malignancies. There are treatment options of surgery and chemotherapy, but both are limited. In this study, we developed and evaluated micelles composed of D-α-tocopheryl polyethylene-glycol (PEG) 1000 succinate (TPGS) and Soluplus® (SOL) loaded with olaparib (OLA), a poly(ADP-ribose)polymerase (PARP) inhibitor, and rapamycin (RAPA), a mammalian target of rapamycin (mTOR) inhibitor in ovarian cancer. Methods We prepared micelles containing different molar ratios of OLA and RAPA embedded in different weight ratios of TPGS and SOL (OLA/RAPA-TPGS/SOL) were prepared and physicochemical characterized. Furthermore, we performed in vitro cytotoxicity experiments of OLA, RAPA, and OLA/RAPA-TPGS/SOL. In vivo toxicity and antitumor efficacy assays were also performed to assess the efficacy of the mixed micellar system. Results OLA/RAPA-TPGS/SOL containing a 4:1 TPGS:SOL weight ratio and a 2:3 OLA:RAPA molar ratio showed synergistic effects and were optimized. The drug encapsulation efficiency of this formulation was >65%, and the physicochemical properties were sustained for 180 days. Moreover, the formulation had a high cell uptake rate and significantly inhibited cell migration (**p < 0.01). In the in vivo toxicity test, no toxicity was observed, with the exception of the high dose group. Furthermore, OLA/RAPA-TPGS/SOL markedly inhibited tumor spheroid and tumor growth in vivo. Conclusion Compared to the control, OLA/RAPA-TPGS/SOL showed significant tumor inhibition. These findings lay a foundation for the use of TPGS/SOL mixed micelles loaded with OLA and RAPA in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yu Been Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Moon Sup Yoon
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Myeong Kyun Yoo
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
- Chungbuk National University Hospital, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| |
Collapse
|
20
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
21
|
Purushothaman JR, Rizwanullah M. Ferulic Acid: A Comprehensive Review. Cureus 2024; 16:e68063. [PMID: 39347187 PMCID: PMC11438535 DOI: 10.7759/cureus.68063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Ferulic acid (FA), a phenolic compound abundant in the cell walls of seeds, leaves, and roots of various fruits, vegetables, cereals, and grains, is renowned for its wide range of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer properties. Despite its therapeutic potential, the clinical application of FA is hindered by challenges such as poor water solubility, limited bioavailability, rapid metabolism, and instability under physiological conditions. To address these issues, nanotechnology has emerged as a transformative approach, enhancing FA's pharmacokinetic profile. Various nanoparticle-based systems, including polymer-based and lipid-based nanoparticles, have been developed to encapsulate FA. These systems have demonstrated significant improvements in FA's solubility, stability, and bioavailability, with studies showing enhanced antioxidant activity and controlled release profiles. Further, the surface engineering of these nanoparticles provides targeted drug/phytochemical delivery potential. The targeted delivery of drugs/phytochemicals significantly enhances the therapeutic efficacy and minimizes systemic side effects. This review explores the therapeutic potential of FA, the limitations in its clinical application, and the advancements in nanoparticle-based delivery systems that are paving the way for its effective therapeutic use.
Collapse
Affiliation(s)
- Jaganathan R Purushothaman
- Department of Orthopedics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Md Rizwanullah
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
22
|
Abawi A, Trunfio-Sfarghiu AM, Thomann C, Petiot E, Lollo G, Granjon T, Girard-Egrot A, Maniti O. Tailor-made vincristine-liposomes for tumor targeting. Biochimie 2024:S0300-9084(24)00176-7. [PMID: 39094823 DOI: 10.1016/j.biochi.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
To ensure selective targeting based on membrane fluidity and physico-chemical compatibility between the biological membrane of the target cell and the lipid membrane of the liposomes carriers. Lipid-based carriers as liposomes with varying membrane fluidities were designed for delivering vincristine, an anti-tumor compound derived from Madagascar's periwinkle. Liposomes, loaded with vincristine, were tested on prostate, colon, and breast cancer cell lines alongside non-tumor controls. Results showed that vincristine-loaded liposomes with fluid membranes significantly decreased the viability of cancer cell lines compared to controls. Confocal microscopy revealed the intracellular release of vincristine, evidenced by disrupted mitosis-specific labeling of actin filaments in metastatic prostate cell lines. This highlights the crucial role of membrane fluidity in the development of lipid-based drug carriers, offering a promising and cost-effective option for targeting cancer cells as an alternative to conventional strategies.
Collapse
Affiliation(s)
- Ariana Abawi
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | | | - Céline Thomann
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Emma Petiot
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Giovanna Lollo
- Laboratoire D'Automatique, de Génie des Procédés et de Génie Pharmaceutique, LAGEPP UMR 5007, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Thierry Granjon
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Agnès Girard-Egrot
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| | - Ofelia Maniti
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, Univ. Lyon, University Lyon 1, CNRS, 69622, Lyon, France.
| |
Collapse
|
23
|
Zhai Z, Niu J, Xu L, Xu J. Advanced Application of Polymer Nanocarriers in Delivery of Active Ingredients from Traditional Chinese Medicines. Molecules 2024; 29:3520. [PMID: 39124924 PMCID: PMC11314021 DOI: 10.3390/molecules29153520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Active ingredients from Traditional Chinese Medicines (TCMs) have been a cornerstone of healthcare for millennia, offering a rich source of bioactive compounds with therapeutic potential. However, the clinical application of TCMs is often limited by challenges such as poor solubility, low bioavailability, and variable pharmacokinetics. To address these issues, the development of advanced polymer nanocarriers has emerged as a promising strategy for the delivery of TCMs. This review focuses on the introduction of common active ingredients from TCMs and the recent advancements in the design and application of polymer nanocarriers for enhancing the efficacy and safety of TCMs. We begin by discussing the unique properties of TCMs and the inherent challenges associated with their delivery. We then delve into the types of polymeric nanocarriers, including polymer micelles, polymer vesicles, polymer hydrogels, and polymer drug conjugates, highlighting their application in the delivery of active ingredients from TCMs. The main body of the review presents a comprehensive analysis of the state-of-the-art nanocarrier systems and introduces the impact of these nanocarriers on the solubility, stability, and bioavailability of TCM components. On the basis of this, we provide an outlook on the future directions of polymer nanocarriers in TCM delivery. This review underscores the transformative potential of polymer nanocarriers in revolutionizing TCM delivery, offering a pathway to harness the full therapeutic potential of TCMs while ensuring safety and efficacy in a modern medical context.
Collapse
Affiliation(s)
- Zhiyuan Zhai
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianda Niu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
24
|
Summer M, Hussain T, Ali S, Khan RRM, Muhammad G, Liaqat I. Exploring the underlying modes of organic nanoparticles in diagnosis, prevention, and treatment of cancer: a review from drug delivery to toxicity. INT J POLYM MATER PO 2024:1-17. [DOI: 10.1080/00914037.2024.2375337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, Pakistan
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, Pakistan
| | - Rana Rashad Mahmood Khan
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences, Lahore, Pakistan
| | - Gulzar Muhammad
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences, Lahore, Pakistan
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
25
|
Feng X, Jia P, Zhang D. Nanocarrier drug delivery system: promising platform for targeted depression therapy. Front Pharmacol 2024; 15:1435133. [PMID: 39119603 PMCID: PMC11306052 DOI: 10.3389/fphar.2024.1435133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Depression is a chronic mental disorder characterized by persistent low mood and loss of interest. Treatments for depression are varied but may not be sufficient cure. Drug-based treatment regimens have drawbacks such as slow onset of action, low bioavailability, and drug side effects. Nanocarrier Drug Delivery Systems (NDDS) has received increasing attention for brain drug delivery since it assists the drug through the blood-brain barrier and improves bioavailability, which may be beneficial for treating depression. Due to the particle size and physicochemical properties of nanocarriers, it presents a promise to improve the stability and solubility of antidepressants, thereby enhancing the drug concentration. Moreover, ligand-modified nanocarriers can be taken as a target direct medicines release system and reduce drug side effects. The purpose of the present review is to provide an up-to-date understanding of the Nanocarrier drug delivery system and relevant antidepressants in different routes of ingestion, to lay a foundation for the treatment of patients with depression.
Collapse
Affiliation(s)
- Xiaoying Feng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Jia
- Department of Neurosurgery Nursing, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
26
|
Ma W, Wang X, Zhang D, Mu X. Research Progress of Disulfide Bond Based Tumor Microenvironment Targeted Drug Delivery System. Int J Nanomedicine 2024; 19:7547-7566. [PMID: 39071505 PMCID: PMC11283832 DOI: 10.2147/ijn.s471734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer poses a significant threat to human life and health. Chemotherapy is currently one of the effective cancer treatments, but many chemotherapy drugs have cell toxicity, low solubility, poor stability, a narrow therapeutic window, and unfavorable pharmacokinetic properties. To solve the above problems, target drug delivery to tumor cells, and reduce the side effects of drugs, an anti-tumor drug delivery system based on tumor microenvironment has become a focus of research in recent years. The construction of a reduction-sensitive nanomedicine delivery system based on disulfide bonds has attracted much attention. Disulfide bonds have good reductive responsiveness and can effectively target the high glutathione (GSH) levels in the tumor environment, enabling precise drug delivery. To further enhance targeting and accelerate drug release, disulfide bonds are often combined with pH-responsive nanocarriers and highly expressed ligands in tumor cells to construct drug delivery systems. Disulfide bonds can connect drug molecules and polymer molecules in the drug delivery system, as well as between different drug molecules and carrier molecules. This article summarized the drug delivery systems (DDS) that researchers have constructed in recent years based on disulfide bond drug delivery systems targeting the tumor microenvironment, disulfide bond cleavage-triggering conditions, various drug loading strategies, and carrier design. In this review, we also discuss the controlled release mechanisms and effects of these DDS and further discuss the clinical applicability of delivery systems based on disulfide bonds and the challenges faced in clinical translation.
Collapse
Affiliation(s)
- Weiran Ma
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Xiaoying Wang
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Dongqi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
27
|
Zhao F, Wang J, Zhang Y, Hu J, Li C, Liu S, Li R, Du R. In vivo Fate of Targeted Drug Delivery Carriers. Int J Nanomedicine 2024; 19:6895-6929. [PMID: 39005963 PMCID: PMC11246094 DOI: 10.2147/ijn.s465959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
This review aimed to systematically investigate the intracellular and subcellular fate of various types of targeting carriers. Upon entering the body via intravenous injection or other routes, a targeting carrier that can deliver therapeutic agents initiates their journey. If administered intravenously, the carrier initially faces challenges presented by the blood circulation before reaching specific tissues and interacting with cells within the tissue. At the subcellular level, the car2rier undergoes processes, such as drug release, degradation, and metabolism, through specific pathways. While studies on the fate of 13 types of carriers have been relatively conclusive, these studies are incomplete and lack a comprehensive analysis. Furthermore, there are still carriers whose fate remains unclear, underscoring the need for continuous research. This study highlights the importance of comprehending the in vivo and intracellular fate of targeting carriers and provides valuable insights into the operational mechanisms of different carriers within the body. By doing so, researchers can effectively select appropriate carriers and enhance the successful clinical translation of new formulations.
Collapse
Affiliation(s)
- Fan Zhao
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jitong Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yu Zhang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jinru Hu
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ruofei Du
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
28
|
Fu WY, Chiu YL, Huang SC, Huang WY, Hsu FT, Lee HY, Wang TW, Keng PY. Boron Neutron Capture Therapy Enhanced by Boronate Ester Polymer Micelles: Synthesis, Stability, and Tumor Inhibition Studies. Biomacromolecules 2024; 25:4215-4232. [PMID: 38845149 PMCID: PMC11238341 DOI: 10.1021/acs.biomac.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Boron neutron capture therapy (BNCT) targets invasive, radioresistant cancers but requires a selective and high B-10 loading boron drug. This manuscript investigates boron-rich poly(ethylene glycol)-block-(poly(4-vinylphenyl boronate ester)) polymer micelles synthesized via atom transfer radical polymerization for their potential application in BNCT. Transmission electron microscopy (TEM) revealed spherical micelles with a uniform size of 43 ± 10 nm, ideal for drug delivery. Additionally, probe sonication proved effective in maintaining the micelles' size and morphology postlyophilization and reconstitution. In vitro studies with B16-F10 melanoma cells demonstrated a 38-fold increase in boron accumulation compared to the borophenylalanine drug for BNCT. In vivo studies in a B16-F10 tumor-bearing mouse model confirmed enhanced tumor selectivity and accumulation, with a tumor-to-blood (T/B) ratio of 2.5, surpassing BPA's T/B ratio of 1.8. As a result, mice treated with these micelles experienced a significant delay in tumor growth, highlighting their potential for BNCT and warranting further research.
Collapse
Affiliation(s)
- Wan Yun Fu
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Yi-Lin Chiu
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Shi-Chih Huang
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Wei-Yuan Huang
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Fang-Tzu Hsu
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Han Yu Lee
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Tzu-Wei Wang
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Pei Yuin Keng
- Department of Material Science
and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan
| |
Collapse
|
29
|
Song Z, Chen P, Teng L, Wang W, Zhu W. Copper Nanodrugs with Controlled Morphologies through Aqueous Atom Transfer Radical Polymerization. Biomacromolecules 2024; 25:4545-4556. [PMID: 38902858 DOI: 10.1021/acs.biomac.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Copper (Cu) nanodrugs can be facilely prepared through atom transfer radical polymerization (ATRP) in an aqueous medium. However, it is difficult to control the morphology of Cu nanodrugs and thereby optimize their anticancer activity. In this work, aqueous ATRP was combined with polymerization-induced self-assembly (PISA) to prepare Cu nanodrugs with various morphologies. We mapped the relationship between polymerization condition and product morphology in which each morphology shows a wide preparation window. Decreasing the reaction temperature and feeding more Cu catalysts can improve the mobility of chains, facilitating the morphology evolution from sphere to other high-order morphologies. The resultant Cu nanodrugs with high monomer conversion and high Cu loading efficiency could be easily taken by cancer cells, showing excellent anticancer efficacy in vitro. This work proposed a potential strategy to prepare Cu nanodrugs with a specific morphology in batches, providing the method to optimize the anticancer efficacy through morphology control.
Collapse
Affiliation(s)
- Ziyan Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Peng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weibin Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
30
|
Zhang X, Zhang X, Yong T, Gan L, Yang X. Boosting antitumor efficacy of nanoparticles by modulating tumor mechanical microenvironment. EBioMedicine 2024; 105:105200. [PMID: 38876044 PMCID: PMC11225208 DOI: 10.1016/j.ebiom.2024.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Nanoparticles have shown great potential for tumor targeting delivery via enhanced permeability and retention effect. However, the tumor mechanical microenvironment, characterized by dense extracellular matrix (ECM), high tumor stiffness and solid stress, leads to only 0.7% of administered dose accumulating in solid tumors and even fewer (∼0.0014%) reaching tumor cells, limiting the therapeutic efficacy of nanoparticles. Furthermore, the tumor mechanical microenvironment can regulate tumor cell stemness, promote tumor invasion, metastasis and reduce treatment efficacy. In this review, methods detecting the mechanical are introduced. Strategies for modulating the mechanical microenvironment including elimination of dense ECM by physical, chemical and biological methods, disruption of ECM formation, depletion or inhibition of cancer-associated fibroblasts, are then summarized. Finally, prospects and challenges for further clinical applications of mechano-modulating strategies to enhance the therapeutic efficacy of nanomedicines are discussed. This review may provide guidance for the rational design and application of nanoparticles in clinical settings.
Collapse
Affiliation(s)
- Xiaoqiong Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojuan Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
31
|
Gao F, Ma Z, Luo X, Wang Y, Liu X, Tang M, Chen J, Tu L, Ouyang D, Zheng J, Li C. Self-Assembled Micelles Based on Ginsenoside Rg5 for the Targeted Treatment of PTX-Resistant Tumors. Mol Pharm 2024; 21:3502-3512. [PMID: 38861472 DOI: 10.1021/acs.molpharmaceut.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Paclitaxel (PTX) is one of the first-line drugs for prostate cancer (PC) treatment. However, the poor water solubility, inadequate specific targeting ability, multidrug resistance, and severe neurotoxicity are far from being fully resolved, despite diverse PTX formulations in the market, such as the gold-standard PTX albumin nanoparticle (Abraxane) and polymer micelles (Genexol-PM). Some studies attempting to solve the multiple problems of chemotherapy delivery fall into the trap of an extremely complicated formulation design and sacrifice druggability. To better address these issues, this study designed an efficient, toxicity-reduced paclitaxel-ginsenoside polymeric micelle (RPM). With the aid of the inherent amphiphilic molecular structure and pharmacological effects of ginsenoside Rg5, the prepared RPM enhances the water solubility and active targeting of PTX, inhibiting chemotherapy resistance in cancer cells. Moreover, the polymeric micelles demonstrated favorable anti-inflammatory and neuroprotective effects, providing ideas for the development of new clinical anti-PC preparations.
Collapse
Affiliation(s)
- Feiyan Gao
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xing Luo
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yahua Wang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mei Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Junyu Chen
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Liangxing Tu
- Division of Pharmaceutics, National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
32
|
Shang S, Li X, Wang H, Zhou Y, Pang K, Li P, Liu X, Zhang M, Li W, Li Q, Chen X. Targeted therapy of kidney disease with nanoparticle drug delivery materials. Bioact Mater 2024; 37:206-221. [PMID: 38560369 PMCID: PMC10979125 DOI: 10.1016/j.bioactmat.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
With the development of nanomedicine, nanomaterials have been widely used, offering specific drug delivery to target sites, minimal side effects, and significant therapeutic effects. The kidneys have filtration and reabsorption functions, with various potential target cell types and a complex structural environment, making the strategies for kidney function protection and recovery after injury complex. This also lays the foundation for the application of nanomedicine in kidney diseases. Currently, evidence in preclinical and clinical settings supports the feasibility of targeted therapy for kidney diseases using drug delivery based on nanomaterials. The prerequisite for nanomedicine in treating kidney diseases is the use of carriers with good biocompatibility, including nanoparticles, hydrogels, liposomes, micelles, dendrimer polymers, adenoviruses, lysozymes, and elastin-like polypeptides. These carriers have precise renal uptake, longer half-life, and targeted organ distribution, protecting and improving the efficacy of the drugs they carry. Additionally, attention should also be paid to the toxicity and solubility of the carriers. While the carriers mentioned above have been used in preclinical studies for targeted therapy of kidney diseases both in vivo and in vitro, extensive clinical trials are still needed to ensure the short-term and long-term effects of nano drugs in the human body. This review will discuss the advantages and limitations of nanoscale drug carrier materials in treating kidney diseases, provide a more comprehensive catalog of nanocarrier materials, and offer prospects for their drug-loading efficacy and clinical applications.
Collapse
Affiliation(s)
- Shunlai Shang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Xiangmeng Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, China
- Peking Union Medical College, Beijing, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yena Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Keying Pang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
33
|
Losada-Barreiro S, Celik S, Sezgin-Bayindir Z, Bravo-Fernández S, Bravo-Díaz C. Carrier Systems for Advanced Drug Delivery: Improving Drug Solubility/Bioavailability and Administration Routes. Pharmaceutics 2024; 16:852. [PMID: 39065549 PMCID: PMC11279846 DOI: 10.3390/pharmaceutics16070852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The disadvantages of some conventional drugs, including their low bioavailability, poor targeting efficiency, and important side effects, have led to the rational design of drug delivery systems. In particular, the introduction of drug delivery systems is a potential approach to enhance the uptake of therapeutic agents and deliver them at the right time and in the right amount of concentration at the required site, as well as open new strategies for effective illness treatment. In this review, we provide a basic understanding of drug delivery systems with an emphasis on the use of cyclodextrin-, polymer- and surfactant-based delivery systems. These systems are very attractive because they are biocompatible and biodegradable nanomaterials with multifunctional components. We also provide some details on their design considerations and their use in a variety of medical applications by employing several routes of administration.
Collapse
Affiliation(s)
- Sonia Losada-Barreiro
- Departamento de Química-Física, Facultade de Química, Universidade de Vigo, 36200 Vigo, Pontevedra, Spain;
| | - Sumeyye Celik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey (Z.S.-B.)
| | - Zerrin Sezgin-Bayindir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey (Z.S.-B.)
| | - Sofía Bravo-Fernández
- Dentistry Department, Primary Health Unit, Galician Health Service (SERGAS), Calle Mourin s/n, 15330 Ortigueira, A Coruña, Spain;
| | - Carlos Bravo-Díaz
- Departamento de Química-Física, Facultade de Química, Universidade de Vigo, 36200 Vigo, Pontevedra, Spain;
| |
Collapse
|
34
|
Wang S, Xu Q, Furuishi T, Fukuzawa K, Yonemochi E. Characterization and drug solubilization of arginine-based ionic liquids - Impact of counterions and stoichiometry. Int J Pharm 2024; 659:124228. [PMID: 38744415 DOI: 10.1016/j.ijpharm.2024.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Ionic liquids (ILs) exhibit very diverse physicochemical properties, such as non-volatility, stability, and miscibility, which render them excellent candidate excipients for multi-purpose use. Six novel arginine (Arg)-based ILs were obtained using a one-step ultrasound method. Salt formation was confirmed by Fourier-transform infrared (FTIR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Moreover, the effects of anions and molar ratio on the molecular states and thermal properties of Arg-ILs were investigated. In addition, the solubilization of drugs with different pKa and LogP values was attempted using Arg-ILs consisting of asparagine, proline, octanoic acid, and malic acid, respectively, and a comparative study was performed. Furthermore, the interaction mode between the drugs and ILs was determined by FTIR and Raman spectroscopy. Presumably, partial interaction between the component of ILs and drugs such as ofloxacin and valsartan occurred, whereas flurbiprofen and isosorbide mononitrate were dispersed in the viscous IL. The development of strategies for the application of ILs as solubilizers or carriers of active pharmaceutical ingredients is an extremely promising and wide avenue of research.
Collapse
Affiliation(s)
- Siran Wang
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Qihui Xu
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Furuishi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kaori Fukuzawa
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan
| | - Etsuo Yonemochi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
35
|
Ou Yang MW, Hu LF, Feng YH, Li X, Peng J, Yu R, Zhang CY, Chen BZ, Guo XD. Hybrid Microneedle-Mediated Transdermal Delivery of Atorvastatin Calcium-Loaded Polymeric Micelles for Hyperlipidemia Therapy. ACS APPLIED BIO MATERIALS 2024; 7:4051-4061. [PMID: 38790078 DOI: 10.1021/acsabm.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Hyperlipidemia has been a huge challenge to global health, leading to the cardiovascular disease, hypertension, and diabetes. Atorvastatin calcium (AC), a widely prescribed drug for hyperlipidemia, faces huge challenges with oral administration due to poor water solubility and hepatic first-pass effects, resulting in low therapeutic efficacy. In this work, we designed and developed a hybrid microneedle (MN) patch system constructed with soluble poly(vinyl alcohol) (PVA) and AC-loaded polymeric micelles (AC@PMs) for transdermal delivery of AC to enhance the hyperlipidemia therapy. We first prepared various AC@PM formulations self-assembled from mPEG-PLA and mPEG-PLA-PEG block copolymers using a dialysis method and evaluated the physicochemical properties in combination with experiment skills and dissipative particle dynamics (DPD) simulations. Then, we encapsulated the AC@PMs into the PVA MN patch using a micromold filling method, followed by characterizing the performances, especially the structural stability, mechanical performance, and biosafety. After conducting in vivo experiments using a hyperlipidemic rat model, our findings revealed that the hybrid microneedle-mediated administration exhibited superior therapeutic efficacy when compared to oral delivery methods. In summary, we have successfully developed a hybrid microneedle (MN) patch system that holds promising potential for the efficient transdermal delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Ming Wen Ou Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liu Fu Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Hao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaobin Li
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Juan Peng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruixing Yu
- Department of Dermatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
36
|
Bisht A, Avinash D, Sahu KK, Patel P, Das Gupta G, Kurmi BD. A comprehensive review on doxorubicin: mechanisms, toxicity, clinical trials, combination therapies and nanoformulations in breast cancer. Drug Deliv Transl Res 2024:10.1007/s13346-024-01648-0. [PMID: 38884850 DOI: 10.1007/s13346-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Doxorubicin is a key treatment for breast cancer, but its effectiveness often comes with significant side effects. Its actions include DNA intercalation, topoisomerase II inhibition, and reactive oxygen species generation, leading to DNA damage and cell death. However, it can also cause heart problems and low blood cell counts. Current trials aim to improve doxorubicin therapy by adjusting doses, using different administration methods, and combining it with targeted treatments or immunotherapy. Nanoformulations show promise in enhancing doxorubicin's effectiveness by improving drug delivery, reducing side effects, and overcoming drug resistance. This review summarizes recent progress and difficulties in using doxorubicin for breast cancer, highlighting its mechanisms, side effects, ongoing trials, and the potential impact of nanoformulations. Understanding these different aspects is crucial in optimizing doxorubicin's use and improving outcomes for breast cancer patients. This review examines the toxicity of doxorubicin, a drug used in breast cancer treatment, and discusses strategies to mitigate adverse effects, such as cardioprotective agents and liposomal formulations. It also discusses clinical trials evaluating doxorubicin-based regimens, the evolving landscape of combination therapies, and the potential of nanoformulations to optimize delivery and reduce systemic toxicity. The review also discusses the potential of liposomes, nanoparticles, and polymeric micelles to enhance drug accumulation within tumor tissues while sparing healthy organs.
Collapse
Affiliation(s)
- Anjali Bisht
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Dubey Avinash
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Chaumuhan, Mathura, 281406, UP, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
37
|
Zhong Q, Zeng J, Jia X. Self-Assembled Aggregated Structures of Natural Products for Oral Drug Delivery. Int J Nanomedicine 2024; 19:5931-5949. [PMID: 38887690 PMCID: PMC11182358 DOI: 10.2147/ijn.s467354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
The self-assembling aggregated structures of natural products have gained significant interest due to their simple synthesis, lack of carrier-related toxicity, and excellent biological efficacy. However, the mechanisms of their assembly and their ability to traverse the gastrointestinal (GI) barrier remain unclear. This review summarizes various intermolecular non-covalent interactions and aggregated structures, drawing on research indexed in Web of Science from 2010 to 2024. Cheminformatics analysis of the self-assembly behaviors of natural small molecules and their supramolecular aggregates reveals assembly-favorable conditions, aiding drug formulation. Additionally, the review explores the self-assembly properties of macromolecules like polysaccharides, proteins, and exosomes, highlighting their role in drug delivery. Strategies to overcome gastrointestinal barriers and enhance drug bioavailability are also discussed. This work underscores the potential of natural products in oral drug delivery and offers insights for designing more effective drug delivery systems.
Collapse
Affiliation(s)
- Qiyuan Zhong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
38
|
Li D, Li B, Li Y, Liu S, Jafari SM. Micellar delivery systems of bioactive compounds for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:89-145. [PMID: 39218509 DOI: 10.1016/bs.afnr.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Rapid changes in lifestyle and the increasingly hectic pace of life have led to a rise in chronic diseases, such as obesity, inflammatory bowel disease, liver disease, and cancer, posing significant threats to public health. In response to these challenges, precision nutrition (PN) has emerged as a secure and effective intervention aiming at human health and well-being. Bioactive compounds (bioactives), including carotenoids, polyphenols, vitamins, and polyunsaturated fatty acids, exhibit a range of beneficial properties, e.g., antioxidant and anti-inflammatory effects. These properties make them promising candidates for preventing or treating chronic diseases and promoting human health. However, bioactives might have different challenges when incorporated into food matrices and oral administration, including low water solubility, poor physiochemical stability, and low absorption efficiency. This limits them to achieve the health benefits in the body. Numerous strategies have been developed and utilized to encapsulate and deliver bioactives. Micellar delivery systems, due to their unique core-shell structure, play a pivotal role in improving the stability, solubility, and bioavailability of these bioactives. Moreover, through innovative design strategies, micellar delivery systems can be tailored to offer targeted and controlled release, thus maximizing the potential of bioactives in PN applications. This chapter reveals details about the preparation methods and properties of micelles and highlights the strategies to modulate the properties of polymeric micelles. Afterwards, the application of polymeric micelles in the delivery of bioactives and the corresponding PN, including controlled release, organ-targeting ability, and nutritional intervention for chronic disease are summarized.
Collapse
Affiliation(s)
- Donghui Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, P.R. China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, P.R. China.
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, P.R. China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
39
|
Faraji S, Rajaeinejad M, Bagheri H, Afshar Ardalan M, Moutabian H, Ehsani F, Pourarjmand M, Mirshafieyan SS, Alazamani F, Cheraghi S. Modulation of Ionizing Radiation-Induced Apoptosis by Taurine in Human Peripheral Blood Lymphocytes: Flow Cytometry-based Quantification. J Biomed Phys Eng 2024; 14:287-298. [PMID: 39027706 PMCID: PMC11252553 DOI: 10.31661/jbpe.v0i0.2308-1655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/07/2024] [Indexed: 07/20/2024]
Abstract
Background Radiotherapy, a highly effective method of radiation-based treating cancers, can reduce the size of tumors and affect healthy tissues. Radiation-induced lymphopenia as a side effect of radiation therapy can reduce the effectiveness of the treatment. Objective This study aimed to examine how taurine can protect peripheral blood lymphocytes from radiation-based apoptosis. Material and Methods In this experimental study, the effects of the taurine on lymphocytes were studied, and blood samples were divided into three groups: a negative control group that was not treated, a positive control group that was treated with cysteine (100 μg/ml), and a group that was treated with taurine (100 µg. mL-1) in three different doses (4, 8 & 12 Gy) before irradiation. The percentage of apoptotic and necrotic lymphocytes was measured using flow cytometry 48 and 72 hours after the irradiation, respectively. Results According to the groups treated with taurine, the number of lymphocytes undergoing apoptosis was lower and higher compared to the negative and positive control groups, respectively. The decrease in this value was more pronounced 48 hours after radiation compared to 72 hours. Furthermore, there was a slight increase in the number of apoptotic lymphocytes with increasing radiation dose. Conclusion Taurine effectively protects human peripheral blood lymphocytes from radiation-based apoptosis.
Collapse
Affiliation(s)
- Shahab Faraji
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Mohsen Rajaeinejad
- Radiation Sciences Research Center (ARSRC), Aja University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran
- Radiation Sciences Research Center (ARSRC), Aja University of Medical Sciences, Tehran, Iran
| | - Mohammad Afshar Ardalan
- Radiation Sciences Research Center (ARSRC), Aja University of Medical Sciences, Tehran, Iran
| | - Hossein Moutabian
- Radiation Sciences Research Center (ARSRC), Aja University of Medical Sciences, Tehran, Iran
| | - Faramarz Ehsani
- Radiation Sciences Research Center (ARSRC), Aja University of Medical Sciences, Tehran, Iran
| | - Mohammad Pourarjmand
- Radiation Sciences Research Center (ARSRC), Aja University of Medical Sciences, Tehran, Iran
| | | | - Farshid Alazamani
- Radiation Sciences Research Center (ARSRC), Aja University of Medical Sciences, Tehran, Iran
| | - Susan Cheraghi
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran
| |
Collapse
|
40
|
Pathak D, Mazumder A. A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. Daru 2024; 32:379-419. [PMID: 38225520 PMCID: PMC11087437 DOI: 10.1007/s40199-023-00502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
PURPOSE Chronic diseases often hinder the natural healing process, making wound infections a prevalent clinical concern. In severe cases, complications can arise, potentially leading to fatal outcomes. While allopathic treatments offer numerous options for wound repair and management, the enduring popularity of herbal medications may be attributed to their perceived minimal side effects. Hence, this review aims to investigate the potential of herbal remedies in efficiently treating wounds, presenting a promising alternative for consideration. METHODS A literature search was done including research, reviews, systematic literature review, meta-analysis, and clinical trials considered. Search engines such as Pubmed, Google Scholar, and Scopus were used while retrieving data. Keywords like Wound healing 'Wound healing and herbal combinations', 'Herbal wound dressing', Nanotechnology and Wound dressing were used. RESULT This review provides valuable insights into the role of natural products and technology-based formulations in the treatment of wound infections. It evaluates the use of herbal remedies as an effective approach. Various active principles from herbs, categorized as flavonoids, glycosides, saponins, and phenolic compounds, have shown effectiveness in promoting wound closure. A multitude of herbal remedies have demonstrated significant efficacy in wound management, offering an additional avenue for care. The review encompasses a total of 72 studies, involving 127 distinct herbs (excluding any common herbs shared between studies), primarily belonging to the families Asteraceae, Fabaceae, and Apiaceae. In research, rat models were predominantly utilized to assess wound healing activities. Furthermore, advancements in herbal-based formulations using nanotechnology-based wound dressing materials, such as nanofibers, nanoemulsions, nanofiber mats, polymeric fibers, and hydrogel-based microneedles, are underway. These innovations aim to enhance targeted drug delivery and expedite recovery. Several clinical-based experimental studies have already been documented, evaluating the efficacy of various natural products for wound care and management. This signifies a promising direction in the field of wound treatment. CONCLUSION In recent years, scientists have increasingly utilized evidence-based medicine and advanced scientific techniques to validate the efficacy of herbal medicines and delve into the underlying mechanisms of their actions. However, there remains a critical need for further research to thoroughly understand how isolated chemicals extracted from herbs contribute to the healing process of intricate wounds, which may have life-threatening consequences. This ongoing research endeavor holds great promise in not only advancing our understanding but also in the development of innovative formulations that expedite the recovery process.
Collapse
Affiliation(s)
- Deepika Pathak
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India.
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India
| |
Collapse
|
41
|
Zhang Y, Zhang Y, Ding R, Zhang K, Guo H, Lin Y. Self-Assembled Nanocarrier Delivery Systems for Bioactive Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310838. [PMID: 38214694 DOI: 10.1002/smll.202310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Indexed: 01/13/2024]
Abstract
Although bioactive compounds (BCs) have many important functions, their applications are greatly limited due to their own defects. The development of nanocarriers (NCs) technology has gradually overcome the defects of BCs. NCs are equally important as BCs to some extent. Self-assembly (SA) methods to build NCs have many advantages than chemical methods, and SA has significant impact on the structure and function of NCs. However, the relationship among SA mechanism, structure, and function has not been given enough attention. Therefore, from the perspective of bottom-up building mechanism, the concept of SA-structure-function of NCs is emphasized to promote the development of SA-based NCs. First, the conditions and forces for occurring SA are introduced, and then the SA basis and molecular mechanism of protein, polysaccharide, and lipid are summarized. Then, varieties of the structures formed based on SA are introduced in detail. Finally, facing the defects of BCs and how to be well solved by NCs are also elaborated. This review attempts to describe the great significance of constructing artificial NCs to deliver BCs from the aspects of SA-structure-function, so as to promote the development of SA-based NCs and the wide application of BCs.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuning Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
- Food Laboratory of Zhongyuan, Luohe, 462300, China
| |
Collapse
|
42
|
Mahmud MM, Pandey N, Winkles JA, Woodworth GF, Kim AJ. Toward the scale-up production of polymeric nanotherapeutics for cancer clinical trials. NANO TODAY 2024; 56:102314. [PMID: 38854931 PMCID: PMC11155436 DOI: 10.1016/j.nantod.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nanotherapeutics have gained significant attention for the treatment of numerous cancers, primarily because they can accumulate in and/or selectively target tumors leading to improved pharmacodynamics of encapsulated drugs. The flexibility to engineer the nanotherapeutic characteristics including size, morphology, drug release profiles, and surface properties make nanotherapeutics a unique platform for cancer drug formulation. Polymeric nanotherapeutics including micelles and dendrimers represent a large number of formulation strategies developed over the last decade. However, compared to liposomes and lipid-based nanotherapeutics, polymeric nanotherapeutics have had limited clinical translation from the laboratory. One of the key limitations of polymeric nanotherapeutics formulations for clinical translation has been the reproducibility in preparing consistent and homogeneous large-scale batches. In this review, we describe polymeric nanotherapeutics and discuss the most common laboratory and scale-up formulation methods, specifically those proposed for clinical cancer therapies. We also provide an overview of the major challenges and opportunities for scaling polymeric nanotherapeutics to clinical-grade formulations. Finally, we will review the regulatory requirements and challenges in advancing nanotherapeutics to the clinic.
Collapse
Affiliation(s)
- Md Musavvir Mahmud
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A. Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F. Woodworth
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anthony J. Kim
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
43
|
An X, Yang J, Cui X, Zhao J, Jiang C, Tang M, Dong Y, Lin L, Li H, Wang F. Advances in local drug delivery technologies for improved rheumatoid arthritis therapy. Adv Drug Deliv Rev 2024; 209:115325. [PMID: 38670229 DOI: 10.1016/j.addr.2024.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by an inflammatory microenvironment and cartilage erosion within the joint cavity. Currently, antirheumatic agents yield significant outcomes in RA treatment. However, their systemic administration is limited by inadequate drug retention in lesion areas and non-specific tissue distribution, reducing efficacy and increasing risks such as infection due to systemic immunosuppression. Development in local drug delivery technologies, such as nanostructure-based and scaffold-assisted delivery platforms, facilitate enhanced drug accumulation at the target site, controlled drug release, extended duration of the drug action, reduced both dosage and administration frequency, and ultimately improve therapeutic outcomes with minimized damage to healthy tissues. In this review, we introduced pathogenesis and clinically used therapeutic agents for RA, comprehensively summarized locally administered nanostructure-based and scaffold-assisted drug delivery systems, aiming at improving the therapeutic efficiency of RA by alleviating the inflammatory response, preventing bone erosion and promoting cartilage regeneration. In addition, the challenges and future prospects of local delivery for clinical translation in RA are discussed.
Collapse
Affiliation(s)
- Xiaoran An
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jiapei Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiaolin Cui
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jiaxuan Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chenwei Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Minglu Tang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yabing Dong
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330000, PR China
| | - Feihu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
44
|
Li F, Wang H, Ye T, Guo P, Lin X, Hu Y, Wei W, Wang S, Ma G. Recent Advances in Material Technology for Leukemia Treatments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313955. [PMID: 38547845 DOI: 10.1002/adma.202313955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Leukemia is a widespread hematological malignancy characterized by an elevated white blood cell count in both the blood and the bone marrow. Despite notable advancements in leukemia intervention in the clinic, a large proportion of patients, especially acute leukemia patients, fail to achieve long-term remission or complete remission following treatment. Therefore, leukemia therapy necessitates optimization to meet the treatment requirements. In recent years, a multitude of materials have undergone rigorous study to serve as delivery vectors or direct intervention agents to bolster the effectiveness of leukemia therapy. These materials include liposomes, protein-based materials, polymeric materials, cell-derived materials, and inorganic materials. They possess unique characteristics and are applied in a broad array of therapeutic modalities, including chemotherapy, gene therapy, immunotherapy, radiotherapy, hematopoietic stem cell transplantation, and other evolving treatments. Here, an overview of these materials is presented, describing their physicochemical properties, their role in leukemia treatment, and the challenges they face in the context of clinical translation. This review inspires researchers to further develop various materials that can be used to augment the efficacy of multiple therapeutic modalities for novel applications in leukemia treatment.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaiji Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyun Lin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
45
|
He L, Jiang C, Ren J, Pan X, Qiu Z, Xia Y, Wang T, Guo J, Li J, Li W. Enhanced drug resistance suppression by serum-stable micelles from multi-arm amphiphilic block copolymers and tocopheryl polyethylene glycol 1000 succinate. Nanomedicine (Lond) 2024; 19:1297-1311. [PMID: 39046514 PMCID: PMC11285239 DOI: 10.1080/17435889.2024.2347197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 07/25/2024] Open
Abstract
Aim: To develop a robust drug-delivery system using multi-arm amphiphilic block copolymers for enhanced efficacy in cancer therapy. Materials & methods: Two series of amphiphilic polymer micelles, PEG-b-PCLm and PEG-b-PCLm/TPGS, were synthesized. Doxorubicin (DOX) loading into the micelles was achieved via solvent dialysis. Results: The micelles displayed excellent biocompatibility, narrow size distribution, and uniform morphology. DOX-loaded micelles exhibited enhanced antitumor efficacy and increased drug accumulation at tumor sites compared with free DOX. Additionally, 4A-PEG47-b-PCL21/TPGS micelles effectively suppressed drug-resistant MCF-7/ADR cells. Conclusion: This study introduces a novel micelle formulation with exceptional serum stability and efficacy against drug resistance, promising for cancer therapy. It highlights innovative strategies for refining clinical translation and ensuring sustained efficacy and safety in vivo.
Collapse
Affiliation(s)
- Lei He
- School of Health Science & Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Cheng Jiang
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Jing Ren
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 lingling Lu, Shanghai, 200032, China
| | - Xiaoling Pan
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Zhiwen Qiu
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Yening Xia
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Tian Wang
- School of Health Science & Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Jiahao Guo
- School of Health Science & Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| | - Junfang Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 lingling Lu, Shanghai, 200032, China
| | - Wei Li
- School of Health Science & Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
46
|
Chen Q, Yang Z, Liu H, Man J, Oladejo AO, Ibrahim S, Wang S, Hao B. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024; 16:674. [PMID: 38794336 PMCID: PMC11124876 DOI: 10.3390/pharmaceutics16050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The escalating demand for enhanced therapeutic efficacy and reduced adverse effects in the pharmaceutical domain has catalyzed a new frontier of innovation and research in the field of pharmacy: novel drug delivery systems. These systems are designed to address the limitations of conventional drug administration, such as abbreviated half-life, inadequate targeting, low solubility, and bioavailability. As the disciplines of pharmacy, materials science, and biomedicine continue to advance and converge, the development of efficient and safe drug delivery systems, including biopharmaceutical formulations, has garnered significant attention both domestically and internationally. This article presents an overview of the latest advancements in drug delivery systems, categorized into four primary areas: carrier-based and coupling-based targeted drug delivery systems, intelligent drug delivery systems, and drug delivery devices, based on their main objectives and methodologies. Additionally, it critically analyzes the technological bottlenecks, current research challenges, and future trends in the application of novel drug delivery systems.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Haoyu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Jingyuan Man
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Ayodele Olaolu Oladejo
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora 201003, Nigeria
| | - Sally Ibrahim
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki 12622, Egypt
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| |
Collapse
|
47
|
Zhao L, Wang Y, Zhang Y, Chen H, Sun F. Dynamic Simulations of Interaction of the PEG-DPPE Micelle-Encapsulated Short-Chain Ceramides with the Raft-Included Membrane. J Chem Inf Model 2024; 64:3874-3883. [PMID: 38652138 DOI: 10.1021/acs.jcim.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The lipid raft subdomains in cancer cell membranes play a key role in signal transduction, biomolecule recruitment, and drug transmembrane transport. Augmented membrane rigidity due to the formation of a lipid raft is unfavorable for the entry of drugs, a limiting factor in clinical oncology. The short-chain ceramide (CER) has been reported to promote drug entry into membranes and disrupt lipid raft formation, but the underlying mechanism is not well understood. We recently explored the carrier-membrane fusion dynamics of PEG-DPPE micelles in delivering doxorubicin (DOX). Based on the phase-segregated membrane model composed of DPPC/DIPC/CHOL/GM1/PIP2, we aim to explore the dynamic mechanism of the PEG-DPPE micelle-encapsulating DOXs in association with the raft-included cell membrane modulated by C8 acyl tail CERs. The results show that the lipid raft remains integrated and DOX-resistant subjected to free DOXs and the micelle-encapsulating ones. Addition of CERs disorganizes the lipid raft by pushing CHOL aside from DPPC. It subsequently allows for a good permeability for PEG-DPPE micelle-encapsulated DOXs, which penetrate deeper as CER concentration increases. GM1 is significant in guiding drugs' redistributing between bilayer phases, and the anionic PIP2 further helps DOXs attain the inner bilayer surface. These results elaborate on the perturbing effect of CERs on lipid raft stability, which provides a new comprehensive approach for further design of drug delivery systems.
Collapse
Affiliation(s)
- Lina Zhao
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yanjiao Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yi Zhang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hao Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fude Sun
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
48
|
Wang Y, Guo R, Zou M, Jiang L, Kong L, Zhao S, Zhang X, Wang W, Xu B. Combined ROS Sensitive Folate Receptor Targeted Micellar Formulations of Curcumin Effective Against Rheumatoid Arthritis in Rat Model. Int J Nanomedicine 2024; 19:4217-4234. [PMID: 38766660 PMCID: PMC11100960 DOI: 10.2147/ijn.s458957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Rheumatoid arthritis (RA) is an inflammatory immune-mediated disease that involves synovitis, cartilage destruction, and even joint damage. Traditional agents used for RA therapy remain unsatisfactory because of their low efficiency and obvious adverse effects. Therefore, we here established RA microenvironment-responsive targeted micelles that can respond to the increase in reactive oxygen species (ROS) levels in the joint and improve macrophage-specific targeting of loaded drugs. Methods We here prepared ROS-responsive folate-modified curcumin micelles (TK-FA-Cur-Ms) in which thioketal (TK) was used as a ROS-responsive linker for modifying polyethylene glycol 5000 (PEG5000) on the micellar surface. When micelles were in the ROS-overexpressing inflammatory microenvironment, the PEG5000 hydration layer was shed, and the targeting ligand FA was exposed, thereby enhancing cellular uptake by macrophages through active targeting. The targeting, ROS sensitivity and anti-inflammatory properties of the micelles were assessed in vitro. Collagen-induced arthritis (CIA) rats model was utilized to investigate the targeting, expression of serum inflammatory factors and histology change of the articular cartilage by micelles in vivo. Results TK-FA-Cur-Ms had a particle size of 90.07 ± 3.44 nm, which decreased to 78.87 ± 2.41 nm after incubation with H2O2. The micelles exhibited in vitro targeting of RAW264.7 cells and significantly inhibited inflammatory cytokine levels. Pharmacodynamic studies have revealed that TK-FA-Cur-Ms prolonged the drug circulation and exhibited augmented cartilage-protective and anti-inflammatory effects in vivo. Conclusion The unique ROS-responsive targeted micelles with targeting, ROS sensitivity and anti-inflammatory properties were successfully prepared and may offer an effective therapeutic strategy against RA.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, People’s Republic of China
| | - Ruibo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People’s Republic of China
| | - Ming Zou
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, People’s Republic of China
| | - Lingling Jiang
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, People’s Republic of China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People’s Republic of China
| | - Sen Zhao
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, People’s Republic of China
| | - Xuan Zhang
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, People’s Republic of China
| | - Wei Wang
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, People’s Republic of China
| | - Baoli Xu
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, People’s Republic of China
| |
Collapse
|
49
|
Li L, Yue T, Feng J, Zhang Y, Hou J, Wang Y. Recent progress in lactate oxidase-based drug delivery systems for enhanced cancer therapy. NANOSCALE 2024; 16:8739-8758. [PMID: 38602362 DOI: 10.1039/d3nr05952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lactate oxidase (LOX) is a natural enzyme that efficiently consumes lactate. In the presence of oxygen, LOX can catalyse the formation of pyruvate and hydrogen peroxide (H2O2) from lactate. This process led to acidity alleviation, hypoxia, and a further increase in oxidative stress, alleviating the immunosuppressive state of the tumour microenvironment (TME). However, the high cost of LOX preparation and purification, poor stability, and systemic toxicity limited its application in tumour therapy. Therefore, the rational application of drug delivery systems can protect LOX from the organism's environment and maintain its catalytic activity. This paper reviews various LOX-based drug-carrying systems, including inorganic nanocarriers, organic nanocarriers, and inorganic-organic hybrid nanocarriers, as well as other non-nanocarriers, which have been used for tumour therapy in recent years. In addition, this area's challenges and potential for the future are highlighted.
Collapse
Affiliation(s)
- Lu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jie Feng
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yujun Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jun Hou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
50
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|