1
|
Thorpe HJ, Partha R, Little J, Clark NL, Chow CY. Evolutionary rate covariation is pervasive between glycosylation pathways and points to potential disease modifiers. PLoS Genet 2024; 20:e1011406. [PMID: 39259723 PMCID: PMC11419382 DOI: 10.1371/journal.pgen.1011406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Mutations in glycosylation pathways, such as N-linked glycosylation, O-linked glycosylation, and GPI anchor synthesis, lead to Congenital Disorders of Glycosylation (CDG). CDG typically present with seizures, hypotonia, and developmental delay but display large clinical variability with symptoms affecting every system in the body. This variability suggests modifier genes might influence the phenotypes. Because of the similar physiology and clinical symptoms, there are likely common genetic modifiers between CDG. Here, we use evolution as a tool to identify common modifiers between CDG and glycosylation genes. Protein glycosylation is evolutionarily conserved from yeast to mammals. Evolutionary rate covariation (ERC) identifies proteins with similar evolutionary rates that indicate shared biological functions and pathways. Using ERC, we identified strong evolutionary rate signatures between proteins in the same and different glycosylation pathways. Genome-wide analysis of proteins showing significant ERC with GPI anchor synthesis proteins revealed strong signatures with ncRNA modification proteins and DNA repair proteins. We also identified strong patterns of ERC based on cellular sub-localization of the GPI anchor synthesis enzymes. Functional testing of the highest scoring candidates validated genetic interactions and identified novel genetic modifiers of CDG genes. ERC analysis of disease genes and biological pathways allows for rapid prioritization of potential genetic modifiers, which can provide a better understanding of disease pathophysiology and novel therapeutic targets.
Collapse
Affiliation(s)
- Holly J. Thorpe
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Raghavendran Partha
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jordan Little
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Nathan L. Clark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Clement Y. Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
2
|
Madzharova E, Sabino F, Kalogeropoulos K, Francavilla C, Auf dem Keller U. Substrate O-glycosylation actively regulates extracellular proteolysis. Protein Sci 2024; 33:e5128. [PMID: 39074261 DOI: 10.1002/pro.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
Extracellular proteolysis critically regulates cellular and tissue responses and is often dysregulated in human diseases. The crosstalk between proteolytic processing and other major post-translational modifications (PTMs) is emerging as an important regulatory mechanism to modulate protease activity and maintain cellular and tissue homeostasis. Here, we focus on matrix metalloproteinase (MMP)-mediated cleavages and N-acetylgalactosamine (GalNAc)-type of O-glycosylation, two major PTMs of proteins in the extracellular space. We investigated the influence of truncated O-glycan trees, also referred to as Tn antigen, following the inactivation of C1GALT1-specific chaperone 1 (COSMC) on the general and MMP9-specific proteolytic processing in MDA-MB-231 breast cancer cells. Quantitative assessment of the proteome and N-terminome using terminal amine isotopic labelling of substrates (TAILS) technology revealed enhanced proteolysis by MMP9 within the extracellular proteomes of MDA-MB-231 cells expressing Tn antigen. In addition, we detected substantial modifications in the proteome and discovered novel ectodomain shedding events regulated by the truncation of O-glycans. These results highlight the critical role of mature O-glycosylation in fine-tuning proteolytic processing and proteome homeostasis by modulating protein susceptibility to proteolytic degradation. These data suggest a complex interplay between proteolysis and O-GalNAc glycosylation, possibly affecting cancer phenotypes.
Collapse
Affiliation(s)
- Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fabio Sabino
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Chiara Francavilla
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
La X, He X, Liang J, Zhang Z, Li H, Liu Y, Liu T, Li Z, Wu C. Gastroprotective Effect of Isoferulic Acid Derived from Foxtail Millet Bran against Ethanol-Induced Gastric Mucosal Injury by Enhancing GALNT2 Enzyme Activity. Nutrients 2024; 16:2148. [PMID: 38999895 PMCID: PMC11243359 DOI: 10.3390/nu16132148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Excessive alcohol consumption has led to the prevalence of gastrointestinal ailments. Alleviating gastric disorders attributed to alcohol-induced thinning of the mucus layer has centered on enhancing mucin secretion as a pivotal approach. In this study, foxtail millet bran polyphenol BPIS was divided into two components with MW < 200 D and MW > 200 D by molecular interception technology. Combined with MTT, cell morphology observation, and trypan blue staining, isoferulic acid (IFA) within the MW < 200 D fraction was determined as the effective constituent to mitigate ethanol-induced damage of gastric epithelial cells. Furthermore, a Wistar rat model with similar clinical features to alcohol-induced gastric mucosal injury was established. Then, gastric morphological observation, H&E staining, and assessments of changes in gastric hexosamine content and gastric wall binding mucus levels were carried out, and the results revealed that IFA (10 mg/Kg) significantly ameliorated alcohol-induced gastric mucosal damage. Finally, we applied techniques including Co-IP, molecular docking, and fluorescence spectroscopy and found that IFA inhibited the alcohol-induced downregulation of N-acetylgalactosamintransferase 2 (GALNT2) activity related to mucus synthesis through direct interaction with GALNT2 in gastric epithelial cells, thus promoting mucin synthesis. Our study lays a foundation for whole grain dietary intervention tailored to individuals suffering from alcoholic gastric mucosal injury.
Collapse
Affiliation(s)
- Xiaoqin La
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (Z.Z.); (T.L.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Xiaoting He
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.H.); (H.L.); (Y.L.)
| | - Jingyi Liang
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China;
| | - Zhaoyan Zhang
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (Z.Z.); (T.L.)
| | - Hanqing Li
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.H.); (H.L.); (Y.L.)
| | - Yizhi Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.H.); (H.L.); (Y.L.)
| | - Ting Liu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (Z.Z.); (T.L.)
| | - Zhuoyu Li
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China;
- The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (Z.Z.); (T.L.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan 030006, China
| |
Collapse
|
4
|
Gędaj A, Gregorczyk P, Żukowska D, Chorążewska A, Ciura K, Kalka M, Porębska N, Opaliński Ł. Glycosylation of FGF/FGFR: An underrated sweet code regulating cellular signaling programs. Cytokine Growth Factor Rev 2024; 77:39-55. [PMID: 38719671 DOI: 10.1016/j.cytogfr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/22/2024]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute plasma-membrane localized signaling hubs that transmit signals from the extracellular environment to the cell interior, governing pivotal cellular processes like motility, metabolism, differentiation, division and death. FGF/FGFR signaling is critical for human body development and homeostasis; dysregulation of FGF/FGFR units is observed in numerous developmental diseases and in about 10% of human cancers. Glycosylation is a highly abundant posttranslational modification that is critical for physiological and pathological functions of the cell. Glycosylation is also very common within FGF/FGFR signaling hubs. Vast majority of FGFs (15 out of 22 members) are N-glycosylated and few FGFs are O-glycosylated. Glycosylation is even more abundant within FGFRs; all FGFRs are heavily N-glycosylated in numerous positions within their extracellular domains. A growing number of studies points on the multiple roles of glycosylation in fine-tuning FGF/FGFR signaling. Glycosylation modifies secretion of FGFs, determines their stability and affects interaction with FGFRs and co-receptors. Glycosylation of FGFRs determines their intracellular sorting, constitutes autoinhibitory mechanism within FGFRs and adjusts FGF and co-receptor recognition. Sugar chains attached to FGFs and FGFRs constitute also a form of code that is differentially decrypted by extracellular lectins, galectins, which transform FGF/FGFR signaling at multiple levels. This review focuses on the identified functions of glycosylation within FGFs and FGFRs and discusses their relevance for the cell physiology in health and disease.
Collapse
Affiliation(s)
- Aleksandra Gędaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Paulina Gregorczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Dominika Żukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
5
|
Gadwal A, Purohit P, Khokhar M, Vishnoi JR, Pareek P, Choudhary R, Elhence P, Banerjee M, Sharma P. GALNT14 in association with GDF-15 promotes stemness and drug resistance through β-catenin signalling pathway in breast cancer. Mol Biol Rep 2024; 51:691. [PMID: 38796671 DOI: 10.1007/s11033-024-09645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Altered glycosylation plays a role in carcinogenesis. GALNT14 promotes cancer stem-like properties and drug resistance. GDF-15 is known to induces drug resistance and stemness markers for maintenance of breast cancer (BC) stem-like cell state. Currently there is lack of data on association of GDF-15 and GALNTs. In this study, the expression and interaction of GALNT14 and GDF-15 with stemness (OCT4 and SOX2) and drug resistance (ABCC5) markers were evaluated in BC. METHODS We investigated tumour tissue from 30 BC patients and adjacent non-tumour tissues. Expression of serum GALNT14 from BC patients and matched healthy controls was evaluated. Expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and β-catenin in BC tissue was determined by RT-PCR. Knockdown of GALNT14 and GDF-15 in the MCF-7 cell line was done through siRNA, gene expression and protein expression of β-catenin by western blot were determined. RESULTS A significant increase in the expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and β-catenin was observed in BC tumour tissues compared to adjacent non-tumour tissues. The serum level of GALNT14 was significantly high in BC patients (80.7 ± 65.3 pg/ml) compared to healthy controls (12.2 ± 9.12 pg/ml) (p < 0.000). To further analyse the signalling pathway involved in BC stemness and drug resistance, GALNT14 and GDF-15 were knocked down in the MCF-7 cell line, and it was observed that after knockdown, the expression level of OCT4, SOX2, ABCC5, and β-catenin was decreased, and co-knockdown with GALNT14 and GDF-15 further decreased the expression of genes. CONCLUSION It can be concluded that GALNT14, in association with GDF-15, promotes stemness and intrinsic drug resistance in BC, possibly through the β-catenin signalling pathway.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Ramkaran Choudhary
- Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| |
Collapse
|
6
|
Wang S, Ran W, Sun L, Fan Q, Zhao Y, Wang B, Yang J, He Y, Wu Y, Wang Y, Chen L, Chuchuay A, You Y, Zhu X, Wang X, Chen Y, Wang Y, Chen YQ, Yuan Y, Zhao J, Mao Y. Sequential glycosylations at the multibasic cleavage site of SARS-CoV-2 spike protein regulate viral activity. Nat Commun 2024; 15:4162. [PMID: 38755139 PMCID: PMC11099032 DOI: 10.1038/s41467-024-48503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
The multibasic furin cleavage site at the S1/S2 boundary of the spike protein is a hallmark of SARS-CoV-2 and plays a crucial role in viral infection. However, the mechanism underlying furin activation and its regulation remain poorly understood. Here, we show that GalNAc-T3 and T7 jointly initiate clustered O-glycosylations in the furin cleavage site of the SARS-CoV-2 spike protein, which inhibit furin processing, suppress the incorporation of the spike protein into virus-like-particles and affect viral infection. Mechanistic analysis reveals that the assembly of the spike protein into virus-like particles relies on interactions between the furin-cleaved spike protein and the membrane protein of SARS-CoV-2, suggesting a possible mechanism for furin activation. Interestingly, mutations in the spike protein of the alpha and delta variants of the virus confer resistance against glycosylation by GalNAc-T3 and T7. In the omicron variant, additional mutations reverse this resistance, making the spike protein susceptible to glycosylation in vitro and sensitive to GalNAc-T3 and T7 expression in human lung cells. Our findings highlight the role of glycosylation as a defense mechanism employed by host cells against SARS-CoV-2 and shed light on the evolutionary interplay between the host and the virus.
Collapse
Affiliation(s)
- Shengjun Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wei Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingyu Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qingchi Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanqi Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Foshan Institute for Food and Drug Control, Foshan, China
| | - Bowen Wang
- College of Life Science, Northwest University, Xi'an, China
| | - Jinghong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqi He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Luoyi Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Arpaporn Chuchuay
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuyu You
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinhai Zhu
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanqiu Yuan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
| | - Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, China.
| |
Collapse
|
7
|
Gadwal A, Purohit P, Khokhar M, Vishnoi JR, Pareek P, Choudhary R, Elhence P, Banerjee M, Sharma P. GALNT6, GALNT14, and Gal-3 in association with GDF-15 promotes drug resistance and stemness of breast cancer via β-catenin axis. Growth Factors 2024; 42:84-100. [PMID: 38889447 DOI: 10.1080/08977194.2024.2368907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
N-acetylgalactosaminyltransferases (GALNTs) are a polypeptide responsible for aberrant glycosylation in breast cancer (BC), but the mechanism is unclear. In this study, expression levels of GALNT6, GALNT14, and Gal-3 were assessed in BC, and their association with GDF-15, β-catenin, stemness (SOX2 and OCT4), and drug resistance marker (ABCC5) was evaluated. Gene expression of GALNT6, GALNT14, Gal-3, GDF-15, OCT4, SOX2, ABCC5, and β-catenin in tumor and adjacent non-tumor tissues (n = 30) was determined. The same was compared with GEO-microarray datasets. A significant increase in the expression of candidate genes was observed in BC tumor compared to adjacent non-tumor tissue; and in pre-therapeutic patients compared to post-therapeutic. GALNT6, GALNT14, Gal-3, and GDF-15 showed positive association with β-catenin, SOX2, OCT4, and ABCC5 and were significantly associated with poor Overall Survival. Our findings were also validated via in silico analysis. Our study suggests that GALNT6, GALNT14, and Gal-3 in association with GDF-15 promote stemness and intrinsic drug resistance in BC, possibly by β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Ramkaran Choudhary
- Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
8
|
Uetz P, Göritzer K, Vergara E, Melnik S, Grünwald-Gruber C, Figl R, Deghmane AE, Groppelli E, Reljic R, Ma JKC, Stöger E, Strasser R. Implications of O-glycan modifications in the hinge region of a plant-produced SARS-CoV-2-IgA antibody on functionality. Front Bioeng Biotechnol 2024; 12:1329018. [PMID: 38511130 PMCID: PMC10953500 DOI: 10.3389/fbioe.2024.1329018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction: Prolyl-4-hydroxylases (P4H) catalyse the irreversible conversion of proline to hydroxyproline, constituting a common posttranslational modification of proteins found in humans, plants, and microbes. Hydroxyproline residues can be further modified in plants to yield glycoproteins containing characteristic O-glycans. It is currently unknown how these plant endogenous modifications impact protein functionality and they cause considerable concerns for the recombinant production of therapeutic proteins in plants. In this study, we carried out host engineering to generate a therapeutic glycoprotein largely devoid of plant-endogenous O-glycans for functional characterization. Methods: Genome editing was used to inactivate two genes coding for enzymes of the P4H10 subfamily in the widely used expression host Nicotiana benthamiana. Using glycoengineering in plants and expression in human HEK293 cells we generated four variants of a potent, SARS-CoV-2 neutralizing antibody, COVA2-15 IgA1. The variants that differed in the number of modified proline residues and O-glycan compositions of their hinge region were assessed regarding their physicochemical properties and functionality. Results: We found that plant endogenous O-glycan formation was strongly reduced on IgA1 when transiently expressed in the P4H10 double mutant N. benthamiana plant line. The IgA1 glycoforms displayed differences in proteolytic stability and minor differences in receptor binding thus highlighting the importance of O-glycosylation in the hinge region of human IgA1. Discussion: This work reports the successful protein O-glycan engineering of an important plant host for recombinant protein expression. While the complete removal of endogenous hydroxyproline residues from the hinge region of plant-produced IgA1 is yet to be achieved, our engineered line is suitable for structure-function studies of O-glycosylated recombinant glycoproteins produced in plants.
Collapse
Affiliation(s)
- Pia Uetz
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kathrin Göritzer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Emil Vergara
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Stanislav Melnik
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rudolf Figl
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ala-Eddine Deghmane
- Invasive Bacterial Infections Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Elisabetta Groppelli
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Rajko Reljic
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Julian K.-C. Ma
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
9
|
Enomoto T, Okada H, Tomita H, Iinuma K, Nakane K, Tobisawa Y, Hara A, Koie T. Glycocalyx analysis of bladder cancer: three-dimensional images in electron microscopy and vicia villosa lectin as a marker for invasiveness in frozen sections. Front Cell Dev Biol 2024; 11:1308879. [PMID: 38269087 PMCID: PMC10806140 DOI: 10.3389/fcell.2023.1308879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction: The abnormal glycocalyx (GCX) on the surface of cancer cells has been reported to be tall and aberrantly glycosylated and has been linked to the progression and spread of cancer-a finding also observed in bladder cancer. However, the characteristics of GCX in various types of human bladder cancer remain unknown, and herein, we aimed to provide information on the diversity of glycan components in the GCX of bladder cancers and to shed light on their characteristics. Methods: We used scanning electron microscopy and lanthanum staining to examine the surface GCX of human bladder carcinomas in three-dimensional images, showing the bulky GCX in some carcinomas. We also examined glycan alterations in early to progressive stages of bladder cancers using 20 distinct lectin stains on frozen sections from transurethral resection of bladder tumors. Results and discussion: Distinctive Vicia villosa lectin (VVL) staining was observed in invasive urothelial carcinomas, including those with muscle invasion and variant components. In the clinical setting, cancers with atypia of grades 2-3 had a significantly higher VVL scoring intensity than those with grade 1 atypia (p < 0.005). This study identified that a specific lectin, VVL, was more specific to invasive urothelial carcinomas. This lectin, which selectively binds to sites of cancer progression, is a promising target for drug delivery in future clinical investigations.
Collapse
Affiliation(s)
- Torai Enomoto
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Urology, Matsunami General Hospital, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| | - Hiroyuki Tomita
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Koji Iinuma
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keita Nakane
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuki Tobisawa
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuya Koie
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
10
|
Bangarh R, Khatana C, Kaur S, Sharma A, Kaushal A, Siwal SS, Tuli HS, Dhama K, Thakur VK, Saini RV, Saini AK. Aberrant protein glycosylation: Implications on diagnosis and Immunotherapy. Biotechnol Adv 2023; 66:108149. [PMID: 37030554 DOI: 10.1016/j.biotechadv.2023.108149] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Glycosylation-mediated post-translational modification is critical for regulating many fundamental processes like cell division, differentiation, immune response, and cell-to-cell interaction. Alterations in the N-linked or O-linked glycosylation pattern of regulatory proteins like transcription factors or cellular receptors lead to many diseases, including cancer. These alterations give rise to micro- and macro-heterogeneity in tumor cells. Here, we review the role of O- and N-linked glycosylation and its regulatory function in autoimmunity and aberrant glycosylation in cancer. The change in cellular glycome could result from a change in the expression of glycosidases or glycosyltransferases like N-acetyl-glucosaminyl transferase V, FUT8, ST6Gal-I, DPAGT1, etc., impact the glycosylation of target proteins leading to transformation. Moreover, the mutations in glycogenes affect glycosylation patterns on immune cells leading to other related manifestations like pro- or anti-inflammatory effects. In recent years, understanding the glycome to cancer indicates that it can be utilized for both diagnosis/prognosis as well as immunotherapy. Studies involving mass spectrometry of proteome, site- and structure-specific glycoproteomics, or transcriptomics/genomics of patient samples and cancer models revealed the importance of glycosylation homeostasis in cancer biology. The development of emerging technologies, such as the lectin microarray, has facilitated research on the structure and function of glycans and glycosylation. Newly developed devices allow for high-throughput, high-speed, and precise research on aberrant glycosylation. This paper also discusses emerging technologies and clinical applications of glycosylation.
Collapse
Affiliation(s)
- Rashmi Bangarh
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Chainika Khatana
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Simranjeet Kaur
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Anchita Sharma
- Division of Biology, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517641, India
| | - Ankur Kaushal
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, Uttar Pradesh, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Reena V Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Adesh K Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| |
Collapse
|
11
|
Sanz-Martinez I, Pereira S, Merino P, Corzana F, Hurtado-Guerrero R. Molecular Recognition of GalNAc in Mucin-Type O-Glycosylation. Acc Chem Res 2023; 56:548-560. [PMID: 36815693 PMCID: PMC9996832 DOI: 10.1021/acs.accounts.2c00723] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
ConspectusN-Acetylgalactosamine (GalNAc)-type O-glycosylation is an essential posttranslational modification (PTM) that plays fundamental roles in biology. Malfunction of this PTM is exemplified by the presence of truncated O-glycans in cancer. For instance, the glycoprotein MUC1 is overexpressed in many tumor tissues and tends to carry simple oligosaccharides that allow for the presentation of different tumor-associated antigens, such as the Tn or sTn antigens (GalNAc-α-1-O-Thr/Ser and Neu5Acα2-6GalNAcα1-O-Ser/Thr, respectively). In other cases, such as tumoral calcinosis associated with O-glycosylation of the fibroblast growth factor 23, O-glycans are absent or less abundant. Significant progress has been made in determining the three-dimensional structures of biomolecules that recognize GalNAc, such as antibodies, lectins, mucinases, GalNAc-transferases, and other glycosyltransferases. Analysis of the complexes between these entities and GalNAc-containing glycopeptides, in most cases derived from crystallographic or NMR analysis, provides an understanding of the key structural elements that control molecular recognition of these glycopeptides. Here, we describe and compare the binding sites of these proteins in detail, focusing on how the GalNAc moieties interact selectively with them. We also summarize the differences and similarities in GalNAc recognition. In general, the recognition of GalNAc-containing glycopeptides is determined by hydrogen bonds between hydroxyl groups and the N-acetyl group of GalNAc with proteins, as well as CH-π contacts in which the hydrophobic α-face of the sugar and the methyl group of NHAc can be involved. The latter interaction usually provides the basis for selectivity. It is worth noting that binding of these glycopeptides depends primarily on recognition of the sugar moiety, with some exceptions such as a few anti-MUC1 antibodies that primarily recognize the peptide backbone and use the sugar to facilitate shape complementarity or to establish a limited number of interactions with the protein. Focusing specifically on the GalNAc moiety, we can observe that there is some degeneracy of interactions within the same protein families, likely due to substrate flexibility. However, when all studied proteins are considered together, despite the commonalities within each protein family, no pattern can be discerned between the different families, apart from the presence of common residues such as Tyr, His, or Asp, which are responsible for hydrogen bonds. The lack of a pattern can be anticipated, given the diverse functions of mucinases, glycosyltransferases, antibodies, and lectins. Finally, it is important to point out that the conformational differences observed in solution in glycopeptides bearing GalNAc-α-1-O-Ser or GalNAc-α-1-O-Thr also can be found in the bound state. This unique characteristic is exploited, for instance, by the enzyme C1GalT1 to broadly glycosylate both acceptor substrates. The findings summarized in this review may contribute to the rational structure-guided development of therapeutic vaccines, novel diagnostic tools for early cancer detection, and new cancer treatments for cancer with tailored anti-Tn or anti-STn antibodies or new drugs to inhibit GalNAc-T isoenzymes.
Collapse
Affiliation(s)
- Ignacio Sanz-Martinez
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain.,Department of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - Sandra Pereira
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain.,Department of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - Pedro Merino
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain.,Department of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - Francisco Corzana
- Department of Chemistry, Centro de Investigación en Síntesis Química, University of La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen DK-2200, Denmark.,Fundación ARAID, 50018 Zaragoza, Spain
| |
Collapse
|
12
|
Madunić K, Luijkx YMCA, Mayboroda OA, Janssen GMC, van Veelen PA, Strijbis K, Wennekes T, Lageveen-Kammeijer GSM, Wuhrer M. O-Glycomic and Proteomic Signatures of Spontaneous and Butyrate-Stimulated Colorectal Cancer Cell Line Differentiation. Mol Cell Proteomics 2023; 22:100501. [PMID: 36669592 PMCID: PMC9999233 DOI: 10.1016/j.mcpro.2023.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Gut microbiota of the gastrointestinal tract provide health benefits to the human host via bacterial metabolites. Bacterial butyrate has beneficial effects on intestinal homeostasis and is the preferred energy source of intestinal epithelial cells, capable of inducing differentiation. It was previously observed that changes in the expression of specific proteins as well as protein glycosylation occur with differentiation. In this study, specific mucin O-glycans were identified that mark butyrate-induced epithelial differentiation of the intestinal cell line CaCo-2 (Cancer Coli-2), by applying porous graphitized carbon nano-liquid chromatography with electrospray ionization tandem mass spectrometry. Moreover, a quantitative proteomic approach was used to decipher changes in the cell proteome. It was found that the fully differentiated butyrate-stimulated cells are characterized by a higher expression of sialylated O-glycan structures, whereas fucosylation is downregulated with differentiation. By performing an integrative approach, we generated hypotheses about the origin of the observed O-glycome changes. These insights pave the way for future endeavors to study the dynamic O-glycosylation patterns in the gut, either produced via cellular biosynthesis or through the action of bacterial glycosidases as well as the functional role of these patterns in homeostasis and dysbiosis at the gut-microbiota interface.
Collapse
Affiliation(s)
- K Madunić
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - Y M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - O A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - G M C Janssen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands
| | - K Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - T Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - M Wuhrer
- Center for Proteomics and Metabolomics, Leiden University, The Netherlands.
| |
Collapse
|
13
|
Sørensen DM, Büll C, Madsen TD, Lira-Navarrete E, Clausen TM, Clark AE, Garretson AF, Karlsson R, Pijnenborg JFA, Yin X, Miller RL, Chanda SK, Boltje TJ, Schjoldager KT, Vakhrushev SY, Halim A, Esko JD, Carlin AF, Hurtado-Guerrero R, Weigert R, Clausen H, Narimatsu Y. Identification of global inhibitors of cellular glycosylation. Nat Commun 2023; 14:948. [PMID: 36804936 PMCID: PMC9941569 DOI: 10.1038/s41467-023-36598-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Small molecule inhibitors of glycosylation enzymes are valuable tools for dissecting glycan functions and potential drug candidates. Screening for inhibitors of glycosyltransferases are mainly performed by in vitro enzyme assays with difficulties moving candidates to cells and animals. Here, we circumvent this by employing a cell-based screening assay using glycoengineered cells expressing tailored reporter glycoproteins. We focused on GalNAc-type O-glycosylation and selected the GalNAc-T11 isoenzyme that selectively glycosylates endocytic low-density lipoprotein receptor (LDLR)-related proteins as targets. Our screen of a limited small molecule compound library did not identify selective inhibitors of GalNAc-T11, however, we identify two compounds that broadly inhibited Golgi-localized glycosylation processes. These compounds mediate the reversible fragmentation of the Golgi system without affecting secretion. We demonstrate how these inhibitors can be used to manipulate glycosylation in cells to induce expression of truncated O-glycans and augment binding of cancer-specific Tn-glycoprotein antibodies and to inhibit expression of heparan sulfate and binding and infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Madriz Sørensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Thomas D Madsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erandi Lira-Navarrete
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- The Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, 50018, Zaragoza, Spain
- Fundación ARAID, 50018, Zaragoza, Spain
| | - Thomas Mandel Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alex E Clark
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Aaron F Garretson
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Johan F A Pijnenborg
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Xin Yin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Thomas J Boltje
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Aaron F Carlin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ramon Hurtado-Guerrero
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- The Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, 50018, Zaragoza, Spain
- Fundación ARAID, 50018, Zaragoza, Spain
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.
- GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
14
|
Werny L, Grogro A, Bickenbach K, Bülck C, Armbrust F, Koudelka T, Pathak K, Scharfenberg F, Sammel M, Sheikhouny F, Tholey A, Linder S, Becker-Pauly C. MT1-MMP and ADAM10/17 exhibit a remarkable overlap of shedding properties. FEBS J 2023; 290:93-111. [PMID: 35944080 DOI: 10.1111/febs.16586] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/20/2022] [Accepted: 07/28/2022] [Indexed: 01/14/2023]
Abstract
Membrane-type-I matrix metalloproteinase (MT1-MMP) is one of six human membrane-bound MMPs and is responsible for extracellular matrix remodelling by degrading several substrates like fibrillar collagens, including types I-III, or fibronectin. Moreover, MT1-MMP was described as a key player in cancer progression and it is involved in various inflammatory processes, as well as in the pathogenesis of Alzheimer's disease (AD). The membrane-tethered metalloprotease meprin β as well as a disintegrin and metalloproteinase 10 (ADAM10) and ADAM17 are also associated with these diseases. Interestingly, meprin β, ADAM10/17 and MT1-MMP also have a shared substrate pool including the interleukin-6 receptor and the amyloid precursor protein. We investigated the interaction of these proteases, focusing on a possible connection between MT1-MMP and meprin β, to elucidate the potential mutual regulations of both enzymes. Herein, we show that besides ADAM10/17, MT1-MMP is also able to shed meprin β from the plasma membrane, leading to the release of soluble meprin β. Mass spectrometry-based cleavage site analysis revealed that the cleavage of meprin β by all three proteases occurs between Pro602 and Ser603 , N-terminal of the EGF-like domain. Furthermore, only inactive human pro-meprin β is shed by MT1-MMP, which is again in accordance with the shedding capability observed for ADAM10/17. Vice versa, meprin β also appears to shed MT1-MMP, indicating a complex regulatory network. Further studies will elucidate this well-orchestrated proteolytic web under distinct conditions in health and disease and will possibly show whether the loss of one of the above-mentioned sheddases can be compensated by the other enzymes.
Collapse
Affiliation(s)
- Ludwig Werny
- Institute of Biochemistry, University of Kiel, Germany
| | | | | | - Cynthia Bülck
- Institute of Biochemistry, University of Kiel, Germany
| | - Fred Armbrust
- Institute of Biochemistry, University of Kiel, Germany
| | - Tomas Koudelka
- Institute of Experimental Medicine, AG Proteomics & Bioanalytics, University of Kiel, Germany
| | - Kriti Pathak
- Institute of Biochemistry, University of Kiel, Germany
| | | | - Martin Sammel
- Institute of Biochemistry, University of Kiel, Germany
| | | | - Andreas Tholey
- Institute of Experimental Medicine, AG Proteomics & Bioanalytics, University of Kiel, Germany
| | - Stefan Linder
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | | |
Collapse
|
15
|
Demir R, Deveci R. In silico analysis of glycosylation pattern in 5 th-6 th repeat sequence of reelin glycoprotein. J Biomol Struct Dyn 2022; 40:10065-10073. [PMID: 34121615 DOI: 10.1080/07391102.2021.1938682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reelin is an extracellular matrix glycoprotein that plays a key role in cortical development, maturation, synaptic plasticity, and memory formation in the adult mammalian brain. Glycosylation is a significant post- and co-translational modification of proteins. Although glycosylation contributes to the characteristic of proteins from their production to molecular interactions, the knowledge about the glycosylation pattern of reelin is very limited. In this study, we aimed to predict the potential glycosylation pattern of the 5th-6th repeat of central reelin fragment that responsible for their signaling, by using in silico methods. We found that the predicted glycosylation pattern of the 5th-6th repeat of human reelin was highly conserved between vertebrate species. However, this conservation was not observed in analyzed invertebrates. For the first time, we described the sites of glycosylation at a three-dimensional protein structure in human reelin. Because the sites were very closed to EGF-like repeats and receptor binding sites, they could contribute the interaction with a partner of reelin in addition to the effect of thermostability to protein. Many of the residues related glycosylation were also conserved in analyzed species. These findings may guide biochemical, genetic, and glycobiology base on further experiments about reelin glycosylation. The understanding of reelin glycosylation might change the point of view of treatment for many pathological conditions in neurodegenerative diseases such as Alzheimer's disease. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ramiz Demir
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Turkey.,The Graduate School of Health Sciences, Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Remziye Deveci
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Turkey
| |
Collapse
|
16
|
Zhang Y, Sun L, Lei C, Li W, Han J, Zhang J, Zhang Y. A Sweet Warning: Mucin-Type O-Glycans in Cancer. Cells 2022; 11:cells11223666. [PMID: 36429094 PMCID: PMC9688771 DOI: 10.3390/cells11223666] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosylation is a common post-translational modification process of proteins. Mucin-type O-glycosylation is an O-glycosylation that starts from protein serine/threonine residues. Normally, it is involved in the normal development and differentiation of cells and tissues, abnormal glycosylation can lead to a variety of diseases, especially cancer. This paper reviews the normal biosynthesis of mucin-type O-glycans and their role in the maintenance of body health, followed by the mechanisms of abnormal mucin-type O-glycosylation in the development of diseases, especially tumors, including the effects of Tn, STn, T antigen, and different glycosyltransferases, with special emphasis on their role in the development of gastric cancer. Finally, tumor immunotherapy targeting mucin-type O-glycans was discussed.
Collapse
Affiliation(s)
- Yuhan Zhang
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Lingbo Sun
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
- Correspondence: (L.S.); (Y.Z.)
| | - Changda Lei
- Department of Gastroenterology, Ninth Hospital of Xi‘an, Xi’an 710054, China
| | - Wenyan Li
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Jiaqi Han
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Jing Zhang
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Yuecheng Zhang
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China
- Correspondence: (L.S.); (Y.Z.)
| |
Collapse
|
17
|
Abuduaini T, Li S, Roy V, Agrofoglio LA, Martin OR, Nicolas C. Tunable Approach to C-Linked Analogs of Glycosamines. J Org Chem 2022; 87:13396-13405. [PMID: 36082689 DOI: 10.1021/acs.joc.2c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of (1R)-2-amino-2-deoxy-β-l-gulopyranosyl benzene and the α and β forms of 2-amino-2-deoxy-l-idopyranosyl benzene derivatives was accomplished through stereospecific addition of tributylstannyllithium to readily available (SR)- or (SS)-N-tert-butanesulfinyl-arabinofuranosylamine building blocks, followed by stereoretentive Pd-catalyzed Migita-Kosugi-Stille cross-coupling, stereoselective reduction, and an activation-cyclization strategy. Application of this methodology paves the way to new three-dimensional chemical space and preparation of unknown (non-natural) and complex 2-amino-2-deoxy sugars of biological interest.
Collapse
Affiliation(s)
- Tuniyazi Abuduaini
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Sizhe Li
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Vincent Roy
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Luigi A Agrofoglio
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Olivier R Martin
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Cyril Nicolas
- Institut de Chimie Organique et Analytique, UMR CNRS 7311, Université d'Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| |
Collapse
|
18
|
Zhou L, Wu H, Bai X, Min S, Zhang J, Li C. O-Glycosylating Enzyme GALNT2 Predicts Worse Prognosis in Cervical Cancer. Pathol Oncol Res 2022; 28:1610554. [PMID: 36110252 PMCID: PMC9469784 DOI: 10.3389/pore.2022.1610554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022]
Abstract
Identification of novel biomarkers is helpful for the diagnosis and treatment of cervical cancer. Mucin glycosylating enzyme GALNT2 modulates mucin O-glycosylation, and has been revealed as a regulator of tumorigenesis in various cancers. However, the expression pattern of GALNT2 in cervical cancer is still unclear. In this study, we demonstrated that the mRNA expression and protein level of GALNT2 were increased in cervical high-grade intraepithelial neoplasia and tumor tissues compared with normal cervix tissues. Kaplan-Meier plotter showed that overexpression of GALNT2 was associated with worse overall survival in TCGA cohort (p < 0.001, HR = 2.65, 95% CI = 1.62–4.34) and poor disease free survival in GSE44001 cohort (p = 0.0218, HR = 2.15, 95% CI = 1.14–4.06). In addition, GSEA analysis showed that various immune-related pathways were closely related to the expression of GALNT2 in cervical cancer. Moreover, co-expression of GALNT2 and IL1A, IL1B, IL11, CXCL1, CXCL2, CXCL5, CXCL6, CXCR1, or CCR3 predicted poor overall survival, and the expression of GALNT2 also affected the prognostic value of CD47, CD274, CD276, CSF1R, TNFSF9, and TNFSF11 in cervical cancer patients. These findings suggest that GALNT2 might be used as a prognostic biomarker in cervical cancer.
Collapse
Affiliation(s)
- Lixia Zhou
- Department of Obstetrics and Gynecology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiqin Wu
- Department of Obstetrics and Gynecology, Shanghai Songjiang District Maternal and Child Health Hospital, Shanghai, China
| | - Xingli Bai
- Department of Obstetrics and Gynecology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyun Min
- Department of Obstetrics and Gynecology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jiawen Zhang, ; Cunli Li,
| | - Cunli Li
- Department of Obstetrics and Gynecology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jiawen Zhang, ; Cunli Li,
| |
Collapse
|
19
|
Qaddoumi M, Hebbar P, Abu-Farha M, Al Somaly A, Melhem M, Al-Kayal F, AlKhairi I, Cherian P, Alanbaei M, Al-Mulla F, Abubaker J, Thanaraj TA. GALNT2 rs4846914 SNP Is Associated with Obesity, Atherogenic Lipid Traits, and ANGPTL3 Plasma Level. Genes (Basel) 2022; 13:genes13071201. [PMID: 35885984 PMCID: PMC9316564 DOI: 10.3390/genes13071201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
N-Acetylgalactosaminyltransferase 2 (GALNT2) is associated with serum lipid levels, insulin resistance, and adipogenesis. Additionally, angiopoietin-like (ANGPTL) proteins have emerged as regulators of lipoprotein lipase and lipid metabolism. In this study, we evaluated the association between GALNT2 rs4846914 variant, known for its association with lipid levels in European cohorts, with plasma levels of ANGPTL proteins, apolipoproteins, lipids, and obesity traits in individuals of Arab ethnicity. GALNT2 rs4846914 was genotyped in a cohort of 278 Arab individuals from Kuwait. Plasma levels of ANGPTL3 and ANGPTL8 were measured by ELISA and apolipoproteins by Luminex multiplexing assay. Allele-based association tests were performed with Bonferroni-corrected p-value thresholds. The GALNT2 rs4846914_G allele was associated with increased ANGPTL3 (p-values ≤ 0.05) but not with ANGPTL8 plasma levels. The allele was associated significantly with higher BMI and weight (p-values < 0.003), increased ApoC1 levels (p-values ≤ 0.006), and reduced HDL levels (p-values ≤ 0.05). Individuals carrying the GG genotype showed significantly decreased HDL and increased BMI, WC, ApoC1, and TG. Interactions exist between (AG+GG) genotypes and measures of percentage body fat, ApoA1A, ApoC1, and ApoB48-mediated HDL levels. GALNT2 is confirmed further as a potential link connecting lipid metabolism and obesity and has the potential to be a drug target for treating obesity and dyslipidemia.
Collapse
Affiliation(s)
- Mohammad Qaddoumi
- Pharmacology and Therapeutics Department, Faculty of Pharmacy, Kuwait University, Kuwait City 13110, Kuwait; (M.Q.); (A.A.S.)
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (I.A.); (P.C.)
| | - Aseelah Al Somaly
- Pharmacology and Therapeutics Department, Faculty of Pharmacy, Kuwait University, Kuwait City 13110, Kuwait; (M.Q.); (A.A.S.)
| | - Motasem Melhem
- Special Services Facility, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Fadi Al-Kayal
- Advanced Genomic Technologies Laboratory, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Irina AlKhairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (I.A.); (P.C.)
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (I.A.); (P.C.)
| | - Muath Alanbaei
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait;
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Correspondence: (F.A.-M.); (J.A.); (T.A.T.)
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (I.A.); (P.C.)
- Correspondence: (F.A.-M.); (J.A.); (T.A.T.)
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait;
- Correspondence: (F.A.-M.); (J.A.); (T.A.T.)
| |
Collapse
|
20
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
21
|
Overlapping and unique substrate specificities of ST3GAL1 and 2 during hematopoietic and megakaryocytic differentiation. Blood Adv 2022; 6:3945-3955. [PMID: 35507766 PMCID: PMC9278294 DOI: 10.1182/bloodadvances.2022007001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
ST3GAL1 and ST3GAL2 have both overlapping and unique substrate specificities in O-glycan sialylation during megakaryopoiesis. O-glycan sialylation is dispensable for MK production but indispensable for MK proplatelet formation.
Although the sialyltransferases ST3GAL1 and ST3GAL2 are known to transfer sialic acid to the galactose residue of type III disaccharides (Galβ1,3GalNAc) in vitro, sialylation of O-linked glycosylated proteins in living cells has been largely attributed to ST3GAL1. To examine the role of ST3GAL2 in O-sialylation, we examined its expression during differentiation of human-induced pluripotent stem cells (iPSCs) into hematopoietic progenitor cells (HPCs) and megakaryocytes (MKs). ST3GAL1 and ST3GAL2 each became highly expressed during the differentiation of iPSCs to HPCs but decreased markedly in their expression upon differentiation into MKs, suggesting coordination of expression during megakaryopoiesis. To further delineate their role in these processes, we generated ST3GAL1-, ST3GAL2-, and doubly deficient human iPSC lines. Binding of the peanut agglutinin lectin, which reports the presence of unsialylated Galβ1,3GalNAc glycan chains, was strongly increased in HPCs and MKs derived from double-knockout iPSCs and remained moderately increased in cells lacking either one of these sialyltransferases, demonstrating that both can serve as functional cellular O-glycan sialyltransferases. Interestingly, the HPC markers CD34 and CD43, as well as MK membrane glycoprotein (GP) GPIbα, were identified as major GP substrates for ST3GAL1 and ST3GAL2. In contrast, O-sialylation of GPIIb relied predominantly on the expression of ST3GAL2. Finally, although disruption of ST3GAL1 and ST3GAL2 had little impact on MK production, their absence resulted in dramatically impaired MK proplatelet formation. Taken together, these data establish heretofore unknown physiological roles for ST3GAL1 and ST3GAL2 in O-linked glycan sialylation in hemato- and megakaryocytopoiesis.
Collapse
|
22
|
Li X, Ding N, Zhang Z, Tian D, Han B, Liu D, Liu S, Tian F, Fu D, Song X, Zhao K. Identification of SSTR5 Gene Polymorphisms and Their Association With Growth Traits in Hulun Buir Sheep. Front Genet 2022; 13:831599. [PMID: 35559027 PMCID: PMC9086292 DOI: 10.3389/fgene.2022.831599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to locate SSTR5 polymorphisms and evaluate their association with growth traits in Hulun Buir sheep. The study followed up 884 Hulun Buir sheep from birth to 16 months of age, which were born in the same pasture and the same year, and a consistent grazing management strategy was maintained. The birth weight (BRW) was recorded at birth, and body weight (BW), body height (BH), body length (BL), chest circumference (ChC), chest depth (ChD), chest width (ChW), hip width (HW), and cannon circumference (CaC) were measured at 4 and 9 months of age. BW, BH, BL, ChD, HW, and CaC were also recorded at 16 months of age. Based on the growth traits, 233 sheep were selected as experimental animals. Sanger sequencing was performed, and seven single-nucleotide polymorphisms (SNPs) were identified. Association analyses of the SNPs and the growth traits were then conducted. Seven SNPs of the SSTR5 exhibited moderate polymorphism (0.25
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ning Ding
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhichao Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dehong Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Buying Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dehui Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dejun Fu
- Inner Mongolia Daxing 'anling Agricultural Reclamation Group Co. LTD., Hulun Buir, China
| | - Xiaoliang Song
- Inner Mongolia Daxing 'anling Agricultural Reclamation Group Co. LTD., Hulun Buir, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
23
|
Abstract
The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2′. The “priming” of the surface S protein at S1/S2 (PRRAR685↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models. In this study, for the first time we unambiguously identified by proteomics the fusion activation site S2′ as KPSKR815↓ (the underlined basic amino acids refer to critical residues needed for the furin recognition) and demonstrated that this cleavage was strongly enhanced by ACE2 engagement with the S protein. Novel pharmacological furin inhibitors (BOS inhibitors) effectively blocked endogenous S protein processing at both sites in HeLa cells, and SARS-CoV-2 infection of lung-derived Calu-3 cells was completely prevented by combined inhibitors of furin (BOS) and type II transmembrane serine protease 2 (TMPRSS2) (camostat). Quantitative analyses of cell-to-cell fusion and S protein processing revealed that ACE2 shedding by TMPRSS2 was required for TMPRSS2-mediated enhancement of fusion in the absence of S1/S2 priming. We further demonstrated that the collectrin dimerization domain of ACE2 was essential for the effect of TMPRSS2 on cell-to-cell fusion. Overall, our results indicate that furin and TMPRSS2 act synergistically in viral entry and infectivity, supporting the combination of furin and TMPRSS2 inhibitors as potent antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2′. Cleavage at S1/S2 induces a conformational change favoring the S protein recognition by ACE2. The S2′ cleavage is critical for triggering membrane fusion and virus entry into host cells. Our study highlights the complex dynamics of interaction between the S protein, ACE2, and the host proteases furin and TMPRSS2 during SARS-CoV-2 entry and suggests that the combination of a nontoxic furin inhibitor with a TMPRSS2 inhibitor significantly reduces viral entry in lung cells, as evidenced by an average synergistic ∼95% reduction of viral infection. This represents a powerful novel antiviral approach to reduce viral spread in individuals infected by SARS-CoV-2 or future related coronaviruses.
Collapse
|
24
|
Antonucci A, Marucci A, Trischitta V, Di Paola R. Role of GALNT2 on Insulin Sensitivity, Lipid Metabolism and Fat Homeostasis. Int J Mol Sci 2022; 23:929. [PMID: 35055114 PMCID: PMC8781516 DOI: 10.3390/ijms23020929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/16/2023] Open
Abstract
O-linked glycosylation, the greatest form of post-translational modifications, plays a key role in regulating the majority of physiological processes. It is, therefore, not surprising that abnormal O-linked glycosylation has been related to several human diseases. Recently, GALNT2, which encodes the GalNAc-transferase 2 involved in the first step of O-linked glycosylation, has attracted great attention as a possible player in many highly prevalent human metabolic diseases, including atherogenic dyslipidemia, type 2 diabetes and obesity, all clustered on the common ground of insulin resistance. Data available both in human and animal models point to GALNT2 as a molecule that shapes the risk of the aforementioned abnormalities affecting diverse protein functions, which eventually cause clinically distinct phenotypes (a typical example of pleiotropism). Pathways linking GALNT2 to dyslipidemia and insulin resistance have been partly identified, while those for type 2 diabetes and obesity are yet to be understood. Here, we will provide a brief overview on the present knowledge on GALNT2 function and dysfunction and propose novel insights on the complex pathogenesis of the aforementioned metabolic diseases, which all impose a heavy burden for patients, their families and the entire society.
Collapse
Affiliation(s)
- Alessandra Antonucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy; (A.A.); (A.M.)
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy; (A.A.); (A.M.)
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy; (A.A.); (A.M.)
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | - Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy; (A.A.); (A.M.)
| |
Collapse
|
25
|
Regulation of meprin metalloproteases in mucosal homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119158. [PMID: 34626680 DOI: 10.1016/j.bbamcr.2021.119158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
Mucus is covering the entire epithelium of the gastrointestinal tract (GIT), building the interface for the symbiosis between microorganisms and their host. Hence, a disrupted mucosal barrier or alterations of proper mucus composition, including the gut microbiota, can cause severe infection and inflammation. Meprin metalloproteases are well-known to cleave various pro-inflammatory molecules, contributing to the onset and progression of pathological conditions including sepsis, pulmonary hypertension or inflammatory bowel disease (IBD). Moreover, meprins have an impact on migration and infiltration of immune cells like monocytes or leukocytes during intestinal inflammation by cleaving tight junction proteins or cell adhesion molecules, thereby disrupting epithelial cell barrier and promoting transendothelial cell migration. Interestingly, both meprin α and meprin β are susceptibility genes for IBD. However, both genes are significantly downregulated in inflamed intestinal tissue in contrast to healthy donors. Therefore, a detailed understanding of the underlying molecular mechanisms is the basis for developing new and effective therapies against manifold pathologies like IBD. This review focuses on the regulation of meprin metalloproteases and its impact on physiological and pathological conditions related to mucosal homeostasis.
Collapse
|
26
|
Song XJ, Zhou HY, Sun YY, Huang HC. Phosphorylation and Glycosylation of Amyloid-β Protein Precursor: The Relationship to Trafficking and Cleavage in Alzheimer's Disease. J Alzheimers Dis 2021; 84:937-957. [PMID: 34602469 DOI: 10.3233/jad-210337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in the central nervous system, and this disease is characterized by extracellular senile plaques and intracellular neurofibrillary tangles. Amyloid-β (Aβ) peptide is the main constituent of senile plaques, and this peptide is derived from the amyloid-β protein precursor (AβPP) through the successive cleaving by β-site AβPP-cleavage enzyme 1 (BACE1) and γ-secretase. AβPP undergoes the progress of post-translational modifications, such as phosphorylation and glycosylation, which might affect the trafficking and the cleavage of AβPP. In the recent years, about 10 phosphorylation sites of AβPP were identified, and they play complex roles in glycosylation modification and cleavage of AβPP. In this article, we introduced the transport and the cleavage pathways of AβPP, then summarized the phosphorylation and glycosylation sites of AβPP, and further discussed the links and relationship between phosphorylation and glycosylation on the pathways of AβPP trafficking and cleavage in order to provide theoretical basis for AD research.
Collapse
Affiliation(s)
- Xi-Jun Song
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - He-Yan Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| |
Collapse
|
27
|
Wandall HH, Nielsen MAI, King-Smith S, de Haan N, Bagdonaite I. Global functions of O-glycosylation: promises and challenges in O-glycobiology. FEBS J 2021; 288:7183-7212. [PMID: 34346177 DOI: 10.1111/febs.16148] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Mucin type O-glycosylation is one of the most diverse types of glycosylation, playing essential roles in tissue development and homeostasis. In complex organisms, O-GalNAc glycans comprise a substantial proportion of the glycocalyx, with defined functions in hemostatic, gastrointestinal, and respiratory systems. Furthermore, O-GalNAc glycans are important players in host-microbe interactions, and changes in O-glycan composition are associated with certain diseases and metabolic conditions, which in some instances can be used for diagnosis or therapeutic intervention. Breakthroughs in O-glycobiology have gone hand in hand with the development of new technologies, such as advancements in mass spectrometry, as well as facilitation of genetic engineering in mammalian cell lines. High-throughput O-glycoproteomics have enabled us to draw a comprehensive map of O-glycosylation, and mining this information has supported the definition and confirmation of functions related to site-specific O-glycans. This includes protection from proteolytic cleavage, as well as modulation of binding affinity or receptor function. Yet, there is still much to discover, and among the important next challenges will be to define the context-dependent functions of O-glycans in different stages of cellular differentiation, cellular metabolism, host-microbiome interactions, and in disease. In this review, we present the achievements and the promises in O-GalNAc glycobiology driven by technological advances in analytical methods, genetic engineering, and systems biology.
Collapse
Affiliation(s)
- Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Mathias A I Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Sarah King-Smith
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Noortje de Haan
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Bagdonaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Zhao FY, Zhang Q, Wang JM, Jiang JY, Huyan LY, Liu BQ, Yan J, Li C, Wang HQ. BAG3 epigenetically regulates GALNT10 expression via WDR5 and facilitates the stem cell-like properties of platin-resistant ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:119077. [PMID: 34111434 DOI: 10.1016/j.bbamcr.2021.119077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignant cancer, frequently due to its late diagnosis and high recurrence. Cancer stem cells (CSCs) from different malignancies including ovarian cancer have been linked to chemotherapy resistance and poor prognosis. Therefore, identifying the molecular mechanisms mediating therapy resistance is urgent to finding novel targets for therapy-resistant tumors. Aberrant O-glycosylation ascribed to subtle alteration of GALNT family members during malignant transformation facilitate metastasis in various cancers. The current study demonstrated that BAG3 was upregulated in platin-resistant ovarian cancer tissues and cells, and high BAG3 predicted dismal disease-free survival of patients with ovarian cancer. In addition, the current study showed that BAG3 facilitated CSC-like properties of ovarian cancer cells via regulation of GALTN10. In a term of mechanism, BAG3 epigenetically regulated GALNT10 transactivation via histone H3 lysine 4 (H3K4) presenter WDR5. We demonstrated that WDR5 increased H3K4 trimethylation (H3K4me3) modification at the promoter regions of GALNT10, facilitating recruitment of transcription factor ZBTB2 to the GALNT10 promoter. Collectively, our study uncovers an epigenetic upregulation of GALNT10 by BAG3 via WDR5 to facilitate CSCs of platin-resistant ovarian cancers, providing additional information for further identification of attractive targets with therapeutic significance in platin-resistant ovarian cancer.
Collapse
Affiliation(s)
- Fu-Ying Zhao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Qi Zhang
- Criminal Investigation Police University of China, Shenyang 110854, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, the 1st affiliated hospital, China Medical University, Shenyang 110001, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Ling-Yue Huyan
- 5+3 integrated clinical medicine 103K, China Medical University, Shenyang 110026, China
| | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China.
| |
Collapse
|
29
|
Shi J, Ku X, Zou X, Hou J, Yan W, Zhang Y. Comprehensive analysis of O-glycosylation of amyloid precursor protein (APP) using targeted and multi-fragmentation MS strategy. Biochim Biophys Acta Gen Subj 2021; 1865:129954. [PMID: 34229070 DOI: 10.1016/j.bbagen.2021.129954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The aberrant proteolytic processing of amyloid precursor protein (APP) into amyloid β peptide (Aβ) in brain is a critical step in the pathogenesis of Alzheimer's disease (AD). As an O-glycosylated protein, O-glycosylation of APP is considered to be related to Aβ generation. Therefore, comprehensive analysis of APP O-glycosylation is important for understanding its functions. METHODS We developed a Targeted MS approach with Multi-Fragmentation techniques (TMMF strategy), and successfully characterized O-glycosylation profiling of APP695 expressed in HEK-293 T cells. We calculated relative abundance of glycopeptides with various O-glycosites and O-glycans, and further investigated the alteration of APP O-glycosylation upon TNF-α treatment. RESULTS A total of 14 O-glycosites were identified on three glycopeptides of APP, and at least four O-glycans including GalNAc (Tn antigen), core 1, and mono-/di-sialylated core 1 glycans were determinant at the residues of Thr576 and Thr577. We found a dense cluster of truncated O-glycans on the region nearby beginning of E2 domain and high abundance of sialylated O-glycans on the region close to β-cleavage site. Moreover, we also observed that TNF-α could upregulate the expression of APP and the truncated O-glycans on APP in HEK-293 T cell. CONCLUSION Our study established an intact O-glycopeptide MS analysis strategy for APP O-glycopeptide identification with enhanced fragmentation efficiency and detection sensitivity. These results provide a comprehensive O-glycosylation map of APP expressed in HEK-293 T cell. GENERAL SIGNIFICANCE The accurate O-glycosites and O-glycan structures on APP may lead to a better understanding of the roles O-glycosylation plays in the processing and functions of APP.
Collapse
Affiliation(s)
- Jingjing Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Ku
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingli Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Yan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
30
|
Tan X, Banerjee P, Pham EA, Rutaganira FUN, Basu K, Bota-Rabassedas N, Guo HF, Grzeskowiak CL, Liu X, Yu J, Shi L, Peng DH, Rodriguez BL, Zhang J, Zheng V, Duose DY, Solis LM, Mino B, Raso MG, Behrens C, Wistuba II, Scott KL, Smith M, Nguyen K, Lam G, Choong I, Mazumdar A, Hill JL, Gibbons DL, Brown PH, Russell WK, Shokat K, Creighton CJ, Glenn JS, Kurie JM. PI4KIIIβ is a therapeutic target in chromosome 1q-amplified lung adenocarcinoma. Sci Transl Med 2021; 12:12/527/eaax3772. [PMID: 31969487 DOI: 10.1126/scitranslmed.aax3772] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/14/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
Heightened secretion of protumorigenic effector proteins is a feature of malignant cells. Yet, the molecular underpinnings and therapeutic implications of this feature remain unclear. Here, we identify a chromosome 1q region that is frequently amplified in diverse cancer types and encodes multiple regulators of secretory vesicle biogenesis and trafficking, including the Golgi-dedicated enzyme phosphatidylinositol (PI)-4-kinase IIIβ (PI4KIIIβ). Molecular, biochemical, and cell biological studies show that PI4KIIIβ-derived PI-4-phosphate (PI4P) synthesis enhances secretion and accelerates lung adenocarcinoma progression by activating Golgi phosphoprotein 3 (GOLPH3)-dependent vesicular release from the Golgi. PI4KIIIβ-dependent secreted factors maintain 1q-amplified cancer cell survival and influence prometastatic processes in the tumor microenvironment. Disruption of this functional circuitry in 1q-amplified cancer cells with selective PI4KIIIβ antagonists induces apoptosis and suppresses tumor growth and metastasis. These results support a model in which chromosome 1q amplifications create a dependency on PI4KIIIβ-dependent secretion for cancer cell survival and tumor progression.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Priyam Banerjee
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edward A Pham
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Florentine U N Rutaganira
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kaustabh Basu
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neus Bota-Rabassedas
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hou-Fu Guo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Shi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David H Peng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiaqi Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Veronica Zheng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dzifa Y Duose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carmen Behrens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark Smith
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford ChEM-H Medicinal Chemistry Knowledge Center, Stanford University, CA 94305, USA
| | - Khanh Nguyen
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Grace Lam
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ingrid Choong
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Abhijit Mazumdar
- Department of Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jamal L Hill
- Department of Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Powel H Brown
- Department of Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kevan Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA. .,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey S Glenn
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Veterans Administration Medical Center, Palo Alto, CA 94304, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Wu Q, Zhang C, Zhang K, Chen Q, Wu S, Huang H, Huang T, Zhang N, Wang X, Li W, Liu Y, Zhang J. ppGalNAc-T4-catalyzed O-Glycosylation of TGF-β type Ⅱ receptor regulates breast cancer cells metastasis potential. J Biol Chem 2021; 296:100119. [PMID: 33234595 PMCID: PMC7948473 DOI: 10.1074/jbc.ra120.016345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
GalNAc-type O-glycosylation, initially catalyzed by polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts), is one of the most abundant and complex posttranslational modifications of proteins. Emerging evidence has proven that aberrant ppGalNAc-Ts are involved in malignant tumor transformation. However, the exact molecular functions of ppGalNAc-Ts are still unclear. Here, the role of one isoform, ppGalNAc-T4, in breast cancer cell lines was investigated. The expression of ppGalNAc-T4 was found to be negatively associated with migration of breast cancer cells. Loss-of-function studies revealed that ppGalNAc-T4 attenuated the migration and invasion of breast cancer cells by inhibiting the epithelial-mesenchymal transition (EMT) process. Correspondingly, transforming growth factor beta (TGF-β) signaling, which is the upstream pathway of EMT, was impaired by ppGalNAc-T4 expression. ppGalNAc-T4 knockout decreased O-GalNAc modification of TGF-β type Ⅰ and Ⅱ receptor (TβR Ⅰ and Ⅱ) and led to the elevation of TGF-β receptor dimerization and activity. Importantly, a peptide from TβR Ⅱ was identified as a naked peptide substrate of ppGalNAc-T4 with a higher affinity than ppGalNAc-T2. Further, Ser31, corresponding to the extracellular domain of TβR Ⅱ, was identified as the O-GalNAcylation site upon in vitro glycosylation by ppGalNAc-T4. The O-GalNAc-deficient S31 A mutation enhanced TGF-β signaling activity and EMT in breast cancer cells. Together, these results identified a novel mechanism of ppGalNAc-T4-catalyzed TGF-β receptors O-GalNAcylation that suppresses breast cancer cell migration and invasion via the EMT process. Targeting ppGalNAc-T4 may be a potential therapeutic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Qiong Wu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin, China
| | - Cheng Zhang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin, China
| | - Keren Zhang
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Qiushi Chen
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Sijin Wu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huang Huang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin, China
| | - Tianmiao Huang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin, China
| | - Nana Zhang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin, China
| | - Xue Wang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin, China
| | - Wenli Li
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin, China
| | - Yubo Liu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin, China.
| | - Jianing Zhang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin, China.
| |
Collapse
|
32
|
Thomas D, Sagar S, Liu X, Lee HR, Grunkemeyer JA, Grandgenett PM, Caffrey T, O'Connell KA, Swanson B, Marcos-Silva L, Steentoft C, Wandall HH, Maurer HC, Peng XL, Yeh JJ, Qiu F, Yu F, Madiyalakan R, Olive KP, Mandel U, Clausen H, Hollingsworth MA, Radhakrishnan P. Isoforms of MUC16 activate oncogenic signaling through EGF receptors to enhance the progression of pancreatic cancer. Mol Ther 2020; 29:1557-1571. [PMID: 33359791 DOI: 10.1016/j.ymthe.2020.12.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Aberrant expression of CA125/MUC16 is associated with pancreatic ductal adenocarcinoma (PDAC) progression and metastasis. However, knowledge of the contribution of MUC16 to pancreatic tumorigenesis is limited. Here, we show that MUC16 expression is associated with disease progression, basal-like and squamous tumor subtypes, increased tumor metastasis, and short-term survival of PDAC patients. MUC16 enhanced tumor malignancy through the activation of AKT and GSK3β oncogenic signaling pathways. Activation of these oncogenic signaling pathways resulted in part from increased interactions between MUC16 and epidermal growth factor (EGF)-type receptors, which were enhanced for aberrant glycoforms of MUC16. Treatment of PDAC cells with monoclonal antibody (mAb) AR9.6 significantly reduced MUC16-induced oncogenic signaling. mAb AR9.6 binds to a unique conformational epitope on MUC16, which is influenced by O-glycosylation. Additionally, treatment of PDAC tumor-bearing mice with either mAb AR9.6 alone or in combination with gemcitabine significantly reduced tumor growth and metastasis. We conclude that the aberrant expression of MUC16 enhances PDAC progression to an aggressive phenotype by modulating oncogenic signaling through ErbB receptors. Anti-MUC16 mAb AR9.6 blocks oncogenic activities and tumor growth and could be a novel immunotherapeutic agent against MUC16-mediated PDAC tumor malignancy.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Satish Sagar
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Xiang Liu
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Hye-Rim Lee
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - James A Grunkemeyer
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Thomas Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Kelly A O'Connell
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Benjamin Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lara Marcos-Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Hans Carlo Maurer
- Departments of Medicine and Pathology & Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032
| | - Xianlu Laura Peng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jen Jen Yeh
- Departments of Surgery and Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Fang Qiu
- College of Public Health, Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Yu
- College of Public Health, Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Kenneth P Olive
- Departments of Medicine and Pathology & Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| |
Collapse
|
33
|
Al Rifai O, Julien C, Lacombe J, Faubert D, Lira-Navarrete E, Narimatsu Y, Clausen H, Ferron M. The half-life of the bone-derived hormone osteocalcin is regulated through O-glycosylation in mice, but not in humans. eLife 2020; 9:61174. [PMID: 33284103 PMCID: PMC7822592 DOI: 10.7554/elife.61174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022] Open
Abstract
Osteocalcin (OCN) is an osteoblast-derived hormone with pleiotropic physiological functions. Like many peptide hormones, OCN is subjected to post-translational modifications (PTMs) which control its activity. Here, we uncover O-glycosylation as a novel PTM present on mouse OCN and occurring on a single serine (S8) independently of its carboxylation and endoproteolysis, two other PTMs regulating this hormone. We also show that O-glycosylation increases OCN half-life in plasma ex vivo and in the circulation in vivo. Remarkably, in human OCN (hOCN), the residue corresponding to S8 is a tyrosine (Y12), which is not O-glycosylated. Yet, the Y12S mutation is sufficient to O-glycosylate hOCN and to increase its half-life in plasma compared to wildtype hOCN. These findings reveal an important species difference in OCN regulation, which may explain why serum concentrations of OCN are higher in mouse than in human. Bones provide support and protection for organs in the body. However, over the last 15 years researchers have discovered that bones also release chemicals known as hormones, which can travel to other parts of the body and cause an effect. The cells responsible for making bone, known as osteoblasts, produce a hormone called osteocalcin which communicates with a number of different organs, including the pancreas and brain. When osteocalcin reaches the pancreas, it promotes the release of another hormone called insulin which helps regulate the levels of sugar in the blood. Osteocalcin also travels to other organs such as muscle, where it helps to degrade fats and sugars that can be converted into energy. It also has beneficial effects on the brain, and has been shown to aid memory and reduce depression. Osteocalcin has largely been studied in mice where levels are five to ten times higher than in humans. But it is unclear why this difference exists or how it alters the role of osteocalcin in humans. To answer this question, Al Rifai et al. used a range of experimental techniques to compare the structure and activity of osteocalcin in mice and humans. The experiments showed that mouse osteocalcin has a group of sugars attached to its protein structure, which prevent the hormone from being degraded by an enzyme in the blood. Human osteocalcin has a slightly different protein sequence and is therefore unable to bind to this sugar group. As a result, the osteocalcin molecules in humans are less stable and cannot last as long in the blood. Al Rifai et al. showed that when human osteocalcin was modified so the sugar group could attach, the hormone was able to stick around for much longer and reach higher levels when added to blood in the laboratory. These findings show how osteocalcin differs between human and mice. Understanding this difference is important as the effects of osteocalcin mean this hormone can be used to treat diabetes and brain disorders. Furthermore, the results reveal how the stability of osteocalcin could be improved in humans, which could potentially enhance its therapeutic effect.
Collapse
Affiliation(s)
- Omar Al Rifai
- Molecular Physiology Research unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada.,Programme de biologie moléculaire, Université de Montréal, Montréal, Canada
| | - Catherine Julien
- Molecular Physiology Research unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Julie Lacombe
- Molecular Physiology Research unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Denis Faubert
- Proteomics Discovery Platform, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Erandi Lira-Navarrete
- University of Copenhagen, Faculty of Health Sciences, Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- University of Copenhagen, Faculty of Health Sciences, Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Copenhagen, Denmark
| | - Henrik Clausen
- University of Copenhagen, Faculty of Health Sciences, Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Copenhagen, Denmark
| | - Mathieu Ferron
- Molecular Physiology Research unit, Institut de Recherches Cliniques de Montréal, Montréal, Canada.,Programme de biologie moléculaire, Université de Montréal, Montréal, Canada.,Département de Médecine, Université de Montréal, Montréal, Canada.,Division of Experimental Medicine, McGill University, Montréal, Canada
| |
Collapse
|
34
|
Akasaka-Manya K, Manya H. The Role of APP O-Glycosylation in Alzheimer's Disease. Biomolecules 2020; 10:biom10111569. [PMID: 33218200 PMCID: PMC7699271 DOI: 10.3390/biom10111569] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
The number of people with dementia is increasing rapidly due to the increase in the aging population. Alzheimer’s disease (AD) is a type of neurodegenerative dementia caused by the accumulation of abnormal proteins. Genetic mutations, smoking, and several other factors have been reported as causes of AD, but alterations in glycans have recently been demonstrated to play a role in AD. Amyloid-β (Aβ), a cleaved fragment of APP, is the source of senile plaque, a pathological feature of AD. APP has been reported to undergo N- and O-glycosylation, and several Polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) have been shown to have catalytic activity for the transfer of GalNAc to APP. Since O-glycosylation in the proximity of a cleavage site in many proteins has been reported to be involved in protein processing, O-glycans may affect the cleavage of APP during the Aβ production process. In this report, we describe new findings on the O-glycosylation of APP and Aβ production.
Collapse
|
35
|
Daniel EJP, las Rivas M, Lira-Navarrete E, García-García A, Hurtado-Guerrero R, Clausen H, Gerken TA. Ser and Thr acceptor preferences of the GalNAc-Ts vary among isoenzymes to modulate mucin-type O-glycosylation. Glycobiology 2020; 30:910-922. [PMID: 32304323 PMCID: PMC7581654 DOI: 10.1093/glycob/cwaa036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
A family of polypeptide GalNAc-transferases (GalNAc-Ts) initiates mucin-type O-glycosylation, transferring GalNAc onto hydroxyl groups of Ser and Thr residues of target substrates. The 20 GalNAc-T isoenzymes in humans are classified into nine subfamilies according to sequence similarity. GalNAc-Ts select their sites of glycosylation based on weak and overlapping peptide sequence motifs, as well prior substrate O-GalNAc glycosylation at sites both remote (long-range) and neighboring (short-range) the acceptor. Together, these preferences vary among GalNAc-Ts imparting each isoenzyme with its own unique specificity. Studies on the first identified GalNAc-Ts showed Thr acceptors were preferred over Ser acceptors; however studies comparing Thr vs. Ser glycosylation across the GalNAc-T family are lacking. Using a series of identical random peptide substrates, with single Thr or Ser acceptor sites, we determined the rate differences (Thr/Ser rate ratio) between Thr and Ser substrate glycosylation for 12 isoenzymes (representing 7 GalNAc-T subfamilies). These Thr/Ser rate ratios varied across subfamilies, ranging from ~2 to ~18 (for GalNAc-T4/GalNAc-T12 and GalNAc-T3/GalNAc-T6, respectively), while nearly identical Thr/Ser rate ratios were observed for isoenzymes within subfamilies. Furthermore, the Thr/Ser rate ratios did not appreciably vary over a series of fixed sequence substrates of different relative activities, suggesting the ratio is a constant for each isoenzyme against single acceptor substrates. Finally, based on GalNAc-T structures, the different Thr/Ser rate ratios likely reflect differences in the strengths of the Thr acceptor methyl group binding to the active site pocket. With this work, another activity that further differentiates substrate specificity among the GalNAc-Ts has been identified.
Collapse
Affiliation(s)
| | - Matilde las Rivas
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Erandi Lira-Navarrete
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Ana García-García
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Ramon Hurtado-Guerrero
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Department of Dentistry, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Fundación ARAID, Zaragoza, 50018, Spain
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Department of Dentistry, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Thomas A Gerken
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
36
|
Li X, Zhang Y, Zhang M, Wang Y. GALNT2 regulates ANGPTL3 cleavage in cells and in vivo of mice. Sci Rep 2020; 10:16168. [PMID: 32999434 PMCID: PMC7527996 DOI: 10.1038/s41598-020-73388-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023] Open
Abstract
Angiopoietin-like protein 3 (ANGPTL3) is an important inhibitor of lipoprotein lipase and endothelial lipase that plays critical roles in lipoprotein metabolism. It specifically expresses in the liver and undergoes proprotein convertase-mediated cleavage during secretion, which generates an N-terminal coiled-coil domain and C-terminal fibrinogen-like domain that has been considered as the activation step for its function. Previous studies have reported that the polypeptide GalNAc-transferase GALNT2 mediates the O-glycosylation of the ANGPTL3 near the cleavage site, which inhibits the proprotein convertase (PC)-mediated cleavage in vitro and in cultured cells. However, loss-of-function mutation for GALNT2 has no effect on ANGPTL3 cleavage in human. Thus whether GALNT2 regulates the cleavage of ANGPTL3 in vivo is unclear. In present study, we systematically characterized the cleavage of Angptl3 in cultured cells and in vivo of mice. We found that endogenous Angptl3 is cleaved in primary hepatocytes and in vivo of mice, and this cleavage can be blocked by Galnt2 overexpression or PC inhibition. Moreover, suppressing galnt2 expression increases the cleavage of Angptl3 in mice dramatically. Thus, our results support the conclusion that Galnt2 is a key endogenous regulator for Angptl3 cleavage both in vitro and in vivo.
Collapse
Affiliation(s)
- Xuedan Li
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yiliang Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Minzhu Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
37
|
Trastoy B, Naegeli A, Anso I, Sjögren J, Guerin ME. Structural basis of mammalian mucin processing by the human gut O-glycopeptidase OgpA from Akkermansia muciniphila. Nat Commun 2020; 11:4844. [PMID: 32973204 PMCID: PMC7518263 DOI: 10.1038/s41467-020-18696-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Akkermansia muciniphila is a mucin-degrading bacterium commonly found in the human gut that promotes a beneficial effect on health, likely based on the regulation of mucus thickness and gut barrier integrity, but also on the modulation of the immune system. In this work, we focus in OgpA from A. muciniphila, an O-glycopeptidase that exclusively hydrolyzes the peptide bond N-terminal to serine or threonine residues substituted with an O-glycan. We determine the high-resolution X-ray crystal structures of the unliganded form of OgpA, the complex with the glycodrosocin O-glycopeptide substrate and its product, providing a comprehensive set of snapshots of the enzyme along the catalytic cycle. In combination with O-glycopeptide chemistry, enzyme kinetics, and computational methods we unveil the molecular mechanism of O-glycan recognition and specificity for OgpA. The data also contribute to understanding how A. muciniphila processes mucins in the gut, as well as analysis of post-translational O-glycosylation events in proteins.
Collapse
Affiliation(s)
- Beatriz Trastoy
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | | | - Itxaso Anso
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | | | - Marcelo E Guerin
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
38
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
39
|
Taherzadeh G, Dehzangi A, Golchin M, Zhou Y, Campbell MP. SPRINT-Gly: predicting N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted structural properties. Bioinformatics 2020; 35:4140-4146. [PMID: 30903686 DOI: 10.1093/bioinformatics/btz215] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/03/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION Protein glycosylation is one of the most abundant post-translational modifications that plays an important role in immune responses, intercellular signaling, inflammation and host-pathogen interactions. However, due to the poor ionization efficiency and microheterogeneity of glycopeptides identifying glycosylation sites is a challenging task, and there is a demand for computational methods. Here, we constructed the largest dataset of human and mouse glycosylation sites to train deep learning neural networks and support vector machine classifiers to predict N-/O-linked glycosylation sites, respectively. RESULTS The method, called SPRINT-Gly, achieved consistent results between ten-fold cross validation and independent test for predicting human and mouse glycosylation sites. For N-glycosylation, a mouse-trained model performs equally well in human glycoproteins and vice versa, however, due to significant differences in O-linked sites separate models were generated. Overall, SPRINT-Gly is 18% and 50% higher in Matthews correlation coefficient than the next best method compared in N-linked and O-linked sites, respectively. This improved performance is due to the inclusion of novel structure and sequence-based features. AVAILABILITY AND IMPLEMENTATION http://sparks-lab.org/server/SPRINT-Gly/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ghazaleh Taherzadeh
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Abdollah Dehzangi
- Department of Computer Science, Morgan State University, Baltimore, MD, USA
| | - Maryam Golchin
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Yaoqi Zhou
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia.,Institute for Glycomics, Griffith University, Parklands Drive, Gold Coast, QLD, Australia
| | - Matthew P Campbell
- Institute for Glycomics, Griffith University, Parklands Drive, Gold Coast, QLD, Australia
| |
Collapse
|
40
|
Ohyama Y, Nakajima K, Renfrow MB, Novak J, Takahashi K. Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Rev Proteomics 2020; 17:275-296. [PMID: 32406805 DOI: 10.1080/14789450.2020.1769479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Protein glycosylation influences characteristics such as folding, stability, protein interactions, and solubility. Therefore, glycan moieties of therapeutic proteins and proteins that are likely associated with disease pathogenesis should be analyzed in-depth, including glycan heterogeneity and modification sites. Recent advances in analytical methods and instrumentation have enabled comprehensive characterization of highly complex glycosylated proteins. AREA COVERED The following aspects should be considered when analyzing glycosylated proteins: sample preparation, chromatographic separation, mass spectrometry (MS) and fragmentation methods, and bioinformatics, such as software solutions for data analyses. Notably, analysis of glycoproteins with heavily sialylated glycans or multiple glycosylation sites requires special considerations. Here, we discuss recent methodological advances in MS that provide detailed characterization of heterogeneous glycoproteins. EXPERT OPINION As characterization of complex glycosylated proteins is still analytically challenging, the function or pathophysiological significance of these proteins is not fully understood. To reproducibly produce desired forms of therapeutic glycoproteins or to fully elucidate disease-specific patterns of protein glycosylation, a highly reproducible and robust analytical platform(s) should be established. In addition to advances in MS instrumentation, optimization of analytical and bioinformatics methods and utilization of glycoprotein/glycopeptide standards is desirable. Ultimately, we envision that an automated high-throughput MS analysis will provide additional power to clinical studies and precision medicine.
Collapse
Affiliation(s)
- Yukako Ohyama
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan
| | - Kazuki Nakajima
- Center for Research Promotion and Support, Fujita Health University , Toyoake, Japan
| | - Matthew B Renfrow
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Jan Novak
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Kazuo Takahashi
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan.,Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
41
|
Kimura R, Yoshimaru T, Matsushita Y, Matsuo T, Ono M, Park JH, Sasa M, Miyoshi Y, Nakamura Y, Katagiri T. The GALNT6‑LGALS3BP axis promotes breast cancer cell growth. Int J Oncol 2020; 56:581-595. [PMID: 31894262 DOI: 10.3892/ijo.2019.4941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/24/2019] [Indexed: 11/05/2022] Open
Abstract
Polypeptide N‑acetylgalactosaminyltransferase 6 (GALNT6), which is involved in the initiation of O‑glycosylation, has been reported to play crucial roles in mammary carcinogenesis through binding to several substrates; however, its biological roles in mediating growth‑promoting effects remain unknown. The present study demonstrated a crucial pathophysiological role of GALNT6 through its O‑glycosylation of lectin galactoside‑binding soluble 3 binding protein (LGALS3BP), a secreted growth‑promoting glycoprotein, in breast cancer growth. The Cancer Genome Atlas data analysis revealed that high expression levels of GALNT6 were significantly associated with poor prognosis of breast cancer. GALNT6 O‑glycosylated LGALS3BP in breast cancer cells, whereas knockdown of GALNT6 by siRNA led to the inhibition of both the O‑glycosylation and secretion of LGALS3BP, resulting in the suppression of breast cancer cell growth. Notably, LGALS3BP is potentially O‑glycosylated at three sites (T556, T571 and S582) by GALNT6, thereby promoting autocrine cell growth, whereas the expression of LGALS3BP with three Ala substitutions (T556A, T571A and S582A) in cells drastically reduced GALNT6‑dependent LGALS3BP O‑glycosylation and secretion, resulting in suppression of autocrine growth‑promoting effect. The findings of the present study suggest that the GALNT6‑LGALS3BP axis is crucial for breast cancer cell proliferation and may be a therapeutic target and biomarker for mammary tumors.
Collapse
Affiliation(s)
- Ryuichiro Kimura
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Taisuke Matsuo
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| | - Masaya Ono
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Jae-Hyun Park
- Cancer Precision Medicine, Inc., Kawasaki, Kanagawa 210‑0821, Japan
| | - Mitsunori Sasa
- Department of Surgery, Tokushima Breast Care Clinic, Tokushima, Tokushima 770‑0052, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135‑8550, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Tokushima 770‑8503, Japan
| |
Collapse
|
42
|
Mathieu-Rivet E, Mati-Baouche N, Walet-Balieu ML, Lerouge P, Bardor M. N- and O-Glycosylation Pathways in the Microalgae Polyphyletic Group. FRONTIERS IN PLANT SCIENCE 2020; 11:609993. [PMID: 33391324 PMCID: PMC7773692 DOI: 10.3389/fpls.2020.609993] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 05/15/2023]
Abstract
The term microalga refers to various unicellular and photosynthetic organisms representing a polyphyletic group. It gathers numerous species, which can be found in cyanobacteria (i.e., Arthrospira) as well as in distinct eukaryotic groups, such as Chlorophytes (i.e., Chlamydomonas or Chlorella) and Heterokonts (i.e., diatoms). This phylogenetic diversity results in an extraordinary variety of metabolic pathways, offering large possibilities for the production of natural compounds like pigments or lipids that can explain the ever-growing interest of industrials for these organisms since the middle of the last century. More recently, several species have received particular attention as biofactories for the production of recombinant proteins. Indeed, microalgae are easy to grow, safe and cheap making them attractive alternatives as heterologous expression systems. In this last scope of applications, the glycosylation capacity of these organisms must be considered as this post-translational modification of proteins impacts their structural and biological features. Although these mechanisms are well known in various Eukaryotes like mammals, plants or insects, only a few studies have been undertaken for the investigation of the protein glycosylation in microalgae. Recently, significant progresses have been made especially regarding protein N-glycosylation, while O-glycosylation remain poorly known. This review aims at summarizing the recent data in order to assess the state-of-the art knowledge in glycosylation processing in microalgae.
Collapse
Affiliation(s)
| | | | | | - Patrice Lerouge
- UNIROUEN, Laboratoire Glyco-MEV EA4358, Normandie Université, Rouen, France
| | - Muriel Bardor
- UNIROUEN, Laboratoire Glyco-MEV EA4358, Normandie Université, Rouen, France
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576, CNRS, Université de Lille, Lille, France
- *Correspondence: Muriel Bardor,
| |
Collapse
|
43
|
Seifert GJ. On the Potential Function of Type II Arabinogalactan O-Glycosylation in Regulating the Fate of Plant Secretory Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:563735. [PMID: 33013983 PMCID: PMC7511660 DOI: 10.3389/fpls.2020.563735] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/24/2020] [Indexed: 05/04/2023]
Abstract
In a plant-specific mode of protein glycosylation, various sugars and glycans are attached to hydroxyproline giving rise to a variety of diverse O-glycoproteins. The sub-family of arabinogalactan proteins is implicated in a multitude of biological functions, however, the mechanistic role of O-glycosylation on AGPs by type II arabinogalactans is largely elusive. Some models suggest roles of the O-glycans such as in ligand-receptor interactions and as localized calcium ion store. Structurally different but possibly analogous types of protein O-glycosylation exist in animal and yeast models and roles for O-glycans were suggested in determining the fate of O-glycoproteins by affecting intracellular sorting or proteolytic activation and degradation. At present, only few examples exist that describe how the fate of artificial and endogenous arabinogalactan proteins is affected by O-glycosylation with type II arabinogalactans. In addition to other roles, these glycans might act as a molecular determinant for cellular localization and protein lifetime of many endogenous proteins.
Collapse
|
44
|
Groux-Degroote S, Cavdarli S, Uchimura K, Allain F, Delannoy P. Glycosylation changes in inflammatory diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:111-156. [PMID: 31997767 DOI: 10.1016/bs.apcsb.2019.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in a number of inflammatory diseases. Pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of glycan chains, inducing the expression of specific carbohydrate antigens at the cell surface that can be recognized by different types of lectins or by bacterial adhesins, contributing to the development of diseases. Glycosylation can also regulate biological functions of immune cells by recruiting leukocytes to inflammation sites with pro- or anti-inflammatory effects. Cell surface proteoglycans provide a large panel of binding sites for many mediators of inflammation, and regulate their bio-availability and functions. In this review, we summarize the current knowledge of the glycosylation changes occurring in mucin type O-linked glycans, glycosaminoglycans, as well as in glycosphingolipids, with a particular focus on cystic fibrosis and neurodegenerative diseases, and their consequences on cell interactions and disease progression.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Sumeyye Cavdarli
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Kenji Uchimura
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Fabrice Allain
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Philippe Delannoy
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
45
|
Galnt11 regulates kidney function by glycosylating the endocytosis receptor megalin to modulate ligand binding. Proc Natl Acad Sci U S A 2019; 116:25196-25202. [PMID: 31740596 DOI: 10.1073/pnas.1909573116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chronic kidney disease (CKD) affects more than 20 million Americans and ∼10% of the population worldwide. Genome-wide association studies (GWAS) of kidney functional decline have identified genes associated with CKD, but the precise mechanisms by which they influence kidney function remained largely unexplored. Here, we examine the role of 1 GWAS-identified gene by creating mice deficient for Galnt11, which encodes a member of the enzyme family that initiates protein O-glycosylation, an essential posttranslational modification known to influence protein function and stability. We find that Galnt11-deficient mice display low-molecular-weight proteinuria and have specific defects in proximal tubule-mediated resorption of vitamin D binding protein, α1-microglobulin, and retinol binding protein. Moreover, we identify the endocytic receptor megalin (LRP2) as a direct target of Galnt11 in vivo. Megalin in Galnt11-deficient mice displays reduced ligand binding and undergoes age-related loss within the kidney. Differential mass spectrometry revealed specific sites of Galnt11-mediated glycosylation within mouse kidney megalin/LRP2 that are known to be involved in ligand binding, suggesting that O-glycosylation directly influences the ability to bind ligands. In support of this, recombinant megalin containing these sites displayed reduced albumin binding in cells deficient for Galnt11 Our results provide insight into the association between GALNT11 and CKD, and identify a role for Galnt11 in proper kidney function.
Collapse
|
46
|
Notch signaling is involved in Fgf23 upregulation in osteocytes. Biochem Biophys Res Commun 2019; 518:233-238. [PMID: 31420162 DOI: 10.1016/j.bbrc.2019.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023]
Abstract
Fgf23 acts as a phosphaturic factor secreted from osteocytes in bone, but the mechanism regulating Fgf23 is not fully understood. Here, we showed the colocalization of Fgf23, Notch, and Hes1, a downstream target of Notch signaling, in numerous osteocytes in cortical bone of femur in wild-type mice. We generated NICD (Notch intracellular domain)-transgenic mice driven by a 2.3 kb collagenα1 (I) (Col1a1) promoter fragment. Western blot and RT-PCR analyses revealed upregulation of Notch protein and mRNA levels in the bones of transgenic mice compared with those in wild-type mice. In the transgenic mice, immunohistochemical studies demonstrated that numerous osteocytes and osteoblasts express Notch in the rib, whereas only osteoblasts exhibit Notch in the femur. NICD-transgenic mice were characterized by upregulation of Fgf23 mRNA levels in the rib but not in the femur compared with that in wild type mice. These mice exhibited dwarfism associated with an osteomalacia phenotype. The expression of Alpl, Col1a1, and Bglap decreased in NICD-transgenic mice compared with wild-type mice. UMR-106 cells cultured on Jagged1-immobilized wells significantly increased Fgf23 expressions associating with upregulation of Hes1 and Hey1. These results imply that Notch signaling is a positive regulator for Fgf23 expression in osteocytes.
Collapse
|
47
|
Turupcu A, Poliak P, Margreitter C, Oostenbrink C, Staudacher E. UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase from the snail Biomphalaria glabrata - structural reflections. Glycoconj J 2019; 37:15-25. [PMID: 31396754 PMCID: PMC6994419 DOI: 10.1007/s10719-019-09886-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 11/26/2022]
Abstract
UDP-GalNAc:polypeptide GalNAc transferase (ppGalNAcT; EC 2.4.1.41) is the initiating enzyme for mucin-type O-glycosylation in animals. Members of this highly conserved glycosyltransferase family catalyse a single glycosidic linkage. They transfer an N-acetylgalactosamine (GalNAc) residue from an activated donor (UDP-GalNAc) to a serine or threonine of an acceptor polypeptide chain. A ppGalNAcT from the freshwater snail Biomphalaria glabrata is the only characterised member of this enzyme family from mollusc origin. In this work, we interpret previously published experimental characterization of this enzyme in the context of in silico models of the enzyme and its acceptor substrates. A homology model of the mollusc ppGalNAcT is created and various substrate peptides are modelled into the active site. We hypothesize about possible molecular interpretations of the available experimental data and offer potential explanations for observed substrate and cofactor specificity. Here, we review and synthesise the current knowledge of Bge-ppGalNAcT, supported by a molecular interpretation of the available data.
Collapse
Affiliation(s)
- Aysegül Turupcu
- Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Peter Poliak
- Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
- Department of Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Christian Margreitter
- Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 9RT, UK
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Erika Staudacher
- Department of Chemistry, Glycobiology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
48
|
Zhou L, Zhang S, Zou X, Lu J, Yang X, Xu Z, Shan A, Jia W, Liu F, Yan X, Su H, Liang T, Zheng M, Zhang Y, Feng B. The β-galactoside α2,6-sialyltranferase 1 (ST6GAL1) inhibits the colorectal cancer metastasis by stabilizing intercellular adhesion molecule-1 via sialylation. Cancer Manag Res 2019; 11:6185-6199. [PMID: 31308754 PMCID: PMC6613604 DOI: 10.2147/cmar.s208631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most frequent malignancies of the digestive system. Elevated expression of β-galactoside α2,6-sialyltranferase 1 (ST6GAL1) has been observed in multiple cancers. But the mechanism of how ST6GAL1 might affect cancer cells remains to be clarified. Our previous study recognized intercellular adhesion molecule-1(ICAM-1) as a probable substrate of ST6GAL1 through mass spectrometry (MS) analysis. ICAM-1 is related to tumor metastasis in various cancers. Methods: First, ST6GAL1 was overexpressed and knocked down to perform transwell and wound healing assays, and the results were further confirmed in vivo. Based on the results of MS, GO and KEGG analysis were applied to reveal the connection between ST6GAL1 and ICAM-1. Immunoblot and tissue microarrays were administered to investigate the expression of ICAM-1 in different stages of CRC. Next, PCR, lectin precipitation and cycloheximide (CHX) were used to demonstrate the mechanism of ST6GAL1 on ICAM-1. Moreover, we investigated the sialylation on soluble ICAM in serum and its connection to tumor staging. Results: Overexpression of ST6GAL1 inhibited the migratory ability, while knockdown of ST6GAL1 cells had the reverse effect. Moreover, nude mice injected with ST6GAL1-knockdown cells harvested more liver metastases. Based on the GO and KEGG analysis, data from TCGA database showed a positive correlation between ST6GAL1 and ICAM-1. ICAM-1 also demonstrated a significant decrease in stage III/IV compared with stage I/II tumors. Our results revealed that ST6GAL1 could increase the stability of ICAM-1 through sialylation but had little influence on transcriptional level. Additionally, results of serum lectin precipitation revealed a correlation between the level of sialylation on soluble ICAM and CRC staging. Conclusion: This study illustrated that ST6GAL1 inhibited the metastatic ability of CRC by stabilizing ICAM-1 via sialylation and demonstrated a correlation between CRC staging and the sialylation on soluble ICAM-1 in serum.
Collapse
Affiliation(s)
- Leqi Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xia Zou
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jishun Lu
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhijue Xu
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Aidong Shan
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenjuan Jia
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Feng Liu
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xialin Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hao Su
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tao Liang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Zhang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
49
|
Narimatsu Y, Joshi HJ, Schjoldager KT, Hintze J, Halim A, Steentoft C, Nason R, Mandel U, Bennett EP, Clausen H, Vakhrushev SY. Exploring Regulation of Protein O-Glycosylation in Isogenic Human HEK293 Cells by Differential O-Glycoproteomics. Mol Cell Proteomics 2019; 18:1396-1409. [PMID: 31040225 PMCID: PMC6601209 DOI: 10.1074/mcp.ra118.001121] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/26/2019] [Indexed: 02/04/2023] Open
Abstract
Most proteins trafficking the secretory pathway of metazoan cells will acquire GalNAc-type O-glycosylation. GalNAc-type O-glycosylation is differentially regulated in cells by the expression of a repertoire of up to twenty genes encoding polypeptide GalNAc-transferase isoforms (GalNAc-Ts) that initiate O-glycosylation. These GalNAc-Ts orchestrate the positions and patterns of O-glycans on proteins in coordinated, but poorly understood ways - guided partly by the kinetic properties and substrate specificities of their catalytic domains, as well as by modulatory effects of their unique GalNAc-binding lectin domains. Here, we provide the hereto most comprehensive characterization of nonredundant contributions of individual GalNAc-T isoforms to the O-glycoproteome of the human HEK293 cell using quantitative differential O-glycoproteomics on a panel of isogenic HEK293 cells with knockout of GalNAc-T genes (GALNT1, T2, T3, T7, T10, or T11). We confirm that a major part of the O-glycoproteome is covered by redundancy, whereas distinct O-glycosite subsets are covered by nonredundant GalNAc-T isoform-specific functions. We demonstrate that the GalNAc-T7 and T10 isoforms function in follow-up of high-density O-glycosylated regions, and that GalNAc-T11 has highly restricted functions and essentially only serves the low-density lipoprotein-related receptors in linker regions (C6XXXTC1) between the ligand-binding repeats.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Hiren J Joshi
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - John Hintze
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Adnan Halim
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Catharina Steentoft
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Rebecca Nason
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Ulla Mandel
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Eric P Bennett
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
50
|
Hansen LH, Madsen TD, Goth CK, Clausen H, Chen Y, Dzhoyashvili N, Iyer SR, Sangaralingham SJ, Burnett JC, Rehfeld JF, Vakhrushev SY, Schjoldager KT, Goetze JP. Discovery of O-glycans on atrial natriuretic peptide (ANP) that affect both its proteolytic degradation and potency at its cognate receptor. J Biol Chem 2019; 294:12567-12578. [PMID: 31186350 DOI: 10.1074/jbc.ra119.008102] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is a peptide hormone that in response to atrial stretch is secreted from atrial myocytes into the circulation, where it stimulates vasodilatation and natriuresis. ANP is an important biomarker of heart failure where low plasma concentrations exclude cardiac dysfunction. ANP is a member of the natriuretic peptide (NP) family, which also includes the B-type natriuretic peptide (BNP) and the C-type natriuretic peptide. The proforms of these hormones undergo processing to mature peptides, and for proBNP, this process has previously been demonstrated to be regulated by O-glycosylation. It has been suggested that proANP also may undergo post-translational modifications. Here, we conducted a targeted O-glycoproteomics approach to characterize O-glycans on NPs and demonstrate that all NP members can carry O-glycans. We identified four O-glycosites in proANP in the porcine heart, and surprisingly, two of these were located on the mature bioactive ANP itself. We found that one of these glycans is located within a conserved sequence motif of the receptor-binding region, suggesting that O-glycans may serve a function beyond intracellular processing and maturation. We also identified an O-glycoform of proANP naturally occurring in human circulation. We demonstrated that site-specific O-glycosylation shields bioactive ANP from proteolytic degradation and modifies potency at its cognate receptor in vitro Furthermore, we showed that ANP O-glycosylation attenuates acute renal and cardiovascular ANP actions in vivo The discovery of novel glycosylated ANP proteoforms reported here significantly improves our understanding of cardiac endocrinology and provides important insight into the etiology of heart failure.
Collapse
Affiliation(s)
- Lasse H Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Daugbjerg Madsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Nina Dzhoyashvili
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark .,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, 2200 Copenhagen, Denmark
| |
Collapse
|