1
|
Wang J, Li R, Ouyang H, Lu Y, Fei H, Zhao Y. A nitroreductase-responsive fluorescence turn-on photosensitizer for lysosomes imaging and photodynamic therapy. Talanta 2024; 276:126277. [PMID: 38761658 DOI: 10.1016/j.talanta.2024.126277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Nitroreductase (NTR) is a frequently used biomarker for the assessment of hypoxia level in tumors. As one of the main sources of enzymes, the dysfunction of lysosomes typically leads to various diseases. In this study, an NTR-triggered lysosome-targeting probe, M-TPE-P, was designed based on a tetraphenylethylene core. DFT calculation indicated that the probe possessed a narrow singlet-triplet energy gap (ΔEST), rendering it an efficient photosensitizer. The docking affinity of M-TPE-P to NTR revealed a strong structural match between them. Photophysical properties demonstrated that the probe exhibited high selectivity and sensitivity in a broad pH rang for detecting NTR with kcat/Km as 2.18 × 104 M-1 s-1. The detection limit was determined to be 53.6 ng/mL in 80 % PBS/DMSO solution. Cell imaging studies showed the probe could trace intracellular NTR behavior with green fluorescence. The colocalization analysis indicated its excellent lysosome-targeting specificity. In addition, the probe exhibited effective ROS generation ability and significant PDT effect after NIR irradiation, positioning it as a promising photosensitizer for cancer treatment.
Collapse
Affiliation(s)
- Jinhui Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Ruxin Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Han Ouyang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Yang Lu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Haiyang Fei
- School of Pharmaceutical Engineering, Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu, 223003, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
2
|
Gross IP, Lima AL, Bedogni GR, Sa-Barreto L, Gratieri T, Gelfuso GM, Salomon CJ, Cunha-Filho M. Conformational analysis and spectroscopic properties of antichagasic nifurtimox. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124346. [PMID: 38692105 DOI: 10.1016/j.saa.2024.124346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Considering the health relevance of Chagas' disease, recent research efforts have focused on developing more efficient drug delivery systems containing nifurtimox (NFX). This paper comprehensively investigates NFX through conformational analysis and spectroscopic characterization. Using a conformer-rotamer ensemble sampling tool (CREST-xtb), five distinct conformers of NFX were sampled within a 3.0 kcal mol-1 relative energy window. Subsequently, such structures were used as inputs for geometry optimization by density functional theory (DFT) at B3LYP-def2-TZVP level of theory. Notably, harmonic vibrational frequencies were calculated to establish an in-depth comparison with experimental results and existing literature for the NFX or similar molecules and functional groups, thereby achieving a widely reasoned assignment of the mid-infrared band absorptions for the first time. Moreover, UV-VIS spectra of NFX were obtained in several solvents, enabling the determination of the molar absorptivity coefficient for the two electronic transitions observed for NFX. Among the aprotic solvents, a bathochromic effect was observed in the function of the dielectric constants. Furthermore, a hypochromic effect was observed when the drug was dissolved in protic solvents. These findings offer crucial support for new drug delivery systems containing NFX while demonstrating the potential of spectrophotometric studies in establishing quality control assays for NFX drug products.
Collapse
Affiliation(s)
- Idejan P Gross
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, 70.910-900 Brasília, DF, Brazil.
| | - Ana Luiza Lima
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, 70.910-900 Brasília, DF, Brazil
| | - Giselle R Bedogni
- Pharmaceutical Technical Area, Department of Pharmacy, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Argentina; National Council for Scientific and Technical Research, Godoy Cruz, Argentina
| | - Livia Sa-Barreto
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, 70.910-900 Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, 70.910-900 Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, 70.910-900 Brasília, DF, Brazil
| | - Claudio J Salomon
- Pharmaceutical Technical Area, Department of Pharmacy, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Argentina; National Council for Scientific and Technical Research, Godoy Cruz, Argentina.
| | - Marcílio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, 70.910-900 Brasília, DF, Brazil
| |
Collapse
|
3
|
Ratan Y, Rajput A, Pareek A, Jain V, Pareek A, Gupta MM, Kamal MA. Green Synthetic Strategies and Pharmaceutical Applications of Thiazine and its Derivatives: An Updated Review. Curr Pharm Biotechnol 2024; 25:1142-1166. [PMID: 37694776 DOI: 10.2174/1389201025666230908141543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/02/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
Thiazines are a sizable class of organic heterocycles that are notable for their skeletal versatility and relative chemical simplicity, making them among the most flexible sources of biologically active compounds. The term "green synthesis" refers to implementing energy-efficient procedures for the nature-friendly production of materials and chemicals using green solvents, catalysts, and suitable reaction conditions. Considering the importance of green chemistry and the outstanding therapeutic profile of thiazines, the present work was designed to review the recent advances in green chemistry-based synthetic strategies of thiazine and its derivatives. The green synthetic approaches, including microwave-assisted, ultrasound-assisted, and various other synthetic methods for thiazine and its derivatives, were discussed and generalized. In addition, applications of thiazine and its derivatives in pharmaceutical sciences were explained with examples of marketed drugs.The discussed sustainable synthetic methods for thiazines and their derivatives could be useful in developing other medicinally important lead molecules. They could also aid in developing new synthetic schemes and apparatuses that may simplify chemical manufacturing processes and enable novel reactions with minimal by-products while questing for optimal, green solvents. This review can help anyone interested in this fascinating class of heterocycles to make decisions about selecting targets and tasks for future research.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, MLSU, Udaipur-313001, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago, WI
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence in Healthcare, Institutes for Systems Genetics and West China School of Nursing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7Peterlee place, Hebersham, NSW 2770, Novel Global Community Educational Foundation, Australia
| |
Collapse
|
4
|
Romero AH, Aguilera E, Gotopo L, Cabrera G, Dávila B, Cerecetto H. Optimization of the 2-arylquinazoline-4(3 H)one scaffold for a selective and potent antitrypanosomal agent: modulation of the mechanism of action through chemical functionalization. RSC Med Chem 2023; 14:1992-2006. [PMID: 37859724 PMCID: PMC10583831 DOI: 10.1039/d3md00243h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 10/21/2023] Open
Abstract
We sought to identify a potent and selective antitrypanosomal agent through modulation of the mechanism of action of a 2-arylquinazoline scaffold as an antitrypanosomal agent via chemical functionalization at the 4-position. We wished to use the: (i) susceptibility of trypanosomatids towards nitric oxide (NO) and reactive oxygen species (ROS); (ii) capacity of the 4-substituted quinazoline system to act as an antifolate agent. Three quinazolin-based moieties that differed from each other by having at the 4-position key pharmacophores targeting the induction of NO and ROS production were evaluated in vitro against Leishmania infantum and Trypanosoma cruzi parasites and their modes of action were explored. Replacement of an oxygen moiety at the 4-position of the antifolate 2-arylquinazolin-4(3H)one by hydrazinyl and 5-nitrofuryl-hydrazinyl pharmacophores enhanced antitrypanosomatid activity significantly due to promotion of an additional mechanism beyond the antifolate response such as NO or ROS production, respectively. Among the three types of chemical functionalization, the 5-nitrofuryl-hydrazinyl moiety generated the most potent compounds. Compound 3b was a potential candidate thanks to its sub-micromolar response against the promastigotes/amastigotes of L. infantum and epimastigote of T. cruzi, moderate toxicity on macrophages (J774.1), good selectivity index (∼15.1-17.6) and, importantly, non-mutagenic effects. 2-Arylquinazoline could be an attractive platform to design new anti-trypanosomatid agents with the use of key pharmacophores.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Republica Igual 4225 11400 Montevideo Uruguay
| | - Elena Aguilera
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Republica Igual 4225 11400 Montevideo Uruguay
| | - Lourdes Gotopo
- Laboratorio de Síntesis de Orgánica, Facultad de Ciencias, Universidad Central de Venezuela Los Chaguaramos Caracas 1041-A Venezuela
| | - Gustavo Cabrera
- Laboratorio de Síntesis de Orgánica, Facultad de Ciencias, Universidad Central de Venezuela Los Chaguaramos Caracas 1041-A Venezuela
| | - Belén Dávila
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Republica Igual 4225 11400 Montevideo Uruguay
| | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Republica Igual 4225 11400 Montevideo Uruguay
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la Republica Mataojo 42055 11400 Montevideo Uruguay
| |
Collapse
|
5
|
Ortiz C, Breuning M, Robledo S, Echeverri F, Vargas E, Quiñones W. Biological activities of 4H-thiochromen-4-one 1,1-dioxide derivatives against tropical disease parasites: A target-based drug design approach. Heliyon 2023; 9:e17801. [PMID: 37483711 PMCID: PMC10362183 DOI: 10.1016/j.heliyon.2023.e17801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
A promising strategy for developing novel therapies against tropical diseases, including malaria, leishmaniasis, and trypanosomiasis, is to detect biological targets such as trypanothione reductase, a vital parasite enzyme that regulates oxidative stress. This enzyme is highly selective and conserved in the Trypanosotidae family and has an ortholog in the Plasmodium genus. Previous studies have established that an isosteric replacement of naphthoquinone's carbonyl group with a sulfone group leads to compounds with high bioactivity and selectivity (half-maximal inhibitory concentration = 3 μM against intracellular amastigotes of L. panamensis, selectivity index = 153 over monocytes U-937). In this study, we analyzed the reactive oxygen species (ROS) levels of parasites through indirect measurements of the tryparedoxin system after treatment with these isosteric compounds. This strategy proved that a significant increase in the ROS levels and strong mitochondrial perturbation led to the death of parasites due to cell homeostatic imbalance, confirming the compounds' effectiveness in disrupting this important metabolic pathway. To improve understanding of the parasite-molecule interaction, 27 new compounds were synthesized and assessed against parasites of the three principal tropical diseases (malaria, leishmaniasis, and trypanosomiasis), displaying an EC50 below 10 μM and good correlation with in-silico studies, indicating that the 4H-thiochromen-4-one 1,1-dioxide core is a special allosteric modulator. It can interact in the binding pocket through key amino acids like Ser-14, Leu-17, Trp-21, Ser-109, Tyr-110, and Met-113, leading to interhelical disruption.
Collapse
Affiliation(s)
- Cristian Ortiz
- Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia, Colombia
| | - Matthias Breuning
- Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Germany
| | - Sara Robledo
- Facultad de Medicina, Universidad de Antioquia, Colombia
| | - Fernando Echeverri
- Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia, Colombia
| | - Esteban Vargas
- Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia, Colombia
| | - Wiston Quiñones
- Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia, Colombia
| |
Collapse
|
6
|
Sowerby K, Freitag-Pohl S, Murillo AM, Silber AM, Pohl E. Cysteine synthase: multiple structures of a key enzyme in cysteine synthesis and a potential drug target for Chagas disease and leishmaniasis. Acta Crystallogr D Struct Biol 2023; 79:518-530. [PMID: 37204818 PMCID: PMC10233618 DOI: 10.1107/s2059798323003613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023] Open
Abstract
Chagas disease is a neglected tropical disease (NTD) caused by Trypanosoma cruzi, whilst leishmaniasis, which is caused by over 20 species of Leishmania, represents a group of NTDs endemic to most countries in the tropical and subtropical belt of the planet. These diseases remain a significant health problem both in endemic countries and globally. These parasites and other trypanosomatids, including T. theileri, a bovine pathogen, rely on cysteine biosynthesis for the production of trypanothione, which is essential for parasite survival in hosts. The de novo pathway of cysteine biosynthesis requires the conversion of O-acetyl-L-serine into L-cysteine, which is catalysed by cysteine synthase (CS). These enzymes present potential for drug development against T. cruzi, Leishmania spp. and T. theileri. To enable these possibilities, biochemical and crystallographic studies of CS from T. cruzi (TcCS), L. infantum (LiCS) and T. theileri (TthCS) were conducted. Crystal structures of the three enzymes were determined at resolutions of 1.80 Å for TcCS, 1.75 Å for LiCS and 2.75 Å for TthCS. These three homodimeric structures show the same overall fold and demonstrate that the active-site geometry is conserved, supporting a common reaction mechanism. Detailed structural analysis revealed reaction intermediates of the de novo pathway ranging from an apo structure of LiCS and holo structures of both TcCS and TthCS to the substrate-bound structure of TcCS. These structures will allow exploration of the active site for the design of novel inhibitors. Additionally, unexpected binding sites discovered at the dimer interface represent new potential for the development of protein-protein inhibitors.
Collapse
Affiliation(s)
- Kate Sowerby
- Department of Chemistry, Durham University, Durham, United Kingdom
| | | | | | | | - Ehmke Pohl
- Department of Chemistry, Durham University, Durham, United Kingdom
| |
Collapse
|
7
|
García-Estrada C, Pérez-Pertejo Y, Domínguez-Asenjo B, Holanda VN, Murugesan S, Martínez-Valladares M, Balaña-Fouce R, Reguera RM. Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates. Biomolecules 2023; 13:biom13040637. [PMID: 37189384 DOI: 10.3390/biom13040637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Due to the lack of specific vaccines, management of the trypanosomatid-caused neglected tropical diseases (sleeping sickness, Chagas disease and leishmaniasis) relies exclusively on pharmacological treatments. Current drugs against them are scarce, old and exhibit disadvantages, such as adverse effects, parenteral administration, chemical instability and high costs which are often unaffordable for endemic low-income countries. Discoveries of new pharmacological entities for the treatment of these diseases are scarce, since most of the big pharmaceutical companies find this market unattractive. In order to fill the pipeline of compounds and replace existing ones, highly translatable drug screening platforms have been developed in the last two decades. Thousands of molecules have been tested, including nitroheterocyclic compounds, such as benznidazole and nifurtimox, which had already provided potent and effective effects against Chagas disease. More recently, fexinidazole has been added as a new drug against African trypanosomiasis. Despite the success of nitroheterocycles, they had been discarded from drug discovery campaigns due to their mutagenic potential, but now they represent a promising source of inspiration for oral drugs that can replace those currently on the market. The examples provided by the trypanocidal activity of fexinidazole and the promising efficacy of the derivative DNDi-0690 against leishmaniasis seem to open a new window of opportunity for these compounds that were discovered in the 1960s. In this review, we show the current uses of nitroheterocycles and the novel derived molecules that are being synthesized against these neglected diseases.
Collapse
Affiliation(s)
- Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Bárbara Domínguez-Asenjo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vanderlan Nogueira Holanda
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (IGM), Consejo Superior de Investigaciones Científicas-Universidad de León, Carretera León-Vega de Infanzones, Vega de Infanzones, 24346 León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
8
|
Lameiro RF, Montanari CA. Investigating the Lack of Translation from Cruzain Inhibition to Trypanosoma cruzi Activity with Machine Learning and Chemical Space Analyses. ChemMedChem 2023; 18:e202200434. [PMID: 36692246 DOI: 10.1002/cmdc.202200434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoa Trypanosoma cruzi. Cruzain, its main cysteine protease, is commonly targeted in drug discovery efforts to find new treatments for this disease. Even though the essentiality of this enzyme for the parasite has been established, many cruzain inhibitors fail as trypanocidal agents. This lack of translation from biochemical to biological assays can involve several factors, including suboptimal physicochemical properties. In this work, we aim to rationalize this phenomenon through chemical space analyses of calculated molecular descriptors. These include statistical tests, visualization of projections, scaffold analysis, and creation of machine learning models coupled with interpretability methods. Our results demonstrate a significant difference between the chemical spaces of cruzain and T. cruzi inhibitors, with compounds with more hydrogen bond donors and rotatable bonds being more likely to be good cruzain inhibitors, but less likely to be active on T. cruzi. In addition, cruzain inhibitors seem to occupy specific regions of the chemical space that cannot be easily correlated with T. cruzi activity, which means that using predictive modeling to determine whether cruzain inhibitors will be trypanocidal is not a straightforward task. We believe that the conclusions from this work might be of interest for future projects that aim to develop novel trypanocidal compounds.
Collapse
Affiliation(s)
- Rafael F Lameiro
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Trabalhador São-Carlense Avenue 400, São Carlos, Brazil
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Trabalhador São-Carlense Avenue 400, São Carlos, Brazil
| |
Collapse
|
9
|
Quintero-Pertuz H, Veas-Albornoz R, Carrillo I, González-Herrera F, Lapier M, Carbonó-Delahoz E, Del Olmo E, Feliciano AS, Kemmerling U, Olea-Azar C, Delporte C, Maya JD. Trypanocidal effect of alcoholic extract of Castanedia santamartensis (Asteraceae) leaves is based on altered mitochondrial function. Biomed Pharmacother 2022; 148:112761. [PMID: 35240521 DOI: 10.1016/j.biopha.2022.112761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
The deficit of effective treatments for Chagas disease has led to searching for new substances with therapeutic potential. Natural products possess a wide variety of chemical structural motifs and are thus a valuable source of diverse lead compounds for the development of new drugs. Castanedia santamartensis is endemic to Colombia, and local indigenous communities often use it to treat skin sores from leishmaniasis; however, its mechanism of action against the infective form of Trypanosoma cruzi has not been determined. Thus, we performed chemical and biological studies of two alcoholic leaf extracts of C. santamartensis to identify their active fractions and relate them to a trypanocidal effect and evaluate their mechanism of action. Alcoholic extracts were obtained through cold maceration at room temperature and fractionated using classical column chromatography. Both ethanolic and methanolic extracts displayed activity against T. cruzi. Chemical studies revealed that kaurenoic acid was the major component of one fraction of the methanolic extract and two fractions of the ethanolic extract of C. santamartensis leaves. Moreover, caryophyllene oxide, kaurenol, taraxasterol acetate, pentadecanone, and methyl and ethyl esters of palmitate, as well as a group of phenolic compounds, including ferulic acid, caffeic acid, chlorogenic acid, myricetin, quercitrin, and cryptochlorogenic acid were identified in the most active fractions. Kaurenoic acid and the most active fractions CS400 and CS402 collapsed the mitochondrial membrane potential in trypomastigotes, demonstrating for the first time the likely mechanism against T. cruzi, probably due to interactions with other components of the fractions.
Collapse
Affiliation(s)
- Helena Quintero-Pertuz
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Chile
| | - Ruben Veas-Albornoz
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Chile
| | - Ileana Carrillo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Fabiola González-Herrera
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Michel Lapier
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Chile
| | - Eduino Carbonó-Delahoz
- Herbario UTMC, Carrera 32 No. 22-08 Santa Marta D.T.C.H, Universidad del Magdalena, Colombia
| | - Esther Del Olmo
- Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, Centro de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Arturo San Feliciano
- Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, Centro de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, UNIVALI, Itajaí, SC, Brazil
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Claudio Olea-Azar
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Chile
| | - Carla Delporte
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Chile.
| | - Juan D Maya
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Chile; Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Avenida Independencia 1027, Independencia, Santiago, Chile.
| |
Collapse
|
10
|
Specker G, Estrada D, Radi R, Piacenza L. Trypanosoma cruzi Mitochondrial Peroxiredoxin Promotes Infectivity in Macrophages and Attenuates Nifurtimox Toxicity. Front Cell Infect Microbiol 2022; 12:749476. [PMID: 35186785 PMCID: PMC8855072 DOI: 10.3389/fcimb.2022.749476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease which is currently treated by nifurtimox (NFX) and benznidazole (BZ). Nevertheless, the mechanism of action of NFX is not completely established. Herein, we show the protective effects of T. cruzi mitochondrial peroxiredoxin (MPX) in macrophage infections and in response to NFX toxicity. After a 3-day treatment of epimastigotes with NFX, MPX content increased (2.5-fold) with respect to control, and interestingly, an MPX-overexpressing strain was more resistant to the drug. The generation of mitochondrial reactive species and the redox status of the low molecular weight thiols of the parasite were not affected by NFX treatment indicating the absence of oxidative stress in this condition. Since MPX was shown to be protective and overexpressed in drug-challenged parasites, non-classical peroxiredoxin activity was studied. We found that recombinant MPX exhibits holdase activity independently of its redox state and that its overexpression was also observed in temperature-challenged parasites. Moreover, increased holdase activity (2-fold) together with an augmented protease activity (proteasome-related) and an enhancement in ubiquitinylated proteins was found in NFX-treated parasites. These results suggest a protective role of MPX holdase activity toward NFX toxicity. Trypanosoma cruzi has a complex life cycle, part of which involves the invasion of mammalian cells, where parasite replication inside the host occurs. In the early stages of the infection, macrophages recognize and engulf T. cruzi with the generation of reactive oxygen and nitrogen species toward the internalized parasite. Parasites overexpressing MPX produced higher macrophage infection yield compared with wild-type parasites. The relevance of peroxidase vs. holdase activity of MPX during macrophage infections was assessed using conoidin A (CA), a covalent, cell-permeable inhibitor of peroxiredoxin peroxidase activity. Covalent adducts of MPX were detected in CA-treated parasites, which proves its action in vivo. The pretreatment of parasites with CA led to a reduced infection index in macrophages revealing that the peroxidase activity of peroxiredoxin is crucial during this infection process. Our results confirm the importance of peroxidase activity during macrophage infection and provide insights for the relevance of MPX holdase activity in NFX resistance.
Collapse
Affiliation(s)
- Gabriela Specker
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Damián Estrada
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Moreira FF, Portes JDA, Barros Azeredo NF, Fernandes C, Horn A, Santiago CP, Segat BB, Caramori GF, Madureira LMP, Candela DRS, Marques MM, Lamounier Camargos Resende JA, de Souza W, DaMatta RA, Seabra SH. Development of new dinuclear Fe(III) coordination compounds with in vitro nanomolar antitrypanosomal activity. Dalton Trans 2021; 50:12242-12264. [PMID: 34519725 DOI: 10.1039/d1dt01048d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan pathogen Trypanosoma cruzi. The disease is a major public health problem affecting about 6 to 7 million people worldwide, mostly in Latin America. The available therapy for this disease is based on two drugs, nifurtimox and benznidazole, which exhibit severe side effects, including resistance, severe cytotoxicity, variable efficacy and inefficiency in the chronic phase. Therefore, new drugs are urgently needed. Coordination compounds may be an interesting alternative for antiparasite therapy against Leishmania spp., Toxoplasma gondii and T. cruzi. Herein, we tested the in vitro effect on T. cruzi epimastigotes (Y strain) of two new μ-oxo Fe(III) dinuclear complexes: [(HL1)(Cl)Fe(μ-O)Fe(Cl)(HL2)](Cl)2·(CH3CH2OH)2·H2O (1) and [(HL2)(Cl)Fe(μ-O)Fe(Cl)(HL2)](Cl)2·H2O (2) where HL1 and HL2 are ligands which contain two pyridines, amine and alcohol moieties with a naphthyl pendant unit yielding a N3O coordination environment. Complexes (1) and (2), which are isomers, were completely characterized, including X-ray diffraction studies for complex (1). Parasites were treated with the complexes and the outcome was analyzed. Complex (1) exhibited the lowest IC50 values, which were 99 ± 3, 97 ± 2 and 110 ± 39 nM, after 48, 72 and 120 h of treatment, respectively. Complex (2) showed IC50 values of 118 ± 5, 122 ± 6 and 104 ± 29 nM for the same treatment times. Low cytotoxicity to the host cell LLC-MK2 was found for both complexes, resulting in impressive selectivity indexes of 106 for complex (1) and 178 for (2), after 120 h of treatment. Treatment with both complexes reduced the mitochondrial membrane potential of the parasite. Ultrastructural analysis of the parasite after treatment with complexes showed that the mitochondria outer membrane presented swelling and abnormal disposition around the kinetoplast; in addition, reservosomes presented anomalous spicules and rupture. The complexes showed low nanomolar IC50 values affecting mitochondria and reservosomes, essential organelles for the survival of the parasite. The low IC50 and the high selectivity index show that both complexes act as a new prototype of drugs against T. cruzi and may be used for further development in drug discovery to treat Chagas disease.
Collapse
Affiliation(s)
- Felipe Figueirôa Moreira
- Laboratório de Tecnologia em Bioquímica e Microscopia, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil. .,Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Juliana de Araujo Portes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Nathália Florência Barros Azeredo
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Christiane Fernandes
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Adolfo Horn
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Cristina Pinheiro Santiago
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Bruna Barriquel Segat
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Giovanni Finoto Caramori
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | | | | | | | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Sergio Henrique Seabra
- Laboratório de Tecnologia em Bioquímica e Microscopia, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil. .,Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
12
|
Pacheco JDS, Costa DDS, Cunha-Júnior EF, Andrade-Neto VV, Fairlamb AH, Wyllie S, Goulart MOF, Santos DC, Silva TL, Alves MA, Costa PRR, Dias AG, Torres-Santos EC. Monocyclic Nitro-heteroaryl Nitrones with Dual Mechanism of Activation: Synthesis and Antileishmanial Activity. ACS Med Chem Lett 2021; 12:1405-1412. [PMID: 34531949 DOI: 10.1021/acsmedchemlett.1c00193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
5-Nitro-furan nitrones (1) and 5-nitro-thiophene nitrones (2) were synthesized in one step. Compounds 1a-c had the most potent leishmanicidal activity against intracellular amastigote forms of Leishmania amazonensis and L. infantum (from 0.019 to 2.76 μM), with excellent selectivity (from 39 to 5673). The comparison of the leishmanicidal activity in promastigotes of wild type L. donovani with those overexpressing nitroreductases NRT1 or NRT2 shows that 1a,b are activated by both, which could slow the development of resistance. Their redox potential (E redox) obtained by cyclic voltammetry (-0.67 and -0.62 V) shows that the reduction of the nitro group is modulated by the nitrone group. Oral administration of 1b to mice infected by L. infantum reduced the parasite load on the spleen by 76.6 and 95.0% with doses of 50 and 100 mg/kg, respectively, administered twice a day, for 5 days. In the liver, the parasite load suppression was above 75% with either treatment.
Collapse
Affiliation(s)
- Juliana da Silva Pacheco
- FIOCRUZ, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brazil
| | - Débora de Souza Costa
- Universidade Federal do Rio de Janeiro, Instituto de Pesquisas de Produtos Naturais, Laboratório de Química Bioorgânica, Rio de Janeiro, RJ, Brazil
| | | | - Valter Viana Andrade-Neto
- FIOCRUZ, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brazil
| | - Alan H. Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Marília O. F. Goulart
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, AL, Brazil
| | - Danyelle C. Santos
- Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Maceió, AL, Brazil
| | - Thaissa L. Silva
- Universidade Federal de Alagoas, Núcleo de Ciências Exatas, Campus de Arapiraca, Arapiraca, AL, Brazil
| | - Marina A. Alves
- Universidade Federal do Rio de Janeiro, Laboratório de Apoio ao Desenvolvimento Tecnológico, Rio de Janeiro, RJ, Brazil
| | - Paulo R. R. Costa
- Universidade Federal do Rio de Janeiro, Instituto de Pesquisas de Produtos Naturais, Laboratório de Química Bioorgânica, Rio de Janeiro, RJ, Brazil
| | - Ayres G. Dias
- Universidade do Estado do Rio de Janeiro, Centro de Tecnologia e Ciências, Departamento de Química Orgânica, Rio de Janeiro, RJ, Brazil
| | - Eduardo Caio Torres-Santos
- FIOCRUZ, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168534. [PMID: 34445240 PMCID: PMC8395237 DOI: 10.3390/ijms22168534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Collapse
Affiliation(s)
- Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-5-223-4392
| | - Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Lidija Kosychova
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
14
|
Abstract
Infections caused by protozoans remain a public health issue, especially in tropical countries. Serious adverse events, lack of efficacy at the different stages of the infection and routes of administration that have a negative impact on treatment adherence are some of the problems with currently available therapy against these diseases. Here we describe an epigenetic target, sirtuin 2 and its related proteins, that is promising given the results in phenotypic assays and in vivo models against Sir2 of Plasmodium falciparum, Leishmania donovani, Leishmania infantum, Schistosoma mansoni, Trypanosoma brucei and Trypanosoma cruzi parasites. The results we present highlight how this target can be extensively explored and how its inhibitors might be employed in the clinic.
Collapse
|
15
|
Lascano F, Altcheh J. An evaluation of nifurtimox for Chagas disease in children. Expert Opin Orphan Drugs 2021. [DOI: 10.1080/21678707.2021.1933431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fernanda Lascano
- Servicio de Parasitologia-Chagas, Hospital de Niños Ricardo Gutierrez, Instituto Multidisciplinario de Investigacion en Patologias Pediatricas (IMIPP) CONICET-GCBA, Buenos Aires, Argentina
| | - Jaime Altcheh
- Servicio de Parasitologia-Chagas, Hospital de Niños Ricardo Gutierrez, Instituto Multidisciplinario de Investigacion en Patologias Pediatricas (IMIPP) CONICET-GCBA, Buenos Aires, Argentina
| |
Collapse
|
16
|
Salgado F, Moncada-Basualto M, Pozo-Martinez J, Liempi A, Kemmerling U, Maya JD, Jaque P, Borges F, Uriarte E, Matos MJ, Olea-Azar C. Chemical and biological analysis of 4-acyloxy-3-nitrocoumarins as trypanocidal agents. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
17
|
Zuma AA, de Souza W. Chagas Disease Chemotherapy: What Do We Know So Far? Curr Pharm Des 2021; 27:3963-3995. [PMID: 33593251 DOI: 10.2174/1381612827666210216152654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
Chagas disease is a Neglected Tropical Disease (NTD), and although endemic in Latin America, affects around 6-7 million people infected worldwide. The treatment of Chagas disease is based on benznidazole and nifurtimox, which are the only available drugs. However, they are not effective during the chronic phase and cause several side effects. Furthermore, BZ promotes cure in 80% of the patients in the acute phase, but the cure rate drops to 20% in adults in the chronic phase of the disease. In this review, we present several studies published in the last six years, which describes the antiparasitic potential of distinct drugs, from the synthesis of new compounds aiming to target the parasite, as well as the repositioning and the combination of drugs. We highlight several compounds for having shown results that are equivalent or superior to BZ, which means that they should be further studied, either in vitro or in vivo. Furthermore, we stand out the differences in the effects of BZ on the same strain of T. cruzi, which might be related to methodological differences such as parasite and cell ratios, host cell type and the time of adding the drug. In addition, we discuss the wide variety of strains and also the cell types used as a host cell, which makes it difficult to compare the trypanocidal effect of the compounds.
Collapse
Affiliation(s)
- Aline Araujo Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21491-590, Rio de Janeiro, RJ. Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Ilha do Fundão, 21491-590, Rio de Janeiro, RJ. Brazil
| |
Collapse
|
18
|
Fernandes GFS, Campos DL, Da Silva IC, Prates JLB, Pavan AR, Pavan FR, Dos Santos JL. Benzofuroxan Derivatives as Potent Agents against Multidrug-Resistant Mycobacterium tuberculosis. ChemMedChem 2021; 16:1268-1282. [PMID: 33410233 DOI: 10.1002/cmdc.202000899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) is currently the leading cause of death related to infectious diseases worldwide, as reported by the World Health Organization. Moreover, the increasing number of multidrug-resistant tuberculosis (MDR-TB) cases has alarmed health agencies, warranting extensive efforts to discover novel drugs that are effective and also safe. In this study, 23 new compounds were synthesized and evaluated in vitro against the drug-resistant strains of M. tuberculosis. The compound 6-((3-fluoro-4-thiomorpholinophenyl)carbamoyl)benzo[c][1,2,5]oxadiazole 1-N-oxide (5 b) was particularly remarkable in this regard as it demonstrated MIC90 values below 0.28 μM against all the MDR strains evaluated, thus suggesting that this compound might have a different mechanism of action. Benzofuroxans are an attractive new class of anti-TB agents, exemplified by compound 5 b, with excellent potency against the replicating and drug-resistant strains of M. tuberculosis.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil.,Institute of Chemistry, São Paulo State University (UNESP), Francisco Degni Street 55, 14800060, Araraquara, Brazil
| | - Débora L Campos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil
| | - Isabel C Da Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil
| | - João L B Prates
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil.,Institute of Chemistry, São Paulo State University (UNESP), Francisco Degni Street 55, 14800060, Araraquara, Brazil
| | - Aline R Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil.,Institute of Chemistry, São Paulo State University (UNESP), Francisco Degni Street 55, 14800060, Araraquara, Brazil
| | - Fernando R Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara Jaú Highway KM 01, 14800903, Araraquara, Brazil.,Institute of Chemistry, São Paulo State University (UNESP), Francisco Degni Street 55, 14800060, Araraquara, Brazil
| |
Collapse
|
19
|
Barzkar N, Khan Z, Tamadoni Jahromi S, Pourmozaffar S, Gozari M, Nahavandi R. A critical review on marine serine protease and its inhibitors: A new wave of drugs? Int J Biol Macromol 2020; 170:674-687. [PMID: 33387547 DOI: 10.1016/j.ijbiomac.2020.12.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023]
Abstract
Marine organisms are rich sources of enzymes and their inhibitors having enormous therapeutic potential. Among different proteolytic enzymes, serine proteases, which can be obtained from various marine organisms show a potential to biomedical application as thrombolytic agents. Although this type of proteases plays a crucial role in almost all biological processes, their uncontrolled activity often leads to several diseases. Accordingly, the actions of these types of proteases are regulated by serine protease inhibitors (SPIs). Marine SPIs control complement activation and various other physiological functions, such as inflammation, immune function, fibrinolysis, blood clotting, and cancer metastasis. This review highlights the potential use of serine proteases and their inhibitors as the new wave of promising drugs.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Zahoor Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar 'Abbas, Iran
| | - Sajjad Pourmozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecological Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Sciences Research Institute, Bandar-e-Lengeh, Iran
| | - Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar 'Abbas, Iran
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
20
|
Muraca G, Berti IR, Sbaraglini ML, Fávaro WJ, Durán N, Castro GR, Talevi A. Trypanosomatid-Caused Conditions: State of the Art of Therapeutics and Potential Applications of Lipid-Based Nanocarriers. Front Chem 2020; 8:601151. [PMID: 33324615 PMCID: PMC7726426 DOI: 10.3389/fchem.2020.601151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatid-caused conditions (African trypanosomiasis, Chagas disease, and leishmaniasis) are neglected tropical infectious diseases that mainly affect socioeconomically vulnerable populations. The available therapeutics display substantial limitations, among them limited efficacy, safety issues, drug resistance, and, in some cases, inconvenient routes of administration, which made the scenarios with insufficient health infrastructure settings inconvenient. Pharmaceutical nanocarriers may provide solutions to some of these obstacles, improving the efficacy-safety balance and tolerability to therapeutic interventions. Here, we overview the state of the art of therapeutics for trypanosomatid-caused diseases (including approved drugs and drugs undergoing clinical trials) and the literature on nanolipid pharmaceutical carriers encapsulating approved and non-approved drugs for these diseases. Numerous studies have focused on the obtention and preclinical assessment of lipid nanocarriers, particularly those addressing the two currently most challenging trypanosomatid-caused diseases, Chagas disease, and leishmaniasis. In general, in vitro and in vivo studies suggest that delivering the drugs using such type of nanocarriers could improve the efficacy-safety balance, diminishing cytotoxicity and organ toxicity, especially in leishmaniasis. This constitutes a very relevant outcome, as it opens the possibility to extended treatment regimens and improved compliance. Despite these advances, last-generation nanosystems, such as targeted nanocarriers and hybrid systems, have still not been extensively explored in the field of trypanosomatid-caused conditions and represent promising opportunities for future developments. The potential use of nanotechnology in extended, well-tolerated drug regimens is particularly interesting in the light of recent descriptions of quiescent/dormant stages of Leishmania and Trypanosoma cruzi, which have been linked to therapeutic failure.
Collapse
Affiliation(s)
- Giuliana Muraca
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT), Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - María L. Sbaraglini
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| | - Wagner J. Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, Brazil
| | - Guillermo R. Castro
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
21
|
Ribeiro V, Dias N, Paiva T, Hagström-Bex L, Nitz N, Pratesi R, Hecht M. Current trends in the pharmacological management of Chagas disease. Int J Parasitol Drugs Drug Resist 2020; 12:7-17. [PMID: 31862616 PMCID: PMC6928327 DOI: 10.1016/j.ijpddr.2019.11.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/06/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
Abstract
Chagas disease (CD) is a tropical neglected illness, affecting mainly populations of low socioeconomic status in Latin America. An estimated 6 to 8 million people worldwide are infected with Trypanosoma cruzi, the etiological agent of CD. Despite being one of the main global health problems, this disease continues without effective treatment during the chronic phase of the infection. The limitation of therapeutic strategies has been one of the biggest challenges on the fight against CD. Nifurtimox and benznidazole, developed in the 1970s, are still the only commercial options with established efficacy on CD. However, the efficacy of these drugs have a proven efficacy only during early infection and the benefits in the chronic phase are questionable. Consequently, there is a growing need for new pharmacological alternatives, either by optimization of existing drugs or by the formulation of new compounds. In the present study, a literature review of the currently adopted therapy, its concomitant combination with other drugs, and potential future treatments for CD was performed, considering articles published from 2012. The revised articles were selected according to the protocol of treatment: evaluation of drug association, drug repositioning and research of new drugs. As a result of the present revision, it was possible to conclude that the use of benznidazole in combination with other compounds showed better results when compared with its use as a single therapy. The search of new drugs has been the strategy most used in pursuing more effective forms of treatment for CD. However, studies have still focused on basic research, that is, they are still in a pre-clinical stage, using methodologies based on in vitro or in animal studies.
Collapse
Affiliation(s)
- Vanessa Ribeiro
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Nayra Dias
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Taís Paiva
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Luciana Hagström-Bex
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Riccardo Pratesi
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| |
Collapse
|
22
|
Marson ME, Bournissen FG, Altcheh J, Moscatelli G, Moroni S, Mastrantonio GE. Presence of benznidazole conjugated metabolites in urine identified by β-glucuronidase treatment. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000218034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- María Elena Marson
- Universidad Nacional de La Plata, Argentina; Universidad Nacional de La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Facundo García Bournissen
- Hospital de Niños Ricardo Gutiérrez, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Jaime Altcheh
- Hospital de Niños Ricardo Gutiérrez, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | | | | | - Guido Enrique Mastrantonio
- Universidad Nacional de La Plata, Argentina; Universidad Nacional de La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| |
Collapse
|
23
|
Zuma NH, Aucamp J, N'Da DD. An update on derivatisation and repurposing of clinical nitrofuran drugs. Eur J Pharm Sci 2019; 140:105092. [DOI: 10.1016/j.ejps.2019.105092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
|
24
|
Petravicius PO, Costa-Martins AG, Silva MN, Reis-Cunha JL, Bartholomeu DC, Teixeira MM, Zingales B. Mapping benznidazole resistance in trypanosomatids and exploring evolutionary histories of nitroreductases and ABCG transporter protein sequences. Acta Trop 2019; 200:105161. [PMID: 31494121 DOI: 10.1016/j.actatropica.2019.105161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/22/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Abstract
The nitro-heterocyclic compound benznidazole (BZ) is the first-line drug for the treatment of Chagas disease, caused by the protozoan Trypanosoma cruzi. However, therapeutic failures are common for reasons that include the influences of parasite and host genetics, the effects of toxicity on adherence to treatment, and difficulties in demonstrating parasitological cure. To obtain information on the origin of the resistance to BZ and eliminate from the scenery the participation of the host, initially we mapped the susceptibility to the drug in thirteen species of seven genera of the family Trypanosomatidae. We verified that all Trypanosoma species are sensitive to low concentrations of the drug (IC50 2.7 to 25 µM) while Non-Trypanosoma species are highly resistant to these concentrations. The two groups of parasites correspond to the major phylogenetic lineages of trypanosomatids. Next, we searched in the trypanosomatid genome databases homologs of two type-I nitroreductases (NTR-1 and OYE) and an ABC transporter (ABCG1) that have been associated with BZ resistance in T. cruzi. The predicted proteins were characterized regarding domains and used for phylogenetic analyses. Homologous NTR-1 genes were found in all trypanosomatids investigated and the structural characteristics of the enzyme suggest that it may be functional. OYE genes were absent in BZ-sensitive African trypanosomes, which excludes the participation of this enzyme in BZ bio-activation. Two copies of ABCG1 genes were observed in most BZ resistant species, while Trypanosoma species exhibit only one copy per haploid genome. Functional studies are required to verify the involvement of these genes in BZ resistance. In addition, since multiple mechanisms can contribute to BZ susceptibility, our study poses a range of organisms highly resistant to BZ in which these aspects can be investigated. Preliminary studies on BZ uptake indicate marked differences between BZ-sensitive and BZ-resistant species.
Collapse
|
25
|
Patterson S, Fairlamb AH. Current and Future Prospects of Nitro-compounds as Drugs for Trypanosomiasis and Leishmaniasis. Curr Med Chem 2019; 26:4454-4475. [PMID: 29701144 DOI: 10.2174/0929867325666180426164352] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/01/2018] [Accepted: 04/13/2018] [Indexed: 01/13/2023]
Abstract
Interest in nitroheterocyclic drugs for the treatment of infectious diseases has undergone a resurgence in recent years. Here we review the current status of monocyclic and bicyclic nitroheterocyclic compounds as existing or potential new treatments for visceral leishmaniasis, Chagas' disease and human African trypanosomiasis. Both monocyclic (nifurtimox, benznidazole and fexinidazole) and bicyclic (pretomanid (PA-824) and delamanid (OPC-67683)) nitro-compounds are prodrugs, requiring enzymatic activation to exert their parasite toxicity. Current understanding of the nitroreductases involved in activation and possible mechanisms by which parasites develop resistance is discussed along with a description of the pharmacokinetic / pharmacodynamic behaviour and chemical structure-activity relationships of drugs and experimental compounds.
Collapse
Affiliation(s)
- Stephen Patterson
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan H Fairlamb
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
26
|
|
27
|
Romero AH, Rodríguez N, Oviedo H. 2-Aryl-quinazolin-4(3H)-ones as an inhibitor of leishmania folate pathway: In vitro biological evaluation, mechanism studies and molecular docking. Bioorg Chem 2019; 83:145-153. [DOI: 10.1016/j.bioorg.2018.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
|
28
|
Mesías AC, Sasoni N, Arias DG, Pérez Brandán C, Orban OCF, Kunick C, Robello C, Comini MA, Garg NJ, Zago MP. Trypanothione synthetase confers growth, survival advantage and resistance to anti-protozoal drugs in Trypanosoma cruzi. Free Radic Biol Med 2019; 130:23-34. [PMID: 30359758 PMCID: PMC6331241 DOI: 10.1016/j.freeradbiomed.2018.10.436] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/09/2018] [Accepted: 10/20/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Chagas cardiomyopathy, caused by Trypanosoma cruzi infection, continues to be a neglected illness, and has a major impact on global health. The parasite undergoes several stages of morphological and biochemical changes during its life cycle, and utilizes an elaborated antioxidant network to overcome the oxidants barrier and establish infection in vector and mammalian hosts. Trypanothione synthetase (TryS) catalyzes the biosynthesis of glutathione-spermidine adduct trypanothione (T(SH)2) that is the principal intracellular thiol-redox metabolite in trypanosomatids. METHODS AND RESULTS We utilized genetic overexpression (TryShi) and pharmacological inhibition approaches to examine the role of TryS in T. cruzi proliferation, tolerance to oxidative stress and resistance to anti-protozoal drugs. Our data showed the expression and activity of TryS was increased in all morphological stages of TryShi (vs. control) parasites. In comparison to controls, the TryShi epimastigotes (insect stage) recorded shorter doubling time, and both epimastigotes and infective trypomastigotes of TryShi exhibited 36-71% higher resistance to H2O2 (50-1000 μM) and heavy metal (1-500 μM) toxicity. Treatment with TryS inhibitors (5-30 μM) abolished the proliferation and survival advantages against H2O2 pressure in a dose-dependent manner in both TryShi and control parasites. Further, epimastigote and trypomastigote forms of TryShi (vs. control) T. cruzi tolerated higher doses of benznidazole and nifurtimox, the drugs currently administered for acute Chagas disease treatment. CONCLUSIONS TryS is essential for proliferation and survival of T. cruzi under normal and oxidant stress conditions, and provides an advantage to the parasite to develop resistance against currently used anti-trypanosomal drugs. TryS indispensability has been chemically validated with inhibitors that may be useful for drug combination therapy against Chagas disease.
Collapse
Affiliation(s)
- Andrea C Mesías
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Natalia Sasoni
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Santa Fe, Argentina
| | - Diego G Arias
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Santa Fe, Argentina
| | - Cecilia Pérez Brandán
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Oliver C F Orban
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany
| | - Conrad Kunick
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, and Departamento de Bioquímica, Facultad de Medicina, Uruguay
| | - Marcelo A Comini
- Redox Biology of Trypanosomes - Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nisha J Garg
- Departments of Microbiology and Immunology and Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| | - M Paola Zago
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina.
| |
Collapse
|
29
|
Fonseca-Berzal C, Arán VJ, Escario JA, Gómez-Barrio A. Experimental models in Chagas disease: a review of the methodologies applied for screening compounds against Trypanosoma cruzi. Parasitol Res 2018; 117:3367-3380. [PMID: 30232605 DOI: 10.1007/s00436-018-6084-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 01/29/2023]
Abstract
One of the main problems of Chagas disease (CD), the parasitic infection caused by Trypanosoma cruzi, is the lack of a completely satisfactory treatment, which is currently based on two old nitroheterocyclic drugs (i.e., nifurtimox and benznidazole) that show important limitations for treating patients. In this context, many laboratories look for alternative therapies potentially applicable to the treatment, and therefore, research in CD chemotherapy works in the design of experimental protocols for detecting molecules with activity against T. cruzi. Phenotypic assays are considered the most valuable strategy for screening these antiparasitic compounds. Among them, in vitro experiments are the first step to test potential anti-T. cruzi drugs directly on the different parasite forms (i.e., epimastigotes, trypomastigotes, and amastigotes) and to detect cytotoxicity. Once the putative trypanocidal drug has been identified in vitro, it must be moved to in vivo models of T. cruzi infection, to explore (i) acute toxicity, (ii) efficacy during the acute infection, and (iii) efficacy in the chronic disease. Moreover, in silico approaches for predicting activity have emerged as a supporting tool for drug screening procedures. Accordingly, this work reviews those in vitro, in vivo, and in silico methods that have been routinely applied during the last decades, aiming to discover trypanocidal compounds that contribute to developing more effective CD treatments.
Collapse
Affiliation(s)
- Cristina Fonseca-Berzal
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Vicente J Arán
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), c/ Juan de la Cierva 3, 28006, Madrid, Spain
| | - José A Escario
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Alicia Gómez-Barrio
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
30
|
Rivas F, Medeiros A, Rodríguez Arce E, Comini M, Ribeiro CM, Pavan FR, Gambino D. New heterobimetallic ferrocenyl derivatives: Evaluation of their potential as prospective agents against trypanosomatid parasites and Mycobacterium tuberculosis. J Inorg Biochem 2018; 187:73-84. [PMID: 30055398 DOI: 10.1016/j.jinorgbio.2018.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/26/2018] [Accepted: 07/21/2018] [Indexed: 12/21/2022]
Abstract
Searching for prospective agents against infectious diseases, four new ferrocenyl derivatives, [M(L)(dppf)4](PF6), with M = Pd(II) or Pt(II), dppf = 1,1'-bis(dipheny1phosphino) ferrocene and HL = tropolone (HTrop) or hinokitiol (HHino), were synthesized and characterized. Complexes and ligands were evaluated against the bloodstream form of T. brucei, L. infantum amastigotes, M. tuberculosis (MTB) sensitive strain and MTB clinical isolates. Complexes showed a significant increase of the anti-T. brucei activity with respect to the free ligands (>28- and >46-fold for Trop and 6- and 22-fold for Hino coordinated to Pt-dppf and Pd-dppf, respectively), yielding IC50 values < 5 μM. The complexes proved to be more potent than the antitrypanosomal drug Nifurtimox. The new ferrocenyl derivatives were more selective towards the parasite than the free ligands. The Pt compounds were less toxic on J774 murine macrophages (mammalian cell model), than the Pd ones, showing selectivity index values (SI = IC50 murine macrophage/IC50T. brucei) up to 23. Generation of the {M-dppf} compounds lead to a slightly positive impact on the anti-leishmanial potency. Although the ferrocenyl derivatives were more active on sensitive MTB than the free ligands (MIC90 = 9.88-14.73 μM), they showed low selectivity towards the pathogen. Related to the mechanism of action, the antiparasitic effect cannot be ascribed to an interference of the compounds with the thiol-redox homeostasis of the pathogen. Fluorescence measurements pointed at DNA as a probable target of the new compounds. [Pt(Trop)(dppf)](PF6) and [Pt(Hino)(dppf)](PF6) could be considered prospective anti-T. brucei agents that deserve further research.
Collapse
Affiliation(s)
- Feriannys Rivas
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Andrea Medeiros
- Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Esteban Rodríguez Arce
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay
| | | | | | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
31
|
3-pyridyl inhibitors with novel activity against Trypanosoma cruzi reveal in vitro profiles can aid prediction of putative cytochrome P450 inhibition. Sci Rep 2018; 8:4901. [PMID: 29559688 PMCID: PMC5861127 DOI: 10.1038/s41598-018-22043-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/09/2018] [Indexed: 01/04/2023] Open
Abstract
Using high throughput, high-content imaging, a proprietary library was screened against intracellular Trypanosoma cruzi amastigotes to identify compounds with novel activity against the parasite. Five inhibitors were discovered, which did not clear all of the parasites from 3T3 host cells following 48 hours exposure, and were identified as putative T. cruzi cytochrome P450 (TcCYP51) inhibitors. TcCYP51 inhibitors are not favourable for the drug discovery pipeline for treatment of Chagas Disease infection due to clinical and pre-clinical failures. To determine if there were in vitro inhibitory characteristics of these compounds that could aid the prediction of TcCYP51 inhibition further profiling using imaging and fluorescence based assays was undertaken. It was determined that in vitro profiles, coupled with analysis of chemical structure, could support the early prediction of putative TcCYP51 activity and thus enable early de-prioritisation of these compounds from progression through the drug discovery pipeline.
Collapse
|
32
|
Franco J, Scarone L, Comini MA. Drugs and Drug Resistance in African and American Trypanosomiasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Zulfiqar B, Jones AJ, Sykes ML, Shelper TB, Davis RA, Avery VM. Screening a Natural Product-Based Library against Kinetoplastid Parasites. Molecules 2017; 22:E1715. [PMID: 29023425 PMCID: PMC6151456 DOI: 10.3390/molecules22101715] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
Kinetoplastid parasites cause vector-borne parasitic diseases including leishmaniasis, human African trypanosomiasis (HAT) and Chagas disease. These Neglected Tropical Diseases (NTDs) impact on some of the world's lowest socioeconomic communities. Current treatments for these diseases cause severe toxicity and have limited efficacy, highlighting the need to identify new treatments. In this study, the Davis open access natural product-based library was screened against kinetoplastids (Leishmania donovani DD8, Trypanosoma brucei brucei and Trypanosoma cruzi) using phenotypic assays. The aim of this study was to identify hit compounds, with a focus on improved efficacy, selectivity and potential to target several kinetoplastid parasites. The IC50 values of the natural products were obtained for L. donovani DD8, T. b. brucei and T. cruzi in addition to cytotoxicity against the mammalian cell lines, HEK-293, 3T3 and THP-1 cell lines were determined to ascertain parasite selectivity. Thirty-one compounds were identified with IC50 values of ≤ 10 µM against the kinetoplastid parasites tested. Lissoclinotoxin E (1) was the only compound identified with activity across all three investigated parasites, exhibiting IC50 values < 5 µM. In this study, natural products with the potential to be new chemical starting points for drug discovery efforts for kinetoplastid diseases were identified.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Amy J Jones
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Melissa L Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Todd B Shelper
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Rohan A Davis
- Natural Product Chemistry, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
34
|
BG126 ® phytodrug improves urinary tract infection treatment with nitrofurantoin in adult women in a double-blind randomized clinical trial. J Herb Med 2017. [DOI: 10.1016/j.hermed.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Romero AH, López SE. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets. J Mol Graph Model 2017; 76:313-329. [DOI: 10.1016/j.jmgm.2017.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
|
36
|
Knubel CP, Insfran C, Martinez FF, Diaz Lujan C, Fretes RE, Theumer MG, Cervi L, Motran CC. 3-Hydroxykynurenine, a Tryptophan Metabolite Generated during the Infection, Is Active Against Trypanosoma cruzi. ACS Med Chem Lett 2017; 8:757-761. [PMID: 28740612 DOI: 10.1021/acsmedchemlett.7b00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/12/2017] [Indexed: 11/30/2022] Open
Abstract
The antiparasitic activity of 3-hydroxykynurenine (3-HK), one of the major tryptophan catabolites of the kynurenine pathway, against both Trypanosoma cruzi evolutive forms that are important for human infection, trypomastigotes (Tps) and amastigotes (Am), possible targets in the parasite and the drug toxicity to mammalian cells have been investigated. 3-HK showed a potent activity against Am with IC50 values in the micromolar concentration range, while the IC50 values to cause Tps death was ∼6000-times higher, indicating that the replicative form present in the vertebrate hosts is much more susceptible to 3-HK than bloodstream Tps. In addition, 3-HK showed activity against Tps and Am, at concentrations that did not exhibit toxicity to mammalian cells. Ultrastructural analysis and flow cytometry studies indicated that Am and Tps mitochondrion and nuclei contain 3-HK targets. The potency and selectivity of 3-HK, which is generated during T. cruzi infection in human and mice, suggest that 3-HK may be a suitable candidate for drug research and development for Chagas disease.
Collapse
Affiliation(s)
- Carolina P. Knubel
- Centro de Investigaciones
en Bioquímica Clínica e Inmunología (CIBICI),
CONICET, Departamento de Bioquímica Clínica, Facultad
de Ciencias Químicas, Universidad Nacional de Córdoba,
Haya de la Torre y Medina Allende, Ciudad Universitaria de Córdoba, Córdoba 5000, Argentina
| | - Constanza Insfran
- Centro de Investigaciones
en Bioquímica Clínica e Inmunología (CIBICI),
CONICET, Departamento de Bioquímica Clínica, Facultad
de Ciencias Químicas, Universidad Nacional de Córdoba,
Haya de la Torre y Medina Allende, Ciudad Universitaria de Córdoba, Córdoba 5000, Argentina
| | - Fernando F. Martinez
- Centro de Investigaciones
en Bioquímica Clínica e Inmunología (CIBICI),
CONICET, Departamento de Bioquímica Clínica, Facultad
de Ciencias Químicas, Universidad Nacional de Córdoba,
Haya de la Torre y Medina Allende, Ciudad Universitaria de Córdoba, Córdoba 5000, Argentina
| | - Cintia Diaz Lujan
- Instituto de Biología Celular, Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Ricardo E. Fretes
- Instituto de Biología Celular, Facultad de Medicina, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Martin G. Theumer
- Centro de Investigaciones
en Bioquímica Clínica e Inmunología (CIBICI),
CONICET, Departamento de Bioquímica Clínica, Facultad
de Ciencias Químicas, Universidad Nacional de Córdoba,
Haya de la Torre y Medina Allende, Ciudad Universitaria de Córdoba, Córdoba 5000, Argentina
| | - Laura Cervi
- Centro de Investigaciones
en Bioquímica Clínica e Inmunología (CIBICI),
CONICET, Departamento de Bioquímica Clínica, Facultad
de Ciencias Químicas, Universidad Nacional de Córdoba,
Haya de la Torre y Medina Allende, Ciudad Universitaria de Córdoba, Córdoba 5000, Argentina
| | - Claudia C. Motran
- Centro de Investigaciones
en Bioquímica Clínica e Inmunología (CIBICI),
CONICET, Departamento de Bioquímica Clínica, Facultad
de Ciencias Químicas, Universidad Nacional de Córdoba,
Haya de la Torre y Medina Allende, Ciudad Universitaria de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
37
|
Aryl- or heteroaryl-based hydrazinylphthalazine derivatives as new potential antitrypanosomal agents. Bioorg Chem 2017; 72:51-56. [DOI: 10.1016/j.bioorg.2017.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/14/2017] [Accepted: 03/13/2017] [Indexed: 11/23/2022]
|
38
|
Sueth-Santiago V, Decote-Ricardo D, Morrot A, Freire-de-Lima CG, Lima MEF. Challenges in the chemotherapy of Chagas disease: Looking for possibilities related to the differences and similarities between the parasite and host. World J Biol Chem 2017; 8:57-80. [PMID: 28289519 PMCID: PMC5329715 DOI: 10.4331/wjbc.v8.i1.57] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/30/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
Almost 110 years after the first studies by Dr. Carlos Chagas describing an infectious disease that was named for him, Chagas disease remains a neglected illness and a death sentence for infected people in poor countries. This short review highlights the enormous need for new studies aimed at the development of novel and more specific drugs to treat chagasic patients. The primary tool for facing this challenge is deep knowledge about the similarities and differences between the parasite and its human host.
Collapse
|
39
|
Hackler A, Patrick SL, Kahney EW, Flaherty DP, Sharlow ER, Morris JC, Golden JE. Antiparasitic lethality of sulfonamidebenzamides in kinetoplastids. Bioorg Med Chem Lett 2017; 27:755-758. [PMID: 28119024 DOI: 10.1016/j.bmcl.2017.01.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/26/2022]
Abstract
A sulfonamidebenzamide series was assessed for anti-kinetoplastid parasite activity based on structural similarity to the antiparasitic drug, nifurtimox. Through structure-activity optimization, derivatives with limited mammalian cell toxicity and increased potency toward African trypanosomes and Leishmania promastigotes were developed. Compound 22 had the best potency against the trypanosome (EC50=0.010μM) while several compounds showed ∼10-fold less potency against Leishmania promastigotes without impacting mammalian cells (EC50>25μM). While the chemotype originated from an unrelated optimization program aimed at selectively activating an apoptotic pathway in mammalian cancer cells, our preliminary results suggest that a distinct mechanism of action from that observed in mammalian cells is responsible for the promising activity observed in parasites.
Collapse
Affiliation(s)
- Amber Hackler
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Stephen L Patrick
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Elizabeth W Kahney
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Daniel P Flaherty
- KU Specialized Chemistry Center, University of Kansas, Lawrence, KS 66047, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA 22908, USA
| | - James C Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Jennifer E Golden
- KU Specialized Chemistry Center, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
40
|
Romero AH, Medina R, Alcala A, García-Marchan Y, Núñez-Duran J, Leañez J, Mijoba A, Ciangherotti C, Serrano-Martín X, López SE. Design, synthesis, structure-activity relationship and mechanism of action studies of a series of 4-chloro-1-phthalazinyl hydrazones as a potent agent against Leishmania braziliensis. Eur J Med Chem 2017; 127:606-620. [DOI: 10.1016/j.ejmech.2017.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/29/2022]
|
41
|
The characterization of anti-T. cruzi activity relationships between ferrocenyl, cyrhetrenyl complexes and ROS release. Biometals 2016; 29:743-9. [DOI: 10.1007/s10534-016-9953-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/09/2016] [Indexed: 01/18/2023]
|
42
|
Biological approaches to characterize the mode of action of two 5-nitroindazolinone prototypes on Trypanosoma cruzi bloodstream trypomastigotes. Parasitology 2016; 143:1469-78. [DOI: 10.1017/s0031182016001098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
SUMMARYThe phenotypic activity of two 5-nitroindazolinones, i.e. 2-benzyl-1-propyl (22) and 2-benzyl-1-butyl (24) derivatives, previously proposed as anti-Trypanosoma cruzi prototypes, was presently assayed on bloodstream trypomastigotes (BT) of the moderately drug-resistant Y strain. Further exploration of putative targets and cellular mechanisms involved in their activity was also carried out. Therefore, transmission electron microscopy, high-resolution respirometry and flow cytometry procedures were performed on BT treated for up to 24 h with the respective EC50 value of each derivative. Results demonstrated that although 22 and 24 were not as active as benznidazole in this in vitro assay on BT, both compounds triggered important damages in T. cruzi that lead to the parasite death. Ultrastructural alterations included shedding events, detachment of plasma membrane and nuclear envelope, loss of mitochondrial integrity, besides the occurrence of a large number of intracellular vesicles and profiles of endoplasmic reticulum surrounding cytoplasmic organelles such as mitochondrion. Moreover, both derivatives affected mitochondrion leading to this organelle dysfunction, as reflected by the inhibition in oxygen consumption and the loss of mitochondrial membrane potential. Altogether, the findings exposed in the present study propose autophagic processes and mitochondrial machinery as part of the mode of action of both 5-nitroindazolinones 22 and 24 on T. cruzi trypomastigotes.
Collapse
|
43
|
Identification of Novel Chemical Scaffolds Inhibiting Trypanothione Synthetase from Pathogenic Trypanosomatids. PLoS Negl Trop Dis 2016; 10:e0004617. [PMID: 27070550 PMCID: PMC4829233 DOI: 10.1371/journal.pntd.0004617] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/18/2016] [Indexed: 11/30/2022] Open
Abstract
Background The search for novel chemical entities targeting essential and parasite-specific pathways is considered a priority for neglected diseases such as trypanosomiasis and leishmaniasis. The thiol-dependent redox metabolism of trypanosomatids relies on bis-glutathionylspermidine [trypanothione, T(SH)2], a low molecular mass cosubstrate absent in the host. In pathogenic trypanosomatids, a single enzyme, trypanothione synthetase (TryS), catalyzes trypanothione biosynthesis, which is indispensable for parasite survival. Thus, TryS qualifies as an attractive drug target candidate. Methodology/Principal Finding A library composed of 144 compounds from 7 different families and several singletons was screened against TryS from three major pathogen species (Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum). The screening conditions were adjusted to the TryS´ kinetic parameters and intracellular concentration of substrates corresponding to each trypanosomatid species, and/or to avoid assay interference. The screening assay yielded suitable Z’ and signal to noise values (≥0.85 and ~3.5, respectively), and high intra-assay reproducibility. Several novel chemical scaffolds were identified as low μM and selective tri-tryp TryS inhibitors. Compounds displaying multi-TryS inhibition (N,N'-bis(3,4-substituted-benzyl) diamine derivatives) and an N5-substituted paullone (MOL2008) halted the proliferation of infective Trypanosoma brucei (EC50 in the nM range) and Leishmania infantum promastigotes (EC50 = 12 μM), respectively. A bis-benzyl diamine derivative and MOL2008 depleted intracellular trypanothione in treated parasites, which confirmed the on-target activity of these compounds. Conclusions/Significance Novel molecular scaffolds with on-target mode of action were identified as hit candidates for TryS inhibition. Due to the remarkable species-specificity exhibited by tri-tryp TryS towards the compounds, future optimization and screening campaigns should aim at designing and detecting, respectively, more potent and broad-range TryS inhibitors. Parasites from the genus Trypanosoma and Leishmania are etiologic agents for a group of neglected diseases with high morbidity and mortality rates in the developing world. Inasmuch as vaccine development is hampered by the successful mechanisms employed by the pathogens to evade the host immune response, chemotherapy remains as a safe option to fight these diseases. However, new drugs with better pharmacological performance (i.e. safety, efficacy and ease of administration) than those in current use are urgently needed. The thiol-redox metabolism of trypanosomatids offers an excellent opportunity for the development of more selective and efficacious medicines because it depends on a molecule, trypanothione (a bis-glutathionyl derivative of spermidine), unique and indispensable to the pathogens. Here we report the identification of novel inhibitors of trypanothione synthetase from three major trypanosomatid species of medical and veterinary relevance. Although highly conserved in sequence, trypanothione synthetases display significant species-specifity towards compounds, pointing to structural differences as determinants of ligand selectivity. Most of the active compounds presented two-digit μM inhibitory activity and serve as primary scaffolds to develop more potent inhibitors. Among them, N,N'-bis(benzyl)-substituted diamine and paullone derivatives are interesting candidates because of their potent and/or selective anti-trypanosomal and anti-trypanothione synthetase activity.
Collapse
|
44
|
Fonseca-Berzal C, Ibáñez-Escribano A, Reviriego F, Cumella J, Morales P, Jagerovic N, Nogal-Ruiz JJ, Escario JA, da Silva PB, Soeiro MDNC, Gómez-Barrio A, Arán VJ. Antichagasic and trichomonacidal activity of 1-substituted 2-benzyl-5-nitroindazolin-3-ones and 3-alkoxy-2-benzyl-5-nitro-2H-indazoles. Eur J Med Chem 2016; 115:295-310. [PMID: 27017556 DOI: 10.1016/j.ejmech.2016.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/26/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
Abstract
Two series of new 5-nitroindazole derivatives, 1-substituted 2-benzylindazolin-3-ones (6-29, series A) and 3-alkoxy-2-benzyl-2H-indazoles (30-37, series B), containing differently functionalized chains at position 1 and 3, respectively, have been synthesized starting from 2-benzyl-5-nitroindazolin-3-one 5, and evaluated against the protozoan parasites Trypanosoma cruzi and Trichomonas vaginalis, etiological agents of Chagas disease and trichomonosis, respectively. Many indazolinones of series A were efficient against different morphological forms of T. cruzi CL Brener strain (compounds 6, 7, 9, 10 and 19-21: IC50 = 1.58-4.19 μM for epimastigotes; compounds 6, 19-21 and 24: IC50 = 0.22-0.54 μM for amastigotes) being as potent as the reference drug benznidazole. SAR analysis suggests that electron-donating groups at position 1 of indazolinone ring are associated with an improved antichagasic activity. Moreover, compounds of series A displayed low unspecific toxicities against an in vitro model of mammalian cells (fibroblasts), which were reflected in high values of the selectivity indexes (SI). Compound 20 was also very efficient against amastigotes from Tulahuen and Y strains of T. cruzi (IC50 = 0.81 and 0.60 μM, respectively), showing low toxicity towards cardiac cells (LC50 > 100 μM). In what concerns compounds of series B, some of them displayed moderate activity against trophozoites of a metronidazole-sensitive isolate of T. vaginalis (35 and 36: IC50 = 9.82 and 7.25 μM, respectively), with low unspecific toxicity towards Vero cells. Compound 36 was also active against a metronidazole-resistant isolate (IC50 = 9.11 μM) and can thus be considered a good prototype for the development of drugs directed to T. vaginalis resistant to 5-nitroimidazoles.
Collapse
Affiliation(s)
- Cristina Fonseca-Berzal
- Moncloa Campus of International Excellence (UCM-UPM & CSIC), Spain; Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Alexandra Ibáñez-Escribano
- Moncloa Campus of International Excellence (UCM-UPM & CSIC), Spain; Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Felipe Reviriego
- Moncloa Campus of International Excellence (UCM-UPM & CSIC), Spain; Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), c/Juan de la Cierva 3, 28006, Madrid, Spain
| | - José Cumella
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), c/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Paula Morales
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), c/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), c/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Juan José Nogal-Ruiz
- Moncloa Campus of International Excellence (UCM-UPM & CSIC), Spain; Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - José Antonio Escario
- Moncloa Campus of International Excellence (UCM-UPM & CSIC), Spain; Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Patricia Bernardino da Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21040-900, Rio de Janeiro, Brazil
| | - Maria de Nazaré C Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, 21040-900, Rio de Janeiro, Brazil
| | - Alicia Gómez-Barrio
- Moncloa Campus of International Excellence (UCM-UPM & CSIC), Spain; Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Vicente J Arán
- Moncloa Campus of International Excellence (UCM-UPM & CSIC), Spain; Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), c/Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
45
|
Lazarin-Bidóia D, Desoti VC, Martins SC, Ribeiro FM, Ud Din Z, Rodrigues-Filho E, Ueda-Nakamura T, Nakamura CV, de Oliveira Silva S. Dibenzylideneacetones Are Potent Trypanocidal Compounds That Affect the Trypanosoma cruzi Redox System. Antimicrob Agents Chemother 2016; 60:890-903. [PMID: 26596953 PMCID: PMC4750705 DOI: 10.1128/aac.01360-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/19/2015] [Indexed: 12/30/2022] Open
Abstract
Despite ongoing efforts, the available treatments for Chagas' disease are still unsatisfactory, especially in the chronic phase of the disease. Our previous study reported the strong trypanocidal activity of the dibenzylideneacetones A3K2A1 and A3K2A3 against Trypanosoma cruzi (Z. Ud Din, T. P. Fill, F. F. de Assis, D. Lazarin-Bidóia, V. Kaplum, F. P. Garcia, C. V. Nakamura, K. T. de Oliveira, and E. Rodrigues-Filho, Bioorg Med Chem 22:1121-1127, 2014, http://dx.doi.org/10.1016/j.bmc.2013.12.020). In the present study, we investigated the mechanisms of action of these compounds that are involved in parasite death. We showed that A3K2A1 and A3K2A3 induced oxidative stress in the three parasitic forms, especially trypomastigotes, reflected by an increase in oxidant species production and depletion of the endogenous antioxidant system. This oxidative imbalance culminated in damage in essential cell structures of T. cruzi, reflected by lipid peroxidation and DNA fragmentation. Consequently, A3K2A1 and A3K2A3 induced vital alterations in T. cruzi, leading to parasite death through the three pathways, apoptosis, autophagy, and necrosis.
Collapse
Affiliation(s)
- Danielle Lazarin-Bidóia
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Vânia Cristina Desoti
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Solange Cardoso Martins
- Programa de Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Fabianne Martins Ribeiro
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Zia Ud Din
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Edson Rodrigues-Filho
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Tânia Ueda-Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil Programa de Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Sueli de Oliveira Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
46
|
Machado-Silva A, Cerqueira PG, Grazielle-Silva V, Gadelha FR, Peloso EDF, Teixeira SMR, Machado CR. How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:8-22. [DOI: 10.1016/j.mrrev.2015.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
|
47
|
Farias CF, Massaoka MH, Girola N, Azevedo RA, Ferreira AK, Jorge SD, Tavares LC, Figueiredo CR, Travassos LR. Benzofuroxan derivatives N-Br and N-I induce intrinsic apoptosis in melanoma cells by regulating AKT/BIM signaling and display anti metastatic activity in vivo. BMC Cancer 2015; 15:807. [PMID: 26503030 PMCID: PMC4621849 DOI: 10.1186/s12885-015-1835-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022] Open
Abstract
Background Malignant melanoma is an aggressive type of skin cancer, and despite recent advances in treatment, the survival rate of the metastatic form remains low. Nifuroxazide analogues are drugs based on the substitution of the nitrofuran group by benzofuroxan, in view of the pharmacophore similarity of the nitro group, improving bioavailability, with higher intrinsic activity and less toxicity. Benzofuroxan activity involves the intracellular production of free-radical species. In the present work, we evaluated the antitumor effects of different benzofuroxan derivatives in a murine melanoma model. Methods B16F10-Nex2 melanoma cells were used to investigate the antitumor effects of Benzofuroxan derivatives in vitro and in a syngeneic melanoma model in C57Bl/6 mice. Cytotoxicity, morphological changes and reactive oxygen species (ROS) were assessed by a diphenyltetrasolium reagent, optical and fluorescence microscopy, respectively. Annexin-V binding and mitochondrial integrity were analyzed by flow cytometry. Western blotting and colorimetry identified cell signaling proteins. Results Benzofuroxan N-Br and N-I derivatives were active against murine and human tumor cell lines, exerting significant protection against metastatic melanoma in a syngeneic model. N-Br and N-I induce apoptosis in melanoma cells, evidenced by specific morphological changes, DNA condensation and degradation, and phosphatidylserine translocation in the plasma membrane. The intrinsic mitochondrial pathway in B16F10-Nex2 cells is suggested owing to reduced outer membrane potential in mitochondria, followed by caspase −9, −3 activation and cleavage of PARP. The cytotoxicity of N-Br and N-I in B16F10-Nex2 cells is mediated by the generation of ROS, inhibited by pre-incubation of the cells with N-acetylcysteine (NAC). The induction of ROS by N-Br and N-I resulted in the inhibition of AKT activation, an important molecule related to tumor cell survival, followed by upregulation of BIM. Conclusion We conclude that N-Br and N-I are promising agents aiming at cancer treatment. They may be useful in melanoma therapy as inducers of intrinsic apoptosis and by exerting significant antitumor activity against metastatic melanoma, as presently shown in syngeneic mice.
Collapse
Affiliation(s)
- C F Farias
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Rua Botucatu 862, 8 andar, São Paulo, SP, 04023-062, Brazil.
| | - M H Massaoka
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Rua Botucatu 862, 8 andar, São Paulo, SP, 04023-062, Brazil.
| | - N Girola
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Rua Botucatu 862, 8 andar, São Paulo, SP, 04023-062, Brazil.
| | - R A Azevedo
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - A K Ferreira
- Experimental Physiopathology, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | - S D Jorge
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - L C Tavares
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, SP, Brazil.
| | - C R Figueiredo
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Rua Botucatu 862, 8 andar, São Paulo, SP, 04023-062, Brazil.
| | - L R Travassos
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Rua Botucatu 862, 8 andar, São Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
48
|
Cortes LA, Castro L, Pesce B, Maya JD, Ferreira J, Castro-Castillo V, Parra E, Jara JA, López-Muñoz R. Novel Gallate Triphenylphosphonium Derivatives with Potent Antichagasic Activity. PLoS One 2015; 10:e0136852. [PMID: 26317199 PMCID: PMC4552745 DOI: 10.1371/journal.pone.0136852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/16/2015] [Indexed: 11/23/2022] Open
Abstract
Chagas disease is one of the most neglected tropical diseases in the world, affecting nearly 15 million people, primarily in Latin America. Only two drugs are used for the treatment of this disease, nifurtimox and benznidazole. These drugs have limited efficacy and frequently induce adverse effects, limiting their usefulness. Consequently, new drugs must be found. In this study, we demonstrated the in vitro trypanocidal effects of a series of four gallic acid derivatives characterized by a gallate group linked to a triphenylphosphonium (TPP+) moiety (a delocalized cation) via a hydrocarbon chain of 8, 10, 11, or 12 atoms (TPP+-C8, TPP+-C10, TPP+-C11, and TPP+-C12, respectively). We analyzed parasite viability in isolated parasites (by MTT reduction and flow cytometry) and infected mammalian cells using T. cruzi Y strain trypomastigotes. Among the four derivatives, TPP+-C10 and TPP+-C12 were the most potent in both models, with EC50 values (in isolated parasites) of 1.0 ± 0.6 and 1.0 ± 0.7 μM, respectively, and were significantly more potent than nifurtimox (EC50 = 4.1 ± 0.6 μM). At 1 μM, TPP+-C10 and TPP+-C12 induced markers of cell death, such as phosphatidylserine exposure and propidium iodide permeabilization. In addition, at 1 μM, TPP+-C10 and TPP+-C12 significantly decreased the number of intracellular amastigotes (TPP+-C10: 24.3%, TPP+-C12: 19.0% of control measurements, as measured by DAPI staining) and the parasite’s DNA load (C10: 10%, C12: 13% of control measurements, as measured by qPCR). Based on the previous mode of action described for these compounds in cancer cells, we explored their mitochondrial effects in isolated trypomastigotes. TPP+-C10 and TPP+-C12 were the most potent compounds, significantly altering mitochondrial membrane potential at 1 μM (measured by JC-1 fluorescence) and inducing mitochondrial transition pore opening at 5 μM. Taken together, these results indicate that the TPP+-C10 and TPP+-C12 derivatives of gallic acid are promising trypanocidal agents with mitochondrial activity.
Collapse
Affiliation(s)
- Leonel A. Cortes
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena Castro
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Bárbara Pesce
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan D. Maya
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Ferreira
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Vicente Castro-Castillo
- Departamento de Química, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Eduardo Parra
- Laboratory of Experimental Biomedicine, University of Tarapacá, Iquique, Chile
| | - José A. Jara
- Unidad de Farmacología y Farmacogenética, ICOD, Facultad de Odontología, Universidad de Chile, Santiago, Chile
- * E-mail: (RLM), (JAJ)
| | - Rodrigo López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- * E-mail: (RLM), (JAJ)
| |
Collapse
|
49
|
Kaiser M, Mäser P, Tadoori LP, Ioset JR, Brun R. Antiprotozoal Activity Profiling of Approved Drugs: A Starting Point toward Drug Repositioning. PLoS One 2015; 10:e0135556. [PMID: 26270335 PMCID: PMC4535766 DOI: 10.1371/journal.pone.0135556] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022] Open
Abstract
Neglected tropical diseases cause significant morbidity and mortality and are a source of poverty in endemic countries. Only a few drugs are available to treat diseases such as leishmaniasis, Chagas’ disease, human African trypanosomiasis and malaria. Since drug development is lengthy and expensive, a drug repurposing strategy offers an attractive fast-track approach to speed up the process. A set of 100 registered drugs with drug repositioning potential for neglected diseases was assembled and tested in vitro against four protozoan parasites associated with the aforementioned diseases. Several drugs and drug classes showed in vitro activity in those screening assays. The results are critically reviewed and discussed in the perspective of a follow-up drug repositioning strategy where R&D has to be addressed with limited resources.
Collapse
Affiliation(s)
- Marcel Kaiser
- Parasite Chemotherapy, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Pascal Mäser
- Parasite Chemotherapy, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | - Reto Brun
- Parasite Chemotherapy, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
50
|
Marín C, Ramírez-Macías I, Rosales MJ, Muro B, Reviriego F, Navarro P, Arán VJ, Sánchez-Moreno M. In vitro leishmanicidal activity of 1,3-disubstituted 5-nitroindazoles. Acta Trop 2015; 148:170-8. [PMID: 25956673 DOI: 10.1016/j.actatropica.2015.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 01/09/2023]
Abstract
The antiprotozoal activity of some indazole-derived amines (2, 3, 5-8) as well as that of some simple structurally related 3-alkoxy-1-alkyl-5-nitroindazoles (1, 4) against promastigote and amastigote forms of Leishmania infantum and Leishmania braziliensis is reported. In some cases, these compounds showed in vitro activities against the different morphological forms of Leishmania similar to or higher than those of the reference drug glucantime; this fact, along with low unspecific cytotoxicities against macrophages shown by some of them, led to good selectivity indexes (SI). The high efficiency of some 5-nitroindazoles against the mentioned protozoa was confirmed by further in vitro studies on infection rates. Complementary analyses by (1)H NMR of the changes on the metabolites excreted by parasites after treatment with the more active indazole derivatives in many cases showed the decreased excretion of succinate and increased levels of acetate, lactate and alanine, as well as, in some cases, the appearance of glycine and pyruvate as new metabolites. Damage caused by indazoles at the glycosomal or mitochondrial level are consistent with these metabolic changes as well as with the huge ultrastructural alterations observed by transmission electron microscopy (TEM), especially affecting the mitochondria and other cytoplasmic organelles.
Collapse
Affiliation(s)
- Clotilde Marín
- Departamento de Parasitología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | | | - María José Rosales
- Departamento de Parasitología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Beatriz Muro
- Instituto de Química Médica (IQM), CSIC, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Felipe Reviriego
- Instituto de Química Médica (IQM), CSIC, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Pilar Navarro
- Instituto de Química Médica (IQM), CSIC, c/Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Vicente J Arán
- Instituto de Química Médica (IQM), CSIC, c/Juan de la Cierva 3, E-28006 Madrid, Spain.
| | - Manuel Sánchez-Moreno
- Departamento de Parasitología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| |
Collapse
|