1
|
Christensen NV, Laustsen C, Bertelsen LB. Differentiating leukemia subtypes based on metabolic signatures using hyperpolarized 13C NMR. NMR IN BIOMEDICINE 2024; 37:e5264. [PMID: 39319772 DOI: 10.1002/nbm.5264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Leukemia is a group of blood cancers that are classified in four major classes. Within these four classes, many different subtypes exists with similar origin, genetic mutations, and level of maturity, which can make them difficult to distinguish. Despite their similarities, they might respond differently to treatment, and therefore distinguishing between them is of crucial importance. A deranged metabolic phenotype (Warburg effect) is often seen in cancer cells, leukemia cells included, and is increasingly a target for improved diagnosis and treatment. In this study, hyperpolarized 13C NMR spectroscopy was used to characterize the metabolic signatures of the six leukemia cell lines ML-1, CCRF-CEM, THP-1, MOLT-4, HL-60, and K562. This was done using [1-13C]pyruvate and [1-13C]alanine as bioprobes for downstream metabolite quantification and kinetic analysis on cultured cells with and without 2-deoxy-D-glucose treatment. The metabolic signatures of similar leukemia subtypes could be readily distinguished. This includes ML-1 and THP-1, which are of the similar M4 and M5 AML subtypes, CCRF-CEM and MOLT-4, which are of the similar T-ALL lineage at different maturation states, and HL-60 and K562, which are of the closely related M1 and M2 AML subtypes. The data presented here demonstrate the potential of hyperpolarized 13C NMR spectroscopy as a method to differentiate between leukemia subtypes of similar origin. Combining this method with bioreactor setups could potentially allow for better leukemia disease management as metabolic signatures could be acquired from a single biopsy through repeated experimentation and intervention.
Collapse
Affiliation(s)
| | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Annecke HTP, Eidelpes R, Feyrer H, Ilgen J, Gürdap CO, Dasgupta R, Petzold K. Optimising in-cell NMR acquisition for nucleic acids. JOURNAL OF BIOMOLECULAR NMR 2024:10.1007/s10858-024-00448-5. [PMID: 39162911 DOI: 10.1007/s10858-024-00448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Understanding the structure and function of nucleic acids in their native environment is crucial to structural biology and one focus of in-cell NMR spectroscopy. Many challenges hamper in-cell NMR in human cell lines, e.g. sample decay through cell death and RNA degradation. The resulting low signal intensities and broad line widths limit the use of more complex NMR experiments, reducing the possible structural and dynamic information that can be extracted. Here, we optimize the detection of imino proton signals, indicators of base-pairing and therefore secondary structure, of a double-stranded DNA oligonucleotide in HeLa cells, using selective excitation. We demonstrate the reproducible quantification of in-cell selective longitudinal relaxation times (selT1), which are reduced compared to the in vitro environment, as a result of interactions with the complex cellular environment. By measuring the intracellular selT1, we optimize the existing proton pulse sequences, and shorten measurement time whilst enhancing the signal gained per unit of time. This exemplifies an advantage of selective excitation over conventional methods like jump-return water suppression for in-cell NMR. Furthermore, important experimental controls are discussed, including intracellular quantification, supernatant control measurements, as well as the processing of lowly concentrated in-cell NMR samples. We expect that robust and fast in-cell NMR experiments of nucleic acids will facilitate the study of structure and dynamics and reveal their functional correlation.
Collapse
Affiliation(s)
- Henry T P Annecke
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Reiner Eidelpes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Hannes Feyrer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Julian Ilgen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Cenk Onur Gürdap
- Department of Women's and Children's Health, Karolinska Institutet, 171 65, Solna, Sweden
- Science for Life Laboratory, 171 65, Solna, Sweden
| | - Rubin Dasgupta
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden.
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
- Science for Life Laboratory, 171 65, Solna, Sweden.
- Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, 752 37, Uppsala, Sweden.
| |
Collapse
|
3
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
4
|
Directo D, Lee SR. Cancer Cachexia: Underlying Mechanisms and Potential Therapeutic Interventions. Metabolites 2023; 13:1024. [PMID: 37755304 PMCID: PMC10538050 DOI: 10.3390/metabo13091024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer cachexia, a multifactorial metabolic syndrome developed during malignant tumor growth, is characterized by an accelerated loss of body weight accompanied by the depletion of skeletal muscle mass. This debilitating condition is associated with muscle degradation, impaired immune function, reduced functional capacity, compromised quality of life, and diminished survival in cancer patients. Despite the lack of the known capability of fully reversing or ameliorating this condition, ongoing research is shedding light on promising preclinical approaches that target the disrupted mechanisms in the pathophysiology of cancer cachexia. This comprehensive review delves into critical aspects of cancer cachexia, including its underlying pathophysiological mechanisms, preclinical models for studying the progression of cancer cachexia, methods for clinical assessment, relevant biomarkers, and potential therapeutic strategies. These discussions collectively aim to contribute to the evolving foundation for effective, multifaceted counteractive strategies against this challenging condition.
Collapse
Affiliation(s)
| | - Sang-Rok Lee
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| |
Collapse
|
5
|
Lakhani A, Chen X, Chen LC, Khericha M, Chen YY, Park JO. Extracellular Domains of CAR Reprogram T-Cell Metabolism Without Antigen Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.533021. [PMID: 37066394 PMCID: PMC10103977 DOI: 10.1101/2023.04.03.533021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Metabolism is an indispensable part of T-cell proliferation, activation, and exhaustion, yet the metabolism of chimeric antigen receptor (CAR)-T cells remains incompletely understood. CARs are comprised of extracellular domains that determine cancer specificity, often using single-chain variable fragments (scFvs), and intracellular domains that trigger signaling upon antigen binding. Here we show that CARs differing only in the scFv reprogram T-cell metabolism differently. Even in the absence of antigens, some CARs increase proliferation and nutrient uptake in T cells. Using stable isotope tracers and mass spectrometry, we observe basal metabolic fluxes through glycolysis doubling and amino acid uptake overtaking anaplerosis in CAR-T cells harboring rituximab scFv, unlike other similar anti-CD20 scFvs. Disparate rituximab and 14g2a-based anti-GD2 CAR-T cells are similarly hypermetabolic and channel excess nutrients to nitrogen overflow metabolism. Since CAR-dependent metabolic reprogramming alters cellular energetics, nutrient utilization, and proliferation, metabolic profiling should be an integral part of CAR-T cell development.
Collapse
|
6
|
Döhla J, Kuuluvainen E, Gebert N, Amaral A, Englund JI, Gopalakrishnan S, Konovalova S, Nieminen AI, Salminen ES, Torregrosa Muñumer R, Ahlqvist K, Yang Y, Bui H, Otonkoski T, Käkelä R, Hietakangas V, Tyynismaa H, Ori A, Katajisto P. Metabolic determination of cell fate through selective inheritance of mitochondria. Nat Cell Biol 2022; 24:148-154. [PMID: 35165416 PMCID: PMC7612378 DOI: 10.1038/s41556-021-00837-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Metabolic characteristics of adult stem cells are distinct from their differentiated progeny, and cellular metabolism is emerging as a potential driver of cell fate conversions1-4. How these metabolic features are established remains unclear. Here we identified inherited metabolism imposed by functionally distinct mitochondrial age-classes as a fate determinant in asymmetric division of epithelial stem-like cells. While chronologically old mitochondria support oxidative respiration, the electron transport chain of new organelles is proteomically immature and they respire less. After cell division, selectively segregated mitochondrial age-classes elicit a metabolic bias in progeny cells, with oxidative energy metabolism promoting differentiation in cells that inherit old mitochondria. Cells that inherit newly synthesized mitochondria with low levels of Rieske iron-sulfur polypeptide 1 have a higher pentose phosphate pathway activity, which promotes de novo purine biosynthesis and redox balance, and is required to maintain stemness during early fate determination after division. Our results demonstrate that fate decisions are susceptible to intrinsic metabolic bias imposed by selectively inherited mitochondria.
Collapse
Affiliation(s)
- Julia Döhla
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emilia Kuuluvainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nadja Gebert
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ana Amaral
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna I Englund
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Svetlana Konovalova
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ella S Salminen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Rubén Torregrosa Muñumer
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kati Ahlqvist
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Yang Yang
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hien Bui
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Reijo Käkelä
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ville Hietakangas
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Alessandro Ori
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Jin ES, Lee MH, Malloy CR. 13 C NMR of glutamate for monitoring the pentose phosphate pathway in myocardium. NMR IN BIOMEDICINE 2021; 34:e4533. [PMID: 33900680 DOI: 10.1002/nbm.4533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
After administration of 13 C-labeled glucose, the activity of the pentose phosphate pathway (PPP) is often assessed by the distribution of 13 C in lactate. However, in some tissues, such as the well-oxygenated heart, the concentration of lactate may be too low for convenient analysis by NMR. Here, we examined 13 C-labeled glutamate as an alternative biomarker of the PPP in the heart. Isolated rat hearts were perfused with media containing [2,3-13 C2 ]glucose and the tissue extracts were analyzed. Metabolism of [2,3-13 C2 ]glucose yields [1,2-13 C2 ]pyruvate via glycolysis and [2,3-13 C2 ]pyruvate via the PPP. Pyruvate is in exchange with lactate or is further metabolized to glutamate through pyruvate dehydrogenase and the TCA cycle. A doublet from [4,5-13 C2 ]glutamate, indicating flux through the PPP, was readily detected in 13 C NMR of heart extracts even when the corresponding doublet from [2,3-13 C2 ]lactate was minimal. Benfotiamine, known to induce the PPP, caused an increase in production of [4,5-13 C2 ]glutamate. In rats receiving [2,3-13 C2 ]glucose, brain extracts showed well-resolved signals from both [2,3-13 C2 ]lactate and [4,5-13 C2 ]glutamate in 13 C NMR spectra. Assessment of the PPP in the brain based on glutamate had a strong linear correlation with lactate-based assessment. In summary, 13 C NMR analysis of glutamate enabled detection of the low PPP activity in isolated hearts. This analyte is an alternative to lactate for monitoring the PPP with the use of [2,3-13 C2 ]glucose.
Collapse
Affiliation(s)
- Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Min H Lee
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- VA North Texas Health Care System, Dallas, Texas, USA
| |
Collapse
|
8
|
Zhang L, Avery J, Yin A, Singh AM, Cliff TS, Yin H, Dalton S. Generation of Functional Brown Adipocytes from Human Pluripotent Stem Cells via Progression through a Paraxial Mesoderm State. Cell Stem Cell 2020; 27:784-797.e11. [DOI: 10.1016/j.stem.2020.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
|
9
|
Durano D, Di Felice F, Caldarelli F, Lukacs A, D'Alfonso A, Saliola M, Sciubba F, Miccheli A, Zambelli F, Pavesi G, Bianchi ME, Camilloni G. Histone acetylation landscape in S. cerevisiae nhp6ab mutants reflects altered glucose metabolism. Biochim Biophys Acta Gen Subj 2019; 1864:129454. [PMID: 31676292 DOI: 10.1016/j.bbagen.2019.129454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The execution of many genetic programs, influenced by environmental conditions, is epigenetically controlled. Thus, small molecules of the intermediate metabolism being precursors of most of nutrition-deriving epigenetic modifications, sense the cell surrounding environment. METHODS Here we describe histone H4K16 acetylation distribution in S. cerevisiae nhp6ab mutant, using ChIP-seq analysis; its transcription profile by RNA-seq and its metabolic features by studying the metabolome. We then intersected these three -omic approaches to unveil common crosspoints (if any). RESULTS In the nhp6ab mutant, the glucose metabolism is switched to pathways leading to Acetyl-CoA synthesis. These enhanced pathways could lead to histone hyperacetylation altering RNA transcription, particularly of those metabolic genes that maintain high Acetyl-CoA availability. CONCLUSIONS Thus, the absence of chromatin regulators like Nhp6 A and B, interferes with a regulative circular mechanism where histone modification, transcription and metabolism influence each other and contribute to clarify the more general phenomenon in which gene regulation feeds metabolic alterations on epigenetic basis. GENERAL SIGNIFICANCE This study allowed us to identify, in these two factors, a common element of regulation in metabolism and chromatin acetylation state that could represent a powerful tool to find out relationships existing between metabolism and gene expression in more complex systems.
Collapse
Affiliation(s)
- Diletta Durano
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Francesca Di Felice
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Federica Caldarelli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Andrea Lukacs
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Anna D'Alfonso
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Michele Saliola
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Fabio Sciubba
- Dipartimento di Chimica, Sapienza Università di Roma, Rome, Italy
| | - Alfredo Miccheli
- Dipartimento di Chimica, Sapienza Università di Roma, Rome, Italy
| | | | - Giulio Pavesi
- Dipartimento di Bioscienze, Università di Milano, Milan, Italy
| | - Marco E Bianchi
- Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute and San Raffaele University, Milan, Italy
| | - Giorgio Camilloni
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy; Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy; Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Italy.
| |
Collapse
|
10
|
Lee MH, Malloy CR, Corbin IR, Li J, Jin ES. Assessing the pentose phosphate pathway using [2, 3- 13 C 2 ]glucose. NMR IN BIOMEDICINE 2019; 32:e4096. [PMID: 30924572 PMCID: PMC6525052 DOI: 10.1002/nbm.4096] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 05/24/2023]
Abstract
The pentose phosphate pathway (PPP) is essential for reductive biosynthesis, antioxidant processes and nucleotide production. Common tracers such as [1,2-13 C2 ]glucose rely on detection of 13 C in lactate and require assumptions to correct natural 13 C abundance. Here, we introduce a novel and specific tracer of the PPP, [2,3-13 C2 ]glucose. 13 C NMR analysis of the resulting isotopomers is informative because [1,2-13 C2 ]lactate arises from glycolysis and [2,3-13 C2 ]lactate arises exclusively through the PPP. A correction for natural abundance is unnecessary. In rats receiving [2,3-13 C2 ]glucose, the PPP was more active in the fed versus fasted state in the liver and the heart, consistent with increased expression of key enzymes in the PPP. Both the PPP and glycolysis were substantially increased in hepatoma compared with liver. In summary, [2,3-13 C2 ]glucose and 13 C NMR simplify assessment of the PPP.
Collapse
Affiliation(s)
- Min Hee Lee
- Department of Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Craig R. Malloy
- Department of Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- VA North Texas Health Care System, Dallas, TX 75216
| | - Ian R. Corbin
- Department of Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Junjie Li
- Department of Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eunsook S. Jin
- Department of Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
11
|
Alasadi A, Chen M, Swapna GVT, Tao H, Guo J, Collantes J, Fadhil N, Montelione GT, Jin S. Effect of mitochondrial uncouplers niclosamide ethanolamine (NEN) and oxyclozanide on hepatic metastasis of colon cancer. Cell Death Dis 2018; 9:215. [PMID: 29440715 PMCID: PMC5833462 DOI: 10.1038/s41419-017-0092-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/25/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
Metabolism of cancer cells is characterized by aerobic glycolysis, or the Warburg effect. Aerobic glycolysis reduces pyruvate flux into mitochondria, preventing a complete oxidation of glucose and shunting glucose to anabolic pathways essential for cell proliferation. Here we tested a new strategy, mitochondrial uncoupling, for its potential of antagonizing the anabolic effect of aerobic glycolysis and for its potential anticancer activities. Mitochondrial uncoupling is a process that facilitates proton influx across the mitochondrial inner membrane without generating ATP, stimulating a futile cycle of acetyl- CoA oxidation. We tested two safe mitochondrial uncouplers, NEN (niclosamide ethanolamine) and oxyclozanide, on their metabolic effects and anti-cancer activities. We used metabolomic NMR to examine the effect of mitochondrial uncoupling on glucose metabolism in colon cancer MC38 cells. We further tested the anti-cancer effect of NEN and oxyclozanide in cultured cell models, APCmin/+ mouse model, and a metastatic colon cancer mouse model. Using a metabolomic NMR approach, we demonstrated that mitochondrial uncoupling promotes pyruvate influx to mitochondria and reduces various anabolic pathway activities. Moreover, mitochondrial uncoupling inhibits cell proliferation and reduces clonogenicity of cultured colon cancer cells. Furthermore, oral treatment with mitochondrial uncouplers reduces intestinal polyp formation in APCmin/+ mice, and diminishes hepatic metastasis of colon cancer cells transplanted intrasplenically. Our data highlight a unique approach for targeting cancer cell metabolism for cancer prevention and treatment, identified two prototype compounds, and shed light on the anti-cancer mechanism of niclosamide.
Collapse
Affiliation(s)
- Amer Alasadi
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
- Graduate Program of Physiology and Integrative Biology, Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Michael Chen
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - G V T Swapna
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers - The State University of New Jersey, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Hanlin Tao
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Jingjing Guo
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Juan Collantes
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Noor Fadhil
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
- Clinical and Translational Science Program, Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers - The State University of New Jersey, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Shengkan Jin
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
12
|
A key role for transketolase-like 1 in tumor metabolic reprogramming. Oncotarget 2018; 7:51875-51897. [PMID: 27391434 PMCID: PMC5239521 DOI: 10.18632/oncotarget.10429] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming, a crucial cancer hallmark, shifts metabolic pathways such as glycolysis, tricarboxylic acid cycle or lipogenesis, to enable the growth characteristics of cancer cells. Here, we provide evidence that transketolase-like 1 (TKTL1) orchestrates aerobic glycolysis, fatty acid and nucleic acid synthesis, glutamine metabolism, protection against oxidative stress and cell proliferation. Furthermore, silencing of TKTL1 reduced the levels of sphingolipids such as lactosylceramide (a sphingolipid regulating cell survival, proliferation and angiogenesis) and phosphatidylinositol (which activates PI3K/Akt/mTOR signaling). Thus, in addition to its well-known roles in glucose and amino acid metabolism, TKTL1 also regulates lipid metabolism. In conclusion, our study provides unprecedented evidence that TKTL1 plays central roles in major metabolic processes subject to reprogramming in cancer cells and thus identifies TKTL1 as a promising target for new anti-cancer therapies.
Collapse
|
13
|
Paolicchi E, Gemignani F, Krstic-Demonacos M, Dedhar S, Mutti L, Landi S. Targeting hypoxic response for cancer therapy. Oncotarget 2017; 7:13464-78. [PMID: 26859576 PMCID: PMC4924654 DOI: 10.18632/oncotarget.7229] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxic tumor microenvironment (HTM) is considered to promote metabolic changes, oncogene activation and epithelial mesenchymal transition, and resistance to chemo- and radio-therapy, all of which are hallmarks of aggressive tumor behavior. Cancer cells within the HTM acquire phenotypic properties that allow them to overcome the lack of energy and nutrients supply within this niche. These phenotypic properties include activation of genes regulating glycolysis, glucose transport, acidosis regulators, angiogenesis, all of which are orchestrated through the activation of the transcription factor, HIF1A, which is an independent marker of poor prognosis. Moreover, during the adaptation to a HTM cancer cells undergo deep changes in mitochondrial functions such as “Warburg effect” and the “reverse Warburg effect”. This review aims to provide an overview of the characteristics of the HTM, with particular focus on novel therapeutic strategies currently in clinical trials, targeting the adaptive response to hypoxia of cancer cells.
Collapse
Affiliation(s)
- Elisa Paolicchi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| | | | - Marija Krstic-Demonacos
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency and Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luciano Mutti
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Stefano Landi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Cliff TS, Wu T, Boward BR, Yin A, Yin H, Glushka JN, Prestegaard JH, Dalton S. MYC Controls Human Pluripotent Stem Cell Fate Decisions through Regulation of Metabolic Flux. Cell Stem Cell 2017; 21:502-516.e9. [PMID: 28965765 DOI: 10.1016/j.stem.2017.08.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/27/2017] [Accepted: 08/27/2017] [Indexed: 01/07/2023]
Abstract
As human pluripotent stem cells (hPSCs) exit pluripotency, they are thought to switch from a glycolytic mode of energy generation to one more dependent on oxidative phosphorylation. Here we show that, although metabolic switching occurs during early mesoderm and endoderm differentiation, high glycolytic flux is maintained and, in fact, essential during early ectoderm specification. The elevated glycolysis observed in hPSCs requires elevated MYC/MYCN activity. Metabolic switching during endodermal and mesodermal differentiation coincides with a reduction in MYC/MYCN and can be reversed by ectopically restoring MYC activity. During early ectodermal differentiation, sustained MYCN activity maintains the transcription of "switch" genes that are rate-limiting for metabolic activity and lineage commitment. Our work, therefore, shows that metabolic switching is lineage-specific and not a required step for exit of pluripotency in hPSCs and identifies MYC and MYCN as developmental regulators that couple metabolism to pluripotency and cell fate determination.
Collapse
Affiliation(s)
- Timothy S Cliff
- Department of Biochemistry and Molecular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA; Center for Molecular Medicine, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Tianming Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA; Center for Molecular Medicine, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Benjamin R Boward
- Department of Biochemistry and Molecular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA; Center for Molecular Medicine, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Amelia Yin
- Department of Biochemistry and Molecular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA; Center for Molecular Medicine, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Hang Yin
- Department of Biochemistry and Molecular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA; Center for Molecular Medicine, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - John N Glushka
- Department of Biochemistry and Molecular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - James H Prestegaard
- Department of Biochemistry and Molecular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA; Center for Molecular Medicine, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA.
| |
Collapse
|
15
|
Pandey R, Caflisch L, Lodi A, Brenner AJ, Tiziani S. Metabolomic signature of brain cancer. Mol Carcinog 2017; 56:2355-2371. [PMID: 28618012 DOI: 10.1002/mc.22694] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/17/2022]
Abstract
Despite advances in surgery and adjuvant therapy, brain tumors represent one of the leading causes of cancer-related mortality and morbidity in both adults and children. Gliomas constitute about 60% of all cerebral tumors, showing varying degrees of malignancy. They are difficult to treat due to dismal prognosis and limited therapeutics. Metabolomics is the untargeted and targeted analyses of endogenous and exogenous small molecules, which charact erizes the phenotype of an individual. This emerging "omics" science provides functional readouts of cellular activity that contribute greatly to the understanding of cancer biology including brain tumor biology. Metabolites are highly informative as a direct signature of biochemical activity; therefore, metabolite profiling has become a promising approach for clinical diagnostics and prognostics. The metabolic alterations are well-recognized as one of the key hallmarks in monitoring disease progression, therapy, and revealing new molecular targets for effective therapeutic intervention. Taking advantage of the latest high-throughput analytical technologies, that is, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), metabolomics is now a promising field for precision medicine and drug discovery. In the present report, we review the application of metabolomics and in vivo metabolic profiling in the context of adult gliomas and paediatric brain tumors. Analytical platforms such as high-resolution (HR) NMR, in vivo magnetic resonance spectroscopic imaging and high- and low-resolution MS are discussed. Moreover, the relevance of metabolic studies in the development of new therapeutic strategies for treatment of gliomas are reviewed.
Collapse
Affiliation(s)
- Renu Pandey
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas
| | - Laura Caflisch
- Department of Hematology and Medical oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas
| | - Andrew J Brenner
- Department of Hematology and Medical oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas.,Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
16
|
Bruntz RC, Lane AN, Higashi RM, Fan TWM. Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM). J Biol Chem 2017; 292:11601-11609. [PMID: 28592486 PMCID: PMC5512057 DOI: 10.1074/jbc.r117.776054] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. The changes in metabolism are adaptive to permit proliferation, survival, and eventually metastasis in a harsh environment. Stable isotope-resolved metabolomics (SIRM) is an approach that uses advanced approaches of NMR and mass spectrometry to analyze the fate of individual atoms from stable isotope-enriched precursors to products to deduce metabolic pathways and networks. The approach can be applied to a wide range of biological systems, including human subjects. This review focuses on the applications of SIRM to cancer metabolism and its use in understanding drug actions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Center for Environmental and Systems Biochemistry, Markey Cancer Center, Lexington, Kentucky 40506; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40506
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Markey Cancer Center, Lexington, Kentucky 40506; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40506.
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Markey Cancer Center, Lexington, Kentucky 40506; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40506
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Markey Cancer Center, Lexington, Kentucky 40506; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40506.
| |
Collapse
|
17
|
Chong M, Jayaraman A, Marin S, Selivanov V, de Atauri Carulla PR, Tennant DA, Cascante M, Günther UL, Ludwig C. Combined Analysis of NMR and MS Spectra (CANMS). Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mei Chong
- Institute of Cancer and Genome Sciences; University of Birmingham; UK
| | - Anusha Jayaraman
- Department of Biochemistry and Molecular Biology; Faculty of Biology; Universitat de Barcelona; Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biology; Faculty of Biology; Universitat de Barcelona; Spain
| | - Vitaly Selivanov
- Department of Biochemistry and Molecular Biology; Faculty of Biology; Universitat de Barcelona; Spain
| | | | - Daniel A. Tennant
- Institute of Metabolism and Systems Research; University of Birmingham; IBR West Tower Birmingham UK B15 2TT
| | - Marta Cascante
- Department of Biochemistry and Molecular Biology; Faculty of Biology; Universitat de Barcelona; Spain
| | - Ulrich L. Günther
- Institute of Cancer and Genome Sciences; University of Birmingham; UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research; University of Birmingham; IBR West Tower Birmingham UK B15 2TT
| |
Collapse
|
18
|
Chong M, Jayaraman A, Marin S, Selivanov V, de Atauri Carulla PR, Tennant DA, Cascante M, Günther UL, Ludwig C. Combined Analysis of NMR and MS Spectra (CANMS). Angew Chem Int Ed Engl 2017; 56:4140-4144. [DOI: 10.1002/anie.201611634] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Mei Chong
- Institute of Cancer and Genome Sciences; University of Birmingham; UK
| | - Anusha Jayaraman
- Department of Biochemistry and Molecular Biology; Faculty of Biology; Universitat de Barcelona; Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biology; Faculty of Biology; Universitat de Barcelona; Spain
| | - Vitaly Selivanov
- Department of Biochemistry and Molecular Biology; Faculty of Biology; Universitat de Barcelona; Spain
| | | | - Daniel A. Tennant
- Institute of Metabolism and Systems Research; University of Birmingham; IBR West Tower Birmingham, B15 2TT UK
| | - Marta Cascante
- Department of Biochemistry and Molecular Biology; Faculty of Biology; Universitat de Barcelona; Spain
| | - Ulrich L. Günther
- Institute of Cancer and Genome Sciences; University of Birmingham; UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research; University of Birmingham; IBR West Tower Birmingham, B15 2TT UK
| |
Collapse
|
19
|
Wan Q, Wang Y, Tang H. Quantitative 13C Traces of Glucose Fate in Hepatitis B Virus-Infected Hepatocytes. Anal Chem 2017; 89:3293-3299. [PMID: 28221022 DOI: 10.1021/acs.analchem.6b03200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quantitative characterization of 13C-labeled metabolites is an important part of the stable isotope tracing method widely used in metabolic flux analysis. Given the long relaxation time and low sensitivity of 13C nuclei, direct measurement of 13C-labeled metabolites using one-dimensional 13C NMR often fails to meet the demand of metabolomics studies, especially with large numbers of samples and metabolites having low abundance. Although HSQC-based 2D NMR methods have improved sensitivity with inversion detection, they are time-consuming and thus unsuitable for high-throughput absolute quantification of 13C-labeled metabolites. In this study, we developed a method for absolute quantification of 13C-labeled metabolites using naturally abundant TSP as a reference with the first increment of the HMQC pulse sequence, taking polarization transfer efficiencies into consideration. We validated this method using a mixture of 13C-labeled alanine, methionine, glucose, and formic acid together with a mixture of alanine, lactate, glycine, uridine, cytosine, and hypoxanthine, which have natural 13C abundance with known concentrations. We subsequently applied this method to analyze the flux of glucose in HepG2 cells infected with hepatitis B virus (HBV). The results showed that HBV infection increased the cellular uptake of glucose, stimulated glycolysis, and enhanced the pentose phosphate and hexosamine pathways for biosynthesis of RNA and DNA and nucleotide sugars to facilitate HBV replication. This method saves experimental time and provides a possibility for absolute quantitative tracking of the 13C-labeled metabolites for high-throughput studies.
Collapse
Affiliation(s)
- Qianfen Wan
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Fudan University , Shanghai International Centre for Molecular Phenomics, Collaborative Innovation Center for Genetics and Development, Shanghai 200438, China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310058, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Fudan University , Shanghai International Centre for Molecular Phenomics, Collaborative Innovation Center for Genetics and Development, Shanghai 200438, China
| |
Collapse
|
20
|
Brasili E, Filho VC. Metabolomics of cancer cell cultures to assess the effects of dietary phytochemicals. Crit Rev Food Sci Nutr 2017; 57:1328-1339. [DOI: 10.1080/10408398.2014.964799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elisa Brasili
- Department of Environmental Biology, “Sapienza” University of Rome, Rome, Italy
| | - Valdir Cechinel Filho
- Programa de Pós-Graduação em Ciências Farmacêuticas e Núcleo de Investigações Químico-Farmacêuticas/CCS, Universidade do Vale do Itajaí, Itajaí, SC, Brazil
| |
Collapse
|
21
|
Chung YL. Magnetic Resonance Spectroscopy (MRS)-Based Methods for Examining Cancer Metabolism in Response to Oncogenic Kinase Drug Treatment. Methods Mol Biol 2017; 1636:393-404. [PMID: 28730493 DOI: 10.1007/978-1-4939-7154-1_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is an analytical technique that has been extensively used to examine reprogrammed metabolism and treatment response in cancer cells and solid tumors both in vivo and ex vivo. High-resolution MRS (HR-MRS) is one of the best methods for metabolic profiling, as it is highly quantitative, robust, and reproducible. The protocols for dual-phase extraction of cancer cells and tumors and sample preparations for high-resolution 1H and 31P HR-MRS analysis are described here. Descriptions of spectra acquisition and analysis are also included in this chapter.
Collapse
Affiliation(s)
- Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research London, 123 Old Brompton Road, SW7 3RP, London, UK.
| |
Collapse
|
22
|
Blomme A, Costanza B, de Tullio P, Thiry M, Van Simaeys G, Boutry S, Doumont G, Di Valentin E, Hirano T, Yokobori T, Gofflot S, Peulen O, Bellahcène A, Sherer F, Le Goff C, Cavalier E, Mouithys-Mickalad A, Jouret F, Cusumano PG, Lifrange E, Muller RN, Goldman S, Delvenne P, De Pauw E, Nishiyama M, Castronovo V, Turtoi A. Myoferlin regulates cellular lipid metabolism and promotes metastases in triple-negative breast cancer. Oncogene 2016; 36:2116-2130. [DOI: 10.1038/onc.2016.369] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/30/2016] [Accepted: 08/28/2016] [Indexed: 02/07/2023]
|
23
|
Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, Liu J, Xiang J, Liang D, Hu Q, Ni Q, Xu J, Yu X. Metabolic plasticity in heterogeneous pancreatic ductal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2016; 1866:177-188. [PMID: 27600832 DOI: 10.1016/j.bbcan.2016.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal malignant neoplasms. The recognized hallmarks of PDA are regarded to be downstream events of metabolic reprogramming. Because PDA is a heterogeneous disease that is influenced by genetic polymorphisms and changes in the microenvironment, metabolic plasticity is a novel feature of PDA. As intrinsic factors for metabolic plasticity, K-ras activation and mutations in other tumor suppressor genes induce abnormal mitochondrial metabolism and enhance glycolysis, with alterations in glutamine and lipid metabolism. As extrinsic factors, the acidic and oxygen/nutrient-deprived microenvironment also induces cancer cells to reprogram their metabolic pathway and hijack stromal cells (mainly cancer-associated fibroblasts and immunocytes) to communicate, thereby adapting to metabolic stress. Therefore, a better understanding of the metabolic features of PDA will contribute to the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jinfeng Xiang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Dingkong Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
24
|
Diaz-Aguirre V, Velez-Pardo C, Jimenez-Del-Rio M. Fructose sensitizes Jurkat cells oxidative stress-induced apoptosis via caspase-dependent and caspase-independent mechanisms. Cell Biol Int 2016; 40:1162-1173. [DOI: 10.1002/cbin.10653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/31/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Viviana Diaz-Aguirre
- Neuroscience Research Group; Faculty of Medicine; Medical Research Institute; University of Antioquia (UdeA); Calle 70 No. 52-21 and Calle 62 # 52-59, Building 1, Room 412 SIU Medellin Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group; Faculty of Medicine; Medical Research Institute; University of Antioquia (UdeA); Calle 70 No. 52-21 and Calle 62 # 52-59, Building 1, Room 412 SIU Medellin Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group; Faculty of Medicine; Medical Research Institute; University of Antioquia (UdeA); Calle 70 No. 52-21 and Calle 62 # 52-59, Building 1, Room 412 SIU Medellin Colombia
| |
Collapse
|
25
|
Gorietti D, Zanni E, Palleschi C, Delfini M, Uccelletti D, Saliola M, Puccetti C, Sobolev A, Mannina L, Miccheli A. 13C NMR based profiling unveils different α-ketoglutarate pools involved into glutamate and lysine synthesis in the milk yeast Kluyveromyces lactis. Biochim Biophys Acta Gen Subj 2015; 1850:2222-7. [DOI: 10.1016/j.bbagen.2015.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/01/2015] [Accepted: 07/22/2015] [Indexed: 12/26/2022]
|
26
|
Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 2015; 6:148-61. [PMID: 26322173 PMCID: PMC4549759 DOI: 10.4331/wjbc.v6.i3.148] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/26/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023] Open
Abstract
Aerobic glycolysis, i.e., the Warburg effect, may contribute to the aggressive phenotype of hepatocellular carcinoma. However, increasing evidence highlights the limitations of the Warburg effect, such as high mitochondrial respiration and low glycolysis rates in cancer cells. To explain such contradictory phenomena with regard to the Warburg effect, a metabolic interplay between glycolytic and oxidative cells was proposed, i.e., the "reverse Warburg effect". Aerobic glycolysis may also occur in the stromal compartment that surrounds the tumor; thus, the stromal cells feed the cancer cells with lactate and this interaction prevents the creation of an acidic condition in the tumor microenvironment. This concept provides great heterogeneity in tumors, which makes the disease difficult to cure using a single agent. Understanding metabolic flexibility by lactate shuttles offers new perspectives to develop treatments that target the hypoxic tumor microenvironment and overcome the limitations of glycolytic inhibitors.
Collapse
|
27
|
Miller TW, Soto-Pantoja DR, Schwartz AL, Sipes JM, DeGraff WG, Ridnour LA, Wink DA, Roberts DD. CD47 Receptor Globally Regulates Metabolic Pathways That Control Resistance to Ionizing Radiation. J Biol Chem 2015; 290:24858-74. [PMID: 26311851 DOI: 10.1074/jbc.m115.665752] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/06/2022] Open
Abstract
Modulating tissue responses to stress is an important therapeutic objective. Oxidative and genotoxic stresses caused by ionizing radiation are detrimental to healthy tissues but beneficial for treatment of cancer. CD47 is a signaling receptor for thrombospondin-1 and an attractive therapeutic target because blocking CD47 signaling protects normal tissues while sensitizing tumors to ionizing radiation. Here we utilized a metabolomic approach to define molecular mechanisms underlying this radioprotective activity. CD47-deficient cells and cd47-null mice exhibited global advantages in preserving metabolite levels after irradiation. Metabolic pathways required for controlling oxidative stress and mediating DNA repair were enhanced. Some cellular energetics pathways differed basally in CD47-deficient cells, and the global declines in the glycolytic and tricarboxylic acid cycle metabolites characteristic of normal cell and tissue responses to irradiation were prevented in the absence of CD47. Thus, CD47 mediates signaling from the extracellular matrix that coordinately regulates basal metabolism and cytoprotective responses to radiation injury.
Collapse
Affiliation(s)
- Thomas W Miller
- From the Laboratory of Pathology and Paradigm Shift Therapeutics, Rockville, Maryland 20852, and
| | - David R Soto-Pantoja
- From the Laboratory of Pathology and Departments of Cancer Biology and Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | - William G DeGraff
- Radiation Biology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Lisa A Ridnour
- Radiation Biology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - David A Wink
- Radiation Biology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
28
|
Kumagai K, Akakabe M, Tsuda M, Tsuda M, Fukushi E, Kawabata J, Abe T, Ichikawa K. Observation of glycolytic metabolites in tumor cell lysate by using hyperpolarization of deuterated glucose. Biol Pharm Bull 2015; 37:1416-21. [PMID: 25087964 DOI: 10.1248/bpb.b14-00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperpolarization of stable isotope-labeled substrates and subsequent NMR measurement of the metabolic reactions allow for direct tracking of cellular reactions in vitro and in vivo. Here, we report the hyperpolarization of (13)C6-glucose-d7 and evaluate its use as probes to observe glucose flux in cells. We measured the lifetime of the polarized signal governed by the spin-lattice relaxation time T1. (13)C6-Glucose-d7 exhibited a T1 that was over ten times as long as that of (13)C6-glucose, and metabolic NMR studies of hyperpolarized (13)C6-glucose-d7 using tumor cell lysate led to observation of the resonances due to phosphorylated fluctofuranoses generated through aerobic glycolysis.
Collapse
|
29
|
Lane AN, Fan TWM. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 2015; 43:2466-85. [PMID: 25628363 PMCID: PMC4344498 DOI: 10.1093/nar/gkv047] [Citation(s) in RCA: 572] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/21/2014] [Accepted: 01/12/2015] [Indexed: 12/25/2022] Open
Abstract
Nucleotides are required for a wide variety of biological processes and are constantly synthesized de novo in all cells. When cells proliferate, increased nucleotide synthesis is necessary for DNA replication and for RNA production to support protein synthesis at different stages of the cell cycle, during which these events are regulated at multiple levels. Therefore the synthesis of the precursor nucleotides is also strongly regulated at multiple levels. Nucleotide synthesis is an energy intensive process that uses multiple metabolic pathways across different cell compartments and several sources of carbon and nitrogen. The processes are regulated at the transcription level by a set of master transcription factors but also at the enzyme level by allosteric regulation and feedback inhibition. Here we review the cellular demands of nucleotide biosynthesis, their metabolic pathways and mechanisms of regulation during the cell cycle. The use of stable isotope tracers for delineating the biosynthetic routes of the multiple intersecting pathways and how these are quantitatively controlled under different conditions is also highlighted. Moreover, the importance of nucleotide synthesis for cell viability is discussed and how this may lead to potential new approaches to drug development in diseases such as cancer.
Collapse
Affiliation(s)
- Andrew N Lane
- Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky, Biopharm Complex, 789 S. Limestone St, Lexington, KY 40536, USA
| | - Teresa W-M Fan
- Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky, Biopharm Complex, 789 S. Limestone St, Lexington, KY 40536, USA
| |
Collapse
|
30
|
Bentaib A, De Tullio P, Chneiweiss H, Hermans E, Junier MP, Leprince P. Metabolic reprogramming in transformed mouse cortical astrocytes: A proteomic study. J Proteomics 2014; 113:292-314. [PMID: 25305589 DOI: 10.1016/j.jprot.2014.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 09/02/2014] [Accepted: 09/22/2014] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is thought to play a key role in sustaining the survival and proliferation of cancer cells. These changes facilitate for example the uptake and release of nutrients required for nucleotide, protein and lipid synthesis necessary for macromolecule assembly and tumor growth. We applied a 2D-DIGE (two-dimensional differential in-gel electrophoresis) quantitative proteomic analysis to characterize the proteomes of mouse astrocytes that underwent in vitro cancerous transformation, and of their normal counterparts. Metabolic reprogramming effects on enzymatic and structural protein expression as well as associated metabolites abundance were quantified. Using enzymatic activity measurements and zymography, we documented and confirmed several changes in abundance and activity of various isoenzymes likely to participate in metabolic reprogramming. We found that after transformation, the cells increase their expression of glycolytic enzymes, thus augmenting their ability to use aerobic glycolysis (Warburg effect). An increased capacity to dispose of reducing equivalents through lactate production was also documented. Major effects on carbohydrates, amino acids and nucleotides metabolic enzymes were also observed. Conversely, the transformed cells reduced their enzymatic capacity for reactions of tricarboxylic acid oxidation, for neurotransmitter (glutamate) metabolism, for oxidative stress defense and their expression of astroglial markers. BIOLOGICAL SIGNIFICANCE The use of a global approach based on a 2D DIGE analysis allows obtaining a comprehensive view of the metabolic reprogramming undergone by astrocytes upon cancerous transformation. Indeed, except for a few enzymes such as pyruvate carboxylase and glutaminase that were not detected in our initial analysis, pertinent information on the abundance of most enzymes belonging to pathways relevant to metabolic reprogramming was directly obtained. In this in vitro model, transformation causes major losses of astrocyte-specific proteins and functions and the acquisition of metabolic adaptations that favor intermediate metabolites production for increased macromolecule biosynthesis. Thus our approach appears to be readily applicable for the investigation of changes in protein abundance that determine various transformed cell phenotypes. It could similarly be applied to the evaluation of the effects of treatments aimed at correcting the consequences of cell transformation.
Collapse
Affiliation(s)
| | - Pascal De Tullio
- Pharmaceutical chemistry, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Hervé Chneiweiss
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | - Emmanuel Hermans
- Institute of Neurosciences, Group of Neuropharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Pierre Junier
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
31
|
Matheus N, Hansen S, Rozet E, Peixoto P, Maquoi E, Lambert V, Noël A, Frédérich M, Mottet D, de Tullio P. An easy, convenient cell and tissue extraction protocol for nuclear magnetic resonance metabolomics. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:342-349. [PMID: 24453161 DOI: 10.1002/pca.2498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/18/2013] [Accepted: 11/24/2013] [Indexed: 06/03/2023]
Abstract
INTRODUCTION As a complement to the classic metabolomics biofluid studies, the visualisation of the metabolites contained in cells or tissues could be a very powerful tool to understand how the local metabolism and biochemical pathways could be affected by external or internal stimuli or pathologies. Therefore, extraction and/or lysis is necessary to obtain samples adapted for use with the current analytical tools (liquid NMR and MS). These extraction or lysis work-ups are often the most labour-intensive and rate-limiting steps in metabolomics, as they require accuracy and repeatability as well as robustness. Many of the procedures described in the literature appear to be very time-consuming and not easily amenable to automation. OBJECTIVE To find a fast, simplified procedure that allows release of the metabolites from cells and tissues in a way that is compatible with NMR analysis. METHODS We assessed the use of sonication to disrupt cell membranes or tissue structures. Both a vibrating probe and an automated bath sonicator were explored. RESULTS The application of sonication as the disruption procedure led to reproducible NMR spectral data compatible with metabolomics studies. This method requires only a small biological tissue or cell sample, and a rapid, reduced work-up was applied before analysis. The spectral patterns obtained are comparable with previous, well-described extraction protocols. CONCLUSION The rapidity and the simplicity of this approach could represent a suitable alternative to the other protocols. Additionally, this approach could be favourable for high- throughput applications in intracellular and intratissular metabolite measurements.
Collapse
Affiliation(s)
- Nicolas Matheus
- Metastasis Research Laboratory (MRL), GIGA Cancer, University of Liège, Bat. B23, CHU Sart Tilman, 4000, Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sarcoid-derived fibroblasts: links between genomic instability, energy metabolism and senescence. Biochimie 2013; 97:163-72. [PMID: 24148276 DOI: 10.1016/j.biochi.2013.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/10/2013] [Indexed: 12/30/2022]
Abstract
Bovine papillomavirus 1 (BPV-1) is a well recognized etiopathogenetic factor in a cancer-like state in horses, namely equine sarcoid disease. Nevertheless, little is known about BPV-1-mediated cell transforming effects. It was shown that BPV-1 triggers genomic instability through DNA hypomethylation and oxidative stress. In the present study, we further characterized BPV-1-positive fibroblasts derived from sarcoid tumors. The focus was on cancer-like features of sarcoid-derived fibroblasts, including cell cycle perturbation, comprehensive DNA damage analysis, end-replication problem, energy metabolism and oncogene-induced premature senescence. The S phase of the cell cycle, polyploidy events, DNA double strand breaks (DSBs) and DNA single strand breaks (SSBs) were increased in BPV-1-positive cells compared to control fibroblasts. BPV-1-mediated oxidative stress may contribute to telomere dysfunction in sarcoid-derived fibroblasts. Loss of mitochondrial membrane potential and concurrent elevation in intracellular ATP production may be a consequence of changes in energy-supplying pathways in BPV-1-positive cells which is also typical for cancer cells. Shifts in energy metabolism may support rapid proliferation in cells infected by BPV-1. Nevertheless, sarcoid-derived fibroblasts representing a heterogeneous cell fraction vary in some aspects of metabolic phenotype due to a dual role of BPV-1 in cell transformation and oncogene-induced premature senescence. This was shown with increased senescence-associated β-galactosidase (SA-β-gal) activity. Taken together, metabolic phenotypes in sarcoid-derived fibroblasts are plastic, which are similar to greater plasticity of cancer tissues than normal tissues.
Collapse
|
33
|
Sims JK, Manteiga S, Lee K. Towards high resolution analysis of metabolic flux in cells and tissues. Curr Opin Biotechnol 2013; 24:933-9. [PMID: 23906926 DOI: 10.1016/j.copbio.2013.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/05/2013] [Indexed: 12/22/2022]
Abstract
Metabolism extracts chemical energy from nutrients, uses this energy to form building blocks for biosynthesis, and interconverts between various small molecules that coordinate the activities of cellular pathways. The metabolic state of a cell is increasingly recognized to determine the phenotype of not only metabolically active cell types such as liver, muscle, and adipose, but also other specialized cell types such as neurons and immune cells. This review focuses on methods to quantify intracellular reaction flux as a measure of cellular metabolic activity, with emphasis on studies involving cells of mammalian tissue. Two key areas are highlighted for future development, single cell metabolomics and noninvasive imaging, which could enable spatiotemporally resolved analysis and thereby overcome issues of heterogeneity, a distinctive feature of tissue metabolism.
Collapse
Affiliation(s)
- James K Sims
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, United States
| | | | | |
Collapse
|
34
|
Ciggin AS, Orhon D, Capitani D, Miccheli A, Puccetti C, Majone M. Aerobic metabolism of mixed carbon sources in sequencing batch reactor under pulse and continuous feeding. BIORESOURCE TECHNOLOGY 2013; 129:118-126. [PMID: 23232227 DOI: 10.1016/j.biortech.2012.10.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/02/2012] [Accepted: 10/07/2012] [Indexed: 06/01/2023]
Abstract
The aerobic metabolism of a mixture of acetate and starch was studied with main emphasis on their interaction and the effect on their storage as PHB and glycogen, respectively. Pulse feeding strongly increased the storage of both substrates; however, the presence of starch decreased PHB storage whereas the presence of acetate did not affect glycogen storage. Indeed, 13C NMR isotopomer analysis suggested an increase of acetate utilization towards TCA cycle, due to an increased request of ATP production for glycogen biosynthesis regulated by ADP-GlcPPase. This in turn influenced the partition flux for pyruvate synthesis between TCA cataplerosis and glyoxylate shunt. The corresponding reduction of PHB synthesis was in agreement with the competition for HS-CoA between KGDH activity and acetyl-CoA for PHB synthesis pathway. As a practical consequence, bioprocesses for PHA production from volatile fatty acids could be negatively affected from other carbon sources, such as unfermented carbohydrates.
Collapse
Affiliation(s)
- Asli S Ciggin
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
35
|
Shestov AA, Mancuso A, Leeper DB, Glickson JD. Metabolic network analysis of DB1 melanoma cells: how much energy is derived from aerobic glycolysis? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 765:265-271. [PMID: 22879043 DOI: 10.1007/978-1-4614-4989-8_37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A network model has been developed for analysis of tumor glucose metabolism from (13)C MRS isotope exchange kinetic data. Data were obtained from DB1 melanoma cells grown on polystyrene microcarrier beads contained in a 20-mm diameter perfusion chamber in a 9.4 T Varian NMR spectrometer; the cells were perfused with 26 mM [1,6-(13)C(2)]glucose under normoxic conditions and 37°C and monitored by (13)C NMR spectroscopy for 6 h. The model consists of ∼150 differential equations in the cumomer formalism describing glucose and lactate transport, glycolysis, TCA cycle, pyruvate cycling, the pentose shunt, lactate dehydrogenase, the malate-aspartate and glycerophosphate shuttles, and various anaplerotic pathways. The rate of oxygen consumption (CMRO(2)) was measured polarographically by monitoring differences in pO(2). The model was validated by excellent agreement between model predicted and experimentally measured values of CMRO(2) and glutamate pool size. Assuming a P/O ratio of 2.5 for NADH and 1.5 for FADH2, ATP production was estimated as 46% glycolytic and 54% mitochondrial based on average values of CMRO(2) and glycolytic flux (two experiments).
Collapse
Affiliation(s)
- A A Shestov
- CMRR, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - A Mancuso
- Department of Radiology, University of Pennsylvania, Perelman School of Medicine, 626 Chatsworth Dr.Ambler, Philadelphia, PA, 19002, USA.,Abramson Comprehensive Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
| | - D B Leeper
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J D Glickson
- Department of Radiology, University of Pennsylvania, Perelman School of Medicine, 626 Chatsworth Dr.Ambler, Philadelphia, PA, 19002, USA.
| |
Collapse
|
36
|
Kamiński MM, Sauer SW, Kamiński M, Opp S, Ruppert T, Grigaravičius P, Grudnik P, Gröne HJ, Krammer PH, Gülow K. T cell activation is driven by an ADP-dependent glucokinase linking enhanced glycolysis with mitochondrial reactive oxygen species generation. Cell Rep 2012; 2:1300-15. [PMID: 23168256 DOI: 10.1016/j.celrep.2012.10.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 12/21/2022] Open
Abstract
Mitochondria-originating reactive oxygen species (ROS) control T cell receptor (TCR)-induced gene expression. Here, we show that TCR-triggered activation of ADP-dependent glucokinase (ADPGK), an alternative, glycolytic enzyme typical for Archaea, mediates generation of the oxidative signal. We also show that ADPGK is localized in the endoplasmic reticulum and suggest that its active site protrudes toward the cytosol. The ADPGK-driven increase in glycolytic metabolism coincides with TCR-induced glucose uptake, downregulation of mitochondrial respiration, and deviation of glycolysis toward mitochondrial glycerol-3-phosphate dehydrogenase(GPD) shuttle; i.e., a metabolic shift to aerobic glycolysis similar to the Warburg effect. The activation of respiratory-chain-associated GPD2 results in hyperreduction of ubiquinone and ROS release from mitochondria. In parallel, mitochondrial bioenergetics and ultrastructure are altered. Downregulation of ADPGK or GPD2 abundance inhibits oxidative signal generation and induction of NF-κB-dependent gene expression, whereas overexpression of ADPGK potentiates them.
Collapse
Affiliation(s)
- Marcin M Kamiński
- Division of Immunogenetics (D030), Tumour Immunology Program, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zheng J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncol Lett 2012; 4:1151-1157. [PMID: 23226794 DOI: 10.3892/ol.2012.928] [Citation(s) in RCA: 636] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/06/2012] [Indexed: 01/05/2023] Open
Abstract
Metabolic activities in normal cells rely primarily on mitochondrial oxidative phosphorylation (OXPHOS) to generate ATP for energy. Unlike in normal cells, glycolysis is enhanced and OXPHOS capacity is reduced in various cancer cells. It has long been believed that the glycolytic phenotype in cancer is due to a permanent impairment of mitochondrial OXPHOS, as proposed by Otto Warburg. This view is challenged by recent investigations which find that the function of mitochondrial OXPHOS in most cancers is intact. Aerobic glycolysis in many cancers is the combined result of various factors such as oncogenes, tumor suppressors, a hypoxic microenvironment, mtDNA mutations, genetic background and others. Understanding the features and complexity of the cancer energy metabolism will help to develop new approaches in early diagnosis and effectively target therapy of cancer.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Pathology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
38
|
Nadal-Desbarats L, Veau S, Blasco H, Emond P, Royere D, Andres CR, Guérif F. Is NMR metabolic profiling of spent embryo culture media useful to assist in vitro human embryo selection? MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 26:193-202. [DOI: 10.1007/s10334-012-0331-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/11/2012] [Accepted: 07/12/2012] [Indexed: 01/12/2023]
|
39
|
Phang JM, Liu W, Hancock C, Christian KJ. The proline regulatory axis and cancer. Front Oncol 2012; 2:60. [PMID: 22737668 PMCID: PMC3380417 DOI: 10.3389/fonc.2012.00060] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/27/2012] [Indexed: 12/21/2022] Open
Abstract
Studies in metabolism and cancer have characterized changes in core pathways involving glucose and glutamine, emphasizing the provision of substrates for building cell mass. But recent findings suggest that pathways previously considered peripheral may play a critical role providing mechanisms for cell regulation. Several of these mechanisms involve the metabolism of non-essential amino acids, for example, the channeling of glycolytic intermediates into the serine pathway for one-carbon transfers. Historically, we proposed that the proline biosynthetic pathway participated in a metabolic interlock with glucose metabolism. The discovery that proline degradation is activated by p53 directed our attention to the initiation of apoptosis by proline oxidase/dehydrogenase. Now, however, we find that the biosynthetic mechanisms and the metabolic interlock may depend on the pathway from glutamine to proline, and it is markedly activated by the oncogene MYC. These findings add a new dimension to the proline regulatory axis in cancer and present attractive potential targets for cancer treatment.
Collapse
Affiliation(s)
- James Ming Phang
- Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer ResearchFrederick, MD, USA
| | - Wei Liu
- Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer ResearchFrederick, MD, USA
| | - Chad Hancock
- Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer ResearchFrederick, MD, USA
| | - Kyle J. Christian
- Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer ResearchFrederick, MD, USA
| |
Collapse
|
40
|
Massimi M, Tomassini A, Sciubba F, Sobolev AP, Devirgiliis LC, Miccheli A. Effects of resveratrol on HepG2 cells as revealed by 1H-NMR based metabolic profiling. Biochim Biophys Acta Gen Subj 2012; 1820:1-8. [DOI: 10.1016/j.bbagen.2011.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/04/2011] [Accepted: 10/11/2011] [Indexed: 01/07/2023]
|
41
|
Grinde MT, Moestue SA, Borgan E, Risa Ø, Engebraaten O, Gribbestad IS. 13C high-resolution-magic angle spinning MRS reveals differences in glucose metabolism between two breast cancer xenograft models with different gene expression patterns. NMR IN BIOMEDICINE 2011; 24:1243-1252. [PMID: 21462378 DOI: 10.1002/nbm.1683] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 05/30/2023]
Abstract
Tumor cells have increased glycolytic activity, and glucose is mainly used to form lactate and alanine, even when high concentrations of oxygen are present (Warburg effect). The purpose of the present study was to investigate glucose metabolism in two xenograft models representing basal-like and luminal-like breast cancer using (13) C high-resolution-magic angle spinning (HR-MAS) MRS and gene expression analysis. Tumor tissue was collected from two groups for each model: untreated mice (n=19) and a group of mice (n=16) that received an injection of [1-(13) C]-glucose 10 or 15 min before harvesting the tissue. (13) C HR-MAS MRS was performed on the tumor samples and differences in the glucose/alanine (Glc/Ala), glucose/lactate (Glc/Lac) and alanine/lactate (Ala/Lac) ratios between the models were studied. The expression of glycolytic genes was studied using tumor tissue from the same models. In the natural abundance MR spectra, a significantly lower Glc/Ala and Glc/Lac ratio (p<0.001) was observed in the luminal-like model compared with the basal-like model. In the labeled samples, the predominant glucose metabolites were lactate and alanine. Significantly lower Glc/Ala and Glc/Lac ratios were observed in the luminal-like model (p<0.05). Most genes contributing to glycolysis were expressed at higher levels in the luminal-like model (fdr<0.001). The lower Glc/Ala and Glc/Lac ratios and higher glycolytic gene expression observed in the luminal-like model indicates that the transformation of glucose to lactate and alanine occurred faster in this model than in the basal-like model, which has a growth rate several times faster than that of the luminal-like model. The results from the present study suggest that the tumor growth rate is not necessarily a determinant of glycolytic activity.
Collapse
Affiliation(s)
- Maria T Grinde
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
42
|
Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells. Anal Bioanal Chem 2011; 401:2133-42. [DOI: 10.1007/s00216-011-5310-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 11/30/2022]
|
43
|
Pyruvate kinase type M2: A key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 2011; 43:969-80. [DOI: 10.1016/j.biocel.2010.02.005] [Citation(s) in RCA: 480] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/24/2010] [Accepted: 02/08/2010] [Indexed: 12/17/2022]
|
44
|
da Costa AN, Mijal RS, Keen JN, Findlay JBC, Wild CP. Proteomic analysis of the effects of the immunomodulatory mycotoxin deoxynivalenol. Proteomics 2011; 11:1903-14. [DOI: 10.1002/pmic.201000580] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/22/2011] [Accepted: 01/31/2011] [Indexed: 01/19/2023]
|
45
|
Keshari KR, Kurhanewicz J, Jeffries RE, Wilson DM, Dewar BJ, Van Criekinge M, Zierhut M, Vigneron DB, Macdonald JM. Hyperpolarized (13)C spectroscopy and an NMR-compatible bioreactor system for the investigation of real-time cellular metabolism. Magn Reson Med 2010; 63:322-9. [PMID: 20099325 DOI: 10.1002/mrm.22225] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to combine a three-dimensional NMR-compatible bioreactor with hyperpolarized (13)C NMR spectroscopy in order to probe cellular metabolism in real time. JM1 (immortalized rat hepatoma) cells were cultured in a three-dimensional NMR-compatible fluidized bioreactor. (31)P spectra were acquired before and after each injection of hyperpolarized [1-(13)C] pyruvate and subsequent (13)C spectroscopy at 11.7 T. (1)H and two-dimensional (1)H-(1)H-total correlation spectroscopy spectra were acquired from extracts of cells grown in uniformly labeled (13)C-glucose, on a 16.4 T, to determine (13)C fractional enrichment and distribution of (13)C label. JM1 cells were found to have a high rate of aerobic glycolysis in both two-dimensional culture and in the bioreactor, with 85% of the (13)C label from uniformly labeled (13)C-glucose being present as either lactate or alanine after 23 h. Flux measurements of pyruvate through lactate dehydrogenase and alanine aminotransferase in the bioreactor system were 12.18 +/- 0.49 nmols/sec/10(8) cells and 2.39 +/- 0.30 nmols/sec/10(8) cells, respectively, were reproducible in the same bioreactor, and were not significantly different over the course of 2 days. Although this preliminary study involved immortalized cells, this combination of technologies can be extended to the real-time metabolic exploration of primary benign and cancerous cells and tissues prior to and after therapy.
Collapse
Affiliation(s)
- Kayvan R Keshari
- Department of Radiology, University of California San Francisco, SanFrancisco, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Beesley AH, Firth MJ, Ford J, Weller RE, Freitas JR, Perera KU, Kees UR. Glucocorticoid resistance in T-lineage acute lymphoblastic leukaemia is associated with a proliferative metabolism. Br J Cancer 2009; 100:1926-36. [PMID: 19436302 PMCID: PMC2714233 DOI: 10.1038/sj.bjc.6605072] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/31/2009] [Accepted: 04/06/2009] [Indexed: 11/28/2022] Open
Abstract
Glucocorticoids (GCs) are among the most important drugs for acute lymphoblastic leukaemia (ALL), yet despite their clinical importance, the exact mechanisms involved in GC cytotoxicity and the development of resistance remain uncertain. We examined the baseline profile of a panel of T-ALL cell lines to determine factors that contribute to GC resistance without prior drug selection. Transcriptional profiling indicated GC resistance in T-ALL is associated with a proliferative phenotype involving upregulation of glycolysis, oxidative phosphorylation, cholesterol biosynthesis and glutamate metabolism, increased growth rates and activation of PI3K/AKT/mTOR and MYC signalling pathways. Importantly, the presence of these transcriptional signatures in primary ALL specimens significantly predicted patient outcome. We conclude that in lymphocytes the activation of bioenergetic pathways required for proliferation may suppress the apoptotic potential and offset the metabolic crisis initiated by GC signalling. It is likely that the link between GC resistance and proliferation in T-ALL has not been fully appreciated to date because such effects would be masked in the context of current multiagent therapies. The data also provide the first evidence that altered expression of wild-type MLL may contribute to GC-resistant phenotypes. Our findings warrant the continued development of selective metabolic inhibitors for the treatment of ALL.
Collapse
Affiliation(s)
- A H Beesley
- Division of Children's Leukaemia and Cancer Research, Telethon Institute for Child Health Research, University of Western Australia Centre for Child Health Research, West Perth, Western Australia, PO Box 855, Australia 6872, Australia
| | - M J Firth
- Division of Biostatistics and Genetic Epidemiology, Telethon Institute for Child Health Research, University of Western Australia Centre for Child Health Research, West Perth, Western Australia, PO Box 855, Australia 6872, Australia
| | - J Ford
- Division of Children's Leukaemia and Cancer Research, Telethon Institute for Child Health Research, University of Western Australia Centre for Child Health Research, West Perth, Western Australia, PO Box 855, Australia 6872, Australia
| | - R E Weller
- Division of Children's Leukaemia and Cancer Research, Telethon Institute for Child Health Research, University of Western Australia Centre for Child Health Research, West Perth, Western Australia, PO Box 855, Australia 6872, Australia
| | - J R Freitas
- Division of Children's Leukaemia and Cancer Research, Telethon Institute for Child Health Research, University of Western Australia Centre for Child Health Research, West Perth, Western Australia, PO Box 855, Australia 6872, Australia
| | - K U Perera
- Division of Biostatistics and Genetic Epidemiology, Telethon Institute for Child Health Research, University of Western Australia Centre for Child Health Research, West Perth, Western Australia, PO Box 855, Australia 6872, Australia
| | - U R Kees
- Division of Children's Leukaemia and Cancer Research, Telethon Institute for Child Health Research, University of Western Australia Centre for Child Health Research, West Perth, Western Australia, PO Box 855, Australia 6872, Australia
| |
Collapse
|
47
|
Lane AN, Fan TWM, Higashi RM, Tan J, Bousamra M, Miller DM. Prospects for clinical cancer metabolomics using stable isotope tracers. Exp Mol Pathol 2009; 86:165-73. [PMID: 19454273 DOI: 10.1016/j.yexmp.2009.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Indexed: 01/15/2023]
Abstract
Metabolomics provides a readout of the state of metabolism in cells or tissue and their responses to external perturbations. For this reason, the approach has great potential in clinical diagnostics. For more than two decades, we have been using stable isotope tracer approaches to probe cellular metabolism in greater detail. The ability to enrich common compounds with rare isotopes such as carbon ((13)C) and nitrogen ((15)N) is the only practical means by which metabolic pathways can be traced, which entails following the fate of individual atoms from the source molecule to products via metabolic transformation. Changes in regulation of pathways are therefore captured by this approach, which leads to deeper understanding of the fundamental biochemistry of cells. Using lessons learned from pathways tracing in cells and organs, we have been applying this methodology to human cancer patients in a clinical setting. Here we review the methodologies and approaches to stable isotope tracing in cells, animal models and in humans subjects.
Collapse
|
48
|
Xia J, Bjorndahl TC, Tang P, Wishart DS. MetaboMiner--semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinformatics 2008; 9:507. [PMID: 19040747 PMCID: PMC2612014 DOI: 10.1186/1471-2105-9-507] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 11/28/2008] [Indexed: 11/10/2022] Open
Abstract
Background One-dimensional (1D) 1H nuclear magnetic resonance (NMR) spectroscopy is widely used in metabolomic studies involving biofluids and tissue extracts. There are several software packages that support compound identification and quantification via 1D 1H NMR by spectral fitting techniques. Because 1D 1H NMR spectra are characterized by extensive peak overlap or spectral congestion, two-dimensional (2D) NMR, with its increased spectral resolution, could potentially improve and even automate compound identification or quantification. However, the lack of dedicated software for this purpose significantly restricts the application of 2D NMR methods to most metabolomic studies. Results We describe a standalone graphics software tool, called MetaboMiner, which can be used to automatically or semi-automatically identify metabolites in complex biofluids from 2D NMR spectra. MetaboMiner is able to handle both 1H-1H total correlation spectroscopy (TOCSY) and 1H-13C heteronuclear single quantum correlation (HSQC) data. It identifies compounds by comparing 2D spectral patterns in the NMR spectrum of the biofluid mixture with specially constructed libraries containing reference spectra of ~500 pure compounds. Tests using a variety of synthetic and real spectra of compound mixtures showed that MetaboMiner is able to identify >80% of detectable metabolites from good quality NMR spectra. Conclusion MetaboMiner is a freely available, easy-to-use, NMR-based metabolomics tool that facilitates automatic peak processing, rapid compound identification, and facile spectrum annotation from either 2D TOCSY or HSQC spectra. Using comprehensive reference libraries coupled with robust algorithms for peak matching and compound identification, the program greatly simplifies the process of metabolite identification in complex 2D NMR spectra.
Collapse
Affiliation(s)
- Jianguo Xia
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | | | | | | |
Collapse
|
49
|
van Ommen B, Cavallieri D, Roche HM, Klein UI, Daniel H. The challenges for molecular nutrition research 4: the "nutritional systems biology level". GENES AND NUTRITION 2008; 3:107-13. [PMID: 18825427 DOI: 10.1007/s12263-008-0090-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 09/08/2008] [Indexed: 11/25/2022]
Abstract
Nutritional systems biology may be defined as the ultimate goal of molecular nutrition research, where all relevant aspects of regulation of metabolism in health and disease states at all levels of its complexity are taken into account to describe the molecular physiology of nutritional processes. The complexity spans from intracellular to inter-organ dynamics, and involves iterations between mathematical modelling and analysis employing all profiling methods and other biological read-outs. On the basis of such dynamic models we should be enabled to better understand how the nutritional status and nutritional challenges affect human metabolism and health. Although the achievement of this proposition may currently sound unrealistic, many initiatives in theoretical biology and biomedical sciences work on parts of the solution. This review provides examples and some recommendations for the molecular nutrition research arena to move onto the systems level.
Collapse
Affiliation(s)
- Ben van Ommen
- Department of Biosciences, TNO-Quality of Life, Zeist, The Netherlands,
| | | | | | | | | |
Collapse
|
50
|
Tripmacher R, Gaber T, Dziurla R, Häupl T, Erekul K, Grützkau A, Tschirschmann M, Scheffold A, Radbruch A, Burmester GR, Buttgereit F. Human CD4(+) T cells maintain specific functions even under conditions of extremely restricted ATP production. Eur J Immunol 2008; 38:1631-42. [PMID: 18493983 DOI: 10.1002/eji.200738047] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated the energy-adaptive potential of human CD4(+) T cells under conditions of impaired oxidative phosphorylation (OXPHOS) and/or low glucose (inhibiting glycolysis). These cells often encounter these conditions when executing their functions in injured/inflamed tissues, even though T cells themselves require constant and adequate energy supply via ATP. We assessed two specific functions, cytokine synthesis and proliferation, and addressed whether adaptive characteristics also emerged in vivo. In glucose-containing medium, both cytokine production and proliferation were unaffected, even under complete OXPHOS suppression. Only when glucose was also absent were these functions significantly decreased. Partial recovery of OXPHOS and induced glycolysis were crucial for the maintenance of cellular energy supply. Adaptive regulatory mechanisms are clinically relevant because hypoxia up-regulates glycolytic genes but down-regulates OXPHOS genes in vivo. Our data demonstrate an unexpectedly high, clinically relevant adaptive potential of human CD4(+) T cells to maintain specific functions even under severely impaired bioenergetic conditions.
Collapse
Affiliation(s)
- Robert Tripmacher
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|