1
|
McNicol GR, Dalby MJ, Stewart PS. A theoretical model for focal adhesion and cytoskeleton formation in non-motile cells. J Theor Biol 2025; 596:111965. [PMID: 39442686 DOI: 10.1016/j.jtbi.2024.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
To function and survive cells need to be able to sense and respond to their local environment through mechanotransduction. Crucially, mechanical and biochemical perturbations initiate cell signalling cascades, which can induce responses such as growth, apoptosis, proliferation and differentiation. At the heart of this process are actomyosin stress fibres (SFs), which form part of the cell cytoskeleton, and focal adhesions (FAs), which bind this cytoskeleton to the extra-cellular matrix (ECM). The formation and maturation of these structures (connected by a positive feedback loop) is pivotal in non-motile cells, where SFs are generally of ventral type, interconnecting FAs and producing isometric tension. In this study we formulate a one-dimensional bio-chemo-mechanical continuum model to describe the coupled formation and maturation of ventral SFs and FAs. We use a set of reaction-diffusion-advection equations to describe three sets of biochemical events: the polymerisation of actin and subsequent bundling into activated SFs; the formation and maturation of cell-substrate adhesions; and the activation of signalling proteins in response to FA and SF formation. The evolution of these key proteins is coupled to a Kelvin-Voigt viscoelastic description of the cell cytoplasm and the ECM. We employ this model to understand how cells respond to external and intracellular cues in vitro and are able to reproduce experimentally observed phenomena including non-uniform cell striation and cells forming weaker SFs and FAs on softer substrates.
Collapse
Affiliation(s)
- Gordon R McNicol
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Peter S Stewart
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
2
|
Falconieri A. Interplay of force and local mechanisms in axonal plasticity and beyond. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119874. [PMID: 39515663 DOI: 10.1016/j.bbamcr.2024.119874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The interactions between mechanical forces and neuronal dynamics have long intrigued researchers. Several studies revealed that force plays a pivotal role in shaping axonal outgrowth. However, the molecular mechanisms underpinning force-driven axonal plasticity remain not completely elucidated. This review explores the relationship between force and axonal plasticity, with a focus on local mechanisms, including local translation and axonal transport, and the emerging concept of force-driven cross-talk, a dialogue in which local dynamics are tightly regulated. Recent experimental evidence suggests that microtubules may serve as key mediators of this cross-talk, orchestrating the coordination between local mechanisms and facilitating mass addition.
Collapse
Affiliation(s)
- A Falconieri
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK; Department of Biology, Universiy of Pisa, Pisa, Italy.
| |
Collapse
|
3
|
Zhang Y, Xing M, Meng F, Zhu L, Huang Q, Ma T, Fang H, Gu X, Huang S, Wu X, Lv G, Guo J, Wu L, Liu X, Chen Z. The mechanical mechanism of angiotensin II induced activation of hepatic stellate cells promoting portal hypertension. Eur J Cell Biol 2024; 103:151427. [PMID: 38820882 DOI: 10.1016/j.ejcb.2024.151427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
In the development of chronic liver disease, the hepatic stellate cell (HSC) plays a pivotal role in increasing intrahepatic vascular resistance (IHVR) and inducing portal hypertension (PH) in cirrhosis. Our research demonstrated that HSC contraction, prompted by angiotensin II (Ang II), significantly contributed to the elevation of type I collagen (COL1A1) expression. This increase was intimately associated with enhanced cell tension and YAP nuclear translocation, mediated through α-smooth muscle actin (α-SMA) expression, microfilaments (MF) polymerization, and stress fibers (SF) assembly. Further investigation revealed that the Rho/ROCK signaling pathway regulated MF polymerization and SF assembly by facilitating the phosphorylation of cofilin and MLC, while Ca2+ chiefly governed SF assembly via MLC. Inhibiting α-SMA-MF-SF assembly changed Ang II-induced cell contraction, YAP nuclear translocation, and COL1A1 expression, findings corroborated in cirrhotic mice models. Overall, our study offers insights into mitigating IHVR and PH through cell mechanics, heralding potential breakthroughs.
Collapse
Affiliation(s)
- Yiheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mulan Xing
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fansheng Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Zhu
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qingchuan Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianle Ma
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huihua Fang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, China
| | - Xujing Gu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suzhou Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinyu Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gaohong Lv
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Guo
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xin Liu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Zhipeng Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Buenaventura A, Saito T, Kanao T, Matsunaga D, Matsui TS, Deguchi S. Intracellular Macromolecular Crowding within Individual Stress Fibers Analyzed by Fluorescence Correlation Spectroscopy. Cell Mol Bioeng 2024; 17:165-176. [PMID: 39050511 PMCID: PMC11263330 DOI: 10.1007/s12195-024-00803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction The diffusion of cell components such as proteins is crucial to the function of all living cells. The abundance of macromolecules in cells is likely to cause a state of macromolecular crowding, but its effects on the extent of diffusion remain poorly understood. Methods Here we investigate the diffusion rate in three distinct locations in mesenchymal cell types, namely the open cytoplasm, the stress fibers in the open cytoplasm, and those below the nucleus using three kinds of biologically inert green fluorescent proteins (GFPs), namely a monomer, dimer, and trimer GFP. Fluorescence correlation spectroscopy (FCS) was used to determine the diffusion coefficients. Results We show that diffusion tends to be lowered on average in stress fibers and is significantly lower in those located below the nucleus. Our data suggest that the diffusive properties of GFPs, and potentially other molecules as well, are hindered by macromolecular crowding. However, although the size dependence on protein diffusion was also studied for monomer, dimer, and trimer GFPs, there was no significant difference in the diffusion rates among the GFPs of these sizes. These results could be attributed to the lack of significant change in protein size among the selected GFP multimers. Conclusion The data presented here would provide a basis for better understanding of the complex protein diffusion in the nonuniform cytoplasm, shedding light on cellular responses to mechanical stress, their local mechanical properties, and reduced turnover in senescent cells.
Collapse
Affiliation(s)
- Aria Buenaventura
- Division of Bioengineering, Osaka University, Toyonaka, 560-0043 Japan
| | - Takumi Saito
- Division of Bioengineering, Osaka University, Toyonaka, 560-0043 Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-0812 Japan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA
- Nanobiology Institute, Yale University, West Haven, USA
| | - Taiga Kanao
- Division of Bioengineering, Osaka University, Toyonaka, 560-0043 Japan
| | - Daiki Matsunaga
- Division of Bioengineering, Osaka University, Toyonaka, 560-0043 Japan
| | - Tsubasa S. Matsui
- Division of Bioengineering, Osaka University, Toyonaka, 560-0043 Japan
| | - Shinji Deguchi
- Division of Bioengineering, Osaka University, Toyonaka, 560-0043 Japan
| |
Collapse
|
5
|
Amiri S, Muresan C, Shang X, Huet-Calderwood C, Schwartz MA, Calderwood DA, Murrell M. Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton. Nat Commun 2023; 14:8011. [PMID: 38049429 PMCID: PMC10695988 DOI: 10.1038/s41467-023-43612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
The filamentous actin (F-actin) cytoskeleton is a composite material consisting of cortical actin and bundled F-actin stress fibers, which together mediate the mechanical behaviors of the cell, from cell division to cell migration. However, as mechanical forces are typically measured upon transmission to the extracellular matrix, the internal distribution of forces within the cytoskeleton is unknown. Likewise, how distinct F-actin architectures contribute to the generation and transmission of mechanical forces is unclear. Therefore, we have developed a molecular tension sensor that embeds into the F-actin cytoskeleton. Using this sensor, we measure tension within stress fibers and cortical actin, as the cell is subject to uniaxial stretch. We find that the mechanical response, as measured by FRET, depends on the direction of applied stretch relative to the cell's axis of alignment. When the cell is aligned parallel to the direction of the stretch, stress fibers and cortical actin both accumulate tension. By contrast, when aligned perpendicular to the direction of stretch, stress fibers relax tension while the cortex accumulates tension, indicating mechanical anisotropy within the cytoskeleton. We further show that myosin inhibition regulates this anisotropy. Thus, the mechanical anisotropy of the cell and the coordination between distinct F-actin architectures vary and depend upon applied load.
Collapse
Affiliation(s)
- Sorosh Amiri
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Mechanical Engineering and Material Science, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Camelia Muresan
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | - Xingbo Shang
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
| | | | - Martin A Schwartz
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Yale Cardiovascular Research Center, 300 George St, New Haven, CT, 06511, USA
| | - David A Calderwood
- Department of Pharmacology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
- Department of Cell Biology, 333 Cedar St, Yale University, New Haven, CT, 06510, USA
| | - Michael Murrell
- Systems Biology Institute, 850 West Campus Drive, Yale University, West Haven, CT, 06516, USA.
- Department of Biomedical Engineering, 17 Hillhouse Ave, Yale University, New Haven, CT, 06511, USA.
- Department of Physics, 217 Prospect Street, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
6
|
Gruber L, Jobst M, Kiss E, Karasová M, Englinger B, Berger W, Del Favero G. Intracellular remodeling associated with endoplasmic reticulum stress modifies biomechanical compliance of bladder cells. Cell Commun Signal 2023; 21:307. [PMID: 37904178 PMCID: PMC10614373 DOI: 10.1186/s12964-023-01295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 11/01/2023] Open
Abstract
Bladder cells face a challenging biophysical environment: mechanical cues originating from urine flow and regular contraction to enable the filling voiding of the organ. To ensure functional adaption, bladder cells rely on high biomechanical compliance, nevertheless aging or chronic pathological conditions can modify this plasticity. Obviously the cytoskeletal network plays an essential role, however the contribution of other, closely entangled, intracellular organelles is currently underappreciated. The endoplasmic reticulum (ER) lies at a crucial crossroads, connected to both nucleus and cytoskeleton. Yet, its role in the maintenance of cell mechanical stability is less investigated. To start exploring these aspects, T24 bladder cancer cells were treated with the ER stress inducers brefeldin A (10-40nM BFA, 24 h) and thapsigargin (0.1-100nM TG, 24 h). Without impairment of cell motility and viability, BFA and TG triggered a significant subcellular redistribution of the ER; this was associated with a rearrangement of actin cytoskeleton. Additional inhibition of actin polymerization with cytochalasin D (100nM CytD) contributed to the spread of the ER toward cell periphery, and was accompanied by an increase of cellular stiffness (Young´s modulus) in the cytoplasmic compartment. Shrinking of the ER toward the nucleus (100nM TG, 2 h) was related to an increased stiffness in the nuclear and perinuclear areas. A similar short-term response profile was observed also in normal human primary bladder fibroblasts. In sum, the ER and its subcellular rearrangement seem to contribute to the mechanical properties of bladder cells opening new perspectives in the study of the related stress signaling cascades. Video Abstract.
Collapse
Affiliation(s)
- Livia Gruber
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Maximilian Jobst
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna, 1090, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Martina Karasová
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Bernhard Englinger
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, 1090, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, 1090, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, 1090, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria.
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, Vienna, 1090, Austria.
| |
Collapse
|
7
|
Tomasso MR, Padrick SB. BORG family proteins in physiology and human disease. Cytoskeleton (Hoboken) 2023; 80:182-198. [PMID: 37403807 DOI: 10.1002/cm.21768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
The binder of rho GTPases (BORG)/Cdc42 effector proteins (Cdc42EP) family is composed of five Rho GTPase binding proteins whose functions and mechanism of actions are of emerging interest. Here, we review recent findings pertaining to the family as a whole and consider how these change our understanding of cellular organization. Recent studies have implicated BORGs in both fundamental physiology and in human diseases, mainly cancers. An emerging pattern suggests that BORG family members cancer-promoting properties are related to their ability to regulate the cytoskeleton, with many impacting the organization of acto-myosin stress fibers. This is consistent with the broader literature indicating that BORG family members are regulators of both the septin and actin cytoskeleton networks. The exact mechanism through which BORGs modify the cytoskeleton is not clear, but we consider here a few data-supported and speculative possibilities. Finally, we delve into how the Rho GTPase Cdc42 modifies BORG function in cells. This remains open-ended as Cdc42's effects on BORGs appear cell type- and cell state-dependent. Collectively, these data point to the importance of the BORG family and suggest broader themes in their function and regulation.
Collapse
Affiliation(s)
- Meagan R Tomasso
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Ni H, Ni Q, Papoian GA, Trache A, Jiang Y. Myosin and [Formula: see text]-actinin regulation of stress fiber contractility under tensile stress. Sci Rep 2023; 13:8662. [PMID: 37248294 PMCID: PMC10227020 DOI: 10.1038/s41598-023-35675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023] Open
Abstract
Stress fibers are actomyosin bundles that regulate cellular mechanosensation and force transduction. Interacting with the extracellular matrix through focal adhesion complexes, stress fibers are highly dynamic structures regulated by myosin motors and crosslinking proteins. Under external mechanical stimuli such as tensile forces, the stress fiber remodels its architecture to adapt to external cues, displaying properties of viscoelastic materials. How the structural remodeling of stress fibers is related to the generation of contractile force is not well understood. In this work, we simulate mechanochemical dynamics and force generation of stress fibers using the molecular simulation platform MEDYAN. We model stress fiber as two connecting bipolar bundles attached at the ends to focal adhesion complexes. The simulated stress fibers generate contractile force that is regulated by myosin motors and [Formula: see text]-actinin crosslinkers. We find that stress fibers enhance contractility by reducing the distance between actin filaments to increase crosslinker binding, and this structural remodeling ability depends on the crosslinker turnover rate. Under tensile pulling force, the stress fiber shows an instantaneous increase of the contractile forces followed by a slow relaxation into a new steady state. While the new steady state contractility after pulling depends only on the overlap between actin bundles, the short-term contractility enhancement is sensitive to the tensile pulling distance. We further show that this mechanical response is also sensitive to the crosslinker turnover rate. Our results provide new insights into the stress fiber mechanics that have significant implications for understanding cellular adaptation to mechanical signaling.
Collapse
Affiliation(s)
- Haoran Ni
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Qin Ni
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Garegin A. Papoian
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Andreea Trache
- Department of Medical Physiology, Texas A &M University Health Science Center, Bryan, TX, USA
- Department of Biomedical Engineering, Texas A &M University, College Station, TX, USA
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
9
|
Graham K, Chandrasekaran A, Wang L, Ladak A, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like VASP condensates drive actin polymerization and dynamic bundling. NATURE PHYSICS 2023; 19:574-585. [PMID: 38405682 PMCID: PMC10887402 DOI: 10.1038/s41567-022-01924-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/15/2022] [Indexed: 02/27/2024]
Abstract
The organization of actin filaments into bundles is required for cellular processes such as motility, morphogenesis, and cell division. Filament bundling is controlled by a network of actin-binding proteins. Recently, several proteins that comprise this network have been found to undergo liquid-liquid phase separation. How might liquid-like condensates contribute to filament bundling? Here, we show that the processive actin polymerase and bundling protein, VASP, forms liquid-like droplets under physiological conditions. As actin polymerizes within VASP droplets, elongating filaments partition to the edges of the droplet to minimize filament curvature, forming an actin-rich ring within the droplet. The rigidity of this ring is balanced by the droplet's surface tension, as predicted by a continuum-scale computational model. However, as actin polymerizes and the ring grows thicker, its rigidity increases and eventually overcomes the surface tension of the droplet, deforming into a linear bundle. The resulting bundles contain long, parallel actin filaments that grow from their tips. Significantly, the fluid nature of the droplets is critical for bundling, as more solid droplets resist deformation, preventing filaments from rearranging to form bundles. Once the parallel arrangement of filaments is created within a VASP droplet, it propagates through the addition of new actin monomers to achieve a length that is many times greater than the initial droplet. This droplet-based mechanism of bundling may be relevant to the assembly of cellular architectures rich in parallel actin filaments, such as filopodia, stress fibers, and focal adhesions.
Collapse
Affiliation(s)
- Kristin Graham
- University of Texas at Austin, Department of Biomedical Engineering
| | | | - Liping Wang
- University of Texas Health Science Center at San Antonio, Department of Biochemistry and Structural Biology
| | - Aly Ladak
- University of Texas at Austin, Department of Biomedical Engineering
| | - Eileen M Lafer
- University of Texas Health Science Center at San Antonio, Department of Biochemistry and Structural Biology
| | - Padmini Rangamani
- University of California San Diego, Department of Mechanical and Aerospace Engineering
| | | |
Collapse
|
10
|
Seetharaman S, Sala S, Gardel ML, Oakes PW. Quantifying Strain-Sensing Protein Recruitment During Stress Fiber Repair. Methods Mol Biol 2023; 2600:169-182. [PMID: 36587097 DOI: 10.1007/978-1-0716-2851-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A family of proteins have been identified that recognize damaged, strained actin filaments in stress fibers. These proteins are often referred to as strain- or force-sensing and trigger downstream signaling mechanisms that can facilitate repair at these strain sites. Here we describe a method using high-resolution microscopy to screen and quantify the mechanosensitive recruitment of proteins to these stress fiber strain sites. Strain sites are induced using spatially controlled illumination of UV light to locally damage actin stress fibers. Recruitment of potential strain-sensing proteins can then either be compared to (Blanchoin, Physiol Rev 94, 235-263, 2014) a known control (e.g., zyxin-GFP) or (Hoffman, Mol Biol Cell 23, 1846-1859, 2012) the pre-damaged stress fiber protein distribution. With this method, strain-sensing proteins and their dynamic association with stress fiber strain sites can be reproducibly measured and compared.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Department of Physics, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Stefano Sala
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Margaret L Gardel
- Department of Physics, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, IL, USA.
| | - Patrick W Oakes
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
11
|
Marocco L, Umrath F, Sachsenmaier S, Rabiner R, Wülker N, Danalache M. 5-Aminolevulinic Acid-Mediated Photodynamic Therapy Potentiates the Effectiveness of Doxorubicin in Ewing Sarcomas. Biomedicines 2022; 10:biomedicines10112900. [PMID: 36428464 PMCID: PMC9687703 DOI: 10.3390/biomedicines10112900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Ewing sarcomas (ES) are aggressive primary bone tumors that require radical therapy. Promising low toxicity, 5-aminolevulinic acid (5-ALA)-mediated photodynamic therapy (PDT) could enhance the effectiveness of conventional treatment modalities (e.g., doxorubicin (DOX)), improving, thus, the anti-tumorigenic effects. In this study, we investigated the effects of DOX and 5-ALA PDT alone or in combination on three different human ES cell lines. Cell viability, reactive oxygen species (ROS) production, and cellular stiffness were measured 24 h after PDT (blue light-wavelength 436 nm with 5-ALA) with or without DOX. ES cell lines have a different sensitivity to the same doses and exposure of 5-ALA PDT. DOX in combination with 5-ALA PDT was found to be effective in impairing the viability of all ES cells while also increasing cytotoxic activity by high ROS production. The stiffness of the ES cells increased significantly (p < 0.05) post treatment. Overall, our results showed that across multiple ES cell lines, 5-ALA PDT can successfully and safely be combined with DOX to potentiate the therapeutic effect. The 5-ALA PDT has the potential to be a highly effective treatment when used alone or in conjunction with other treatments. More research is needed to assess the effectiveness of 5-ALA PDT in in vivo settings.
Collapse
Affiliation(s)
- Lea Marocco
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, 72072 Tübingen, Germany
- Correspondence:
| | - Felix Umrath
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, 72072 Tübingen, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital of Tübingen, 72076 Tübingen, Germany
| | - Saskia Sachsenmaier
- Department of Orthopaedic Surgery, University Hospital of Tübingen, 72076 Tübingen, Germany
| | | | - Nikolaus Wülker
- Department of Orthopaedic Surgery, University Hospital of Tübingen, 72076 Tübingen, Germany
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, 72072 Tübingen, Germany
| |
Collapse
|
12
|
Narasimhan S, Holmes WR, Kaverina I. Merging of ventral fibers at adhesions drives the remodeling of cellular contractile systems in fibroblasts. Cytoskeleton (Hoboken) 2022; 79:81-93. [PMID: 35996927 PMCID: PMC9770016 DOI: 10.1002/cm.21722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 01/30/2023]
Abstract
Ventral stress fibers (VSFs) are contractile actin fibers dynamically attached to cell-matrix focal adhesions. VSFs are critical in cellular traction force production and migration. VSFs vary from randomly oriented short, thinner fibers to long, thick fibers that span along the whole long axis of a cell. De novo VSF formation was shown to occur by cortical actin mesh condensation or by crosslinking of dorsal stress fibers and transverse arcs at the cell front. However, the formation of long VSFs that extend across the whole cell axis is not well understood. Here, we report a novel phenomenon of VSF merging in migratory fibroblast cells, which is guided by mechanical force balance and contributes to VSF alignment along the long cell axis. The mechanism of VSF merging involves two steps: connection of two ventral fibers by an emerging myosin II bridge at an intervening adhesion and intervening adhesion dissolution. Our data indicate that these two steps are interdependent: slow adhesion disassembly leads to the slowing of the myosin bridge formation. Cellular data and computational modeling show that the contact angle between merging fibers decides successful merging, with shallow angles leading to merge failure. Our data and modeling further show that merging increases the share of uniformly aligned long VSFs, likely contributing to directional traction force production. Thus, we characterize merging as a process for dynamic reorganization of VSFs with functional significance for directional cell migration.
Collapse
Affiliation(s)
| | | | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University
| |
Collapse
|
13
|
Pajic-Lijakovic I, Milivojevic M. Marangoni effect and cell spreading. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:419-429. [PMID: 35930028 DOI: 10.1007/s00249-022-01612-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Cells are very sensitive to the shear stress (SS). However, undesirable SS is generated during physiological process such as collective cell migration (CCM) and influences the biological processes such as morphogenesis, wound healing and cancer invasion. Despite extensive research devoted to study the SS generation caused by CCM, we still do not fully understand the main cause of SS appearance. An attempt is made here to offer some answers to these questions by considering the rearrangement of cell monolayers. The SS generation represents a consequence of natural and forced convection. While forced convection is dependent on cell speed, the natural convection is induced by the gradient of tissue surface tension. The phenomenon is known as the Marangoni effect. The gradient of tissue surface tension induces directed cell spreading from the regions of lower tissue surface tension to the regions of higher tissue surface tension and leads to the cell sorting. This directional cell migration is described by the Marangoni flux. The phenomenon has been recognized during the rearrangement of (1) epithelial cell monolayers and (2) mixed cell monolayers made by epithelial and mesenchymal cells. The consequence of the Marangoni effect is an intensive spreading of cancer cells through an epithelium. In this work, a review of existing literature about SS generation caused by CCM is given along with the assortment of published experimental findings, to invite experimentalists to test given theoretical considerations in multicellular systems.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Li LX, Agborbesong E, Zhang L, Zhang X, Zhou JX, Li X. Crosstalk between lysine methyltransferase Smyd2 and TGF-β-Smad3 signaling promotes renal fibrosis in autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2022; 323:F227-F242. [PMID: 35759739 PMCID: PMC9359663 DOI: 10.1152/ajprenal.00452.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited genetic disorder, which is caused by mutations of PKD1 or PKD2 gene and is characterized by renal fluid-filled cyst formation and interstitial fibrosis. PKD1 gene mutation results in the upregulation of SET and MYND domain-containing lysine methyltransferase 2 (SMYD2) in Pkd1 mutant mouse and ADPKD patient kidneys. However, the role and mechanism of Smyd2 in the regulation of renal fibrosis in ADPKD remains elusive. In this study, we show that: 1) the expression of Smyd2 can be regulated by TGF-β-Smad3 in normal rat kidney 49F (NRK-49F) cells and mouse fibroblast NIH3T3 cells; 2) knockdown of Smyd2 and inhibition of Smyd2 with its specific inhibitor, AZ505, decreases TGF-β-induced expression of α-smooth muscle actin (α-SMA), fibronectin, collagens 1 and 3 and plasminogen activator inhibitor-1( PAI1) in NRK-49F cells; 3) Smyd2 regulates the transcription of fibrotic marker genes through binding on the promoters of those genes or through methylating histone H3 to indirectly regulate the expression of those genes; and 4) knockout and inhibition of Smyd2 significantly decreases renal fibrosis in Pkd1 knockout mice, supporting that targeting Smyd2 can not only delay cyst growth but also attenuate renal fibrosis in ADPKD. This study identifies a crosstalk between TGF-β signaling and Smyd2 in the regulation of fibrotic gene transcription and the activation of fibroblasts in cystic kidneys, suggesting that targeting Smyd2 with AZ505 is a potential therapeutic strategy for ADPKD treatment.
Collapse
Affiliation(s)
- Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Lu Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Xiaoqin Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
15
|
Bernal R, Van Hemelryck M, Gurchenkov B, Cuvelier D. Actin Stress Fibers Response and Adaptation under Stretch. Int J Mol Sci 2022; 23:ijms23095095. [PMID: 35563485 PMCID: PMC9101353 DOI: 10.3390/ijms23095095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
One of the many effects of soft tissues under mechanical solicitation in the cellular damage produced by highly localized strain. Here, we study the response of peripheral stress fibers (SFs) to external stretch in mammalian cells, plated onto deformable micropatterned substrates. A local fluorescence analysis reveals that an adaptation response is observed at the vicinity of the focal adhesion sites (FAs) due to its mechanosensor function. The response depends on the type of mechanical stress, from a Maxwell-type material in compression to a complex scenario in extension, where a mechanotransduction and a self-healing process takes place in order to prevent the induced severing of the SF. A model is proposed to take into account the effect of the applied stretch on the mechanics of the SF, from which relevant parameters of the healing process are obtained. In contrast, the repair of the actin bundle occurs at the weak point of the SF and depends on the amount of applied strain. As a result, the SFs display strain-softening features due to the incorporation of new actin material into the bundle. In contrast, the response under compression shows a reorganization with a constant actin material suggesting a gliding process of the SFs by the myosin II motors.
Collapse
Affiliation(s)
- Roberto Bernal
- Cellular Mechanics Laboratory, Physics Department, SMAT-C, Universidad de Santiago de Chile, Santiago 9170124, Chile;
- Correspondence: (R.B.); (D.C.)
| | - Milenka Van Hemelryck
- Cellular Mechanics Laboratory, Physics Department, SMAT-C, Universidad de Santiago de Chile, Santiago 9170124, Chile;
| | - Basile Gurchenkov
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 bd de l’Hôpital, 75013 Paris, France;
| | - Damien Cuvelier
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 926 Chemistry, 75005 Paris, France
- Institut Pierre Gilles de Gennes, Paris Sciences et Lettres Research University, 75005 Paris, France
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR 144, 75248 Paris, France
- Correspondence: (R.B.); (D.C.)
| |
Collapse
|
16
|
Erdener ŞE, Küreli G, Dalkara T. Contractile apparatus in CNS capillary pericytes. NEUROPHOTONICS 2022; 9:021904. [PMID: 35106320 PMCID: PMC8785978 DOI: 10.1117/1.nph.9.2.021904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Significance: Whether or not capillary pericytes contribute to blood flow regulation in the brain and retina has long been debated. This was partly caused by failure of detecting the contractile protein α -smooth muscle actin ( α -SMA) in capillary pericytes. Aim: The aim of this review is to summarize recent developments in detecting α -SMA and contractility in capillary pericytes and the relevant literature on the biology of actin filaments. Results: Evidence suggests that for visualization of the small amounts of α -SMA in downstream mid-capillary pericytes, actin depolymerization must be prevented during tissue processing. Actin filaments turnover is mainly based on de/re-polymerization rather than transcription of the monomeric form, hence, small amounts of α -SMA mRNA may evade detection by transcriptomic studies. Similarly, transgenic mice expressing fluorescent reporters under the α -SMA promoter may yield low fluorescence due to limited transcriptional activity in mid-capillary pericytes. Recent studies show that pericytes including mid-capillary ones express several actin isoforms and myosin heavy chain type 11, the partner of α -SMA in mediating contraction. Emerging evidence also suggests that actin polymerization in pericytes may have a role in regulating the tone of downstream capillaries. Conclusions: With guidance of actin biology, innovative labeling and imaging techniques can reveal the molecular machinery of contraction in pericytes.
Collapse
Affiliation(s)
- Şefik E. Erdener
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Gülce Küreli
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Turgay Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| |
Collapse
|
17
|
Sutton AA, Molter CW, Amini A, Idicula J, Furman M, Tirgar P, Tao Y, Ghagre A, Koushki N, Khavari A, Ehrlicher AJ. Cell monolayer deformation microscopy reveals mechanical fragility of cell monolayers following EMT. Biophys J 2022; 121:629-643. [PMID: 34999131 PMCID: PMC8873957 DOI: 10.1016/j.bpj.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/26/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Tissue and cell mechanics are crucial factors in maintaining homeostasis and in development, with aberrant mechanics contributing to many diseases. During the epithelial-to-mesenchymal transition (EMT), a highly conserved cellular program in organismal development and cancer metastasis, cells gain the ability to detach from their original location and autonomously migrate. While a great deal of biochemical and biophysical changes at the single-cell level have been revealed, how the physical properties of multicellular assemblies change during EMT, and how this may affect disease progression, is unknown. Here we introduce cell monolayer deformation microscopy (CMDM), a new methodology to measure the planar mechanical properties of cell monolayers by locally applying strain and measuring their resistance to deformation. We employ this new method to characterize epithelial multicellular mechanics at early and late stages of EMT, finding the epithelial monolayers to be relatively compliant, ductile, and mechanically homogeneous. By comparison, the transformed mesenchymal monolayers, while much stiffer, were also more brittle, mechanically heterogeneous, displayed more viscoelastic creep, and showed sharp yield points at significantly lower strains. Here, CMDM measurements identify specific biophysical functional states of EMT and offer insight into how cell aggregates fragment under mechanical stress. This mechanical fingerprinting of multicellular assemblies using new quantitative metrics may also offer new diagnostic applications in healthcare to characterize multicellular mechanical changes in disease.
Collapse
Affiliation(s)
- Amy A. Sutton
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Clayton W. Molter
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Ali Amini
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | - Johanan Idicula
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Max Furman
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Pouria Tirgar
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Yuanyuan Tao
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Ajinkya Ghagre
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Newsha Koushki
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Adele Khavari
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada,Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada,Centre for Structural Biology, McGill University, Montreal, Quebec, Canada,Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada,Corresponding author
| |
Collapse
|
18
|
Sherrard KM, Cetera M, Horne-Badovinac S. DAAM mediates the assembly of long-lived, treadmilling stress fibers in collectively migrating epithelial cells in Drosophila. eLife 2021; 10:e72881. [PMID: 34812144 PMCID: PMC8610420 DOI: 10.7554/elife.72881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Stress fibers (SFs) are actomyosin bundles commonly found in individually migrating cells in culture. However, whether and how cells use SFs to migrate in vivo or collectively is largely unknown. Studying the collective migration of the follicular epithelial cells in Drosophila, we found that the SFs in these cells show a novel treadmilling behavior that allows them to persist as the cells migrate over multiple cell lengths. Treadmilling SFs grow at their fronts by adding new integrin-based adhesions and actomyosin segments over time. This causes the SFs to have many internal adhesions along their lengths, instead of adhesions only at the ends. The front-forming adhesions remain stationary relative to the substrate and typically disassemble as the cell rear approaches. By contrast, a different type of adhesion forms at the SF's terminus that slides with the cell's trailing edge as the actomyosin ahead of it shortens. We further show that SF treadmilling depends on cell movement and identify a developmental switch in the formins that mediate SF assembly, with Dishevelled-associated activator of morphogenesis acting during migratory stages and Diaphanous acting during postmigratory stages. We propose that treadmilling SFs keep each cell on a linear trajectory, thereby promoting the collective motility required for epithelial migration.
Collapse
Affiliation(s)
- Kristin M Sherrard
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
| | - Maureen Cetera
- Committee on Development, Regeneration, and Stem Cell Biology, The University of ChicagoChicagoUnited States
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
- Committee on Development, Regeneration, and Stem Cell Biology, The University of ChicagoChicagoUnited States
| |
Collapse
|
19
|
Nishimura Y, Shi S, Li Q, Bershadsky AD, Viasnoff V. Crosstalk between myosin II and formin functions in the regulation of force generation and actomyosin dynamics in stress fibers. Cells Dev 2021; 168:203736. [PMID: 34455135 DOI: 10.1016/j.cdev.2021.203736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/23/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
REF52 fibroblasts have a well-developed contractile machinery, the most prominent elements of which are actomyosin stress fibers with highly ordered organization of actin and myosin IIA filaments. The relationship between contractile activity and turnover dynamics of stress fibers is not sufficiently understood. Here, we simultaneously measured the forces exerted by stress fibers (using traction force microscopy or micropillar array sensors) and the dynamics of actin and myosin (using photoconversion-based monitoring of actin incorporation and high-resolution fluorescence microscopy of myosin II light chain). Our data revealed new features of the crosstalk between myosin II-driven contractility and stress fiber dynamics. During normal stress fiber turnover, actin incorporated all along the stress fibers and not only at focal adhesions. Incorporation of actin into stress fibers/focal adhesions, as well as actin and myosin II filaments flow along stress fibers, strongly depends on myosin II activity. Myosin II-dependent generation of traction forces does not depend on incorporation of actin into stress fibers per se, but still requires formin activity. This previously overlooked function of formins in maintenance of the actin cytoskeleton connectivity could be the main mechanism of formin involvement in traction force generation.
Collapse
Affiliation(s)
- Yukako Nishimura
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, 117411, Singapore; Division of Developmental Physiology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Shidong Shi
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, 117411, Singapore
| | - Qingsen Li
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, 117411, Singapore; Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot 7610001, Israel.
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, 117411, Singapore; CNRS UMI 3639, Singapore; Department of Biological Sciences, National university of Singapore, S3 #05-01, 16 Science Drive 4, 117558, Singapore.
| |
Collapse
|
20
|
Kasai H, Ziv NE, Okazaki H, Yagishita S, Toyoizumi T. Spine dynamics in the brain, mental disorders and artificial neural networks. Nat Rev Neurosci 2021; 22:407-422. [PMID: 34050339 DOI: 10.1038/s41583-021-00467-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
In the brain, most synapses are formed on minute protrusions known as dendritic spines. Unlike their artificial intelligence counterparts, spines are not merely tuneable memory elements: they also embody algorithms that implement the brain's ability to learn from experience and cope with new challenges. Importantly, they exhibit structural dynamics that depend on activity, excitatory input and inhibitory input (synaptic plasticity or 'extrinsic' dynamics) and dynamics independent of activity ('intrinsic' dynamics), both of which are subject to neuromodulatory influences and reinforcers such as dopamine. Here we succinctly review extrinsic and intrinsic dynamics, compare these with parallels in machine learning where they exist, describe the importance of intrinsic dynamics for memory management and adaptation, and speculate on how disruption of extrinsic and intrinsic dynamics may give rise to mental disorders. Throughout, we also highlight algorithmic features of spine dynamics that may be relevant to future artificial intelligence developments.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Noam E Ziv
- Technion Faculty of Medicine and Network Biology Research Labs, Technion City, Haifa, Israel
| | - Hitoshi Okazaki
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taro Toyoizumi
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Saitama, Japan.,Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Han SJ, Noh M, Jang J, Lee JB, Kim KS. Electric fields regulate cellular elasticity through intracellular Ca 2+ concentrations. J Cell Physiol 2021; 236:7450-7463. [PMID: 33993476 DOI: 10.1002/jcp.30417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 11/06/2022]
Abstract
Cellular elasticity is a key factor related to a broad range of physiological and pathological processes. The elasticity of a single cell has thus emerged as a potential biomarker to characterize the cellular state. Both internal and external stimuli affect cellular elasticity, and changes in elasticity can cause alterations in cellular characteristics or function. The application of electric fields (EFs) is a promising method that can be used to change cellular elasticity; however, the mechanisms underlying its effect remain unknown. Here, we demonstrate EFs-induced elasticity changes in human dermal fibroblasts and discuss the underlying mechanism related to actin polymerization. Cellular elasticity increases after EF (50 mV/mm) stimulation, reaching a maximum at 30 min before decreasing between 30 and 120 min. The cellular elasticity under EF stimulation, regardless of stimulation time, is higher than that of the control. F-actin regulates the elasticity of cells through gelsolin activation. We show changes in intracellular Ca2+ caused by EFs, which induced gelsolin activation and F-actin content changes. This result demonstrates a series of processes in which external electrical stimulation conditions regulate cellular elasticity.
Collapse
Affiliation(s)
- Se Jik Han
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea.,Department of Biomedical Engineering, Kyung Hee University, Seoul, Korea
| | - Minjoo Noh
- Innovation Lab, Department of Innovation, Cosmax R&I Center, Gyeonggi do, Korea
| | - Jihui Jang
- Innovation Lab, Department of Innovation, Cosmax R&I Center, Gyeonggi do, Korea
| | - Jun Bae Lee
- Innovation Lab, Department of Innovation, Cosmax R&I Center, Gyeonggi do, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Korea
| |
Collapse
|
22
|
Li W, Sancho A, Chung WL, Vinik Y, Groll J, Zick Y, Medalia O, Bershadsky AD, Geiger B. Differential cellular responses to adhesive interactions with galectin-8- and fibronectin-coated substrates. J Cell Sci 2021; 134:jcs252221. [PMID: 33722978 PMCID: PMC8106957 DOI: 10.1242/jcs.252221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
The mechanisms underlying the cellular response to extracellular matrices (ECMs) that consist of multiple adhesive ligands are still poorly understood. Here, we address this topic by monitoring specific cellular responses to two different extracellular adhesion molecules - the main integrin ligand fibronectin and galectin-8, a lectin that binds β-galactoside residues - as well as to mixtures of the two proteins. Compared with cell spreading on fibronectin, cell spreading on galectin-8-coated substrates resulted in increased projected cell area, more-pronounced extension of filopodia and, yet, the inability to form focal adhesions and stress fibers. These differences can be partially reversed by experimental manipulations of small G-proteins of the Rho family and their downstream targets, such as formins, the Arp2/3 complex and Rho kinase. We also show that the physical adhesion of cells to galectin-8 was stronger than adhesion to fibronectin. Notably, galectin-8 and fibronectin differently regulate cell spreading and focal adhesion formation, yet act synergistically to upregulate the number and length of filopodia. The physiological significance of the coherent cellular response to a molecularly complex matrix is discussed. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Wenhong Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ana Sancho
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Würzburg, 97070, Germany
- Department of Automatic Control and Systems Engineering, University of the Basque Country UPV/EHU, San Sebastian, 20018, Spain
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Würzburg, 97070, Germany
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Alexander D. Bershadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
23
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|
24
|
Migliorini E, Cavalcanti-Adam EA, Uva AE, Fiorentino M, Gattullo M, Manghisi VM, Vaiani L, Boccaccio A. Nanoindentation of mesenchymal stem cells using atomic force microscopy: effect of adhesive cell-substrate structures. NANOTECHNOLOGY 2021; 32:215706. [PMID: 33596559 DOI: 10.1088/1361-6528/abe748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The procedure commonly adopted to characterize cell materials using atomic force microscopy neglects the stress state induced in the cell by the adhesion structures that anchor it to the substrate. In several studies, the cell is considered as made from a single material and no specific information is provided regarding the mechanical properties of subcellular components. Here we present an optimization algorithm to determine separately the material properties of subcellular components of mesenchymal stem cells subjected to nanoindentation measurements. We assess how these properties change if the adhesion structures at the cell-substrate interface are considered or not in the algorithm. In particular, among the adhesion structures, the focal adhesions and the stress fibers were simulated. We found that neglecting the adhesion structures leads to underestimate the cell mechanical properties thus making errors up to 15%. This result leads us to conclude that the action of adhesion structures should be taken into account in nanoindentation measurements especially for cells that include a large number of adhesions to the substrate.
Collapse
Affiliation(s)
| | - Elisabetta Ada Cavalcanti-Adam
- Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany
- Heidelberg University, D-69120 Heidelberg, Germany
| | - Antonio Emmanuele Uva
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| | - Michele Fiorentino
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| | - Michele Gattullo
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| | - Vito Modesto Manghisi
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| | - Lorenzo Vaiani
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| | - Antonio Boccaccio
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy
| |
Collapse
|
25
|
Vignaud T, Copos C, Leterrier C, Toro-Nahuelpan M, Tseng Q, Mahamid J, Blanchoin L, Mogilner A, Théry M, Kurzawa L. Stress fibres are embedded in a contractile cortical network. NATURE MATERIALS 2021; 20:410-420. [PMID: 33077951 PMCID: PMC7610471 DOI: 10.1038/s41563-020-00825-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/14/2020] [Indexed: 05/06/2023]
Abstract
Contractile actomyosin networks are responsible for the production of intracellular forces. There is increasing evidence that bundles of actin filaments form interconnected and interconvertible structures with the rest of the network. In this study, we explored the mechanical impact of these interconnections on the production and distribution of traction forces throughout the cell. By using a combination of hydrogel micropatterning, traction force microscopy and laser photoablation, we measured the relaxation of traction forces in response to local photoablations. Our experimental results and modelling of the mechanical response of the network revealed that bundles were fully embedded along their entire length in a continuous and contractile network of cortical filaments. Moreover, the propagation of the contraction of these bundles throughout the entire cell was dependent on this embedding. In addition, these bundles appeared to originate from the alignment and coalescence of thin and unattached cortical actin filaments from the surrounding mesh.
Collapse
Affiliation(s)
- Timothée Vignaud
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
- Clinique de Chirurgie Digestive et Endocrinienne, Hôtel Dieu, Nantes, France
| | - Calina Copos
- Courant Institute and Department of Biology, New York University, New York, NY, USA
| | - Christophe Leterrier
- NeuroCyto, Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille Université, Marseille, France
| | - Mauricio Toro-Nahuelpan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Qingzong Tseng
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Laurent Blanchoin
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY, USA.
| | - Manuel Théry
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France.
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France.
| | - Laetitia Kurzawa
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France.
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France.
| |
Collapse
|
26
|
Tabatabaei M, Tafazzoli-Shadpour M, Khani MM. Altered mechanical properties of actin fibers due to breast cancer invasion: parameter identification based on micropipette aspiration and multiscale tensegrity modeling. Med Biol Eng Comput 2021; 59:547-560. [PMID: 33559086 DOI: 10.1007/s11517-021-02318-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/15/2021] [Indexed: 12/01/2022]
Abstract
The biophysical properties of cells change with cancer invasion to fulfill their metastatic behavior. Cell softening induced by cancer is highly associated with alterations in cytoskeleton fibers. Changes in the mechanical properties of cytoskeletal fibers have not been quantified due to technical limitations. In this study, we used the micropipette aspiration technique to calculate and compare the viscoelastic properties of non-invasive and invasive breast cancer cells. We evaluated the mechanical properties of actin fibers and microtubules of two cancerous cell lines by using multiscale tensegrity modeling and an optimization method. Cancer invasion caused altered viscoelastic behavior of cells and the results of modeling showed changes in mechanical properties of major cytoskeleton fibers. The stiffness and viscosity constant of actin fibers in non-invasive cells were 1.28 and 2.27 times higher than those of the invasive cells, respectively. However, changes in mechanical properties of microtubules were minor. Immunofluorescent staining of fibers and their quantified distributions confirmed altered actin distribution among two cell lines, in contrast to microtubule distribution. This study highlights the function of cytoskeletal fibers in cancer progression, which could be of interest in designing therapeutic strategies to target cancer progress. Firstly, the viscoelastic behavior of non-invasive and invasive cells is examined with micropipette aspiration tests. A tensegrity model of cells is developed to mimic the viscoelastic behavior of cells, and tensegrity element stiffness is evaluated in an optimization procedure based on micropipette aspiration tests. Finally, by using immunofluorescent staining and confocal imaging, mechanical properties of actin filaments and microtubules of cancer cells are investigated during the course of metastasis.
Collapse
Affiliation(s)
- Mohammad Tabatabaei
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Tafazzoli-Shadpour
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Mohammad Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Tamashunas AC, Katiyar A, Zhang Q, Purkayastha P, Singh PK, Chukkapalli SS, Lele TP. Osteoprotegerin is sensitive to actomyosin tension in human periodontal ligament fibroblasts. J Cell Physiol 2021; 236:5715-5724. [PMID: 33400284 DOI: 10.1002/jcp.30256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022]
Abstract
Periodontal ligament fibroblasts (PdLFs) are an elongated cell type in the periodontium with matrix and bone regulatory functions which become abnormal in periodontal disease (PD). Here we found that the normally elongated and oriented PdLF nucleus becomes rounded and loses orientation in a mouse model of PD. Using in vitro micropatterning of cultured primary PdLF cell shape, we show that PdLF elongation correlates with nuclear elongation and the presence of thicker, contractile F-actin fibers. The rounded nuclei in mouse PD models in vivo are, therefore, indicative of reduced actomyosin tension. Inhibiting actomyosin contractility by inhibiting myosin light chain kinase, Rho kinase or myosin ATPase activity, in cultured PdLFs each consistently reduced messenger RNA levels of bone regulatory protein osteoprotegerin (OPG). Infection of cultured PdLFs with two different types of periodontal bacteria (Porphyromonas gingivalis and Fusobacterium nucleatum) failed to recapitulate the observed nuclear rounding in vivo, upregulated nonmuscle myosin II phosphorylation and downregulated OPG. Collectively, our results add support to the hypothesis that PdLF contractility becomes decreased and contributes to disease progression in PD.
Collapse
Affiliation(s)
- Andrew C Tamashunas
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Aditya Katiyar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Qiao Zhang
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Pankaj K Singh
- GCC Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA.,Center for Translational Cancer Research, Texas A&M University, Houston, Texas, USA
| | - Sasanka S Chukkapalli
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA.,Center for Molecular Microbiology, University of Florida, Gainesville, Florida, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Translational Medical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
28
|
A Stochastic Modelling Framework for Single Cell Migration: Coupling Contractility and Focal Adhesions. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The interaction of the actin cytoskeleton with cell–substrate adhesions is necessary for cell migration. While the trajectories of motile cells have a stochastic character, investigations of cell motility mechanisms rarely elaborate on the origins of the observed randomness. Here, guided by a few fundamental attributes of cell motility, I construct a minimal stochastic cell migration model from ground-up. The resulting model couples a deterministic actomyosin contractility mechanism with stochastic cell–substrate adhesion kinetics, and yields a well-defined piecewise deterministic process. Numerical simulations reproduce several experimentally observed results, including anomalous diffusion, tactic migration and contact guidance. This work provides a basis for the development of cell–cell collision and population migration models.
Collapse
|
29
|
Yang W, Sun L, Cai S, Chen Y, Liang W, Zhou P, Yu H, Wang Y, Liu L. Dynamically directing cell organization via micro-hump structure patterned cell-adhered interfaces. LAB ON A CHIP 2020; 20:2447-2452. [PMID: 32542258 DOI: 10.1039/d0lc00477d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell adhesion plays an important role in cell communication, organ formation and tissue maintenance. Spatial microstructure patterning has the capability to regulate cell functions such as cell adhesion and cell proliferation as well as cellular mechanical properties. In this study, we present a simple method to fabricate micro-hump patterned interfaces based on electrohydrodynamic jet (E-jet) printing to control and direct cell organization. Micro-hump structures were rapidly fabricated by E-jet printing and arbitrary cell patterns can be achieved by selective cell adhesion induced by this surface topography. Furthermore, cellular mechanical properties were regulated by changing the density of microstructures. The technique we proposed could dynamically direct cell organization in a controlled manner, providing help for exploring the fundamental mechanism of cell adhesion and sensing.
Collapse
Affiliation(s)
- Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lao W, Luo Q, Chen Y, Yao W, Xu J, Fan L, Li X. Preparation and biological evaluations of a collagen-like hierarchical Ti surface with superior osteogenic capabilities. J Mater Chem B 2020; 8:5472-5482. [PMID: 32463060 DOI: 10.1039/d0tb00799d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of multiscale Ti surfaces of high osteogenic ability has always attracted significant attention in the fields of oral implantology and implantable biomaterials. However, to date, the absence of a solid understanding of the correlation between the multiscale surface structure and the biological properties is the main obstacle in the development of these multiscale implants. In this study, a series of novel multiscale Ti surfaces were prepared via a three-step subtractive method. Moreover, based on the grayscale analysis of SEM images, we developed multiscale surface topography analysis methods. The typical topography characteristics at each scale of a multiscale complex surface can be analyzed according to the corresponding magnified SEM images. Thus, the evolution rule of the surface topography from a simple surface to multiscale complex surfaces can be mathematically described. Based on this, the correlation between multiscale surface structures and the corresponding biological properties was established. For the multiscale surface of superior osteogenic capacity, strict inherent regularity was found among the structures at multiple scales (i.e., multiscale order), that is, there was a balance between the construction of the 3D collagen-like network nanostructure and the preservation of the typical topographical features of the pre-existing macro- and micro-structures of the classic micro-roughened surface. Moreover, it was further found that the multiscale-ordered hierarchical Ti surface structure could modulate ROS production and enhance macrophage M2 polarization to create an osteogenesis-favorable immuno-inflammatory microenvironment and synergistically exhibit superior biological capability. Consequently, an optimized collagen-like hierarchical surface with superior osteogenic abilities was achieved.
Collapse
Affiliation(s)
- Weiwei Lao
- The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| | - Qiaojie Luo
- The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| | - Yadong Chen
- The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| | - Wei Yao
- The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China. and Dental Department, Xinhua Hospital of Zhejiang Province, Hangzhou, 310005, P. R. China
| | - Jiajia Xu
- The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| | - Lijie Fan
- The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| | - Xiaodong Li
- The Affiliated Stomatology Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, P. R. China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| |
Collapse
|
31
|
Rat corneal endothelial cell migration during wound repair on the basement membrane depends more on the PI-3K pathway than the cdc-42 pathway or actin stress fibers. Cell Tissue Res 2020; 382:351-366. [DOI: 10.1007/s00441-020-03229-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
|
32
|
Aguilar-Cuenca R, Llorente-González C, Chapman JR, Talayero VC, Garrido-Casado M, Delgado-Arévalo C, Millán-Salanova M, Shabanowitz J, Hunt DF, Sellers JR, Heissler SM, Vicente-Manzanares M. Tyrosine Phosphorylation of the Myosin Regulatory Light Chain Controls Non-muscle Myosin II Assembly and Function in Migrating Cells. Curr Biol 2020; 30:2446-2458.e6. [PMID: 32502416 DOI: 10.1016/j.cub.2020.04.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 03/04/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Active non-muscle myosin II (NMII) enables migratory cell polarization and controls dynamic cellular processes, such as focal adhesion formation and turnover and cell division. Filament assembly and force generation depend on NMII activation through the phosphorylation of Ser19 of the regulatory light chain (RLC). Here, we identify amino acid Tyr (Y) 155 of the RLC as a novel regulatory site that spatially controls NMII function. We show that Y155 is phosphorylated in vitro by the Tyr kinase domain of epidermal growth factor (EGF) receptor. In cells, phosphorylation of Y155, or its phospho-mimetic mutation (Glu), prevents the interaction of RLC with the myosin heavy chain (MHCII) to form functional NMII units. Conversely, Y155 mutation to a structurally similar but non-phosphorylatable amino acid (Phe) restores the more dynamic cellular functions of NMII, such as myosin filament formation and nascent adhesion assembly, but not those requiring stable actomyosin bundles, e.g., focal adhesion elongation or migratory front-back polarization. In live cells, phospho-Y155 RLC is prominently featured in protrusions, where it prevents NMII assembly. Our data indicate that Y155 phosphorylation constitutes a novel regulatory mechanism that contributes to the compartmentalization of NMII assembly and function in live cells.
Collapse
Affiliation(s)
- Rocío Aguilar-Cuenca
- Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain; Universidad Autónoma de Madrid School of Medicine, 28006 Madrid, Spain
| | - Clara Llorente-González
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Jessica R Chapman
- Department of Chemistry, University of Virginia, Charlottesville, VA 22903, USA
| | - Vanessa C Talayero
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Cristina Delgado-Arévalo
- Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain; Universidad Autónoma de Madrid School of Medicine, 28006 Madrid, Spain
| | - María Millán-Salanova
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22903, USA
| | - Donald F Hunt
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA; Department of Chemistry, University of Virginia, Charlottesville, VA 22903, USA
| | - James R Sellers
- Cell Biology and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
33
|
Nakamura K, Nobutani K, Shimada N, Tabata Y. Gelatin Hydrogel-Fragmented Fibers Suppress Shrinkage of Cell Sheet. Tissue Eng Part C Methods 2020; 26:216-224. [DOI: 10.1089/ten.tec.2019.0348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Koichiro Nakamura
- Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kimiaki Nobutani
- Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
| | - Naoki Shimada
- Research and Development Center, The Japan Wool Textile Co., Ltd., Hyogo, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
34
|
Kwon S, Kim KS. Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity. Cell Mol Life Sci 2020; 77:1345-1355. [PMID: 31605149 PMCID: PMC11105102 DOI: 10.1007/s00018-019-03328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
35
|
Zhao S, Shi X, Zhang Y, Wen Z, Cai J, Gao W, Xu J, Zheng Y, Ji B, Cui Y, Shi K, Liu Y, Li H, Jiu Y. Myosin-18B Promotes Mechanosensitive CaMKK2-AMPK-VASP Regulation of Contractile Actin Stress Fibers. iScience 2020; 23:100975. [PMID: 32222698 PMCID: PMC7109629 DOI: 10.1016/j.isci.2020.100975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022] Open
Abstract
Actin stress fibers guide cell migration and morphogenesis. During centripetal flow, actin transverse arcs fuse accompanied by the formation of myosin II stacks to generate mechanosensitive actomyosin bundles. However, whether myosin II stack formation plays a role in cell mechano-sensing has remained elusive. Myosin-18B is a “glue” molecule for assembling myosin II stacks. By examining actin networks and traction forces, we find that cells abolishing myosin-18B resemble Ca2+∕calmodulin-dependent kinase kinase 2 (CaMKK2)-defective cells. Inhibition of CaMKK2 activity reverses the strong actin network to thin filaments in myosin-18B-overexpressing cells. Moreover, AMP-activated protein kinase (AMPK) activation is able to relieve the thin stress fibers by myosin-18B knockout. Importantly, lack of myosin-18B compromises AMPK-vasodilator-stimulated phosphoprotein and RhoA-myosin signaling, thereby leading to defective persistent migration, which can be rescued only by full-length and C-extension-less myosin-18B. Together, these results reveal a critical role of myosin-18B in the mechanosensitive regulation of migrating cells. Myosin-18B knockout cells resemble cells dampening mechano-sensing signaling pathway Myosin-18B depletion decreases the phosphorylation level of AMPK-VASP and MLC Myosin-18B knockout cells show compromised persistent migration The N-extension and coiled-coil domain of myosin-18B is indispensable in cell migration
Collapse
Affiliation(s)
- Shuangshuang Zhao
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuemeng Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Zeyu Wen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Jinping Cai
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Gao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Jiayi Xu
- Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yifei Zheng
- Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Baohua Ji
- Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yanqin Cui
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kun Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanjun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Li
- University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China.
| |
Collapse
|
36
|
Zhang Y, Hu Y, Li M, Wang J, Guo G, Li F, Yu B, Kou J. The Traditional Chinese Medicine Compound, GRS, Alleviates Blood-Brain Barrier Dysfunction. Drug Des Devel Ther 2020; 14:933-947. [PMID: 32184562 PMCID: PMC7053822 DOI: 10.2147/dddt.s229302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/10/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Traditional Chinese medicine (TCM) provides unique advantages for treatment of ischemic stroke, an aging-related vascular disease. Shengmai powder (GRS) is composed of three active components, specifically, ginsenoside Rb1, ruscogenin and schisandrin A, at a ratio of 6:0.75:6. The main objective of this study was to evaluate the effects of GRS on blood–brain barrier (BBB) dysfunction under conditions of middle cerebral artery occlusion/reperfusion (MCAO/R). Methods C57BL/6J mice subjected to MCAO/R were used as a model to assess the protective effects of varying doses of GRS (6.4, 12.8, and 19.2 mg/kg) on BBB dysfunction. Results GRS reduced cerebral infarct volume and degree of brain tissue damage, improved behavioral scores, decreased water content and BBB permeability, and restored cerebral blood flow. Moreover, GRS promoted expression of zona occludens-1 (ZO-1) and claudin-5 while inhibiting matrix metalloproteinase 2/9 (MMP-2/9) expression and myosin light chain (MLC) phosphorylation. In vitro, GRS (1, 10, and 100 ng/mL) enhanced the viability of bEnd.3 cells subjected to oxygen glucose deprivation/reoxygenation (OGD/R) and decreased sodium fluorescein permeability. Conclusion Consistent with in vivo findings, ZO-1 and claudin-5 were significantly upregulated by GRS in bEnd.3 cells under OGD/R and MMP-2/9 levels and MLC phosphorylation reduced through the Rho-associated coil-forming protein kinase (ROCK)/cofilin signaling pathway. Based on the collective findings, we propose that the TCM compound, GRS, plays a protective role against I/R-induced BBB dysfunction.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yang Hu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Min Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jieman Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Gengshuo Guo
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
37
|
Helical structure of actin stress fibers and its possible contribution to inducing their direction-selective disassembly upon cell shortening. Biomech Model Mechanobiol 2019; 19:543-555. [PMID: 31549258 DOI: 10.1007/s10237-019-01228-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
Mechanisms of the assembly of actin stress fibers (SFs) have been extensively studied, while those of the disassembly-particularly cell shortening-induced ones-remain unclear. Here, we show that SFs have helical structures composed of multi-subbundles, and they tend to be delaminated upon cell shortening. Specifically, we observed with atomic force microscopy delamination of helical SFs into their subbundles. We physically caught individual SFs using a pair of glass needles to observe rotational deformations during stretching as well as ATP-driven active contraction, suggesting that they deform in a manner reflecting their intrinsic helical structure. A minimal analytical model was then developed based on the Frenet-Serret formulas with force-strain measurement data to suggest that helical SFs can be delaminated into the constituent subbundles upon axial shortening. Given that SFs are large molecular clusters that bear cellular tension but must promptly disassemble upon loss of the tension, the resulting increase in their surface area due to the shortening-induced delamination may facilitate interaction with surrounding molecules to aid subsequent disintegration. Thus, our results suggest a new mechanism of the disassembly that occurs only in the specific SFs exposed to forced shortening.
Collapse
|
38
|
Zhovmer AS, Tabdanov ED, Miao H, Wen H, Chen J, Luo X, Ma X, Provenzano PP, Adelstein RS. The role of nonmuscle myosin 2A and 2B in the regulation of mesenchymal cell contact guidance. Mol Biol Cell 2019; 30:1961-1973. [PMID: 31318315 PMCID: PMC6727766 DOI: 10.1091/mbc.e19-01-0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Contact guidance refers to the ability of cells to sense the geometrical features of the microenvironment and respond by changing their shape and adopting the appropriate orientation. Inhibition and ablation of nonmuscle myosin 2 (NM2) paralogues have demonstrated their importance for contact guidance. However, the specific roles of the NM2 paralogues have not been systematically studied. In this work we use micropatterned substrates to examine the roles of NM2A and NM2B and to elucidate the relationship of the microenvironment, actomyosin, and microtubules in contact guidance. We show that contact guidance is preserved following loss of NM2B and that expression of NM2A alone is sufficient to establish an appropriate orientation of the cells. Loss of NM2B and overexpression of NM2A result in a prominent cell polarization that is found to be linked to the increased alignment of microtubules with the actomyosin scaffold. Suppression of actomyosin with blebbistatin reduces cell polarity on a flat surface, but not on a surface with contact guidance cues. This indicates that the lost microtubule-actomyosin interactions are compensated for by microtubule-microenvironment interactions, which are sufficient to establish cell polarity through contact guidance.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Erdem D Tabdanov
- Laboratory for Engineering in Oncology, University of Minnesota, Minneapolis, MN 55455
| | - Houxun Miao
- Imaging Physics Laboratory, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Han Wen
- Imaging Physics Laboratory, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Jinqiu Chen
- Collaborative Protein Technology Resource, National Cancer Institute, Bethesda, MD 20892
| | - Xiaoling Luo
- Collaborative Protein Technology Resource, National Cancer Institute, Bethesda, MD 20892
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| | - Paolo P Provenzano
- Laboratory for Engineering in Oncology, University of Minnesota, Minneapolis, MN 55455
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, Bethesda, MD 20814
| |
Collapse
|
39
|
Hu S, Grobe H, Guo Z, Wang YH, Doss BL, Pan M, Ladoux B, Bershadsky AD, Zaidel-Bar R. Reciprocal regulation of actomyosin organization and contractility in nonmuscle cells by tropomyosins and alpha-actinins. Mol Biol Cell 2019; 30:2025-2036. [PMID: 31216217 PMCID: PMC6727768 DOI: 10.1091/mbc.e19-02-0082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Contractile arrays of actin and myosin II filaments drive many essential processes in nonmuscle cells, including migration and adhesion. Sequential organization of actin and myosin along one dimension is followed by expansion into a two-dimensional network of parallel actomyosin fibers, in which myosin filaments are aligned to form stacks. The process of stack formation has been studied in detail. However, factors that oppose myosin stack formation have not yet been described. Here, we show that tropomyosins act as negative regulators of myosin stack formation. Knockdown of any or all tropomyosin isoforms in rat embryonic fibroblasts resulted in longer and more numerous myosin stacks and a highly ordered actomyosin organization. The molecular basis for this, we found, is the competition between tropomyosin and alpha-actinin for binding actin. Surprisingly, excessive order in the actomyosin network resulted in smaller focal adhesions, lower tension within the network, and smaller traction forces. Conversely, disordered actomyosin bundles induced by alpha-actinin knockdown led to higher than normal tension and traction forces. Thus, tropomyosin acts as a check on alpha-actinin to achieve intermediate levels of myosin stacks matching the force requirements of the cell.
Collapse
Affiliation(s)
- Shiqiong Hu
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Hanna Grobe
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Yafo 6997801, Israel
| | - Zhenhuan Guo
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Yu-Hsiu Wang
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Bryant L Doss
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Meng Pan
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Benoit Ladoux
- Institut Jacques Monod, Université de Paris and CNRS, 75205 Paris CEDEX 13, France
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronen Zaidel-Bar
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Yafo 6997801, Israel
| |
Collapse
|
40
|
Wang Y, Zhang X, Tian J, Shan J, Hu Y, Zhai Y, Guo J. Talin promotes integrin activation accompanied by generation of tension in talin and an increase in osmotic pressure in neurite outgrowth. FASEB J 2019; 33:6311-6326. [PMID: 30768370 DOI: 10.1096/fj.201801949rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal polarization depends on the interaction of intracellular chemical and mechanical activities in which the cytoplasmic protein, talin, plays a pivotal role during neurite growth. To better understand the mechanism underlying talin function in neuronal polarization, we overexpressed several truncated forms of talin and found that the presence of the rod domain within the overexpressed talin is required for its positive effect on neurite elongation because the neurite number only increased when the talin head region was overexpressed. The tension in the talin rod was recognized using a Förster resonance energy transfer-based tension probe. Nerve growth factor treatment resulted in inward tension of talin elicited by microfilament force and outward osmotic pressure. By contrast, the glial scar-inhibitor aggrecan weakened these forces, suggesting that interactions between inward pull forces in the talin rod and outward osmotic pressure participate in neuronal polarization. Integrin activation is also involved in up-regulation of talin tension and osmotic pressure. Aggrecan stimuli resulted in up-regulation of docking protein 1 (DOK1), leading to the down-regulation of integrin activity and attenuation of the intracellular mechanical force. Our study suggests interactions between the intracellular inward tension in talin and the outward osmotic pressure as the effective channel for promoting neurite outgrowth, which can be up-regulated by integrin activation and down-regulated by DOK1.-Wang, Y., Zhang, X., Tian, J., Shan, J., Hu, Y., Zhai, Y., Guo, J. Talin promotes integrin activation accompanied by generation of tension in talin and an increase in osmotic pressure in neurite outgrowth.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaolong Zhang
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jilai Tian
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunfeng Hu
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqian Zhai
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Guo
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
41
|
Gaussian Curvature Directs Stress Fiber Orientation and Cell Migration. Biophys J 2019; 114:1467-1476. [PMID: 29590603 DOI: 10.1016/j.bpj.2018.01.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
We show that substrates with nonzero Gaussian curvature influence the organization of stress fibers and direct the migration of cells. To study the role of Gaussian curvature, we developed a sphere-with-skirt surface in which a positive Gaussian curvature spherical cap is seamlessly surrounded by a negative Gaussian curvature draping skirt, both with principal radii similar to cell-length scales. We find significant reconfiguration of two subpopulations of stress fibers when fibroblasts are exposed to these curvatures. Apical stress fibers in cells on skirts align in the radial direction and avoid bending by forming chords across the concave gap, whereas basal stress fibers bend along the convex direction. Cell migration is also strongly influenced by the Gaussian curvature. Real-time imaging shows that cells migrating on skirts repolarize to establish a leading edge in the azimuthal direction. Thereafter, they migrate in that direction. This behavior is notably different from migration on planar surfaces, in which cells typically migrate in the same direction as the apical stress fiber orientation. Thus, this platform reveals that nonzero Gaussian curvature not only affects the positioning of cells and alignment of stress fiber subpopulations but also directs migration in a manner fundamentally distinct from that of migration on planar surfaces.
Collapse
|
42
|
Ling C, Liu Z, Song M, Zhang W, Wang S, Liu X, Ma S, Sun S, Fu L, Chu Q, Belmonte JCI, Wang Z, Qu J, Yuan Y, Liu GH. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell 2019; 10:249-271. [PMID: 30778920 PMCID: PMC6418078 DOI: 10.1007/s13238-019-0608-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.
Collapse
Affiliation(s)
- Chen Ling
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
43
|
Hinz B, McCulloch CA, Coelho NM. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res 2019; 379:119-128. [PMID: 30910400 DOI: 10.1016/j.yexcr.2019.03.027] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Activated fibroblasts promote physiological wound repair following tissue injury. However, dysregulation of fibroblast activation contributes to the development of fibrosis by enhanced production and contraction of collagen-rich extracellular matrix. At the peak of their activities, fibroblasts undergo phenotypic conversion into highly contractile myofibroblasts by developing muscle-like features, including formation of contractile actin-myosin bundles. The phenotype and function of fibroblasts and myofibroblasts are mechanically regulated by matrix stiffness using a feedback control system that is integrated with the progress of tissue remodelling. The actomyosin contraction machinery and cell-matrix adhesion receptors are critical elements that are needed for mechanosensing by fibroblasts and the translation of mechanical signals into biological responses. Here, we focus on mechanical and chemical regulation of collagen contraction by fibroblasts and the involvement of these factors in their phenotypic conversion to myofibroblasts.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | | | - Nuno M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
44
|
Tojkander S, Ciuba K, Lappalainen P. CaMKK2 Regulates Mechanosensitive Assembly of Contractile Actin Stress Fibers. Cell Rep 2018; 24:11-19. [DOI: 10.1016/j.celrep.2018.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/07/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
|
45
|
Lee S, Kassianidou E, Kumar S. Actomyosin stress fiber subtypes have unique viscoelastic properties and roles in tension generation. Mol Biol Cell 2018; 29:1992-2004. [PMID: 29927349 PMCID: PMC6232976 DOI: 10.1091/mbc.e18-02-0106] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actomyosin stress fibers (SFs) support cell shape and migration by directing intracellular tension to the extracellular matrix (ECM) via focal adhesions. Migrating cells exhibit three SF subtypes (dorsal SFs, transverse arcs, and ventral SFs), which differ in their origin, location, and ECM connectivity. While each subtype is hypothesized to play unique structural roles, this idea has not been directly tested at the single-SF level. Here, we interrogate the mechanical properties of single SFs of each subtype based on their retraction kinetics following laser incision. While each SF subtype bears distinct mechanical properties, these properties are highly interdependent, with incision of dorsal fibers producing centripetal recoil of adjacent transverse arcs and the retraction of incised transverse arcs being limited by attachment points to dorsal SFs. These observations hold whether cells are allowed to spread freely or are confined to crossbow ECM patterns. Consistent with this interdependence, subtype-specific knockdown of dorsal SFs (palladin) or transverse arcs (mDia2) influences ventral SF retraction. These altered mechanics are partially phenocopied in cells cultured on ECM microlines that preclude assembly of dorsal SFs and transverse arcs. Our findings directly demonstrate that different SF subtypes play distinct roles in generating tension and form a mechanically interdependent network.
Collapse
Affiliation(s)
- Stacey Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762
| | - Elena Kassianidou
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762
| | - Sanjay Kumar
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1762
| |
Collapse
|
46
|
Armiger TJ, Lampi MC, Reinhart-King CA, Dahl KN. Determining mechanical features of modulated epithelial monolayers using subnuclear particle tracking. J Cell Sci 2018; 131:jcs.216010. [PMID: 29748381 DOI: 10.1242/jcs.216010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/04/2018] [Indexed: 12/29/2022] Open
Abstract
Force generation within cells, mediated by motor proteins along cytoskeletal networks, maintains the function of multicellular structures during homeostasis and when generating collective forces. Here, we describe the use of chromatin dynamics to detect cellular force propagation [a technique termed SINK (sensors from intranuclear kinetics)] and investigate the force response of cells to disruption of the monolayer and changes in substrate stiffness. We find that chromatin dynamics change in a substrate stiffness-dependent manner within epithelial monolayers. We also investigate point defects within monolayers to map the impact on the strain field of a heterogeneous monolayer. We find that cell monolayers behave as a colloidal assembly rather than as a continuum since the data fit an exponential decay; the lateral characteristic length of recovery from the mechanical defect is ∼50 µm for cells with a 10 µm spacing. At distances greater than this characteristic length, cells behave similarly to those in a fully intact monolayer. This work demonstrates the power of SINK to investigate diseases including cancer and atherosclerosis that result from single cells or heterogeneities in monolayers.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Travis J Armiger
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marsha C Lampi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
47
|
Affiliation(s)
- Parthiv Kant Chaudhuri
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- University Scholars Programme, National University of Singapore, Singapore 138593, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
48
|
Hall CL, Wells AR, Leung KP. Pirfenidone reduces profibrotic responses in human dermal myofibroblasts, in vitro. J Transl Med 2018; 98:640-655. [PMID: 29497173 DOI: 10.1038/s41374-017-0014-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/15/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022] Open
Abstract
Pirfenidone (PFD) is a synthetic small molecule inhibitor with demonstrated anti-inflammatory and antifibrotic properties in vitro and in vivo. The exact mechanism(s) of PFD action remain unclear, due in part to the broad effects of this drug on the complex processes involved in inflammation and fibrosis. While PFD is FDA-approved for the treatment of idiopathic pulmonary fibrosis, the efficacy of this compound for the treatment of dermal fibrosis has not yet been fully characterized. Dermal fibrosis is the pathological formation of excess fibrous connective tissue of the skin, usually the result of traumatic cutaneous injury. Fibroproliferative scarring, caused by delayed wound healing and prolonged inflammation, remains a major clinical concern with considerable morbidity. Despite efforts to identify a therapeutic that targets the fibrotic pathways involved in wound healing to mitigate scar formation, no satisfactory dermal antifibrotic has yet been identified. We aim to better elucidate the antifibrotic mechanism(s) of PFD activity using an in vitro model of dermal fibrosis. Briefly, cultured human dermal fibroblasts were stimulated with TGF-β1 to induce differentiation into profibrotic myofibroblast cells. A dose-dependent reduction in cellular proliferation and migration was observed in TGF-β1-stimulated cells when treated with PFD. We observed a clear inhibition in the development of essential myofibroblast mechanoregulatory machinery, including contractile F-actin stress fibers containing α-SMA and large super-mature focal adhesions. PFD treatment significantly reduced protein levels of major ECM components type I and type III collagen. PFD targeted the p38 MAPK signaling pathway and mitigated profibrotic gene expression profiles. This in vitro data promotes PFD as a potential therapeutic agent for the treatment of dermal fibrosis.
Collapse
Affiliation(s)
- Caroline L Hall
- Dental and Craniofacial Trauma and Tissue Regeneration Directorate, United States Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, Joint Base San Antonio/Fort Sam Houston, TX, 78234, USA
| | - Adrienne R Wells
- Dental and Craniofacial Trauma and Tissue Regeneration Directorate, United States Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, Joint Base San Antonio/Fort Sam Houston, TX, 78234, USA
| | - Kai P Leung
- Dental and Craniofacial Trauma and Tissue Regeneration Directorate, United States Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, Joint Base San Antonio/Fort Sam Houston, TX, 78234, USA.
| |
Collapse
|
49
|
Kuragano M, Uyeda TQP, Kamijo K, Murakami Y, Takahashi M. Different contributions of nonmuscle myosin IIA and IIB to the organization of stress fiber subtypes in fibroblasts. Mol Biol Cell 2018; 29:911-922. [PMID: 29467250 PMCID: PMC5896930 DOI: 10.1091/mbc.e17-04-0215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
We demonstrated that myosin IIA and IIB are essential for the formation of transverse arcs and ventral stress fibers, respectively. Furthermore, we illustrated the roles of both isoforms in lamellar flattening and also raised the possibility that actin filaments in ventral stress fibers are in a stretched conformation.
Collapse
Affiliation(s)
- Masahiro Kuragano
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Taro Q. P. Uyeda
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Keiju Kamijo
- Department of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Yota Murakami
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
50
|
Wongin S, Waikakul S, Chotiyarnwong P, Siriwatwechakul W, Viravaidya-Pasuwat K. Effect of Cell Sheet Manipulation Techniques on the Expression of Collagen Type II and Stress Fiber Formation in Human Chondrocyte Sheets. Tissue Eng Part A 2018; 24:469-478. [DOI: 10.1089/ten.tea.2017.0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sopita Wongin
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Saranatra Waikakul
- Department of Orthopaedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pojchong Chotiyarnwong
- Department of Orthopaedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanwipa Siriwatwechakul
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|