1
|
Banik R, Sardar R, Mondal BB, Ghosh S. A physicochemical investigation of the complex formation by β-cyclodextrin with Triton X-100 and Triton X-114 and their aggregation behaviour in aqueous solution: an experimental approach. Phys Chem Chem Phys 2025; 27:3782-3795. [PMID: 39885833 DOI: 10.1039/d4cp03264k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The complexation behavior and binding affinity of Triton X-100 (TX-100) and Triton X-114 (TX-114) with β-cyclodextrin (β-CD) were extensively studied in an aqueous medium using a comprehensive suite of experimental techniques. These techniques allowed for the evaluation of key physicochemical parameters, including critical micelle concentration (cmc), aggregation number (Nagg), Stern-Volmer constant, and particle size distribution. These metrics were instrumental in understanding the underlying mechanism of the host-guest interaction between β-CD and Triton-X. Dynamic light scattering (DLS) data provided strong evidence for the formation of inclusion complexes, demonstrating significant hydrophobic interactions between the hydrophobic regions of Triton-X and the cavity of β-CD. The disruption of micellar structures, caused by β-CD encapsulating the hydrophobic moieties of the surfactants, was clearly observed. This process also resulted in an increased CMC, further underscoring the impact of β-CD on the aggregation behavior of the surfactants. To quantify the interaction, the Benesi-Hildebrand method was utilized to determine the stoichiometry and binding constants of the β-CD/Triton-X complexes. The results confirmed a well-defined 1 : 1 binding mode, indicating the precise incorporation of the surfactant's hydrophobic tails into the β-CD cavity while leaving the hydrophilic regions exposed to the aqueous environment. This selective binding mechanism alters the thermodynamics of micellization and disrupts the native micellar equilibrium of the surfactant systems. This systematic and comparative investigation is among the few studies that thoroughly examine the interactions between Triton-X surfactants and β-CD. Such research not only enhances our understanding of these complexes, but also reveals their significant potential for various applications. In drug delivery, for example, β-CD/Triton-X complexes can improve the solubility, stability, and bioavailability of hydrophobic drugs. In supramolecular chemistry, these complexes serve as model systems for studying host-guest interactions and self-assembly processes. Furthermore, their ability to modulate surfactant behaviour opens avenues for their use in material science, cosmetics, and industrial formulations, where precise control over micelle formation and aggregation is essential. This study underscores the versatility and utility of β-CD in interacting with non-ionic surfactants, offering insights that can be applied to other amphiphilic systems and paving the way for innovative applications in diverse fields.
Collapse
Affiliation(s)
- Rajesh Banik
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India.
| | - Raju Sardar
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India.
| | - Bipin Bihari Mondal
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India.
| | - Soumen Ghosh
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India.
| |
Collapse
|
2
|
Ozcelikay G, Cetinkaya A, Kaya SI, Yence M, Canavar Eroğlu PE, Unal MA, Ozkan SA. Novel Sensor Approaches of Aflatoxins Determination in Food and Beverage Samples. Crit Rev Anal Chem 2024; 54:982-1001. [PMID: 35917408 DOI: 10.1080/10408347.2022.2105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The rapid quantification of toxins in food and beverage products has become a significant issue in overcoming and preventing many life-threatening diseases. Aflatoxin-contaminated food is one of the reasons for primary liver cancer and induces some tumors and cancer types. Advancements in biosensors technology have brought out different analysis methods. Therefore, the sensing performance has been improved for agricultural and beverage industries or food control processes. Nanomaterials are widely used for the enhancement of sensing performance. The enzymes, molecularly imprinted polymers (MIP), antibodies, and aptamers can be used as biorecognition elements. The transducer part of the biosensor can be selected, such as optical, electrochemical, and mass-based. This review explains the classification of major types of aflatoxins, the importance of nanomaterials, electrochemical, optical biosensors, and QCM and their applications for the determination of aflatoxins.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Kecioren, Ankara, Turkey
| | - Merve Yence
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | | | | | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| |
Collapse
|
3
|
Xu X, Fu J, Jiao X, Wang Y, Yao C. DNA-induced assembly of biocatalytic nanocompartments for sensitive and selective aptasensing of aflatoxin B1. Anal Chim Acta 2024; 1295:342328. [PMID: 38355226 DOI: 10.1016/j.aca.2024.342328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Enzyme cascade with high specificity and catalytic efficiency has significant applications for developing efficient bioanalysis methods. In this work, a sensitive and selective aptasensor was constructed based on the DNA-induced assembly of biocatalytic nanocompartments. Different from the conventional co-immobilization in one pot, the cascade enzymes of glucose oxidase (GOX) and horseradish peroxidase (HRP) were separately encapsulated in ZIF-90 nanoparticles. After conjugating complementary DNA or aptermer on enzyme@ZIF-90, DNA hybridization drove enzyme@ZIF-90 connected into clusters or linked on other DNA modified biocatalytic nanocompartment (such as invertase loaded Fe3O4@SiO2). Owing to the shortened distance between enzymes, the catalytic efficiency of connected clusters was significantly enhanced. However, the specifically interaction between the substrate molecule and aptermer sequence would lead to the disassembly of DNA duplexes, resulting in the gradual "switching-off" of cascade reactions. With aflatoxin B1 (AFB1) as the model substrate, the compartmentalized three-enzyme nanoreactors showed good analytical performance in the linear range from 0.01 ng mL-1 to 50 ng mL-1 with a low detection limit (3.3 pg mL-1). In addition, the proposed aptasensor was applied to detect AFB1 in corn oil and wheat powder samples with total recoveries ranging from 94 % to 109 %. As a result, this DNA-induced strategy for enzyme cascade nanoreactors opens new avenues for stimuli-responsive applications in biosensing.
Collapse
Affiliation(s)
- Xuan Xu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - Junfeng Fu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Xiaotong Jiao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Yuqin Wang
- College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, PR China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| |
Collapse
|
4
|
Lin X, Li J, Wu J, Guo K, Duan N, Wang Z, Wu S. Fe-Co-Based Metal-Organic Frameworks as Peroxidase Mimics for Sensitive Colorimetric Detection and Efficient Degradation of Aflatoxin B 1. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11809-11820. [PMID: 38386848 DOI: 10.1021/acsami.3c18878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Building multifunctional platforms for integrating the detection and control of hazards has great significance in food safety and environment protection. Herein, bimetallic Fe-Co-based metal-organic frameworks (Fe-Co-MOFs) peroxidase mimics are prepared and applied to develop a bifunctional platform for the synergetic sensitive detection and controllable degradation of aflatoxin B1 (AFB1). On the one hand, Fe-Co-MOFs with excellent peroxidase-like activity are combined with target-induced catalyzed hairpin assembly (CHA) to construct a colorimetric aptasensor for the detection of AFB1. Specifically, the binding of aptamer with AFB1 releases the prelocked Trigger to initiate the CHA cycle between hairpin H2-modified Fe-Co-MOFs and hairpin H1-tethered magnetic nanoparticles to form complexes. After magnetic separation, the colorimetric signal of the supernatant in the presence of TMB and H2O2 is inversely proportional to the target contents. Under optimal conditions, this biosensor enables the analysis of AFB1 with a limit of detection of 6.44 pg/mL, and high selectivity and satisfactory recovery in real samples are obtained. On the other hand, Fe-Co-MOFs with remarkable Fenton-like catalytic degradation performance for organic contaminants are further used for the detoxification of AFB1 after colorimetric detection. The AFB1 is almost completely removed within 120 min. Overall, the introduction of CHA improves the sensing sensitivity; efficient postcolorimetric-detection degradation of AFB1 reduces the secondary contamination and risk to the experimental environment and operators. This strategy is expected to provide ideas for designing other multifunctional platforms to integrate the detection and degradation of various hazards.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jin Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiajun Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kaixi Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Saeed AM, Taha AG, Dardeer HM, Aly MF. One-pot synthesis of novel chitosan-salicylaldehyde polymer composites for ammonia sensing. Sci Rep 2024; 14:239. [PMID: 38168141 PMCID: PMC10761969 DOI: 10.1038/s41598-023-50243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Chitosan (Chs)-salicylaldehyde (Sal) polymer derivatives were formed via the reaction of Chs-Sal with zinc oxide nanoparticles (ZnO NPs) and beta-cyclodextrin (β-CD). These polymers were synthesized through inclusion with β-CD and doping with ZnO NPs to give pseudopolyrotaxane and Chs-Sal/ZnO NPs composite, respectively, for low-temperature detection and sensing of NH3 vapors as great significance in environmental control and human health. Additionally, the polymer (Chs-Sal/β-CD/ZnO NPs) was prepared via the insertion of generated composite (Chs-Sal/ZnO NPs) through β-cyclodextrin ring. The structural and morphological characterizations of the synthesized derivatives were confirmed by utilizing FTIR, XRD and, SEM, respectively. Also, the optical properties and thermal gravimetric analysis (TGA) of the synthesized polymers were explored. The obtained results confirmed that using β-CD or ZnO NPs for modification of polymer (Chs-Sal) dramatically enhanced thermal stability and optical features of the synthesized polymers. Investigations on the NH3-sensing properties of Chs-Sal/β-CD/ZnO NPs composite were carried out at concentrations down to 10 ppm and good response and recovery times (650 s and 350 s, respectively) at room temperature (RT) and indicated that modification by β-CD and doping with ZnO NPs effectively improves the NH3-sensing response of Chs-Sal from 712 to 6192 using Chs-Sal/β-CD/ZnO NPs, respectively, with low LOD and LOQ of 0.12 and 0.4 ppb, respectively.
Collapse
Affiliation(s)
- Ahmed Muhammed Saeed
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Ahmed Gaber Taha
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Hemat Mohamed Dardeer
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Moustafa Fawzy Aly
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
6
|
Ciobanu D, Hosu-Stancioiu O, Melinte G, Ognean F, Simon I, Cristea C. Recent Progress of Electrochemical Aptasensors toward AFB1 Detection (2018-2023). BIOSENSORS 2023; 14:7. [PMID: 38248384 PMCID: PMC10813172 DOI: 10.3390/bios14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Food contaminants represent possible threats to humans and animals as severe food safety hazards. Prolonged exposure to contaminated food often leads to chronic diseases such as cancer, kidney or liver failure, immunosuppression, or genotoxicity. Aflatoxins are naturally produced by strains of the fungi species Aspergillus, which is one of the most critical and poisonous food contaminants worldwide. Given the high percentage of contaminated food products, traditional detection methods often prove inadequate. Thus, it becomes imperative to develop fast, accurate, and easy-to-use analytical methods to enable safe food products and good practices policies. Focusing on the recent progress (2018-2023) of electrochemical aptasensors for aflatoxin B1 (AFB1) detection in food and beverage samples, without pretending to be exhaustive, we present an overview of the most important label-free and labeled sensing strategies. Simultaneous and competitive aptamer-based strategies are also discussed. The aptasensors are summarized in tabular format according to the detection mode. Sample treatments performed prior analysis are discussed. Emphasis was placed on the nanomaterials used in the aptasensors' design for aptamer-tailored immobilization and/or signal amplification. The advantages and limitations of AFB1 electrochemical aptasensors for field detection are presented.
Collapse
Affiliation(s)
- Despina Ciobanu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Oana Hosu-Stancioiu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Gheorghe Melinte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Flavia Ognean
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Ioan Simon
- Department of Surgery, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| |
Collapse
|
7
|
Fan Y, Li J, Amin K, Yu H, Yang H, Guo Z, Liu J. Advances in aptamers, and application of mycotoxins detection: A review. Food Res Int 2023; 170:113022. [PMID: 37316026 DOI: 10.1016/j.foodres.2023.113022] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Mycotoxin contamination in food products can easily cause serious health hazards and economic losses to human beings. How to accurately detect and effectively control mycotoxin contamination has become a global concern. Mycotoxins conventional detection techniques e.g; ELISA, HPLC, have limitations like, low sensitivity, high cost and time-consuming. Aptamer-based biosensing technology has the advantages of high sensitivity, high specificity, wide linear range, high feasibility, and non-destructiveness, which overcomes the shortcomings of conventional analysis techniques. This review summarizes the sequences of mycotoxin aptamers that have been reported so far. Based on the application of four classic POST-SELEX strategies, it also discusses the bioinformatics-assisted POST-SELEX technology in obtaining optimal aptamers. Furthermore, trends in the study of aptamer sequences and their binding mechanisms to targets is also discussed. The latest examples of aptasensor detection of mycotoxins are classified and summarized in detail. Newly developed dual-signal detection, dual-channel detection, multi-target detection and some types of single-signal detection combined with unique strategies or novel materials in recent years are focused. Finally, the challenges and prospects of aptamer sensors in the detection of mycotoxins are discussed. The development of aptamer biosensing technology provides a new approach with multiple advantages for on-site detection of mycotoxins. Although aptamer biosensing shows great development potential, still some challenges and difficulties are there in practical applications. Future research need high focus on the practical applications of aptasensors and the development of convenient and highly automated aptamers. This may lead to the transition of aptamer biosensing technology from laboratory to commercialization.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Life Science Chang Chun Normal University, Changchun 130032, China.
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
8
|
Liu Y, Guo W, Zhang Y, Lu X, Yang Q, Zhang W. An accurate and ultrasensitive ratiometric electrochemical aptasensor for determination of Ochratoxin A based on catalytic hairpin assembly. Food Chem 2023; 423:136301. [PMID: 37178599 DOI: 10.1016/j.foodchem.2023.136301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Ochratoxin A (OTA) pollution in agricultural products has raised the pressing to develop sensitive, accurate and convenient detection methods. Herein, an accurate and ultrasensitive ratiometric electrochemical aptasensor was proposed based on catalytic hairpin assembly (CHA) for OTA detection. In this strategy, the target recognition and CHA reaction were both accomplished in the same system, which avoided tedious multi-steps operation and extra reagents, providing the advantage of convenience with only a one-step reaction and without enzyme. The labeled Fc and MB were used as the signal-switching molecules, avoiding various interferences and greatly improving the reproducibility (RSD: 3.197%). This aptasensor achieved trace-level detection for OTA with LOD of 81 fg/mL in the linear range of lower concentration (100 fg/mL-50 ng/mL). Moreover, this strategy was successfully applied to OTA detection in cereals with comparable results of HPLC-MS. This aptasensor provided a viable platform for accurate, ultrasensitive, and one-step detection of OTA in food.
Collapse
Affiliation(s)
- Yaxing Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wei Guo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yunzhe Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xin Lu
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Qian Yang
- School of Public Health, Hebei University, Baoding 071002, China.
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Key Laboratory of Analysis and Control for Zoonoses Microbial, College of Life Sciences, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
9
|
Su L, Wan J, Hu Q, Qin D, Han D, Niu L. Target-Synergized Biologically Mediated RAFT Polymerization for Electrochemical Aptasensing of Femtomolar Thrombin. Anal Chem 2023; 95:4570-4575. [PMID: 36825747 DOI: 10.1021/acs.analchem.3c00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The assay of thrombin levels is integral to the assessment of coagulation function and clinical screening of coagulation disorder-related diseases. In this work, we illustrate the ingenious use of the target-synergized biologically mediated reversible addition-fragmentation chain transfer (RAFT) polymerization (tsBMRP) as a novel amplification strategy for the electrochemical aptamer-based biosensing of thrombin at the femtomolar levels. Briefly, the tsBMRP-based strategy relies on the boronate affinity-mediated decoration of the glycan chain(s) of the target itself with RAFT agents and the subsequent recruitment of signal labels via BMRP, mediated by the direct reduction of RAFT agents by NADH into initiating/propagating radicals. Obviously, the tsBMRP-based strategy is biologically friendly, low-cost, and simple in operation. As thrombin is a glycoconjugate, its electrochemical aptasensing involves the use of the thrombin-binding aptamer (TBA) as the recognition receptor, the site-specific decoration of RAFT agents to the glycan chain of thrombin via boronate affinity, and further the recruitment of ferrocene signal labels via the BMRP of ferrocenylmethyl methacrylate (FcMMA). As boronate affinity results in the decoration of each glycan chain with tens of RAFT agents while BMRP recruits hundreds of signal labels to each RAFT agent-decorated site, the tsBMRP-based strategy allows us to detect thrombin at a concentration of 35.3 fM. This electrochemical aptasensor is highly selective, and its applicability to thrombin detection in serum samples has been further demonstrated. The merits of high sensitivity and selectivity, low cost, good anti-interference capability, and simple operation make the tsBMRP-based electrochemical thrombin aptasensor great promise in biomedical and clinical applications.
Collapse
Affiliation(s)
- Luofeng Su
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jianwen Wan
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Qiong Hu
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongdong Qin
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Kunene K, Sayegh S, Weber M, Sabela M, Voiry D, Iatsunskyi I, Coy E, Kanchi S, Bisetty K, Bechelany M. Smart electrochemical immunosensing of aflatoxin B1 based on a palladium nanoparticle-boron nitride-coated carbon felt electrode for the wine industry. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Zhang H, Ye S, Huang L, Fan S, Mao W, Hu Y, Yu Y, Fu F. An electrochemical biosensor for the detection of aflatoxin B1 based on the specific aptamer and HCR biological magnification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:99-108. [PMID: 36484245 DOI: 10.1039/d2ay01682f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aflatoxin B1 (AFB1) is a highly toxic mycotoxin, which causes severe acute or cumulative poisoning. Therefore, it is important to develop sensitive and selective detection methods for AFB1 for the safety of food and medicinal herbs. Herein, we have developed a "signal-on" electrochemical aptasensor based on the high specificity of the aptamer and hybridization chain reaction (HCR) biological amplification for AFB1 detection. In this work, thiol-modified complementary DNA (cDNA) immobilized on the surface of a gold electrode (GE) served as an initiator DNA. When AFB1 was present, it competed with the cDNA for binding to the aptamers, which resulted in the detaching of aptamers from the cDNA-aptamer duplexes. Then, the single-stranded cDNA acted as an initiator to trigger the HCR signal amplification. Therefore, long double-stranded DNA (dsDNA) products were produced, which could load large amounts of methylene blue (MB) molecules to generate a distinct electrochemical signal. Under the optimized conditions, the proposed electrochemical aptasensor achieved the ultrasensitive detection of AFB1 with a linear detection range of 0.01-100 pg mL-1, and a limit of detection (LOD) down to 2.84 fg mL-1. Furthermore, the electrochemical aptasensor was successfully applied for detecting AFB1 in corn and two kinds of traditional Chinese medicine samples, indicating the potential value for AFB1 detection in practical samples.
Collapse
Affiliation(s)
- Hongyan Zhang
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Siying Ye
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Lishan Huang
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Shen Fan
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Weiwei Mao
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yijin Hu
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yuyan Yu
- Joint National Local Engineering Research Center of Fujian and Taiwan Chinese Medicine Molecular Biotechnology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Fengfu Fu
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
12
|
Hu Q, Feng W, Liang Y, Liang Z, Cao X, Li S, Luo Y, Wan J, Ma Y, Han D, Niu L. Boronate Affinity-Amplified Electrochemical Aptasensing of Lipopolysaccharide. Anal Chem 2022; 94:17733-17738. [PMID: 36475636 DOI: 10.1021/acs.analchem.2c05004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As lipopolysaccharide (LPS) is closely associated with sepsis and other life-threatening conditions, the point-of-care (POC) detection of LPS is of significant importance to human health. In this work, we illustrate an electrochemical aptasensor for the POC detection of low-abundance LPS by utilizing boronate affinity (BA) as a simple, efficient, and cost-effective amplification strategy. Briefly, the BA-amplified electrochemical aptasensing of LPS involves the tethering of the aptamer receptors and the BA-mediated direct decoration of LPS with redox signal tags. As the polysaccharide chain of LPS contains hundreds of cis-diol sites, the covalent crosslinking between the phenylboronic acid group and cis-diol sites can be harnessed for the site-specific decoration of each LPS with hundreds of redox signal tags, thereby enabling amplified detection. As it involves only a single-step operation (∼15 min), the BA-mediated signal amplification holds the significant advantages of unrivaled simplicity, rapidness, and cost-effectiveness over the conventional nanomaterial- and enzyme-based strategies. The BA-amplified electrochemical aptasensor has been successfully applied to specifically detect LPS within 45 min, with a detection limit of 0.34 pg/mL. Moreover, the clinical utility has been validated based on LPS detection in complex serum samples. As a proof of concept, a portable device has been developed to showcase the potential applicability of the BA-amplified electrochemical LPS aptasensor in the POC testing. In view of its simplicity, rapidness, and cost-effectiveness, the BA-amplified electrochemical LPS aptasensor holds broad application prospects in the POC testing.
Collapse
Affiliation(s)
- Qiong Hu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wenxing Feng
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yiyi Liang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhiwen Liang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiaojing Cao
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiqi Li
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yilin Luo
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jianwen Wan
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yingming Ma
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Waifalkar PP, Noh D, Derashri P, Barage S, Oh E. Role of Estradiol Hormone in Human Life and Electrochemical Aptasensing of 17β-Estradiol: A Review. BIOSENSORS 2022; 12:1117. [PMID: 36551086 PMCID: PMC9776368 DOI: 10.3390/bios12121117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Estradiol is known as one of the most potent estrogenic endocrine-disrupting chemicals (EDCs) that may cause various health implications on human growth, metabolism regulation, the reproduction system, and possibly cancers. The detection of these EDCs in our surroundings, such as in foods and beverages, is important to prevent such harmful effects on humans. Aptamers are a promising class of bio-receptors for estradiol detection due to their chemical stability and high affinity. With the development of aptamer technology, electrochemical aptasensing became an important tool for estradiol detection. This review provides detailed information on various technological interventions in electrochemical estradiol detection in solutions and categorized the aptasensing mechanisms, aptamer immobilization strategies, and electrode materials. Moreover, we also discussed the role of estradiol in human physiology and signaling mechanisms. The level of estradiol in circulation is associated with normal and diseased conditions. The aptamer-based electrochemical sensing techniques are powerful and sensitive for estradiol detection.
Collapse
Affiliation(s)
- P. P. Waifalkar
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Daegwon Noh
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Poorva Derashri
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Panvel 410206, Maharashtra, India
| | - Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Panvel 410206, Maharashtra, India
- Centre for Computational Biology and Translational Research, Amity University, Mumbai-Pune Expressway, Panvel 410206, Maharashtra, India
| | - Eunsoon Oh
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
14
|
Zhang M, Guo X. Emerging strategies in fluorescent aptasensor toward food hazard aflatoxins detection. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Ren X, Jiao X, Wang Y, Yao C, Xu X. A sensitive aflatoxin B1 electrochemical aptasensor based on ferrocene-functionalized hollow porous carbon spheres as signal amplifier. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
17
|
Zhao L, He X, Liu Y, Wei M, Jin H. Development of a simple and rapid fluorescent aptasensor based on
DNA
tweezer. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luyang Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Xing He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Yong Liu
- College of Chemistry and Chemical Engineering Henan University Kaifeng People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| |
Collapse
|
18
|
Qian X, Yang H, Liu S, Yang L, Li J, Gao W, Du G, Qu Q, Ran X. Supramolecular DNA sensor based on the integration of host-guest immobilization strategy and WP5-Ag/PEHA supramolecular aggregates. Anal Chim Acta 2022; 1220:340077. [DOI: 10.1016/j.aca.2022.340077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 11/01/2022]
|
19
|
Zhong T, Li S, Li X, JiYe Y, Mo Y, Chen L, Zhang Z, Wu H, Li M, Luo Q. A label-free electrochemical aptasensor based on AuNPs-loaded zeolitic imidazolate framework-8 for sensitive determination of aflatoxin B1. Food Chem 2022; 384:132495. [DOI: 10.1016/j.foodchem.2022.132495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
|
20
|
Liu D, Jia F, Wei Y, Li Y, Meng S, You T. Programmable analytical feature of ratiometric electrochemical biosensor by alternating the binding site of ferrocene to
DNA
duplex for the detection of aflatoxin
B1. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Fan Jia
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Ya Wei
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| |
Collapse
|
21
|
Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S. Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Crit Rev Anal Chem 2022; 54:355-388. [PMID: 35584031 DOI: 10.1080/10408347.2022.2076063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mycotoxins, which are toxic secondary metabolites produced by fungi, are harmful to humans. Mycotoxin-induced contamination has drawn attention worldwide. Consequently, the development of reliable and sensitive detection methods and high-efficiency control strategies for mycotoxins is important to safeguard food industry safety and public health. With the rapid development of nanotechnology, many novel nanomaterials that provide tremendous opportunities for greatly improving the detection and control performance of mycotoxins because of their unique properties have emerged. This review comprehensively summarizes recent trends in the application of nanomaterials for detecting mycotoxins (fluorescence, colorimetric, surface-enhanced Raman scattering, electrochemical, and point-of-care testing) and controlling mycotoxins (inhibition of fungal growth, mycotoxin absorption, and degradation). These detection methods possess the advantages of high sensitivity and selectivity, operational simplicity, and rapidity. With research attention on the control of mycotoxins and the gradual excavation of the properties of nanomaterials, nanomaterials are also employed for the inhibition of fungal growth, mycotoxin absorption, and mycotoxin degradation, and impressive controlling effects are obtained. This review is expected to provide the readers insight into this state-of-the-art area and a reference to design nanomaterials-based schemes for the detection and control of mycotoxins.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Wenyan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
22
|
A Simple Ratiometric Electrochemical Aptasensor Based on the Thionine–Graphene Nanocomposite for Ultrasensitive Detection of Aflatoxin B2 in Peanut and Peanut Oil. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The accurate and reliable analysis of aflatoxin B2 (AFB2) is widely required in food and agricultural industries. In the present work, we report the first use of a ratiometric electrochemical aptasensor for AFB2 detection with high selectivity and reliability. The working principle relies on the conformation change of the aptamer induced by its specific recognition of AFB2 to vary the ratiometric signal. Based on this principle, the proposed aptasensor collects currents generated by thionine–graphene composites (ITHI) and ferrocene-labeled aptamers (IFc) to output the ratiometric signal of ITHI/IFc. In analysis, the value of ITHI remained stable while that of IFc increased with higher AFB2 concentration, thus offering a “signal-off” aptasensor by using ITHI/IFc as a yardstick. The fabricated aptasensor showed a linear range of 0.001–10 ng mL−1 with a detection limit of 0.19 pg mL−1 for AFB2 detection. Furthermore, its applicability was validated by using it to detect AFB2 in peanut and peanut oil samples with high rates of recovery. The developed ratiometric aptasensor shows the merits of simple fabrication and high accuracy, and it can be extended to detect other mycotoxins in agricultural products.
Collapse
|
23
|
Zhu C, Liu D, Li Y, Chen T, You T. Label-free ratiometric homogeneous electrochemical aptasensor based on hybridization chain reaction for facile and rapid detection of aflatoxin B1 in cereal crops. Food Chem 2022; 373:131443. [PMID: 34742048 DOI: 10.1016/j.foodchem.2021.131443] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/31/2021] [Accepted: 10/18/2021] [Indexed: 11/04/2022]
Abstract
Aflatoxin B1 (AFB1) contamination has raised global concerns in agricultural and food industry; thus, sensitive, accurate and rapid AFB1 sensors are essential in many circumstances. Herein, we developed a label-free and immobilization-free ratiometric homogeneous electrochemical aptasensor based on hybridization chain reaction (HCR) for facile and rapid determination of AFB1. Methylene blue (MB) and ferrocene (Fc) were used as label-free probes to produce a response signal (IMB) and a reference signal (IFc) in solution phase, respectively. The ratio of IMB/IFc was used as a yardstick to quantify AFB1. HCR was exploited to enlarge the intensity of IMB as well as ratiometric signal. By combining label-free homogeneous assay and ratiometric strategy, the resulting aptasensor offered sensitive, rapid, and reliable determinations of AFB1 with a detection limit of 38.8 pg mL-1. The aptasensor was then used to determine AFB1 in cereal samples with comparable reliability as HPLC-MS.
Collapse
Affiliation(s)
- Chengxi Zhu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting Chen
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
24
|
Mathad AS, Seetharamappa J, Kalanur SS. β-Cyclodextrin anchored neem carbon dots for enhanced electrochemical sensing performance of an anticancer drug, lapatinib via host-guest inclusion. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Tan M, Zhang C, Li Y, Xu Z, Wang S, Liu Q, Li Y. An Efficient Electrochemical Immunosensor for Alpha-Fetoprotein Detection based on the CoFe Prussian Blue Analog Combined PdAg Hybrid Nanodendrites. Bioelectrochemistry 2022; 145:108080. [DOI: 10.1016/j.bioelechem.2022.108080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/22/2022] [Indexed: 12/24/2022]
|
26
|
Saltatory Rolling Circle Amplification-Based Ratiometric Electrochemical Biosensor for Rapid Detection of Salmonella enterica serovar Typhimurium in Food. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Hou Y, Jia B, Sheng P, Liao X, Shi L, Fang L, Zhou L, Kong W. Aptasensors for mycotoxins in foods: Recent advances and future trends. Compr Rev Food Sci Food Saf 2021; 21:2032-2073. [PMID: 34729895 DOI: 10.1111/1541-4337.12858] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/19/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023]
Abstract
Mycotoxin contamination in foods has posed serious threat to public health and raised worldwide concern. The development of simple, rapid, facile, and cost-effective methods for mycotoxin detection is of urgent need. Aptamer-based sensors, abbreviated as aptasensors, with excellent recognition capacity to a wide variety of mycotoxins have attracted ever-increasing interest of researchers because of their simple fabrication, rapid response, high sensitivity, low cost, and easy adaptability for in situ measurement. The past few decades have witnessed the rapid advances of aptasensors for mycotoxin detection in foods. Therefore, this review first summarizes the reported aptamer sequences specific for mycotoxins. Then, the recent 5-year advancements in various newly developed aptasensors, which, according to the signal output mode, are divided into electrochemical, optical and photoelectrochemical categories, for mycotoxin detection are comprehensively discussed. A special attention is taken on their strengths and limitations in real-world application. Finally, the current challenges and future perspectives for developing novel highly reliable aptasensors for mycotoxin detection are highlighted, which is expected to provide powerful references for their thorough research and extended applications. Owing to their unique advantages, aptasensors display a fascinating prospect in food field for safety inspection and risk assessment.
Collapse
Affiliation(s)
- Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China.,Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Sheng
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Fang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Yang L, Wang Y, Yao C, Xu X. Highly sensitive and portable aptasensor by using enzymatic nanoreactors as labels. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Wu H, Wang H, Wu J, Han G, Liu Y, Zou P. A novel fluorescent aptasensor based on exonuclease-assisted triple recycling amplification for sensitive and label-free detection of aflatoxin B1. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125584. [PMID: 33743380 DOI: 10.1016/j.jhazmat.2021.125584] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Aflatoxins are the most toxic type of mycotoxins, which may cause serious carcinogenesis, teratogenesis, and mutagenesis to humans and animals. In this work, we demonstrate a novel label-free fluorescent aptasensor based on exonuclease-assisted triple recycling amplification for the sensitive detection of aflatoxin B1 (AFB1). With the close cooperation of T7 exonuclease and three elaborately designed hairpin probes, the target AFB1 can perform three consecutive cycles of amplification reactions. In this process, each hairpin probe is fully utilized, and the target AFB1, the secondary target and the tertiary target are recycled, thereby achieving a high amplification. Interestingly and importantly, the secondary and tertiary targets generated by amplification are also excellent DNA template sequences for silver nanoclusters (AgNCs). In the presence of NaBH4 and AgNO3, a great number of DNA-AgNCs are synthesized, thereby producing a strong fluorescent signal. Under optimal conditions, the developed aptasensor exhibited high sensitivity to AFB1 with a low detection limit of 0.19 pg mL-1 and a wide dynamic range of 1 × 10-6-1 μg mL-1. In addition, the aptasensor also performed well in the determination of AFB1 in real samples.
Collapse
Affiliation(s)
- Hao Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Hongyong Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jun Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Guoqing Han
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yaling Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Pei Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Jiangsu Kanion Pharmaceutical CO. LTD, Lianyungang 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, China.
| |
Collapse
|
30
|
Chang Z, Zhu B, Liu J, Zhu X, Xu M, Travas-Sejdic J. Electrochemical aptasensor for 17β-estradiol using disposable laser scribed graphene electrodes. Biosens Bioelectron 2021; 185:113247. [PMID: 33962157 DOI: 10.1016/j.bios.2021.113247] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
17β-Estradiol (E2), the strongest of the three major physiological estrogens in females, is an important factor in the female reproductive system. The abnormal level of E2 causes health issues, such as weak bones, urinary tract infections and even depression. Here, we present a novel, sensitive and selective, electrochemical aptasensor for detection of 17β-estradiol (E2). The E2 recognition aptamer was split into two fragments: the first fragment, functionalised with adamantane, is attached to poly(β-cyclodextrin) (poly(β-CD))-modified electrode surface through host-guest interactions between the adamantane and poly(β-CD). The second fragment, labelled with gold nanoparticles, forms the stem-loop structure with the first fragment only in the presence of E2. That specific recognition process triggers the change in the electrochemical signal (a change in the peak current from reduction of AuNPs), recorded by means of differential pulse voltammetry (DPV). The feasibility of the sensing design was firstly investigated on the commercially available glass carbon electrodes (GCE), with achieved a linear detection range of 1.0 × 10-13 to 1.0 × 10-8 M and a limit of detection (LoD) 0.7 fM. The sensing methodology was then translated onto single-use, disposable, laser-scribed graphene electrodes (LSGE) on a plastic substrate. The dynamic sensing range of E2 on LSGE was found to be 1.0 × 10-13 to 1.0 × 10-9 M, with a LoD of 63.1 fM, comparable to these of GCE. The successful translation of the developed E2 aptasensor from GCE to low-cost, disposable LSGE highlights a potential of this sensing platform in commercial, portable sensing detection systems for E2 and similar targets of biological interest.
Collapse
Affiliation(s)
- Zhu Chang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Bicheng Zhu
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - JinJin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Xu Zhu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
31
|
Song X, Ding Q, Pu Y, Zhang J, Sun R, Yin L, Wei W, Liu S. Application of the Dimeric G-Quadruplex and toehold-mediated strand displacement reaction for fluorescence biosensing of ochratoxin A. Biosens Bioelectron 2021; 192:113537. [PMID: 34339903 DOI: 10.1016/j.bios.2021.113537] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022]
Abstract
Ochratoxin A (OTA) is one of the most toxic mycotoxins that exists in various agro-products and foods. Here, a non-label and enzyme-free fluorescence biosensor for highly specific detection of OTA has been developed by the combination of toehold-mediated strand displacement reaction (TMSD) and G-quadruplex dimer/ThT (G-dimer/ThT). The DNA duplex (aptamer-IP) is composed of the anti-OTA aptamer and a single stranded initiation probe (IP). In the presence of OTA, the attachment of target to aptamer leads to the liberation of the IP, which activates the cycle TMSD amplifications of two hairpin probes (H1 and H2) accompanied by the production of numerous H1-H2 assemblies. This double-stranded H1-H2 structure results in the proximity between the 5'-end overhang tail of H1 and the 3'-end stem of H2 to liberate the pre-blocked G-dimer sequence for lighting up ThT. In addition, the method displayed a stable fluorescence emission in the high-salt media. It was successfully applied to analyze OTA in real food samples. Hence, the constructed fluorescence biosensing platform might provide a new way for OTA and other toxin analysis detection.
Collapse
Affiliation(s)
- Xiaolei Song
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Qin Ding
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China.
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Wei Wei
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China; State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China.
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| |
Collapse
|
32
|
Recent Achievements in Electrochemical and Surface Plasmon Resonance Aptasensors for Mycotoxins Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mycotoxins are secondary metabolites of fungi that contaminate agriculture products. Their release in the environment can cause severe damage to human health. Aptasensors are compact analytical devices that are intended for the fast and reliable detection of various species able to specifically interact with aptamers attached to the transducer surface. In this review, assembly of electrochemical and surface plasmon resonance (SPR) aptasensors are considered with emphasis on the mechanism of signal generation. Moreover, the properties of mycotoxins and the aptamers selected for their recognition are briefly considered. The analytical performance of biosensors developed within last three years makes it possible to determine mycotoxin residues in water and agriculture/food products on the levels below their maximal admissible concentrations. Requirements for the development of sample treatment and future trends in aptasensors are also discussed.
Collapse
|
33
|
Chen Z, Duan H, Gai Y, Xie W, Deng W, Jiang F. Separation of the host-guest system for ferrocene derivatives in octahedral nanocages by electrochemical ionization. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Selective Molecular Recognition of Low Density Lipoprotein Based on β-Cyclodextrin Coated Electrochemical Biosensor. BIOSENSORS-BASEL 2021; 11:bios11070216. [PMID: 34209334 PMCID: PMC8301920 DOI: 10.3390/bios11070216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022]
Abstract
The excess of low-density lipoprotein (LDL) strongly promotes the accumulation of cholesterol on the arterial wall, which can easily lead to the atherosclerotic cardiovascular diseases (ACDs). It is a challenge on how to recognize and quantify the LDL with a simple and sensitive analytical technology. Herein, β-cyclodextrins (β-CDs), acting as molecular receptors, can bind with LDL to form stable inclusion complexes via the multiple interactions, including electrostatic, van der Waals forces, hydrogen bonding and hydrophobic interactions. With the combination of gold nanoparticles (Au NPs) and β-CDs, we developed an electrochemical sensor providing an excellent molecular recognition and sensing performance towards LDL detection. The LDL dynamic adsorption behavior on the surface of the β-CD-Au electrode was explored by electrochemical impedance spectroscopy (EIS), displaying that the electron-transfer resistance (Ret) values were proportional to the LDL (positively charged apolipoprotein B-100) concentrations. The β-CD-Au modified sensor exhibited a high selectivity and sensitivity (978 kΩ·µM−1) toward LDL, especially in ultra-low concentrations compared with the common interferers HDL and HSA. Due to its excellent molecular recognition performance, β-CD-Au can be used as a sensing material to monitor LDL in human blood for preventing ACDs in the future.
Collapse
|
35
|
Aptasensors for mycotoxin detection: A review. Anal Biochem 2021; 644:114156. [PMID: 33716125 DOI: 10.1016/j.ab.2021.114156] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Mycotoxins are toxic compounds produced by fungi, which represent a risk to the food and feed supply chain, having an impact on health and economies. A high percentage of feed samples have been reported to be contaminated with more than one type of mycotoxin. Systematic, cost-effective and simple tools for testing are critical to achieve a rapid and accurate screening of food and feed quality. In this review, we describe the various aptamers that have been selected against mycotoxins and their incorporation into optical and electrochemical aptasensors, outlining the strategies exploited, highlighting the advantages and disadvantages of each approach. The review also discusses the different materials used and the immobilization methods employed, with the aim of achieving the highest sensitivity and selectivity.
Collapse
|
36
|
Liang X, Zhao F, Xiao C, Yue S, Huang Y, Wei M. A ratiometric electrochemical aptasensor for ochratoxin A detection. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiujun Liang
- Department of Food Safety and Nutrition, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou PR China
| | - Fengjuan Zhao
- Shenzhen Customs Food Inspection and Quarantine Technology Center Shenzhen PR China
| | - Chengui Xiao
- Shenzhen Customs Food Inspection and Quarantine Technology Center Shenzhen PR China
| | - Shuang Yue
- Department of Food Safety and Nutrition, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou PR China
| | - Yawei Huang
- Department of Food Safety and Nutrition, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou PR China
| | - Min Wei
- Department of Food Safety and Nutrition, College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou PR China
| |
Collapse
|
37
|
Jia XX, Li S, Han DP, Chen RP, Yao ZY, Ning BA, Gao ZX, Fan ZC. Development and perspectives of rapid detection technology in food and environment. Crit Rev Food Sci Nutr 2021; 62:4706-4725. [PMID: 33523717 DOI: 10.1080/10408398.2021.1878101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Food safety become a hot issue currently with globalization of food trade and food supply chains. Chemical pollution, microbial contamination and adulteration in food have attracted more attention worldwide. Contamination with antibiotics, estrogens and heavy metals in water environment and soil environment have also turn into an enormous threat to food safety. Traditional small-scale, long-term detection technologies have been unable to meet the current needs. In the monitoring process, rapid, convenient, accurate analysis and detection technologies have become the future development trend. We critically synthesizing the current knowledge of various rapid detection technology, and briefly touched upon the problem which still exist in research process. The review showed that the application of novel materials promotes the development of rapid detection technology, high-throughput and portability would be popular study directions in the future. Of course, the ultimate aim of the research is how to industrialization these technologies and apply to the market.
Collapse
Affiliation(s)
- Xue-Xia Jia
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China.,State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| | - Shuang Li
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Dian-Peng Han
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Rui-Peng Chen
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Bao-An Ning
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| |
Collapse
|
38
|
|
39
|
Niu X, Yang X, Li H, Liu J, Liu Z, Wang K. Application of chiral materials in electrochemical sensors. Mikrochim Acta 2020; 187:676. [DOI: 10.1007/s00604-020-04646-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/15/2020] [Indexed: 01/02/2023]
|
40
|
Bai H, Bu S, Liu W, Wang C, Li Z, Hao Z, Wan J, Han Y. An electrochemical aptasensor based on cocoon-like DNA nanostructure signal amplification for the detection of Escherichia coli O157:H7. Analyst 2020; 145:7340-7348. [PMID: 32930195 DOI: 10.1039/d0an01258k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We developed an electrochemical aptasensor based on cocoon-like DNA nanostructures as signal tags for highly sensitive and selective detection of Escherichia coli O157:H7. The stable cocoon-like DNA nanostructures synthesized by the rolling circle amplification reaction were loaded with hemin as electrochemical signal tags to amplify the signals. The single-stranded DNA capture probes were modified on the surface of a Au electrode via a Au-S bond. The E. coli O157:H7 specific aptamer and capture probe formed double-stranded DNA structures on the Au electrode. The aptamer preferentially bound to E. coli O157:H7, causing the dissociation of some aptamer-capture probes and releasing some capture probes. Subsequently, the free capture probes hybridized with the DNA nanostructures through the cDNA sequence. Under optimal conditions, the change in the electrochemical signal was proportional to the logarithm of E. coli O157:H7 concentration, from 10 to 106 CFU mL-1, and the detection limit was estimated to be 10 CFU mL-1. The electrochemical aptasensor could be readily used to detect various pathogenic bacteria and to provide a new method of early diagnosis of pathogenic microorganisms.
Collapse
Affiliation(s)
- Huasong Bai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang C, Liu L, Zhao Q. Low Temperature Greatly Enhancing Responses of Aptamer Electrochemical Sensor for Aflatoxin B1 Using Aptamer with Short Stem. ACS Sens 2020; 5:3246-3253. [PMID: 33052655 DOI: 10.1021/acssensors.0c01572] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aflatoxin B1 (AFB1), one of the most toxic mycotoxins, poses great health risks. Rapid and sensitive detection of AFB1 is important for food safety, environment monitoring, and health risk assessment. We report here the development of a simple and reusable electrochemical aptasensor for rapid and sensitive detection of AFB1. Main improvements were achieved through engineering an aptamer containing a short stem-loop structure and enhancing the binding affinity at a lower temperature. The DNA aptamer with a methylene blue (MB) label at one end was immobilized on a gold electrode. Upon AFB1 binding, the aptamer folded into a stem-loop structure and brought MB close to the electrode surface, resulting in increases in electric current. The aptamer having a shorter stem (2-4 bp) underwent a larger conformation change upon target binding. The sensors built with the aptamer containing a 2 bp stem generated much higher signal-on responses to AFB1 at 4 °C than at room temperature (25 °C). The improvements resulted in a detection limit of 6 pM, enabling the determination of trace AFB1 in a complex sample matrix. This study demonstrates that low temperature greatly enhances the performance of aptamer electrochemical sensors. This aptasensor is simple to construct and readily regenerated by washing with deionized water for reuse. This aptasensor strategy could be applied to the development of an electrochemical aptasensor for other targets.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liying Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
42
|
Rahimi F, Roshanfekr H, Peyman H. Ultra-sensitive electrochemical aptasensor for label-free detection of Aflatoxin B1 in wheat flour sample using factorial design experiments. Food Chem 2020; 343:128436. [PMID: 33127223 DOI: 10.1016/j.foodchem.2020.128436] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Considering the significance of mycotoxin detection in food industries, herein, an ultrasensitive aptasensor was developed based on aflatoxin B1 aptamer immobilized on Carbon quantum dots/octahedral Cu2O nanocomposite. Electrochemical measurements were based on Electrochemical Impedance Spectroscopy (EIS) and Differential Pulse Voltammetry (DPV). Since the effective parameters (pH, temperature, incubation time and concentration of aptamers) are interdependent, so their dependent study can be nonideal. Taguchi method has solved this problem and optimized the experimental conditions using a smaller number of experiments. Under optimum conditions, the electrochemical signals declined as AFB1 concentrations increased with a dynamic range of 3 ag.ml-1 -1.9 µg.ml-1 and a low limit of detection (LOD) of 0.9 ± 0.04 ag ml-1. The obtained results proved sufficient repeatability (RSD = 2.4%), reproducibility (RSD = 2.56%), accuracy (97.2-104.4% recovery), and robustness (RSD = 3.25%). Furthermore, considerable selectivity, stability and reliability of the aptasensor confirmed the capability to work in future real assays.
Collapse
Affiliation(s)
- Faezeh Rahimi
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran
| | - Hamideh Roshanfekr
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran.
| | - Hossein Peyman
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
43
|
Recent advances in aptasensors for mycotoxin detection: On the surface and in the colloid. Talanta 2020; 223:121729. [PMID: 33303172 DOI: 10.1016/j.talanta.2020.121729] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023]
Abstract
Mycotoxins are a great potential threat to human health, and the progress in the development of mycotoxin detection methods is of an escalating importance with the increasing emphasis on food safety. Aptamer, performing the same function as antibody in specific binding with targets, exhibits profound potential in biosensing since its debut in 1990. Recent years have witnessed the rapid development of aptasensors for mycotoxin detection with the achievement of ultralow limit of detection and high sensitivity in the lab. However, there is still no officially approved aptasensing methods in mycotoxin detection application. In order to provide researchers with inspirations in the design and development of aptasensors for mycotoxin detection, we divide these aptasensors into two types, namely "on the surface" and "in the colloid", according to the location where the key sensing reaction occurs. We also systematically review aptasensors reported in the past 5 years under the abovementioned criterion of classification, and compare the advantages and disadvantages of each kind of aptasensors. Finally, we discuss prospective directions in the development of aptasensors for mycotoxin detection. This paper will offer insight and motivation to practitioners working on the research and practical application of aptasensors in the detection of mycotoxins and other substances.
Collapse
|
44
|
Tu X, Gao F, Ma X, Zou J, Yu Y, Li M, Qu F, Huang X, Lu L. Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122776. [PMID: 32334288 DOI: 10.1016/j.jhazmat.2020.122776] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/05/2020] [Accepted: 04/16/2020] [Indexed: 05/19/2023]
Abstract
Pesticides play an important role in agricultural fields, but the pesticide residues pose strong hazardous to human health, thus designing sensitive and fast method for pesticides monitor is highly urgent. Herein, nanoarchitecture of Mxene/carbon nanohorns/β-cyclodextrin-Metal-organic frameworks (MXene/CNHs/β-CD-MOFs) was exploited as electrochemical sensing platform for carbendazim (CBZ) pesticide determination. β-CD-MOFs combined the properties of host-guest recognition of β-CD and porous structure, high porosity and pore volume of MOFs, enabling high adsorption capacity for CBZ. MXene/CNHs possessed large specific surface area, plenty of available active sites, high conductivity, which afforded more mass transport channels and enhances the mass transfer capacity and catalysis for CBZ. With the synergistic effect of MXene/CNHs and β-CD-MOFs, the MXene/CNHs/β-CD-MOFs electrode extended a wide linear range from 3.0 nM to 10.0 μM and a low limit of detection (LOD) of 1.0 nM (S/N = 3). Additionally, the prepared sensor also demonstrated high selectivity, reproducibility and long-term stability, and satisfactory applicability in tomato samples.
Collapse
Affiliation(s)
- Xiaolong Tu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Feng Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xue Ma
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Jin Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yongfang Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Minfang Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China.
| | - Xigen Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
45
|
El-Moghazy AY, Amaly N, Istamboulie G, Nitin N, Sun G. A signal-on electrochemical aptasensor based on silanized cellulose nanofibers for rapid point-of-use detection of ochratoxin A. Mikrochim Acta 2020; 187:535. [PMID: 32870397 DOI: 10.1007/s00604-020-04509-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022]
Abstract
An innovative ultrasensitive electrochemical aptamer-based sensor was developed for ochratoxin A (OTA) detection in cold brew coffee through revolutionary combination of nanofibers, electrochemical method, and aptamer technologies. The assembly of the aptasensor was based on the activation of silanized cellulose nanofibrous membranes as a supporting matrix for methylene blue (MB) redox probe-labeled aptamer tethering. Cellulose nanofibrous membranes were regenerated by deacetylating electrospun cellulose acetate nanofibrous membranes with deacetylation efficacy of 97%, followed by silanization of the nanofiber surfaces by using (3-aminopropyl)triethoxysilane (APTES). A replacement of conventionally casted membranes by the nanofibrous membranes increased the active surface area on the working electrode of a screen-printed three-electrode sensor by more than two times, consequently enhancing the fabricated aptasensor performance. The developed aptasensor demonstrated high sensitivity and specificity toward OTA in a range 0.002-2 ng mL-1, with a detection limit of 0.81 pg mL-1. Moreover, the assembled aptamer-based sensor successfully detected OTA in cold brew coffee samples without any pretreatment. The aptasensor exhibited good reusability and stability over long storage time. Graphical abstract.
Collapse
Affiliation(s)
- Ahmed Y El-Moghazy
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, 95616, USA. .,Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, 95616, USA.,Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Georges Istamboulie
- Biocapteurs-Analyses-Environnement, University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Nitin Nitin
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, 95616, USA.,Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
46
|
Beitollahi H, Tajik S, Dourandish Z, Zhang K, Le QV, Jang HW, Kim SY, Shokouhimehr M. Recent Advances in the Aptamer-Based Electrochemical Biosensors for Detecting Aflatoxin B1 and Its Pertinent Metabolite Aflatoxin M1. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3256. [PMID: 32521629 PMCID: PMC7309004 DOI: 10.3390/s20113256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
The notable toxicological impacts of aflatoxin B1 (AFB1) and its main metabolite, aflatoxin M1 (AFM1), on human being health make the evaluation of food quality highly significant. Due to the toxicity of those metabolites-even very low content in foodstuffs-it is crucial to design a sensitive and reliable procedure for their detection. Electrochemical aptamer-based biosensors are considered the most encouraging option, based on multi-placed analysis, rapid response, high sensitivity and specificity. The present review specifically emphasizes the potential utilization of the electrochemical aptasensors for determining the AFM1 and AFB1 with different electrodes.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76315117, Iran; (H.B.); (Z.D.)
| | - Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76315117, Iran; (H.B.); (Z.D.)
| | - Kaiqiang Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China;
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea;
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul 02841, Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea;
| |
Collapse
|
47
|
Feng Z, Gao N, Liu J, Li H. Boron-doped diamond electrochemical aptasensors for trace aflatoxin B 1 detection. Anal Chim Acta 2020; 1122:70-75. [PMID: 32503745 DOI: 10.1016/j.aca.2020.04.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
An electrochemical aptasensor for detecting trace aflatoxin B1 (AFB1) is designed and fabricated consisting of aptamers and gold nanoparticles on conductive boron-doped diamond (BDD) electrode. By examining the relative impedance shift from electrochemical impedance spectroscopy as a function of AFB1 concentration, the low detection limit (wide linear relationship range) of the aptasensor is realized to be 5.5 × 10-14 mol L-1 (1.0 × 10-13‒1.0 × 10-8 mol L-1). The variation in impedance property of the aptasensor is determined by the specific adsorption of AFB1 molecules to the aptamer at a certain concentration covering the electrode. By means of multiple characteristic processes, it is demonstrated that the constructed aptasensor is favorable for testing the trace AFB1 with high specificity, sensitivity, stability, repeatability, and reusability, which lead to a possibility to achieve high performance biosensor for practical application to quantitatively detract trace AFB1 in environments.
Collapse
Affiliation(s)
- Zhiyuan Feng
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, PR China
| | - Nan Gao
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, PR China
| | - Junsong Liu
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, PR China
| | - Hongdong Li
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
48
|
Negahdary M. Electrochemical aptasensors based on the gold nanostructures. Talanta 2020; 216:120999. [PMID: 32456913 DOI: 10.1016/j.talanta.2020.120999] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Electrochemical aptasensors as novel diagnostic tools have attracted sufficient research interest in biomedical sciences. In this review, recent leading trends about gold (Au) nanostructures based electrochemical aptasensors have been collected, reviewed, and compared. Here, the considered electrochemical aptasensors were categorized based on the analytes and diagnostic techniques. Pharmaceutical analytes and biomolecules were reviewed in a separate section consisting of a variety of antibiotics, analgesics, and other biomolecules. Various aptasensors have also measured toxins, ions, and hazardous chemicals, and the findings of them have also been reviewed. Many aptasensors have been designed to detect different disease biomarkers that will play an essential role in the future of early diagnosis of diseases. Pathogen microorganisms have been considered as the analyte in several designed electrochemical aptasensors in recent researches, and their results have been reviewed and discussed as another section. Important aspects considered in the review of the mentioned aptasensors were the type of analyte, features of the aptamer as the biorecognition element, type of Au nanostructures, diagnostic technique, diagnostic mechanism, detection range and the limit of detection (LOD). In the last section, an in-depth analysis has been provided based on the crucial features of all included aptasensors.
Collapse
Affiliation(s)
- Masoud Negahdary
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
49
|
Tian B, Xiao D, Hei T, Ping R, Hua S, Liu J. The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: a review. POLYM INT 2020. [DOI: 10.1002/pi.5992] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bingren Tian
- College of Chemistry and Chemical EngineeringXinjiang University Urumchi China
| | - Dong Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing China
| | - Tingting Hei
- School of PharmacyNingxia Medical University Yinchuan China
| | - Rui Ping
- School of Clinical MedicineNingxia Medical University Yinchuan China
| | - Shiyao Hua
- School of PharmacyNingxia Medical University Yinchuan China
| | - Jiayue Liu
- School of PharmacyNingxia Medical University Yinchuan China
| |
Collapse
|
50
|
Zhong Y, Zhao J, Li J, Liao X, Chen F. Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal Biochem 2020; 598:113620. [PMID: 32087127 DOI: 10.1016/j.ab.2020.113620] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022]
Abstract
Aptamers are a class of short artificial single-stranded oligo(deoxy) nucleotides that can bind to different targets, which generated by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Due to excellent selectivity and high affinity to targets, aptamers hold considerable potential as molecular probe in diverse applications ranging from ensuring food safety, monitoring environment, disease diagnosis to therapy. This review highlights recent development and challenges about aptamers screened by Cell-SELEX, and its application about cancer diagnostics and therapeutics. Advances about some operation methods such as seperation method and culture method in aptamers selection procedure were summarized in this paper. Some common challenges and technological difficulties such as nonspecific binding and biostability were discussed. Up to now, the recent endeavors about cancer diagnostic and therapeutic applications of aptamers are summarized and expatiated. Most of aptamers screened by Cell-SELEX took tumor cells as target cells, and such aptamers have been assembled to various aptasensor for cancer diagnosis. Aptamers conjugated various drugs or nanomaterials are functioned for cancer target therapy to improve drugs delivery efficiency and reduce side effects. Furthermore, the duplexed aptamer is discussed to be applied for cancer cells detection and some conflicts of theories about duplexed aptamer designs are analyzed.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiayao Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiazhao Li
- Qionglai maternal&Child health care hospital, Chengdu, 611530, Sichuan, China
| | - Xin Liao
- School of laboratory medical and Life science, Wenzhou Medical University, Wenzhou, 325000, Fujian, China
| | - Fengling Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|