1
|
Abiramalatha T, Ramaswamy VV, Ponnala AK, Kallem VR, Murkunde YV, Punnoose AM, Vivekanandhan A, Pullattayil AK, Amboiram P. Emerging neuroprotective interventions in periventricular leukomalacia: A systematic review of preclinical studies. Expert Opin Investig Drugs 2022; 31:305-330. [PMID: 35143732 DOI: 10.1080/13543784.2022.2040479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Periventricular leukomalacia (PVL) is a result of various antenatal, intrapartum, or postnatal insults to the developing brain and is an important harbinger of cerebral palsy in preterm neonates. There is no proven therapy for PVL. This calls for appraisal of targeted therapies that have been investigated in animal models to evaluate their relevance in clinical research context. AREAS COVERED This systematic review identifies interventions that were evaluated in preclinical studies for neuroprotective efficacy against PVL. We identified 142 studies evaluating various interventions in PVL animal models. (Search method is detailed in section 2). EXPERT OPINION Interventions that have yielded significant results in preclinical research, and that have been evaluated in a limited number of clinical trials include stem cells, erythropoietin, and melatonin. Many other therapeutic modalities evaluated in preclinical studies have been identified, but more data on their neuroprotective potential in PVL must be garnered before they can be considered for clinical trials. Because most of the tested interventions had only a partial efficacy, a combination of interventions that could be synergistic should be investigated in future preclinical studies. Furthermore, since the nature and pattern of perinatal insults to preterm brain predisposing it to PVL are substantially variable, individualised approaches for the choice of appropriate neuroprotective interventions tailored to different sub-groups of preterm neonates should be explored.
Collapse
Affiliation(s)
- Thangaraj Abiramalatha
- Consultant Neonatologist, Kovai Medical Center and Hospital (KMCH).,Department of Pediatrics and Neonatology, KMCH Institute of Health Sciences and Research, Coimbatore, India
| | | | - Andelsivj Kumar Ponnala
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Yogeshkumar V Murkunde
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Alan Mathew Punnoose
- Department of Stem Cell Research and Regenerative Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | | | - Prakash Amboiram
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
2
|
Youssef MI, Ma J, Chen Z, Hu WW. Potential therapeutic agents for ischemic white matter damage. Neurochem Int 2021; 149:105116. [PMID: 34229025 DOI: 10.1016/j.neuint.2021.105116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022]
Abstract
Ischemic white matter damage (WMD) is increasingly being considered as one of the major causes of neurological disorders in older adults and preterm infants. The functional consequences of WMD triggers a progressive cognitive decline and dementia particularly in patients with ischemic cerebrovascular diseases. Despite the major stride made in the pathogenesis mechanisms of ischemic WMD in the last century, effective medications are still not available. So, there is an urgent need to explore a promising approach to slow the progression or modify its pathological course. In this review, we discussed the animal models, the pathological mechanisms and the potential therapeutic agents for ischemic WMD. The development in the studies of anti-oxidants, free radical scavengers, anti-inflammatory or anti-apoptotic agents and neurotrophic factors in ischemic WMD were summarized. The agents which either alleviate oligodendrocyte damage or promote its proliferation or differentiation may have potential value for the treatment of ischemic WMD. Moreover, drugs with multifaceted protective activities or a wide therapeutic window may be optimal for clinical translation.
Collapse
Affiliation(s)
- Mahmoud I Youssef
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Zhong Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Wei-Wei Hu
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
3
|
Kim TK, Park D, Ban YH, Cha Y, An ES, Choi J, Choi EK, Kim YB. Improvement by Human Oligodendrocyte Progenitor Cells of Neurobehavioral Disorders in an Experimental Model of Neonatal Periventricular Leukomalacia. Cell Transplant 2018; 27:1168-1177. [PMID: 29978719 PMCID: PMC6158554 DOI: 10.1177/0963689718781330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effects of human oligodendrocyte progenitor (F3.olig2) cells on improving neurobehavioral deficits were investigated in an experimental model of periventricular leukomalacia (PVL). Seven-day-old male rats were subjected to hypoxia-ischemia-lipopolysaccharide injection (HIL), and intracerebroventricularly transplanted with F3.olig2 (4 × 105 cells/rat) once at post-natal day (PND) 10 or repeatedly at PND10, 17, 27, and 37. Neurobehavioral disorders were evaluated at PND14, 20, 30, and 40 via cylinder test, locomotor activity, and rotarod performance, and cognitive function was evaluated at PND41-45 through passive avoidance and Morris water-maze performances. F3.olig2 cells recovered the rate of use of the forelimb contralateral to the injured brain, improved locomotor activity, and restored rotarod performance of PVL animals; in addition, marked improvement of learning and memory function was seen. It was confirmed that transplanted F3·olig2 cells migrated to injured areas, matured to oligodendrocytes expressing myelin basic protein (MBP), and markedly attenuated the loss of host MBP in the corpus callosum. The results indicate that the transplanted F3.olig2 cells restored neurobehavioral functions by preventing axonal demyelination, and that human oligodendrocyte progenitor cells could be a candidate for cell therapy of perinatal hypoxic-ischemic and infectious brain injuries including PVL and cerebral palsy.
Collapse
Affiliation(s)
- Tae-Kyun Kim
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Dongsun Park
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Young-Hwan Ban
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Yeseul Cha
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Eun Suk An
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Jieun Choi
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Ehn-Kyoung Choi
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Yun-Bae Kim
- 1 College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| |
Collapse
|
4
|
Qi B, Hu L, Zhu L, Shang L, Sheng L, Wang X, Liu N, Wen N, Yu X, Wang Q, Yang Y. Metformin Attenuates Cognitive Impairments in Hypoxia-Ischemia Neonatal Rats via Improving Remyelination. Cell Mol Neurobiol 2017; 37:1269-1278. [PMID: 28035478 DOI: 10.1007/s10571-016-0459-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/22/2016] [Indexed: 02/06/2023]
Abstract
Perinatal hypoxia-ischemia (H/I) causes brain injury and myelination damage. Finding efficient methods to restore myelination is critical for the recovery of brain impairments. By applying an H/I rat model, we demonstrate that metformin (Met) treatment significantly ameliorates the loss of locomotor activity and cognition of H/I rat in the Morris water maze and open field task tests. After administration of Met to H/I rat, the proliferation of Olig2+ oligodendrocyte progenitor cells and the expression of myelin basic protein are obviously increased in the corpus callosum. Additionally, the myelin sheaths are more compact and the impairments are evidently attenuated. These data indicate that Met is beneficial for the amelioration of H/I-induced myelination and behavior deficits.
Collapse
Affiliation(s)
- Boxiang Qi
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Libao Hu
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Lei Zhu
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Lei Shang
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Liping Sheng
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Xuecheng Wang
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Na Liu
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Nana Wen
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Xiaohe Yu
- Xiangya Hospital of Centre-South University Pediatric Teaching and Research Section, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Qihong Wang
- Xiangya Hospital of Centre-South University Pediatric Teaching and Research Section, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Yujia Yang
- Xiangya Hospital of Centre-South University Pediatric Teaching and Research Section, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Back SA. White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol 2017; 134:331-349. [PMID: 28534077 PMCID: PMC5973818 DOI: 10.1007/s00401-017-1718-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 12/22/2022]
Abstract
The human preterm brain is particularly susceptible to cerebral white matter injury (WMI) that disrupts the normal progression of developmental myelination. Advances in the care of preterm infants have resulted in a sustained reduction in the severity of WMI that has shifted from more severe focal necrotic lesions to milder diffuse WMI. Nevertheless, WMI remains a global health problem and the most common cause of chronic neurological morbidity from cerebral palsy and diverse neurobehavioral disabilities. Diffuse WMI involves maturation-dependent vulnerability of the oligodendrocyte (OL) lineage with selective degeneration of late oligodendrocyte progenitors (preOLs) triggered by oxidative stress and other insults. The magnitude and distribution of diffuse WMI are related to both the timing of appearance and regional distribution of susceptible preOLs. Diffuse WMI disrupts the normal progression of OL lineage maturation and myelination through aberrant mechanisms of regeneration and repair. PreOL degeneration is accompanied by early robust proliferation of OL progenitors that regenerate and augment the preOL pool available to generate myelinating OLs. However, newly generated preOLs fail to differentiate and initiate myelination along their normal developmental trajectory despite the presence of numerous intact-appearing axons. Disrupted preOL maturation is accompanied by diffuse gliosis and disturbances in the composition of the extracellular matrix and is mediated in part by inhibitory factors derived from reactive astrocytes. Signaling pathways implicated in disrupted myelination include those mediated by Notch, WNT-beta catenin, and hyaluronan. Hence, there exists a potentially broad but still poorly defined developmental window for interventions to promote white matter repair and myelination and potentially reverses the widespread disturbances in cerebral gray matter growth that accompanies WMI.
Collapse
Affiliation(s)
- Stephen A Back
- Division of Pediatric Neuroscience, Departments of Pediatrics and Neurology, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, OR, 97239-3098, USA.
| |
Collapse
|
6
|
Effects of Chronic Scopolamine Treatment on Cognitive Impairments and Myelin Basic Protein Expression in the Mouse Hippocampus. J Mol Neurosci 2016; 59:579-89. [DOI: 10.1007/s12031-016-0780-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022]
|
7
|
Wei W, Wang Y, Dong J, Wang Y, Min H, Song B, Shan Z, Teng W, Xi Q, Chen J. Hypothyroxinemia induced by maternal mild iodine deficiency impairs hippocampal myelinated growth in lactational rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:1264-1274. [PMID: 24753110 DOI: 10.1002/tox.21997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Hypothyroxinemia induced by maternal mild iodine deficiency causes neurological deficits and impairments of brain function in offspring. Hypothyroxinemia is prevalent in developing and developed countries alike. However, the mechanism underlying these deficits remains less well known. Given that the myelin plays an important role in learning and memory function, we hypothesize that hippocampal myelinated growth may be impaired in rat offspring exposed to hypothyroxinemia induced by maternal mild iodine deficiency. To test this hypothesis, the female Wistar rats were used and four experimental groups were prepared: (1) control; (2) maternal mild iodine deficiency diet inducing hypothyroxinemia; (3) hypothyroidism induced by maternal severe iodine deficiency diet; (4) hypothyroidism induced by maternal methimazole water. The rats were fed the diet from 3 months before pregnancy to the end of lactation. Our results showed that the physiological changes occuring in the hippocampal myelin were altered in the mild iodine deficiency group as indicated by the results of immunofluorescence of myelin basic proteins on postnatal day 14 and postnatal day 21. Moreover, hypothyroxinemia reduced the expressions of oligodendrocyte lineage transcription factor 2 and myelin-related proteins in the treatments on postnatal day 14 and postnatal day 21. Our data suggested that hypothyroxinemia induced by maternal mild iodine deficiency may impair myelinated growth of the offspring.
Collapse
Affiliation(s)
- Wei Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Department of Endocrinology and Metabolism and Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Department of Endocrinology and Metabolism and Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Department of Endocrinology and Metabolism and Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Hui Min
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Binbin Song
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism and Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Weiping Teng
- Department of Endocrinology and Metabolism and Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qi Xi
- Department of Physiology, the University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
- Department of Endocrinology and Metabolism and Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
8
|
Mori M, Matsubara K, Matsubara Y, Uchikura Y, Hashimoto H, Fujioka T, Matsumoto T. Stromal Cell-Derived Factor-1α Plays a Crucial Role Based on Neuroprotective Role in Neonatal Brain Injury in Rats. Int J Mol Sci 2015; 16:18018-32. [PMID: 26251894 PMCID: PMC4581233 DOI: 10.3390/ijms160818018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/08/2015] [Accepted: 07/23/2015] [Indexed: 01/07/2023] Open
Abstract
Owing to progress in perinatal medicine, the survival of preterm newborns has markedly increased. However, the incidence of cerebral palsy has risen in association with increased preterm birth. Cerebral palsy is largely caused by cerebral hypoxic ischemia (HI), for which there are no effective medical treatments. We evaluated the effects of stromal cell-derived factor-1α (SDF-1α) on neonatal brain damage in rats. Left common carotid (LCC) arteries of seven-day-old Wistar rat pups were ligated, and animals were exposed to hypoxic gas to cause cerebral HI. Behavioral tests revealed that the memory and spatial perception abilities were disturbed in HI animals, and that SDF-1α treatment improved these cognitive functions. Motor coordination was also impaired after HI but was unimproved by SDF-1α treatment. SDF-1α reduced intracranial inflammation and induced cerebral remyelination, as indicated by the immunohistochemistry results. These data suggest that SDF-1α specifically influences spatial perception abilities in neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Miki Mori
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Keiichi Matsubara
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Yuko Matsubara
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Yuka Uchikura
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Hisashi Hashimoto
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Toru Fujioka
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Takashi Matsumoto
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Ehime 791-0295, Japan.
| |
Collapse
|
9
|
Back SA, Rosenberg PA. Pathophysiology of glia in perinatal white matter injury. Glia 2014; 62:1790-815. [PMID: 24687630 DOI: 10.1002/glia.22658] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/13/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022]
Abstract
Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (pre-OLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible pre-OLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors respond to WMI with a rapid robust proliferative response that results in a several fold regeneration of pre-OLs that fail to terminally differentiate along their normal developmental time course. Pre-OL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field magnetic resonance imaging (MRI) data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon; Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
10
|
Qu X, Qi D, Dong F, Wang B, Guo R, Luo M, Yao R. Quercetin improves hypoxia-ischemia induced cognitive deficits via promoting remyelination in neonatal rat. Brain Res 2014; 1553:31-40. [PMID: 24480472 DOI: 10.1016/j.brainres.2014.01.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/07/2014] [Accepted: 01/20/2014] [Indexed: 12/26/2022]
Abstract
Myelination failure is associated with perinatal cerebral hypoxia-ischemia (PHI) induced brain injury in premature infants. How to efficiently promote remyelination is crucial for improving cognitive deficits caused by brain injury. Here, we demonstrated that quercetin (Que), a kind of flavonoids, significantly improved cognitive deficits and the behavior of PHI-rat in Morris water maze and open field tasks. After administration of Que to PHI-rat, the number of neogenetic Olig2⁺ oligodendrocyte progenitor cells (OPCs) was evidently increased in the subventricular zone. Additionally, in corpus callosum (CC), the expression of MBP (myelin basic protein) was increased, and the myelin sheaths reached normal level at 30 days with more compact while less damaged myelin sheaths and more mature oligodendrocytes (OLs) repopulating the CC compared with PHI groups. In a word, our findings indicated that Que could remarkably improve both cognition performance and myelination in the context of PHI-induced brain injury by promoting the proliferation of OPCs and strengthening survival of OLs in vivo.
Collapse
Affiliation(s)
- Xuebin Qu
- Department of Neurobiology, Xuzhou Medical College, Xuzhou 221009, Jiangsu, PR China
| | - Dashi Qi
- Department of Neurobiology, Xuzhou Medical College, Xuzhou 221009, Jiangsu, PR China
| | - Fuxing Dong
- Department of Neurobiology, Xuzhou Medical College, Xuzhou 221009, Jiangsu, PR China
| | - Bei Wang
- Department of Neurobiology, Xuzhou Medical College, Xuzhou 221009, Jiangsu, PR China
| | - Rui Guo
- Department of Neurobiology, Xuzhou Medical College, Xuzhou 221009, Jiangsu, PR China
| | - Mengjiao Luo
- Department of Neurobiology, Xuzhou Medical College, Xuzhou 221009, Jiangsu, PR China
| | - Ruiqin Yao
- Department of Neurobiology, Xuzhou Medical College, Xuzhou 221009, Jiangsu, PR China.
| |
Collapse
|
11
|
Zhou J, Zhuang J, Li J, Ooi E, Bloom J, Poon C, Lax D, Rosenbaum DM, Barone FC. Long-term post-stroke changes include myelin loss, specific deficits in sensory and motor behaviors and complex cognitive impairment detected using active place avoidance. PLoS One 2013; 8:e57503. [PMID: 23505432 PMCID: PMC3591420 DOI: 10.1371/journal.pone.0057503] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/22/2013] [Indexed: 12/14/2022] Open
Abstract
Persistent neurobehavioral deficits and brain changes need validation for brain restoration. Two hours middle cerebral artery occlusion (tMCAO) or sham surgery was performed in male Sprague-Dawley rats. Neurobehavioral and cognitive deficits were measured over 10 weeks included: (1) sensory, motor, beam balance, reflex/abnormal responses, hindlimb placement, forepaw foot fault and cylinder placement tests, and (2) complex active place avoidance learning (APA) and simple passive avoidance retention (PA). Electroretinogram (ERG), hemispheric loss (infarction), hippocampus CA1 neuronal loss and myelin (Luxol Fast Blue) staining in several fiber tracts were also measured. In comparison to Sham surgery, tMCAO surgery produced significant deficits in all behavioral tests except reflex/abnormal responses. Acute, short lived deficits following tMCAO were observed for forelimb foot fault and forelimb cylinder placement. Persistent, sustained deficits for the whole 10 weeks were exhibited for motor (p<0.001), sensory (p<0.001), beam balance performance (p<0.01) and hindlimb placement behavior (p<0.01). tMCAO produced much greater and prolonged cognitive deficits in APA learning (maximum on last trial of 604±83% change, p<0.05) but only a small, comparative effect on PA retention. Hemispheric loss/atrophy was measured 10 weeks after tMCAO and cross-validated by two methods (e.g., almost identical % ischemic hemispheric loss of 33.4±3.5% for H&E and of 34.2±3.5% for TTC staining). No visual dysfunction by ERG and no hippocampus neuronal loss were detected after tMCAO. Fiber tract damage measured by Luxol Fast Blue myelin staining intensity was significant (p<0.01) in the external capsule and striatum but not in corpus callosum and anterior commissure. In summary, persistent neurobehavioral deficits were validated as important endpoints for stroke restorative research in the future. Fiber myelin loss appears to contribute to these long term behavioral dysfunctions and can be important for cognitive behavioral control necessary for complex APA learning.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Many advances have been achieved in terms of understanding the molecular and cellular mechanisms of ischemic stroke. But thus far, clinically effective neuroprotectants remain elusive. In this minireview, we summarize the basics of ischemic cascades after stroke, covering neuronal death mechanisms, white matter pathophysiology, and inflammation with an emphasis on microglia. Translating promising mechanistic knowledge into clinically meaningful stroke drugs is very challenging. An integrative approach that encompasses the multimodal and multicell signaling phenomenon of stroke will be required to move forward.
Collapse
Affiliation(s)
- Changhong Xing
- Department of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
13
|
Iron and iron regulatory proteins in amoeboid microglial cells are linked to oligodendrocyte death in hypoxic neonatal rat periventricular white matter through production of proinflammatory cytokines and reactive oxygen/nitrogen species. J Neurosci 2012; 31:17982-95. [PMID: 22159112 DOI: 10.1523/jneurosci.2250-11.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study was aimed to examine the role of iron in causing periventricular white matter (PWM) damage following a hypoxic injury in the developing brain. Along with iron, the expression of iron regulatory proteins (IRPs) and transferrin receptor (TfR), which are involved in iron acquisition, was also examined in the PWM by subjecting 1-d-old Wistar rats to hypoxia. Apart from an increase in iron levels in PWM, Perls' iron staining showed an increase of intracellular iron in the preponderant amoeboid microglial cells (AMCs) in the tissue. In response to hypoxia, the protein levels of IRP1, IRP2, and TfR in PWM and AMCs were significantly increased. In primary microglial cultures, administration of iron chelator deferoxamine reduced the generation of iron-induced reactive oxygen and nitrogen species and proinflammatory cytokines such as tumor necrosis factor-α and interleukin-1β. Primary oligodendrocytes treated with conditioned medium from hypoxic microglia exhibited reduced glutathione levels, increased lipid peroxidation, upregulated caspase-3 expression, and reduced proliferation. This was reversed to control levels on treatment with conditioned medium from deferoxamine treated hypoxic microglia; also, there was reduction in apoptosis of oligodendrocytes. The present results suggest that excess iron derived primarily from AMCs might be a mediator of oligodendrocyte cell death in PWM following hypoxia in the neonatal brain.
Collapse
|
14
|
Arai K, Pham LDD, Lo EH. Experimental Platforms for Assessing White Matter Pathophysiology in Stroke. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Karalis F, Soubasi V, Georgiou T, Nakas CT, Simeonidou C, Guiba-Tziampiri O, Spandou E. Resveratrol ameliorates hypoxia/ischemia-induced behavioral deficits and brain injury in the neonatal rat brain. Brain Res 2011; 1425:98-110. [DOI: 10.1016/j.brainres.2011.09.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 10/17/2022]
|
16
|
Cai Z, Fan LW, Lin S, Pang Y, Rhodes PG. Intranasal administration of insulin-like growth factor-1 protects against lipopolysaccharide-induced injury in the developing rat brain. Neuroscience 2011; 194:195-207. [PMID: 21840378 DOI: 10.1016/j.neuroscience.2011.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 11/27/2022]
Abstract
Our previous studies show that insulin-like growth factor-1 (IGF-1) can either protect against or increase lipopolysaccharide (LPS)-induced damage in the developing brain, depending on the dose, when it is co-administered with LPS through intracerebral injection. To further explore effects of IGF-1 on central inflammation associated brain injury, IGF-1 was administered through intranasal infusion in the current study. Postnatal day 5 (P5) rats were exposed to LPS at a dose of 1 μg/g body weight or sterile saline through intracerebral injection. Recombinant human insulin-like growth factor-1 (rhIGF-1) at a dose of 50 μg/pup or vehicle was administered intranasally 1 or 2 h after the LPS injection. Neonatal LPS exposure resulted in oligodendrocyte (OL) and white matter injury in the P6 or P21 rat brain. The damages include dilatation of lateral ventricles, pyknotic cell death, loss of OL progenitor cells and mature OLs in the cingulum area, and impairment of myelination at the corpus callosum area. Neurological dysfunctions were observed in juvenile rats with neonatal LPS exposure. Intranasal IGF-1 treatment at either 1 or 2 h after LPS exposure significantly attenuated LPS-induced brain injury and improved some behavioral deficits. Intranasal IGF-1 treatment also reduced infiltration of polymorphonuclear (PMN) leukocytes and activation of microglia in the rat brain 24 h after LPS exposure, but it did not prevent the elevation in concentrations of interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNFα) in the LPS-exposed rat brain during the first 24 h. This is an indication that direct anti-inflammation might not be the primary mechanism for the protection of IGF-1, and other mechanisms, such as anti-apoptotic effects, are likely involved in its protective effects.
Collapse
Affiliation(s)
- Z Cai
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | | | |
Collapse
|
17
|
Ibuprofen inhibits neuroinflammation and attenuates white matter damage following hypoxia-ischemia in the immature rodent brain. Brain Res 2011; 1402:9-19. [PMID: 21696706 DOI: 10.1016/j.brainres.2011.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/16/2011] [Accepted: 06/01/2011] [Indexed: 11/24/2022]
Abstract
Damage to major white matter tracts is a hallmark mark feature of hypoxic-ischemic (HI) brain injury in the preterm neonate. There is, however, no therapeutic intervention to treat this injury. Neuroinflammation is thought to play a prominent role in the pathogenesis of the HI-induced white matter damage but identification of the key mediators that constitute the inflammatory response remain to be fully elucidated. Cyclooxygenase enzymes (COX-1 and COX-2) are candidate neuroinflammatory mediators that may contribute to the HI-induced demise of early oligodendrocyte progenitors and myelination. We investigated whether ibuprofen, a non-steroidal anti-inflammatory drug that inhibits COX enzymes, can attenuate neuroinflammation and associated white matter damage incurred in a rodent model of preterm HI. On postnatal day 3 (P3), HI was produced (right carotid artery ligation and 30 min 6% O(2)). An initial dose of ibuprofen (100mg/kg, s.c.) was administered 2h after HI followed by a maintenance dose (50mg/kg, s.c.) every 24h for 6 days. Post-HI ibuprofen treatment significantly attenuated the P3 HI-induced increases in COX-2 protein expression as well as interleukin-1beta (IL-1β) and tumour necrosis factor-alpha (TNF-α) levels in the brain. Ibuprofen treatment also prevented the HI-induced loss O4- and O1-positive oligodendrocyte progenitor cells and myelin basic protein (MBP)-positive myelin content one week after P3 HI. These findings suggest that a repeated, daily, ibuprofen treatment regimen administered after an HI insult may be a potential therapeutic intervention to prevent HI-induced damage to white matter progenitors and early myelination in the preterm neonate.
Collapse
|
18
|
FAN LW, TIEN LT, ZHENG B, PANG Y, RHODES P, CAI Z. Interleukin-1beta-induced brain injury and neurobehavioral dysfunctions in juvenile rats can be attenuated by alpha-phenyl-n-tert-butyl-nitrone. Neuroscience 2010; 168:240-52. [PMID: 20346393 PMCID: PMC2873102 DOI: 10.1016/j.neuroscience.2010.03.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/23/2010] [Accepted: 03/12/2010] [Indexed: 02/02/2023]
Abstract
Our previous study showed that perinatal exposure to interleukin-1beta (IL-1beta), an inflammatory cytokine, induces acute injury to developing white matter in the neonatal rat brain, and alpha-phenyl-n-tert-butyl-nitrone (PBN), a free radical scavenger and antioxidant, protects against IL-1beta-induced acute brain injury. The objective of the present study was to further examine whether perinatal exposure to IL-1beta resulted in persistent brain damage and neurological disabilities, and whether PBN offers lasting protection. Intracerebral injection of IL-1beta (1 microg/kg) was performed in postnatal day 5 (P5) Sprague-Dawley rat pups and PBN (100 mg/kg) or saline was administered intraperitoneally 5 min after IL-1beta injection. Perinatal IL-1beta exposure significantly affected neurobehavioral functions in juvenile rats. Although some neurobehavioral deficits such as performance in negative geotaxis, cliff avoidance, beam walking, and locomotion were spontaneously reversible, sustained deficits such as poor performance in the vibrissa-elicited forelimb-placing test, the pole test, the passive avoidance task, and the elevated plus-maze task were still observable at P21. Perinatal IL-1beta exposure resulted in persistent brain damage including enlargement of ventricles, loss of mature oligodendrocytes, impaired myelination as indicated by the decrease in myelin basic protein immunostaining, axonal and dendritic injury, and loss of hippocampal CA1 neurons and tyrosine hydroxylase positive neurons in the substantia nigra and ventral tegmental areas of the rat brain. Treatments with PBN provided lasting protection against the IL-1beta-induced brain injury and improved the associated neurological dysfunctions in juvenile rats, suggesting that prompt treatments for brain injury induced by perinatal infection/inflammation might have important long-term consequences.
Collapse
Affiliation(s)
- L.-W. FAN
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - L.-T. TIEN
- School of Medicine, Fu-Jen Catholic University, Hsin-Chuang, Taipei County, Taiwan
| | - B. ZHENG
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Y. PANG
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - P.G. RHODES
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Z. CAI
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
19
|
Buser JR, Segovia KN, Dean JM, Nelson K, Beardsley D, Gong X, Luo NL, Ren J, Wan Y, Riddle A, McClure MM, Ji X, Derrick M, Hohimer AR, Back SA, Tan S. Timing of appearance of late oligodendrocyte progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white matter to hypoxia-ischemia. J Cereb Blood Flow Metab 2010; 30:1053-65. [PMID: 20068573 PMCID: PMC2915781 DOI: 10.1038/jcbfm.2009.286] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Emerging evidence supports that premature infants are susceptible to both cerebral white and gray matter injury. In a fetal rabbit model of placental insufficiency, preterm rabbits at embryonic day 22 (E22) exhibited histologic evidence of gray matter injury but minimal white matter injury after global hypoxia-ischemia (H-I). We hypothesized that the dissociation between susceptibility to gray and white matter injury at E22 was related to the timing of appearance of late oligodendrocyte progenitors (preOLs) that are particularly vulnerable in preterm human white matter lesions. During normal rabbit oligodendrocyte (OL) lineage progression, early OL progenitors predominated at E22. PreOL density increased between E24 and E25 in major forebrain white matter tracts. After H-I at E22 and E25, we observed a similar magnitude of cerebral H-I, assessed by cortical microvascular blood flow, and gray matter injury, assessed by caspase activation. However, the increased preOL density at E25 was accompanied by a significant increase in acute white matter injury after H-I that coincided with enhanced preOL degeneration. At E29, significant white matter atrophy developed after H-I at E25 but not E22. Thus, the timing of appearance of preOLs coincided with onset of a developmental window of enhanced white but not gray matter susceptibility to H-I.
Collapse
Affiliation(s)
- Joshua R Buser
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
This study investigated the potential of melatonin in ameliorating hypoxic damage to the periventricular white matter (PWM) in the neonatal brain. Vascular endothelial growth factor (VEGF), nitric oxide (NO), glutathione (GSH) and malondialdehyde (MDA) content in the PWM of 1-day-old rats subjected to hypoxia for a period of 2 hr was examined. Vascular endothelial growth factor, NO and MDA concentration was increased whereas that of GSH was reduced after the hypoxic exposure. Additionally, degenerating axons, apoptotic and necrotic cells and vacuolation of capillary endothelial cells were observed in the PWM. The neighboring ependymal and choroid plexus cells also appeared to undergo structural alterations. Increased vascular permeability in the PWM of hypoxic rats was evidenced by the leakage of rhodamine isothiocyanate (RhIC) which was taken up by the amoeboid microglial cells. In vitro experiments showed increased apoptosis in OLN-93 cells, an oligodendrocytic cell line, following hypoxic exposure. Hypoxic rats treated with melatonin showed reduced VEGF, NO and MDA concentrations, increased GSH content and reduced RhIC leakage in the PWM. The ultrastructure of axons, endothelial, ependymal and choroid plexus epithelial cells appeared relatively normal in the hypoxic animals treated with melatonin. The incidence of apoptotic OLN-93 cells was also reduced with melatonin treatment. We suggest that the protective effects of melatonin on various parameters in the PWM of hypoxic neonatal brains were due to its antioxidant properties.
Collapse
Affiliation(s)
- C Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - V Sivakumar
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - E A Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
21
|
Abstract
Stroke is one of the leading causes of death and disability in developed countries. Since protecting neurons alone is not sufficient for stroke therapy, research has shifted to the rescue of multiple cell types in the brain. In particular, attention has focused on the study of how cerebral blood vessels and brain cells communicate with each other. Recent findings suggest that cerebral endothelial cells may secrete trophic factors that nourish neighboring cells. Although data are strongest in terms of supporting endothelial-neuronal interactions, it is likely that similar interactions occur in white matter as well. In this mini-review, we summarize recent advances in the dissection of cell-cell interactions in white matter. We examine two key concepts. First, trophic interactions between vessels and oligodendrocytes (OLGs) and oligodendrocyte precursor cells (OPCs) play critical roles in white matter homeostasis. Second, cell-cell trophic coupling is disturbed under diseased conditions that incur oxidative stress. White matter pathophysiology is very important in stroke. A deeper understanding of the mechanisms of oligovascular signaling in normal and pathologic conditions may lead us to new therapeutic targets for stroke and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
22
|
Fan LW, Mitchell HJ, Tien LT, Rhodes PG, Cai Z. Interleukin-1beta-induced brain injury in the neonatal rat can be ameliorated by alpha-phenyl-n-tert-butyl-nitrone. Exp Neurol 2009; 220:143-53. [PMID: 19682987 PMCID: PMC2761495 DOI: 10.1016/j.expneurol.2009.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/24/2009] [Accepted: 08/06/2009] [Indexed: 11/19/2022]
Abstract
To examine the possible role of inflammatory cytokines in mediating perinatal brain injury, we investigated effects of intracerebral injection of interleukin-1beta (IL-1beta) on brain injury in the neonatal rat and the mechanisms involved. Intracerebral administration of IL-1beta (1 microg/kg) resulted in acute brain injury, as indicated by enlargement of ventricles bilaterally, apoptotic death of oligodendrocytes (OLs) and loss of OL immunoreactivity in the neonatal rat brain. IL-1beta also induced axonal and neuronal injury in the cerebral cortex as indicated by elevated expression of beta-amyloid precursor protein, short beaded axons and dendrites, and loss of tyrosine hydroxylase-positive neurons in the substantia nigra and the ventral tegmental areas. Administration of alpha-phenyl-n-tert-butyl-nitrone (PBN, 100 mg/kg i.p.) immediately after the IL-1beta injection protected the brain from IL-1beta-induced injury. Protection of PBN was linked with the attenuated oxidative stress induced by IL-1beta, as indicated by decreased elevation of 8-isoprostane content and by the reduced number of 4-hydroxynonenal or malondialdehyde or nitrotyrosine-positive cells following IL-1beta exposure. PBN also attenuated IL-1beta-stimulated inflammatory responses as indicated by the reduced activation of microglia. The finding that IL-1beta induced perinatal brain injury was very similar to that induced by lipopolysaccharide (LPS), as we previously reported and that PBN was capable to attenuate the injury induced by either LPS or IL-1beta suggests that IL-1beta may play a critical role in mediating brain injury associated with perinatal infection/inflammation.
Collapse
Affiliation(s)
- Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Helen J. Mitchell
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lu-Tai Tien
- School of Medicine, Fu-Jen Catholic University, Hsin-Chuang, Taipei County, Taiwan
| | - Philip G. Rhodes
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Zhengwei Cai
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
23
|
Arai K, Lo EH. Experimental models for analysis of oligodendrocyte pathophysiology in stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2009; 1:6. [PMID: 20150984 PMCID: PMC2820444 DOI: 10.1186/2040-7378-1-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/24/2009] [Indexed: 02/06/2023]
Abstract
White matter damage is a clinically important part of stroke. However, compared to the mechanisms of neuronal injury in gray matter, white matter pathophysiology remains relatively understudied and poorly understood. This mini-review aims at summarizing current knowledge on experimental systems for analyzing the role of white matter injury relevant to stroke. In vitro platforms comprise primary cultures of both mature oligodendrocytes (OLGs) as well as oligodendrocyte precursor cells (OPCs). Tissue platforms involve preparations of optic nerve systems. Whole-animal platforms comprise in vivo models of cerebral ischemia that attempt to target white matter brain areas. While there is no single perfect model system, the collection of these experimental approaches have recently allowed a better understanding of the molecular and cellular pathways underlying OLG/OPC damage and demyelination. A systematic utilization of these cell, tissue and whole-animal platforms may eventually lead us to discover new targets for treating white matter injury in stroke and other CNS disorders.
Collapse
Affiliation(s)
- Ken Arai
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA.
| | | |
Collapse
|
24
|
Huang Z, Liu J, Cheung PY, Chen C. Long-term cognitive impairment and myelination deficiency in a rat model of perinatal hypoxic-ischemic brain injury. Brain Res 2009; 1301:100-9. [PMID: 19747899 DOI: 10.1016/j.brainres.2009.09.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 09/02/2009] [Accepted: 09/03/2009] [Indexed: 01/15/2023]
Abstract
Although periventricular white matter injury is a leading cause of major neurologic disability in premature infants, the relationship between myelination deficiency and long-term cognitive dysfunction is not well understood. The purpose of this study was to investigate oligodendrocytes myelination and long-term spatial cognitive function in rats with perinatal hypoxia-ischemia (HI). Postnatal day 3 (P3) rats were subjected to right carotid artery ligation followed by 2.5 h of hypoxia (6% oxygen). Brain injury during the early and late phases was evaluated by immunostaining at P6 (72 h after the injury) and P47. Spatial cognitive function was evaluated at P42 using the Morris Water Maze test followed by histologic evaluation. HI caused an increase in pre-oligodendrocytes, astrocytes, and microglia in the ipsilateral white matter 72 h after the insult compared to contralateral regions and sham-operated controls (both p<0.05). There were significant decreases in myelin basic protein (MBP)and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)-labeled oligodendrocytes with glial fibrillary acidic protein (GFAP)-labeled glial scarring in the ipsilateral periventricular white matter at P47 compared to contralateral regions and sham-operated controls (all p<0.05). The rats with HI had spatial learning deficits in navigation trials (longer escape latency and swimming distance) and memory dysfunction in probe trials (fewer number of platform crossings and percentage of time in the target quadrant) compared with sham-operated controls (p<0.05). In this neonatal rat model of HI, myelination deficiency induced by activated astrocytes and microglia during the early phase with subsequent glial scarring was associated with long-term spatial learning and memory dysfunction.
Collapse
MESH Headings
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism
- Analysis of Variance
- Animals
- Animals, Newborn
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/pathology
- Cell Count
- Cognition Disorders/complications
- Cognition Disorders/metabolism
- Cognition Disorders/pathology
- Cognition Disorders/physiopathology
- Demyelinating Diseases/complications
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/pathology
- Demyelinating Diseases/physiopathology
- Exploratory Behavior/physiology
- Female
- Gliosis/pathology
- Hypoxia-Ischemia, Brain/complications
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/physiopathology
- Immunohistochemistry
- Male
- Maze Learning/physiology
- Myelin Basic Protein/metabolism
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/pathology
- Neuroglia/metabolism
- Neuroglia/pathology
- Rats
- Space Perception/physiology
- Time Factors
Collapse
Affiliation(s)
- Zhiheng Huang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
25
|
Mattson MP. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp Gerontol 2009; 44:625-33. [PMID: 19622391 DOI: 10.1016/j.exger.2009.07.003] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/07/2009] [Accepted: 07/14/2009] [Indexed: 11/29/2022]
Abstract
A rising tide of obesity and type 2 diabetes has resulted from the development of technologies that have made inexpensive high calorie foods readily available and exercise unnecessary for many people. Obesity and the metabolic syndrome (insulin resistance, visceral adiposity and dyslipidemia) wreak havoc on cells throughout the body thereby promoting cardiovascular and kidney disease, and degenerative diseases of the brain and body. Obesity and insulin resistance promote disease by increasing oxidative damage to proteins, lipids and DNA as the result of a combination of increased free radical production and an impaired ability of cells to detoxify the radicals and repair damaged molecules. By covalently modifying membrane-associated proteins, the membrane lipid peroxidation product 4-hydroxynonenal (HNE) may play particularly sinister roles in the metabolic syndrome and associated disease processes. HNE can damage pancreatic beta cells and can impair the ability of muscle and liver cells to respond to insulin. HNE may promote atherosclerosis by modifying lipoproteins and can cause cardiac cell damage by impairing metabolic enzymes. An adverse role for HNE in the brain in obesity and the metabolic syndrome is suggested by studies showing that HNE levels are increased in brain cells with aging and Alzheimer's disease. HNE can cause the dysfunction and degeneration of neurons by modifying membrane-associated glucose and glutamate transporters, ion-motive ATPases, enzymes involved in amyloid metabolism, and cytoskeletal proteins. Exercise and dietary energy restriction reduce HNE production and may also increase cellular systems for HNE detoxification including glutathione and oxidoreductases. The recent development of low molecular weight molecules that scavenge HNE suggests that HNE can be targeted in the design of drugs for the treatment of obesity, the metabolic syndrome, and associated disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
26
|
Saito M, Chakraborty G, Mao RF, Vadasz C, Saito M. Developmental profiles of lipogenic enzymes and their regulators in the neonatal mouse brain. Neurochem Res 2009; 34:1945-54. [PMID: 19418221 DOI: 10.1007/s11064-009-9975-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 04/15/2009] [Indexed: 12/01/2022]
Abstract
It has been shown that lipogenic enzymes, such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), are highly expressed in the rodent brain during the early neonatal period and decline thereafter. However, cellular localization of these enzymes is unknown. Presently, we examined developmental changes in the levels and cellular localization of FAS and ACC, and their putative regulators, sterol-regulatory element-binding protein (SREBP)-1 and AMP-activated protein kinase (AMPK) in the mouse brain. Levels of these proteins including phosphorylated forms of ACC and AMPK decreased between postnatal day 4 (P4) and P19. Immunohistochemical studies indicated that FAS, ACC, AMPK, and SREBP-1 were expressed in neurons at P7, while FAS was found mostly in cells of oligodendrocyte lineage at P19. These studies suggest that neurons in the early neonatal brain are involved in do novo fatty acid synthesis.
Collapse
Affiliation(s)
- Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | | | | | | | |
Collapse
|
27
|
Kaur C, Ling E. Periventricular white matter damage in the hypoxic neonatal brain: Role of microglial cells. Prog Neurobiol 2009; 87:264-80. [DOI: 10.1016/j.pneurobio.2009.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 11/12/2008] [Accepted: 01/08/2009] [Indexed: 01/22/2023]
|
28
|
Fan LW, Chen RF, Mitchell HJ, Lin RCS, Simpson KL, Rhodes PG, Cai Z. alpha-Phenyl-n-tert-butyl-nitrone attenuates lipopolysaccharide-induced brain injury and improves neurological reflexes and early sensorimotor behavioral performance in juvenile rats. J Neurosci Res 2008; 86:3536-47. [PMID: 18683243 PMCID: PMC2921906 DOI: 10.1002/jnr.21812] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Our previous study showed that treatment with alpha-phenyl-n-tert-butyl-nitrone (PBN) after exposure to lipopolysaccharide (LPS) reduced LPS-induced white matter injury in the neonatal rat brain. The object of the current study was to further examine whether PBN has long-lasting protective effects and ameliorates LPS-induced neurological dysfunction. Intracerebral (i.c.) injection of LPS (1 mg/kg) was performed in postnatal day (P) 5 Sprague Dawley rat pups and PBN (100 mg/kg) or saline was administered intraperitoneally 5 min after LPS injection. The control rats were injected (i.c.) with sterile saline. Neurobehavioral tests were carried out from P3 to P21, and brain injury was examined after these tests. LPS exposure resulted in severe brain damage, including enlargement of ventricles bilaterally, loss of mature oligodendrocytes, impaired myelination as indicated by the decrease in myelin basic protein immunostaining, and alterations in dendritic processes in the cortical gray matter of the parietal cortex. Electron microscopic examination showed that LPS exposure caused impaired myelination as indicated by the disintegrated myelin sheaths in the juvenile rat brain. LPS administration also significantly affected neurobehavioral functions such as performance in righting reflex, wire hanging maneuver, cliff avoidance, negative geotaxis, vibrissa-elicited forelimb-placing test, beam walking, and gait test. Treatment with PBN, a free radical scavenger and antioxidant, provided protection against LPS-induced brain injury and associated neurological dysfunction in juvenile rats, suggesting that antioxidation might be an effective approach for therapeutic treatment of neonatal brain injury induced by infection/inflammation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/drug effects
- Brain/pathology
- Brain/physiopathology
- Brain Damage, Chronic/chemically induced
- Brain Damage, Chronic/drug therapy
- Brain Damage, Chronic/microbiology
- Central Nervous System Bacterial Infections/microbiology
- Central Nervous System Bacterial Infections/physiopathology
- Central Nervous System Bacterial Infections/transmission
- Cyclic N-Oxides/therapeutic use
- Disease Models, Animal
- Female
- Gait Disorders, Neurologic/chemically induced
- Gait Disorders, Neurologic/drug therapy
- Gait Disorders, Neurologic/microbiology
- Humans
- Infant, Newborn
- Infectious Disease Transmission, Vertical
- Leukomalacia, Periventricular/drug therapy
- Leukomalacia, Periventricular/microbiology
- Lipopolysaccharides/toxicity
- Male
- Movement Disorders/drug therapy
- Movement Disorders/microbiology
- Movement Disorders/physiopathology
- Myelin Basic Protein/drug effects
- Myelin Basic Protein/metabolism
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/pathology
- Neuroprotective Agents/therapeutic use
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Oligodendroglia/pathology
- Pregnancy
- Rats
- Rats, Sprague-Dawley
- Recovery of Function/drug effects
- Recovery of Function/physiology
- Reflex/drug effects
- Reflex/physiology
Collapse
Affiliation(s)
- Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ruei-Feng Chen
- Department of Life Science and Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Helen J. Mitchell
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Rick C. S. Lin
- Departments of Anatomy, Psychiatry, and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kimberly L. Simpson
- Departments of Anatomy, Psychiatry, and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Philip G. Rhodes
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Zhengwei Cai
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
29
|
Segovia KN, McClure M, Moravec M, Luo NL, Wan Y, Gong X, Riddle A, Craig A, Struve J, Sherman LS, Back SA. Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 2008; 63:520-30. [PMID: 18393269 DOI: 10.1002/ana.21359] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Abnormal myelination is a major pathological sequela of chronic periventricular white matter injury in survivors of premature birth. We tested the hypothesis that myelination failure in chronic hypoxia-ischemia-induced periventricular white matter injury is related to persistent depletion of the oligodendrocyte (OL) precursor pool required to generate mature myelinating OLs. METHODS A neonatal rat model of hypoxia-ischemia was used where acute degeneration of late OL progenitors (preOLs) occurs via a mostly caspase-independent mechanism. The fate of OL lineage cells in chronic cerebral lesions was defined with OL lineage-specific markers. RESULTS Acute caspase-3-independent preOL degeneration from hypoxia-ischemia was significantly augmented by delayed preOL death that was caspase-3-dependent. Degeneration of preOLs was offset by a robust regenerative response that resulted in a several-fold expansion in the pool of surviving preOLs in chronic lesions. However, these preOLs displayed persistent maturation arrest with failure to differentiate and generate myelin. When preOL-rich chronic lesions sustained recurrent hypoxia-ischemia at a time in development when white matter is normally resistant to injury, an approximately 10-fold increase in caspase-dependent preOL degeneration occurred relative to lesions caused by a single episode of hypoxia-ischemia. INTERPRETATION The mechanism of myelination failure in chronic white matter lesions is related to a combination of delayed preOL degeneration and preOL maturation arrest. The persistence of a susceptible population of preOLs renders chronic white matter lesions markedly more vulnerable to recurrent hypoxia-ischemia. These data suggest that preOL maturation arrest may predispose to more severe white matter injury in preterm survivors that sustain recurrent hypoxia-ischemia.
Collapse
Affiliation(s)
- Kristen N Segovia
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fan LW, Mitchell HJ, Tien LT, Zheng B, Pang Y, Rhodes PG, Cai Z. alpha-Phenyl-n-tert-butyl-nitrone reduces lipopolysaccharide-induced white matter injury in the neonatal rat brain. Dev Neurobiol 2008; 68:365-78. [PMID: 18161853 DOI: 10.1002/dneu.20591] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipopolysaccharide (LPS)-induced white matter injury in the neonatal rat brain is at least partially associated with oxidative stress. alpha-Phenyl-n-tert-butyl-nitrone (PBN) (100 mg/kg) significantly attenuated LPS (1 mg/kg)-induced brain injury, as indicated by the reduction in bilateral ventricular enlargement, apoptotic cell death of oligodendrocytes (OLs), and the loss of OL immunoreactivity in the neonatal rat brain. Protection of PBN was linked with the attenuated oxidative stress induced by LPS, as indicated by the decreased elevation of 8-isoprostane content and by the reduced number of 4-hydroxynonenal or malondialdehyde positive OLs following LPS exposure. Interestingly, while LPS exposure elevated, rather than depleted, levels of the reduced glutathione (GSH) and the GSH/GSSG (oxidized form) ratio, LPS exposure significantly suppressed glutathione peroxidase activity in the rat brain. PBN attenuated LPS-induced alterations in glutathione homeostasis in the rat brain. Additionally, the inflammatory responses were also reduced in the PBN-treated brain, as indicated by the decreased number of activated microglia following LPS exposure and by the consequently decreased elevation of interleukin1-beta and tumor necrosis factor-alpha contents in the rat brain. The overall results suggest that antioxidant PBN, more than a straightforward free radical scavenger, may also involve anti-inflammatory and anti-apoptotic properties in protection of the neonatal rat brain from LPS-induced injury.
Collapse
Affiliation(s)
- Lir-Wan Fan
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Fan LW, Tien LT, Mitchell HJ, Rhodes PG, Cai Z. Alpha-phenyl-n-tert-butyl-nitrone ameliorates hippocampal injury and improves learning and memory in juvenile rats following neonatal exposure to lipopolysaccharide. Eur J Neurosci 2008; 27:1475-84. [PMID: 18364024 DOI: 10.1111/j.1460-9568.2008.06121.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neonatal exposure to infectious agents may result in long-term neurological disability, and is particularly associated with the subsequent development of motor and cognitive disturbances. Our previous studies have shown that treatment with alpha-phenyl-n-tert-butyl-nitrone (PBN) following exposure to lipopolysaccharide (LPS) reduces LPS-induced brain injury in the neonatal rat. To examine whether PBN has long-lasting protective effects and ameliorates LPS-induced motor and cognitive dysfunction, PBN (100 mg/kg) was administered intraperitoneally 5 min after an LPS (1 mg/kg) intracerebral injection in postnatal day 5 (P5) Sprague-Dawley rat pups. Neurobehavioral tests were carried out from P3 to P21, and brain injury was examined at 24 h and 16 days after LPS injection. Neonatal LPS exposure resulted in hyperactivity from P13 to P17 in the open field task as compared with the control rat. Neurobehavioral deficits that were still observable at P21 included dysfunction in the beam-walking and pole tests, learning and memory deficits in the passive avoidance task, and less anxiety-like response in the elevated plus-maze task. These behavioral findings were matched by LPS-induced axonal injury in the CA1 region of the middle dorsal hippocampus (HP), reduction in the size of the HP and the number of neurons in the CA1 region of the middle dorsal HP, and loss of tyrosine hydroxylase immunoreactivity in neurons in the substantia nigra and ventral tegmental areas. Treatment with PBN provided long-lasting protection against the LPS-induced axonal injury and neuronal loss, and improved the associated neurological dysfunctions in juvenile rats.
Collapse
Affiliation(s)
- Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | |
Collapse
|
32
|
Carty ML, Wixey JA, Colditz PB, Buller KM. Post-insult minocycline treatment attenuates hypoxia-ischemia-induced neuroinflammation and white matter injury in the neonatal rat: a comparison of two different dose regimens. Int J Dev Neurosci 2008; 26:477-85. [PMID: 18387771 DOI: 10.1016/j.ijdevneu.2008.02.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 02/20/2008] [Accepted: 02/20/2008] [Indexed: 12/14/2022] Open
Abstract
An increase in the number of activated microglia in the brain is a key feature of neuroinflammation after a hypoxic-ischemic insult to the preterm neonate and can contribute to white matter injury in the brain. Minocycline is a potent inhibitor of microglia and may have a role as a neuroprotective agent that ameliorates brain injury after hypoxia-ischemia in neonatal animal models. However to date large doses, pre-insult administration and short periods of treatment after hypoxia-ischemia have mostly been investigated in animal models making it difficult to translate minocycline's potential applicability to protect the human preterm neonatal brain exposed to hypoxia-ischemia. We investigated whether repeated doses of minocycline can minimize white matter injury and neuroinflammation one week after hypoxia-ischemia (right carotid artery ligation and 30 min 6% O(2)) in the post-natal day 3 rat pup. Two dosage regimens of minocycline were administered for one week; a high dose of 45 mg/kg 2h after hypoxia-ischemia then 22.5 mg/kg daily or a low dose 22.5 mg/kg 2h after hypoxia-ischemia then 10 mg/kg. Post-natal day 3 hypoxia-ischemia significantly reduced myelin content, numbers of O1- and O4-positive oligodendrocyte progenitor cells and increased activated microglia one week later on post-natal day 10. The low dose minocycline regimen was as effective as the high dose in ameliorating neuroinflammation after post-natal day 3 hypoxia-ischemia. However only the high dose regimen significantly attenuated reductions in O1- and O4-positive oligodendrocyte progenitor cells and myelin content. The low dose only significantly attenuated the reduction in O1-positive oligodendrocyte cell counts. Repeated, daily, post-insult treatment with minocycline abolished neuroinflammation and may provide neuroprotection to white matter for up to one week after hypoxia-ischemia in a rodent preterm model. The present findings suggest the potential clinical relevance of a repeated, daily minocycline treatment strategy, administered after a hypoxia-ischemia insult, as a therapeutic intervention for hypoxia-ischemia-affected preterm neonates.
Collapse
Affiliation(s)
- Michelle L Carty
- Perinatal Research Centre, School of Medicine, University of Queensland, Herston, Queensland 4029, Australia
| | | | | | | |
Collapse
|
33
|
Kruck TP, Percy ME, Lukiw WJ. Metal sulfate-mediated induction of pathogenic genes and repression by phenyl butyl nitrone and Feralex-G. Neuroreport 2008; 19:245-9. [DOI: 10.1097/wnr.0b013e3282f4cb7e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Kawai A, Nishinaka Y, Arai T, Hirota K, Mori H, Endo N, Miyoshi T, Yamashita K, Sasada M. α-Phenyl-N-tert-butyl Nitrone Has Scavenging Activity Against Singlet Oxygen (1O2) and Attenuates 1O2-Induced Neuronal Cell Death. J Pharmacol Sci 2008; 108:545-9. [DOI: 10.1254/jphs.08233sc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
35
|
Fan LW, Mitchell HJ, Rhodes PG, Cai Z. Alpha-Phenyl-n-tert-butyl-nitrone attenuates lipopolysaccharide-induced neuronal injury in the neonatal rat brain. Neuroscience 2007; 151:737-44. [PMID: 18191905 DOI: 10.1016/j.neuroscience.2007.09.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/13/2007] [Accepted: 11/20/2007] [Indexed: 11/16/2022]
Abstract
Although white matter damage is a fundamental neuropathological feature of periventricular leukomalacia (PVL), the motor and cognitive deficits observed later in infants with PVL indicate the possible involvement of cerebral neuronal dysfunction. Using a previously developed rat model of white matter injury induced by cerebral lipopolysaccharide (LPS) injection, we investigated whether LPS exposure also results in neuronal injury in the neonatal brain and whether alpha-phenyl-n-tert-butyl-nitrone (PBN), an antioxidant, offers protection against LPS-induced neuronal injury. A stereotactic intracerebral injection of LPS (1 mg/kg) was performed in Sprague-Dawley rats (postnatal day 5) and control rats were injected with sterile saline. LPS exposure resulted in axonal and neuronal injury in the cerebral cortex as indicated by elevated expression of beta-amyloid precursor protein, altered axonal length and width, and increased size of cortical neuronal nuclei. LPS exposure also caused loss of tyrosine hydroxylase positive neurons in the substantia nigra and the ventral tegmental areas of the rat brain. Treatments with PBN (100 mg/kg) significantly reduced LPS-induced neuronal and axonal damage. The protection of PBN was associated with an attenuation of oxidative stress induced by LPS as indicated by the reduced number of 4-hydroxynonenal, malondialdehyde or nitrotyrosine positive cells in the cortical area following LPS exposure, and with the reduction in microglial activation stimulated by LPS. The finding that an inflammatory environment may cause both white matter and neuronal injury in the neonatal brain supports the possible anatomical correlate for the intellectual deficits and the other cortical and deep gray neuronal dysfunctions associated with PVL. The protection of PBN may indicate the potential usefulness of antioxidants for treatment of these neuronal dysfunctions.
Collapse
Affiliation(s)
- L-W Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | | | | | | |
Collapse
|
36
|
Boetkjaer A, Boedker M, Cui JG, Zhao Y, Lukiw WJ. Synergism in the repression of COX-2- and TNFalpha-induction in platelet activating factor-stressed human neural cells. Neurosci Lett 2007; 426:59-63. [PMID: 17881124 PMCID: PMC2083574 DOI: 10.1016/j.neulet.2007.08.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 11/25/2022]
Abstract
Platelet activating factor (PAF; beta-acetyl-gamma-O-hexadecyl-l-alpha-phosphatidylcholine) triggers a rapid pro-inflammatory gene expression program in primary cultures of human neural (HN) cells. Two genes and gene products consistently induced after PAF treatment are the cytosoluble prostaglandin synthase cycloooxygenase-2 (COX-2) and the pro-apoptotic tumor necrosis factor alpha (TNFalpha). Both of these mediators are associated with the activation of inflammatory signaling, neural cell dysfunction, apoptosis and brain cell death, and both have been found to be up-regulated after brain injury in vivo. In this study we investigated the effects of the non-halogenated synthetic glucocorticoid budesonide epimer R (BUDeR), the novel PAF antagonist LAU-0901, and the electron spin trap and free radical scavenger phenyl butyl nitrone (PBN), upon early COX-2 and TNFalpha gene activation and prostaglandin E(2) (PGE(2)) release in PAF-stressed primary HN cells. The data indicate that these three biochemically unrelated classes of inflammatory repressors act synergistically in modulating PAF-induced up-regulation of COX-2, TNFalpha, and PGE(2) by quenching oxidative stress or inflammatory signaling, resulting in increased HN cell survival. These, or analogous classes of compounds, may be useful in the design of more effective combinatorial pharmacotherapeutic strategies in the treatment of complex neuro-inflammatory disorders.
Collapse
Affiliation(s)
- Anja Boetkjaer
- The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
37
|
Abstract
Survivors of premature birth have a predilection for perinatal brain injury, especially to periventricular cerebral white matter. Periventricular white matter injury (PWMI) is now the most common cause of brain injury in preterm infants and the leading cause of chronic neurological morbidity. The spectrum of chronic PWMI includes focal cystic necrotic lesions (periventricular leukomalacia) and diffuse myelination disturbances. Recent neuroimaging studies support that the incidence of periventricular leukomalacia is declining, whereas focal or diffuse noncystic injury is emerging as the predominant lesion. In a significant number of infants, PWMI appears to be initiated by perturbations in cerebral blood flow that reflect anatomic and physiological immaturity of the vasculature. Ischemic cerebral white matter is susceptible to pronounced free radical-mediated injury that particularly targets immature stages of the oligodendrocyte lineage. Emerging experimental data supports that pronounced ischemia in the periventricular white matter is necessary but not sufficient to generate the initial injury that leads to PWMI. The developmental predilection for PWMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible oligodendrocyte progenitors. Injury to oligodendrocyte progenitors may contribute to the pathogenesis of PWMI by disrupting the maturation of myelin-forming oligodendrocytes. There has been substantial recent progress in the understanding of the cellular and molecular pathogenesis of PWMI. The oligodendrocyte progenitor is a key target for preventive strategies to reduce ischemic cerebral white matter injury in premature infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | | | |
Collapse
|
38
|
Broughton SK, Chen H, Riddle A, Kuhn SE, Nagalla S, Roberts CT, Back SA. Large-scale generation of highly enriched neural stem-cell-derived oligodendroglial cultures: maturation-dependent differences in insulin-like growth factor-mediated signal transduction. J Neurochem 2007; 100:628-38. [PMID: 17263792 DOI: 10.1111/j.1471-4159.2006.04171.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Multipotent neural stem cells (NSCs) are competent for commitment to the oligodendrocyte (OL) lineage both in vitro and in vivo. We exploited this property to develop a rat neurospheres (NS)/oligospheres (OS)-based culture system to generate large numbers of highly enriched late OL progenitors (preOLs) and mature OLs (MatOLs). CNS neuroblastoma cell line B104-derived conditioned medium promoted the generation of nearly pure populations of preOLs from dissociated OS. The subsequent culture of preOLs with ciliary neurotrophic factor (CNTF) and 3,3',5'-triiodo-L-thyronine (T(3)) generated nearly pure populations of MatOLs. OL lineage specificity was confirmed by immunocytochemistry, quantitative RT-PCR and gene expression profiling, which demonstrated large differences between preOLs and MatOLs. The insulin-like growth factors (IGFs) are potent neuro-protective agents required for OL survival. We used this system to systematically define maturation-dependent changes in IGF signaling during the course of OL differentiation. The IGF-I and insulin receptors, insulin receptor substrate-1 (IRS-1) and IRS-2, protein kinase B (PKB)/Akt and Janus kinase (JNK) were expressed at higher levels in NS and preOLs compared with OS and MatOLs. Erk expression increased markedly from NS to OS, decreased only partially upon commitment to preOLs, and, in MatOLs, returned to a low level similar to NS. IGF activation of the generally proliferative Erk pathway was gradually acquired during NSC differentiation, whereas IGF activation of the generally pro-survival, anti-apoptotic PI3K/PKB pathway was consistently robust at each developmental stage.
Collapse
Affiliation(s)
- Sarah K Broughton
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Back SA, Craig A, Kayton RJ, Luo NL, Meshul CK, Allcock N, Fern R. Hypoxia-ischemia preferentially triggers glutamate depletion from oligodendroglia and axons in perinatal cerebral white matter. J Cereb Blood Flow Metab 2007; 27:334-47. [PMID: 16757980 DOI: 10.1038/sj.jcbfm.9600344] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ischemia is implicated in periventricular white matter injury (PWMI), a lesion associated with cerebral palsy. PWMI features selective damage to early cells of the oligodendrocyte lineage, a phenomenon associated with glutamate receptor activation. We have investigated the distribution of glutamate in rat periventricular white matter at post-natal day 7. Immuno-electron microcopy was used to identify O4(+) oligodendroglia in control rats, and a similar approach was employed to stain glutamate in these cells before and after 90 mins of hypoxia-ischemia. This relatively brief period of hypoxia-ischemia produced mild cell injury, corresponding to the early stages of PWMI. Glutamate-like reactivity was higher in oligodendrocytes than in other cell types (2.13+/-0.25 counts/microm(2)), and declined significantly during hypoxia-ischemia (0.93+/-0.15 counts/microm(2): P<0.001). Astrocytes had lower glutamate levels (0.7+/-0.07 counts/microm(2)), and showed a relatively small decline during hypoxia-ischemia. Axonal regions contained high levels of glutamate (1.84+/-0.20 counts/microm(2)), much of which was lost during hypoxia-ischemia (0.72+/-0.20 counts/microm(2): P>0.001). These findings suggest that oligodendroglia and axons are the major source of extracellular glutamate in developing white matter during hypoxia-ischemia, and that astrocytes fail to accumulate the glutamate lost from these sources. We also examined glutamate levels in the choroid plexus. Control glutamate levels were high in both choroid epithelial (1.90+/-0.20 counts/microm(2)), and ependymal cells (2.20+/-0.28 counts/microm(2)), and hypoxia-ischemia produced a large fall in ependymal glutamate (0.97+/-0.08 counts/microm(2): P>0.001). The ependymal cells were damaged by the insult and represent a further potential source of glutamate during ischemia.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health and Sciences University, Portland, Oregon, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Yin W, Signore AP, Iwai M, Cao G, Gao Y, Johnnides MJ, Hickey RW, Chen J. Preconditioning suppresses inflammation in neonatal hypoxic ischemia via Akt activation. Stroke 2007; 38:1017-24. [PMID: 17272774 DOI: 10.1161/01.str.0000258102.18836.ca] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Hypoxic preconditioning (PC) confers robust neuroprotection against neonatal hypoxic-ischemic brain injury (H-I), yet the underlying mechanism is poorly understood. In the adult brain, neuronal survival after ischemia is associated with the activation of the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling pathway. Suppression of inflammation is a newly identified direct consequence of PI3-K/Akt signaling. We therefore investigated whether PI3-K/Akt suppresses inflammation and contributes to PC-induced neuroprotection. METHODS Postnatal day 7 rats were exposed for 3 hours to either ambient air or 8% oxygen, which induces hypoxic PC. H-I was produced 24 hours later by unilateral carotid artery ligation followed by 2.5 hours of hypoxia. Animals were euthanized 0 to 24 hours later for detecting Akt and glycogen synthetase kinase-3beta phosphorylation (p-Akt, p-GSK-3beta), 24 hours later for assessing cytokine expression and inflammatory markers, and 7 days later for measuring brain tissue loss. In addition, LY294002 was injected intracerebroventricularly to inhibit PI3-K/Akt. RESULTS Brains with H-I without PC showed delayed but sustained reduction in p-Akt. PC restored the levels of p-Akt and the Akt substrate GSK-3beta, reduced proinflammatory markers (NF-kappaB, COX-2, CD68, myeloperoxidase, and microglial activation), and markedly ameliorated H-I-induced brain tissue loss. Inhibition of PI3-K/Akt using LY294002 attenuated PC neuroprotection and promoted the expression of NF-kappaB, COX-2, and CD68. Proteomic microarray analysis revealed that PC inhibited expression of proinflammatory cytokines induced by H-I or a dose of lipopolysaccharide that resulted in minimal tissue damage. CONCLUSIONS Suppression of inflammatory responses may contribute to PC neuroprotection against neonatal H-I brain injury. This effect is mediated in part via upregulating PI3-K/Akt activity.
Collapse
Affiliation(s)
- Wei Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lin S, Cox HJ, Rhodes PG, Cai Z. Neuroprotection of α-phenyl-n-tert-butyl-nitrone on the neonatal white matter is associated with anti-inflammation. Neurosci Lett 2006; 405:52-6. [PMID: 16876321 DOI: 10.1016/j.neulet.2006.06.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/13/2006] [Accepted: 06/15/2006] [Indexed: 11/21/2022]
Abstract
Our previous study has demonstrated that alpha-phenyl-tert-butyl-nitrone (PBN) provided neuroprotection to the neonatal white matter following cerebral hypoxia-ischemia (HI). Free radical scavenging was involved in the neuroprotection of PBN. To investigate if other mechanisms contribute to the neuroprotection of PBN, postnatal day 4 SD rats were subjected to bilateral common carotid artery ligation, followed by 8% oxygen exposure for 20min. A single dose of PBN (100mg/kg, i.p.) was given prior to the hypoxic exposure. Expression of inflammatory cytokines: interleukin-1beta (IL-1beta), inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-alpha) was determined by RT-PCR, ELISA and immunohistochemistry. Activation of transcriptional factor nuclear factor-kappa B (NF-kappaB) was measured by ELISA. PBN significantly inhibited HI-induced up-regulation of IL-1beta, TNF-alpha and iNOS mRNA expression at 4h following HI. PBN treatment also reduced the brain concentration of IL-1beta significantly and decreased the number of IL-1beta- or iNOS-expressing cells in the white matter area at 12h following HI. Moreover, PBN suppressed the HI-induced NF-kappaB activation at 1h after HI. The overall results indicate that besides free radical scavenging, anti-inflammation might partly contribute to the neuroprotection afforded by PBN on neonatal white matter following cerebral HI.
Collapse
Affiliation(s)
- Shuying Lin
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | | | | | | |
Collapse
|
42
|
Fan LW, Lin S, Pang Y, Rhodes PG, Cai Z. Minocycline attenuates hypoxia-ischemia-induced neurological dysfunction and brain injury in the juvenile rat. Eur J Neurosci 2006; 24:341-50. [PMID: 16836639 DOI: 10.1111/j.1460-9568.2006.04918.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To investigate whether minocycline provides long-lasting protection against neonatal hypoxia-ischemia-induced brain injury and neurobehavioral deficits, minocycline was administered intraperitoneally in postnatal day 4 Sprague-Dawley rats subjected to bilateral carotid artery occlusion followed by exposure to hypoxia (8% oxygen for 15 min). Brain injury and myelination were examined on postnatal day 21 (P21) and tests for neurobehavioral toxicity were performed from P3 to P21. Hypoxic-ischemic insults resulted in severe white matter injury, enlarged ventricles, deficits in the hippocampus, reduction in numbers of mature oligodendrocytes and tyrosine hydroxylase-positive neurons, damage to axons and dendrites, and impaired myelination, as indicated by the decrease in myelin basic protein immunostaining in the P21 rat brain. Hypoxic-ischemic insult also significantly affected physical development (body weight gain and eye opening) and neurobehavioral performance, including sensorimotor and locomotor function, anxiety and cognitive ability in the P21 rat. Treatments with minocycline significantly attenuated the hypoxia-ischemia-induced brain injury and improved neurobehavioral performance. The protection of minocycline was associated with its ability to reduce microglial activation. The present results show that minocycline has long-lasting protective effects in the neonatal rat brain in terms of both hypoxia-ischemia-induced brain injury and the associated neurological dysfunction.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Brain/drug effects
- Brain/pathology
- Brain/physiopathology
- Brain Damage, Chronic/drug therapy
- Brain Damage, Chronic/physiopathology
- Brain Damage, Chronic/prevention & control
- Brain Infarction/drug therapy
- Brain Infarction/physiopathology
- Brain Infarction/prevention & control
- Cytoprotection/drug effects
- Cytoprotection/physiology
- Disease Models, Animal
- Female
- Fetal Hypoxia/metabolism
- Fetal Hypoxia/physiopathology
- Gliosis/drug therapy
- Gliosis/physiopathology
- Gliosis/prevention & control
- Humans
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/physiopathology
- Infant, Newborn
- Injections, Intraperitoneal
- Leukomalacia, Periventricular/drug therapy
- Leukomalacia, Periventricular/metabolism
- Leukomalacia, Periventricular/physiopathology
- Male
- Minocycline/pharmacology
- Minocycline/therapeutic use
- Nerve Degeneration/drug therapy
- Nerve Degeneration/metabolism
- Nerve Degeneration/physiopathology
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/pathology
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Treatment Outcome
Collapse
Affiliation(s)
- Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, 39216, USA
| | | | | | | | | |
Collapse
|
43
|
Nurmi A, Goldsteins G, Närväinen J, Pihlaja R, Ahtoniemi T, Gröhn O, Koistinaho J. Antioxidant pyrrolidine dithiocarbamate activates Akt-GSK signaling and is neuroprotective in neonatal hypoxia-ischemia. Free Radic Biol Med 2006; 40:1776-84. [PMID: 16678015 DOI: 10.1016/j.freeradbiomed.2006.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Revised: 01/02/2006] [Accepted: 01/10/2006] [Indexed: 12/29/2022]
Abstract
Pyrrolidine dithiocarbamate (PDTC), an antioxidant and inhibitor of transcription factor nuclear factor kappa-B (NF-kappaB), has been reported to reduce inflammation and apoptosis. Because PDTC was recently found to protect in various models of adult brain ischemia with a wide therapeutic time window, we tested the effect of PDTC in a rodent model of neonatal hypoxia-ischemia (HI) brain injury. T2-weighed magnetic resonance imaging (T2-MRI) 7 days after the insult showed that a single PDTC (50 mg/kg) injection 2.5 h after the HI reduced the mean brain infarct size by 59%. PDTC reduced the HI-induced dephosphorylation of Akt and glycogen synthase kinase-3beta (GSK-3beta), expression of cleaved caspase-3, and nuclear translocation of NF-kappaB in the neonatal brain. PDTC targeted directly neurons, as PDTC reduced hypoxia-reoxygenation-induced cell death in pure hippocampal neuronal cultures. It is suggested that in addition to the previously indicated NF-kappaB inhibition as a protective mechanism of PDTC treatment, PDTC may reduce HI-induced brain injury at least partially by acting as an antioxidant, which reduces the Akt-GSK-3beta pathway of apoptotic cell death. The clinically approved PDTC and its analogues may be beneficial after HI insults with a reasonable time window.
Collapse
Affiliation(s)
- Antti Nurmi
- Department of Neurobiology, A.I.Virtanen Institute of Molecular Sciences, University of Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
44
|
Back SA. Perinatal white matter injury: The changing spectrum of pathology and emerging insights into pathogenetic mechanisms. ACTA ACUST UNITED AC 2006; 12:129-40. [PMID: 16807910 DOI: 10.1002/mrdd.20107] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perinatal brain injury in survivors of premature birth has a unique and unexplained predilection for periventricular cerebral white matter. Periventricular white-matter injury (PWMI) is now the most common cause of brain injury in preterm infants and the leading cause of chronic neurological morbidity. The spectrum of chronic PWMI includes focal cystic necrotic lesions (periventricular leukomalacia; PVL) and diffuses myelination disturbances. Recent neuroimaging studies support that the incidence of PVL is declining, whereas focal or diffuse noncystic injury is emerging as the predominant lesion. Factors that predispose to PVL during prematurity include hypoxia, ischemia, and maternal-fetal infection. In a significant number of infants, PWMI appears to be initiated by perturbations in cerebral blood flow that reflect anatomic and physiological immaturity of the vasculature. Ischemic cerebral white matter is susceptible to pronounced free radical-mediated injury that particularly targets immature stages of the oligodendrocyte lineage. Emerging experimental data supports that pronounced ischemia in the periventricular white matter is necessary, but not sufficient to generate PWMI. The developmental predilection for PWMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible oligodendrocyte progenitors. Injury to oligodendrocyte progenitors may contribute to the pathogenesis of PWMI by disrupting the maturation of myelin-forming oligodendrocytes. Chemical mediators that may contribute to white-matter injury include reactive oxygen species glutamate, cytokines, and adenosine. As our understanding of the pathogenesis of PWMI improves, it is anticipated that new strategies for directly preventing brain injury in premature infants will develop.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health & Sciences University, Portland, Oregon, USA.
| |
Collapse
|
45
|
Cai Z, Lin S, Fan LW, Pang Y, Rhodes PG. Minocycline alleviates hypoxic-ischemic injury to developing oligodendrocytes in the neonatal rat brain. Neuroscience 2005; 137:425-35. [PMID: 16289838 DOI: 10.1016/j.neuroscience.2005.09.023] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 08/25/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
The role of minocycline in preventing white matter injury, in particular the injury to developing oligodendrocytes was examined in a neonatal rat model of hypoxia-ischemia. Hypoxia-ischemia was achieved through bilateral carotid artery occlusion followed by exposure to hypoxia (8% oxygen) for 15 min in postnatal day 4 Sprague-Dawley rats. A sham operation was performed in control rats. Minocycline (45 mg/kg) or normal phosphate-buffered saline was administered intraperitoneally 12 h before and immediately after bilateral carotid artery occlusion+hypoxia and then every 24 h for 3 days. Nissl staining revealed pyknotic cells in the white matter area of the rat brain 1 and 5 days after hypoxia-ischemia. Hypoxia-ischemia insult also resulted in apoptotic oligodendrocyte cell death, loss of O4+ and O1+ oligodendrocyte immunoreactivity, and hypomyelination as indicated by decreased myelin basic protein immunostaining and by loss of mature oligodendrocytes in the rat brain. Minocycline significantly attenuated hypoxia-ischemia-induced brain injury. The protective effect of minocycline was associated with suppression of hypoxia-ischemia-induced microglial activation as indicated by the decreased number of activated microglia, which were also interleukin-1beta and inducible nitric oxide synthase expressing cells. The protective effect of minocycline was also linked with reduction in hypoxia-ischemia-induced oxidative and nitrosative stress as indicated by 4-hydroxynonenal and nitrotyrosine positive oligodendrocytes, respectively. The reduction in hypoxia-ischemia-induced oxidative stress was also evidenced by the decreases in the content of 8-isoprostane in the minocycline-treated hypoxia-ischemia rat brain as compared with that in the vehicle-treated hypoxia-ischemia rat brain. The overall results suggest that reduction in microglial activation may protect developing oligodendrocytes in the neonatal brain from hypoxia-ischemia injury.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens, Surface/metabolism
- Biomarkers/metabolism
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Carotid Artery, Common
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Disease Models, Animal
- Free Radicals/metabolism
- Gliosis/drug therapy
- Gliosis/physiopathology
- Gliosis/prevention & control
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/physiopathology
- Ligation
- Microglia/drug effects
- Microglia/metabolism
- Minocycline/pharmacology
- Minocycline/therapeutic use
- Nerve Degeneration/drug therapy
- Nerve Degeneration/physiopathology
- Nerve Degeneration/prevention & control
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/metabolism
- Nerve Regeneration/drug effects
- Nerve Regeneration/physiology
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Oxidative Stress/drug effects
- Oxidative Stress/physiology
- Rats
- Rats, Sprague-Dawley
- Stem Cells/drug effects
- Stem Cells/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Z Cai
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, 39216-4505, USA.
| | | | | | | | | |
Collapse
|
46
|
Lin S, Fan LW, Pang Y, Rhodes PG, Mitchell HJ, Cai Z. IGF-1 protects oligodendrocyte progenitor cells and improves neurological functions following cerebral hypoxia-ischemia in the neonatal rat. Brain Res 2005; 1063:15-26. [PMID: 16259966 DOI: 10.1016/j.brainres.2005.09.042] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/16/2005] [Accepted: 09/25/2005] [Indexed: 12/11/2022]
Abstract
To investigate if insulin-like growth factor-1 (IGF-1) provides neuroprotection to oligodendrocyte progenitor cells (OPCs) following cerebral hypoxia-ischemia, a previously developed neonatal rat model of white matter damage was used in this study. Postnatal day 4 (P4) SD rat pups were subjected to bilateral common carotid artery ligation, followed by exposure to 8% oxygen for 10 min. IGF-1 (0.5 microg) or vehicle was injected into the left ventricle after artery ligation and before the hypoxic exposure. Cerebral hypoxia-ischemia caused death of O4+ late OPCs in the P5 rat brain and impaired myelination in the P9 and P21 rat brain. Caspase-3 activation was involved in the death of OPCs. Moreover, cerebral hypoxia-ischemia impaired neurobehavioral performance in juvenile rats. IGF-1 treatment attenuated damages to OPCs and improved neurological functions after cerebral hypoxia-ischemia. It reduced death of O4+ OPCs by 39% on P5 and enhanced myelination on P9 and P21. Bromodeoxyuridine uptake assay showed that cerebral hypoxia-ischemia inhibited proliferation of stem/progenitor cells in the subventricular zone and NG2+ early OPCs in the white matter area. IGF-1 treatment increased cell proliferation in the subventricular zone by 31% 1 day following hypoxic-ischemic insult. Proliferation of early and late OPCs in the IGF-1-treated group was 1.5- and 2.4-fold of that in the vehicle-treated group, respectively. In conclusion, IGF-1 provided potent neuroprotection to OPCs and improved neurological functions following cerebral hypoxia-ischemia in the neonatal rat. The neuroprotection of IGF-1 was associated with its antiapoptotic and mitogenic effects.
Collapse
Affiliation(s)
- Shuying Lin
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | | | |
Collapse
|
47
|
Back SA, Luo NL, Mallinson RA, O'Malley JP, Wallen LD, Frei B, Morrow JD, Petito CK, Roberts CT, Murdoch GH, Montine TJ. Selective vulnerability of preterm white matter to oxidative damage defined by F2-isoprostanes. Ann Neurol 2005; 58:108-20. [PMID: 15984031 DOI: 10.1002/ana.20530] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Periventricular white matter injury (PWMI) is the leading cause of cerebral palsy and chronic neurological disability in survivors of prematurity. Despite the large number of affected children, the pathogenetic mechanisms related to PWMI remain controversial. Through studies of 33 human autopsy brains, we determined that early PWMI was related to oxidative damage that particularly targeted the oligodendrocyte lineage, whereas other neuronal and glial cell types were markedly more resistant. F(2)-isoprostanes, an arachidinate metabolite/lipid peroxidation marker of oxidative damage, were significantly increased in early PWMI lesions but not in cerebral cortex. That deleterious lipid peroxidation accompanied early PWMI was supported by similar increases in F(2)-isoprostanes levels in the cerebral cortex from term infants with hypoxic-ischemic cortical injury. Detection of F(4)-neuroprostanes, a neuronal-specific oxidative damage marker, confirmed that neuroaxonal elements were resistant to injury in cerebral cortex and white matter. Significant protein nitration was not detected in PWMI lesions by 3-nitrotyrosine staining. Significant cellular degeneration was confirmed in early PWMI lesions by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and a marked depletion of oligodendrocyte progenitors of 71 +/- 8%. Hence, the predilection of preterm infants for PWMI is related to selective lipid peroxidation-mediated injury of cerebral white matter and targeted death of oligodendrocyte progenitors.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland OR 97239-3098, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Balogh GT, Vukics K, Könczöl A, Kis-Varga A, Gere A, Fischer J. Nitrone derivatives of trolox as neuroprotective agents. Bioorg Med Chem Lett 2005; 15:3012-5. [PMID: 15896960 DOI: 10.1016/j.bmcl.2005.04.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/31/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
Synthesis of nitrone derivatives of trolox is described. Their biological evaluation was performed in vitro for scavenging different free radicals, inhibiting Fe(2+)-induced lipid peroxidation, and in vivo in a permanent middle cerebral artery occlusion model in mice. New compounds exert pharmacological activities comparable to or better than those of trolox or nitrone-type reference compounds.
Collapse
Affiliation(s)
- György T Balogh
- Gedeon Richter Ltd, Budapest H-1475, 10. PO Box 27, Hungary.
| | | | | | | | | | | |
Collapse
|
49
|
Boedker M, Boetkjaer A, Bazan NG, Cui JG, Zhao Y, Pelaez RP, Lukiw WJ. Budesonide epimer R, LAU-8080 and phenyl butyl nitrone synergistically repress cyclooxygenase-2 induction in [IL-1β+Aβ42]-stressed human neural cells. Neurosci Lett 2005; 380:176-80. [PMID: 15854773 DOI: 10.1016/j.neulet.2005.01.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 01/06/2005] [Accepted: 01/12/2005] [Indexed: 11/27/2022]
Abstract
Interleukin-1beta (IL-1beta) and amyloid-beta peptide 42 (Abeta42) together induce a robust proinflammatory gene expression program in human neural cells in primary culture. One consistent genetic marker for this triggered inflammatory response is an increase in the expression of cycloooxygenase-2 (COX-2), a prostaglandin synthase also found to be up-regulated in neurological disorders such as Alzheimer's disease. In this study we provide data illustrating the combined effect of three independent classes of compounds: the glucocorticoid budesonide epimer R, the platelet-activating factor antagonist LAU-8080, and the free radical scavenger phenyl butyl nitrone, upon COX-2 gene activation and prostaglandin E2 (PGE2) levels in [IL-1beta+Abeta42]-stressed HN cells. The data indicate that specific combinations of repressors of COX-2 activity are synergistic in modulating the stress-induced up-regulation of COX-2 and PGE2, and this may be of potential therapeutic value in the design of treatment for complex neuroinflammatory disorders.
Collapse
Affiliation(s)
- Merete Boedker
- Department of Pharmacology, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK 2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
50
|
Fan LW, Pang Y, Lin S, Rhodes PG, Cai Z. Minocycline attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain. Neuroscience 2005; 133:159-68. [PMID: 15893639 DOI: 10.1016/j.neuroscience.2005.02.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 12/09/2004] [Accepted: 02/05/2005] [Indexed: 12/14/2022]
Abstract
Our previous studies have shown that intracerebral administration of endotoxin, lipopolysaccharide (LPS), induces selective white matter injury and hypomyelination in the neonatal rat brain and that the LPS-induced brain injury is associated with activation of microglia. To test the hypothesis that inhibition of microglial activation may protect against LPS-induced white matter injury, we examined roles of minocycline, a putative suppressor of microglial activation, on LPS-induced brain injury in the neonatal rat. A stereotactic intracerebral injection of LPS (1 mg/kg) was performed in postnatal day 5 Sprague-Dawley rats and control rats were injected with sterile saline. Minocycline (45 mg/kg) was administered intraperitoneally 12 h before and immediately after LPS injection and then every 24 h for 3 days. Inflammatory responses, activation of microglia and brain injury were examined 1 and 3 days after LPS injection. LPS injection resulted in brain injury in selective brain areas, including bilateral ventricular enlargement, cell death at the sub- and periventricular areas, loss of O4+ and O1+ oligodendrocyte (OL) immunoreactivity and hypomyelination, as indicated by decreased myelin basic protein immunostaining, in the neonatal rat brain. Minocycline administration significantly attenuated LPS-induced brain injury in these rat brains. The protective effect of minocycline was associated with suppressed microglial activation as indicated by the decreased number of activated microglial cells following LPS stimulation and with consequently decreased elevation of interleukin 1beta and tumor necrosis factor-alpha concentrations induced by LPS and a reduced number of inducible nitric oxide synthase expressing cells. Protection of minocycline was also linked with the reduction in LPS-induced oxidative stress, as indicated by 4-hydroxynonenal positive OLs. The overall results suggest that reduction in microglial activation may protect the neonatal brain from LPS-induced white matter injury and inhibition of microglial activation might be an effective approach for the therapeutic treatment of infection-induced white matter injury.
Collapse
Affiliation(s)
- L-W Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|