1
|
Ray D, Sartori AR, Radujević A, George SM, Postema R, Tan X, Bryantsev VS, Anzenbacher P. Cellular Phosphate Sensing and Anion Binding by an Azacrown-Calixpyrrole Hybrid. Chemistry 2024:e202401872. [PMID: 39413149 DOI: 10.1002/chem.202401872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Indexed: 10/18/2024]
Abstract
A hybrid receptor-sensor for anions originating from the merging of positively charged ammonium moieties for electrostatic attraction/stronger binding of azacrowns with directionality of calixpyrrole hydrogen bond donors for selectivity is investigated. As demonstrated this hybrid receptor-sensor shows a remarkable selectivity for orthophosphate even in the presence of other phosphates and anions found in cellular materials (Kassoc H2PO4 ->H2P2O7 2->AMP-≫ADP2- or ATP3- over halides, nitrate, or hydrogen sulfate; all Na+ salts in water) but also cellular polyphosphate or phospholipids. This selectivity is harnessed in a real-time monitoring of cell lysis by lysozyme, which releases orthophosphate and other phosphates and anions from the cells. This sensitive (LOD 0.4 μM) fluorescence-based microscale method compares favorably with the state-of-the-art techniques but can easily be practiced in a high-throughput screening (HTS) manner. The anion binding and selectivity in aqueous solutions were investigated by NMR and put in context with phosphate binding of the parent calix[4]pyrrole. The microscopic understanding of anion binding by the hybrid receptor was then obtained from a combination of density functional theory (DFT), classical molecular dynamics (MD) with explicit water solvation, and ab initio MD (AIMD) simulations. Correlating the NMR and fluorescence binding data with studies of solvation of the receptor, phosphate anion, and the resulting complex confirms the binding is largely driven by entropic component (TΔS) associated with receptor and anion desolvation.
Collapse
Affiliation(s)
- Debmalya Ray
- Chemical Separations Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Austin R Sartori
- Chemistry Department, Bowling Green State University, Bowling Green, Ohio, USA
| | - Aco Radujević
- Chemistry Department, Bowling Green State University, Bowling Green, Ohio, USA
| | - Sandra M George
- Chemistry Department, Bowling Green State University, Bowling Green, Ohio, USA
| | - Rick Postema
- Chemistry Department, Bowling Green State University, Bowling Green, Ohio, USA
| | - Xiaohong Tan
- Chemistry Department, Bowling Green State University, Bowling Green, Ohio, USA
| | | | - Pavel Anzenbacher
- Chemistry Department, Bowling Green State University, Bowling Green, Ohio, USA
| |
Collapse
|
2
|
Xu C, Tran QG, Liu D, Zhai C, Wojtas L, Liu W. Charge-assisted hydrogen bonding in a bicyclic amide cage: an effective approach to anion recognition and catalysis in water. Chem Sci 2024:d4sc05236f. [PMID: 39309075 PMCID: PMC11409225 DOI: 10.1039/d4sc05236f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Hydrogen bonding is prevalent in biological systems, dictating a myriad of life-sustaining functions in aqueous environments. Leveraging hydrogen bonding for molecular recognition in water encounters significant challenges in synthetic receptors on account of the hydration of their functional groups. Herein, we introduce a water-soluble hydrogen bonding cage, synthesized via a dynamic approach, exhibiting remarkable affinities and selectivities for strongly hydrated anions, including sulfate and oxalate, in water. We illustrate the use of charge-assisted hydrogen bonding in amide-type synthetic receptors, offering a general molecular design principle that applies to a wide range of amide receptors for molecular recognition in water. This strategy not only revalidates the functions of hydrogen bonding but also facilitates the effective recognition of hydrophilic anions in water. We further demonstrate an unconventional catalytic mechanism through the encapsulation of the anionic oxalate substrate by the cationic cage, which effectively inverts the charges associated with the substrate and overcomes electrostatic repulsions to facilitate its oxidation by the anionic MnO4 -. Technical applications using this receptor are envisioned across various technical applications, including anion sensing, separation, catalysis, medical interventions, and molecular nanotechnology.
Collapse
Affiliation(s)
- Chengkai Xu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Quy Gia Tran
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Dexin Liu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Canjia Zhai
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Wenqi Liu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| |
Collapse
|
3
|
Gonzalez-Oñate A, Alí-Torres J, Quevedo R. The role of non-covalent interactions in 4-hydroxybenzylamine macrocyclisation: computational and synthetic evidence. RSC Adv 2024; 14:3691-3697. [PMID: 38268540 PMCID: PMC10805078 DOI: 10.1039/d3ra08508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
4-hydroxybenzylamine's intermolecular interactions and their possible influence on the course of 4-hydroxybenzylamine's reaction with formaldehyde are analysed in this article. Computational calculations established that 4-hydroxybenzylamine forms dimers in solution by O-H⋯N hydrogen bonds; such dimers are stabilised by π-stacking interactions. These cyclic dimers' formation led to obtaining a 12-atom azacyclophane through 4-hydroxybenzylamine's reaction with formaldehyde.
Collapse
Affiliation(s)
- Andrés Gonzalez-Oñate
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Carrera 30 No. 45-03 Bogotá Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Carrera 30 No. 45-03 Bogotá Colombia
| | - Rodolfo Quevedo
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Carrera 30 No. 45-03 Bogotá Colombia
| |
Collapse
|
4
|
Wagay SA, Ali R. Facile synthesis and anion binding studies of fluorescein/benzo-12-crown-4 ether based bis-dipyrromethane (DPM) receptors. RSC Adv 2023; 13:30420-30428. [PMID: 37849701 PMCID: PMC10578460 DOI: 10.1039/d3ra05171d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Two novel fluorescein as well as benzo-12-crown-4 ether functionalized dipyrromethane receptors (DPM3 and DPM4) have successfully been synthesized. The anion (used as their TBA salts) binding studies of thus prepared DPM3 and DPM4 receptors were evaluated by the UV-visible spectrophotometric titrations. Binding affinities as well as the stoichiometry were determined through the UV-visible titrations data with the involvement of the BindFit (v0.5) package available online at https://supramolecular.org. Moreover, binding events were validated by means of the comparison of the partial 1H-NMR spectrum of the simple host molecule with that of the host-guest complex, and the 1 : 1 stoichiometry were further confirmed by the Job's method of continuous variation. From the results, we observed the binding constant (Ka) values of DPM3/DPM4 with various tested anions in the range of 516.07 M-1 to 63789.81 M-1, depending upon the nature/shape/size of the anions. Moreover, the anion-π interactions were confirmed by the partial 1H-NMR spectral data, and further supported by the literature reported systems. The authors hope that such types of valued receptors will be benefitted in future for the recognizing/binding of a variety of biologically important anions.
Collapse
Affiliation(s)
- Shafieq Ahmad Wagay
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry Jamia Millia Islamia, Okhla New Delhi 110025 India +91-7011867613
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry Jamia Millia Islamia, Okhla New Delhi 110025 India +91-7011867613
| |
Collapse
|
5
|
Sartori AR, Radujević A, George SM, Anzenbacher P. Azacrown-calixpyrrole isosteres: receptors and sensors for anions. Chem Sci 2023; 14:7545-7552. [PMID: 37449063 PMCID: PMC10337727 DOI: 10.1039/d3sc01970e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Calix[4]pyrroles (CPs) and polyammonium azacrowns (ACs) are well-known receptors for anions. CPs bind anions by directional hydrogen bonds that do not always work well for aqueous analytes. The positive charge in polyammonium ACs allows for a stronger but non-directional anion-ammonium electrostatic attraction but lack selectivity. Bridging the gap between CPs and ACs could increase affinity and potentially preserve the selectivity of anion binding. We have synthesized a flexible calixpyrrole-azacrown near isosteric receptor and incorporated an environmentally sensitive dansyl fluorophore to enable fluorescence measurements. Anion binding was evaluated using NMR and fluorescence titrations. The isosteric receptor shows a strong affinity for aqueous phosphates and phosphonates (Na+ salts) in the order HAsO42- > H2PO4- > H2P2O72- > glyphosate2- > AMP- > methylphosphonate- ≫ ADP2- or ATP3- but does not bind halides. This is in stark contrast to CP which shows a strong preference for halides over oxyanions. The anion binding by the new receptor was accompanied by analyte-specific changes in fluorescence intensity and spectral width and by a wavelength shift. These parameters were used in qualitative and quantitative sensing of aqueous anions. By applying machine-learning algorithms, such as linear discriminant analysis and support vector machine linear regression, this one sensor can differentiate between 10 different analytes and accurately quantify herbicide glyphosate and methylphosphonate, a product of sarin, soman or cyclosarin hydrolysis. In fact, glyphosate can be quantified even in the presence of competing anions such as orthophosphate (LODs were ≤ 1 μM).
Collapse
Affiliation(s)
- Austin R Sartori
- Bowling Green State University, Center for Photochemical Sciences Bowling Green Ohio 43403 USA
| | - Aco Radujević
- Bowling Green State University, Center for Photochemical Sciences Bowling Green Ohio 43403 USA
| | - Sandra M George
- Bowling Green State University, Center for Photochemical Sciences Bowling Green Ohio 43403 USA
| | - Pavel Anzenbacher
- Bowling Green State University, Center for Photochemical Sciences Bowling Green Ohio 43403 USA
| |
Collapse
|
6
|
Simonini Steiner YT, Romano GM, Massai L, Lippi M, Paoli P, Rossi P, Savastano M, Bencini A. Pyrene-Containing Polyamines as Fluorescent Receptors for Recognition of PFOA in Aqueous Media. Molecules 2023; 28:4552. [PMID: 37299033 PMCID: PMC10254721 DOI: 10.3390/molecules28114552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The globally widespread perfluorooctanoic acid (PFOA) is a concerning environmental contaminant, with a possible toxic long-term effects on the environment and human health The development of sensible, rapid, and low-cost detection systems is a current change in modern environmental chemistry. In this context, two triamine-based chemosensors, L1 and L2, containing a fluorescent pyrene unit, and their Zn(II) complexes are proposed as fluorescent probes for the detection of PFOA in aqueous media. Binding studies carried out by means of fluorescence and NMR titrations highlight that protonated forms of the receptors can interact with the carboxylate group of PFOA, thanks to salt bridge formation with the ammonium groups of the aliphatic chain. This interaction induces a decrease in the fluorescence emission of pyrene at neutral and slightly acidic pH values. Similarly, emission quenching has also been observed upon coordination of PFOA by the Zn(II) complexes of the receptors. These results evidence that simple polyamine-based molecular receptors can be employed for the optical recognition of harmful pollutant molecules, such as PFOA, in aqueous media.
Collapse
Affiliation(s)
- Yschtar Tecla Simonini Steiner
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy; (Y.T.S.S.); (L.M.); (M.S.)
| | - Giammarco Maria Romano
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy; (Y.T.S.S.); (L.M.); (M.S.)
| | - Lara Massai
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy; (Y.T.S.S.); (L.M.); (M.S.)
| | - Martina Lippi
- Department of Industrial Engineering, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy; (M.L.); (P.P.); (P.R.)
| | - Paola Paoli
- Department of Industrial Engineering, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy; (M.L.); (P.P.); (P.R.)
| | - Patrizia Rossi
- Department of Industrial Engineering, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy; (M.L.); (P.P.); (P.R.)
| | - Matteo Savastano
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy; (Y.T.S.S.); (L.M.); (M.S.)
| | - Andrea Bencini
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy; (Y.T.S.S.); (L.M.); (M.S.)
| |
Collapse
|
7
|
Sudan S, Chen DW, Berton C, Fadaei-Tirani F, Severin K. Synthetic Receptors with Micromolar Affinity for Chloride in Water. Angew Chem Int Ed Engl 2023; 62:e202218072. [PMID: 36628647 DOI: 10.1002/anie.202218072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
A water-soluble coordination cage was obtained by reaction of Pd(NO3 )2 with a 1,3-di(pyridin-3-yl)benzene ligand featuring a short PEG chain. The cavity of the metal-organic cage contains one nitrate anion, which is readily replaced by chloride. The apparent association constant for chloride binding in buffered aqueous solution is Ka =1.8(±0.1)×105 M-1 . This value is significantly higher than what has been reported for other macrocyclic chloride receptors. The heavier halides Br- and I- compete with binding or self-assembly, but the receptor displays very good selectivity over common anions such as phosphate, acetate, carbonate, and sulfate. A further increase of the chloride binding affinity by a factor of 3 was achieved using a fluorinated dipyridyl ligand.
Collapse
Affiliation(s)
- Sylvain Sudan
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Damien W Chen
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Cesare Berton
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
8
|
Development and Application of Ruthenium(II) and Iridium(III) Based Complexes for Anion Sensing. Molecules 2023; 28:molecules28031231. [PMID: 36770897 PMCID: PMC9920910 DOI: 10.3390/molecules28031231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Improvements in the design of receptors for the detection and quantification of anions are desirable and ongoing in the field of anion chemistry, and remarkable progress has been made in this direction. In this regard, the development of luminescent chemosensors for sensing anions is an imperative and demanding sub-area in supramolecular chemistry. This decade, in particular, witnessed advancements in chemosensors based on ruthenium and iridium complexes for anion sensing by virtue of their modular synthesis and rich chemical and photophysical properties, such as visible excitation wavelength, high quantum efficiency, high luminescence intensity, long lifetimes of phosphorescence, and large Stokes shifts, etc. Thus, this review aims to summarize the recent advances in the development of ruthenium(II) and iridium(III)-based complexes for their application as luminescent chemosensors for anion sensing. In addition, the focus was devoted to designing aspects of polypyridyl complexes of these two transition metals with different recognition motifs, which upon interacting with different inorganic anions, produces desirable quantifiable outputs.
Collapse
|
9
|
A comparative performance evaluation of cephalosporin's drugs for fluoride recognition. ANAL SCI 2023; 39:527-535. [PMID: 36645644 DOI: 10.1007/s44211-022-00263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023]
Abstract
In this manuscript, readily available cephalosporin's drugs cefuroxime axetil (L1) cefpdoxime proxetil (L2), and cefditoren pivoxil (L3) possess dihydrothiazine ring as signaling unit, and -NH groups as the binding site were used for the sensing of fluoride (F-) ions. In the presence of F-, the drug selectively portrayed a naked-eye detectable color change from colorless. The binding constant of 1:1 stoichiometric complex of L1, L2, and L3 with F- was found to be 2.36 × 104 M-1, 2.44 × 103 M-1 and 1.02 × 104 M-1 respectively. The lowest detection limit (LOD) of F- was found to be 11 µM (209 ppb) with drug L1 and L2. The binding mechanism of the drug with F- was studied by 1H and 19F nuclear magnetic resonance (NMR) spectral titration, electrospray ionization mass spectra (ESI-MS) analysis, and density functional theory (DFT) studies. The presence of F- was monitored in various spiked water and Colgate toothpaste samples. Overall, cephalosporin's drug demonstrates a promising potential for the detection of F- ions in the semi-aqueous phase.
Collapse
|
10
|
Naithani S, Goswami T, Thetiot F, Kumar S. Imidazo[4,5-f][1,10]phenanthroline based luminescent probes for anion recognition: Recent achievements and challenges. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Mansha M, Akram Khan S, Aziz MA, Zeeshan Khan A, Ali S, Khan M. Optical Chemical Sensing of Iodide Ions: A Comprehensive Review for the Synthetic Strategies of Iodide Sensing Probes, Challenges, and Future Aspects. CHEM REC 2022; 22:e202200059. [PMID: 35581148 DOI: 10.1002/tcr.202200059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Among several anions, iodide (I- ) ions play a crucial role in human biological activities. In it's molecular form (I2 ), iodine is utilized for several industrial applications such as syntheses of medicines, fabric dyes, food additives, solar cell electrolytes, catalysts, and agrochemicals. The excess or deficiency of I- ions in the human body and environmental samples have certain consequences. Therefore, the selective and sensitive detection of I- ions in the human body and environment is vital for monitoring their overall profile. Amongst various analytical techniques for the estimation of I- ions, optical-chemical sensing possesses the merits of high sensitivity, selectivity, and utilizing the least amount of sensing materials. The distinctive aims of this manuscript are (i) To comprehensively review the development of optical chemical sensors (fluorescent & colorimetric) reported between 2001-2021 using organic fluorescent molecules, supramolecular materials, conjugated polymers, and metal-organic frameworks (MOFs). (ii) To illustrate the design and synthetic strategies to create specific binding and high affinity of I- ions which could help minimize negative consequences associated with its large size and high polarizability. (iii) The challenges associated with sensitivity and selectivity of I- ions in aqueous and real samples. The probable future aspects concerning the optical chemical detection of I- ions have also been discussed in detail.
Collapse
Affiliation(s)
- Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Abdul Zeeshan Khan
- Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Majad Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.,Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
12
|
Evolution of Artificial Arginine Analogues—Fluorescent Guanidiniocarbonyl-Indoles as Efficient Oxo-Anion Binders. Molecules 2022; 27:molecules27093005. [PMID: 35566361 PMCID: PMC9104999 DOI: 10.3390/molecules27093005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/05/2023] Open
Abstract
In this article, we present fluorescent guanidiniocarbonyl-indoles as versatile oxo-anion binders. Herein, the guanidiniocarbonyl-indole (GCI) and methoxy-guanidiniocarbonyl-indole (MGCI) were investigated as ethylamides and compared with the well-known guanidiniocarbonyl-pyrrole (GCP) concerning their photophysical properties as well as their binding behavior towards oxo-anions. Hence, a variety of anionic species, such as carboxylates, phosphonates and sulfonates, have been studied regarding their binding properties with GCP, GCI and MGCI using UV-Vis titrations, in combination with the determination of the complex stoichiometry using the Job method. The emission properties were studied in relation to the pH value using fluorescence spectroscopy as well as the determination of the photoluminescence quantum yields (PLQY). Density functional theory (DFT) calculations were undertaken to obtain a better understanding of the ground-lying electronic properties of the investigated oxo-anion binders. Additionally, X-ray diffraction of GCP and GCI was conducted. We found that GCI and MGCI efficiently bind carboxylates, phosphonates and sulfonates in buffered aqueous solution and in a similar range as GCP (Kass ≈ 1000–18,000 M−1, in bis-tris buffer, pH = 6); thus, they could be regarded as promising emissive oxo-anion binders. They also exhibit a visible fluorescence with a sufficient PLQY. Additionally, the excitation and emission wavelength of MGCI was successfully shifted closer to the visible region of the electromagnetic spectrum by introducing a methoxy-group into the core structure, which makes them interesting for biological applications.
Collapse
|
13
|
Kubik S. When Molecules Meet in Water-Recent Contributions of Supramolecular Chemistry to the Understanding of Molecular Recognition Processes in Water. ChemistryOpen 2022; 11:e202200028. [PMID: 35373466 PMCID: PMC8977507 DOI: 10.1002/open.202200028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Molecular recognition processes in water differ from those in organic solvents in that they are mediated to a much greater extent by solvent effects. The hydrophobic effect, for example, causes molecules that only weakly interact in organic solvents to stay together in water. Such water-mediated interactions can be very efficient as demonstrated by many of the synthetic receptors discussed in this review, some of which have substrate affinities matching or even surpassing those of natural binders. However, in spite of considerable success in designing such receptors, not all factors determining their binding properties in water are fully understood. Existing concepts still provide plausible explanations why the reorganization of water molecules often causes receptor-substrate interactions in water to be strongly exothermic rather than entropically favored as predicted by the classical view of the hydrophobic effect.
Collapse
Affiliation(s)
- Stefan Kubik
- Technische Universität KaiserslauternFachbereich Chemie – Organische ChemieErwin-Schrödinger-Straße 5467663KaiserslauternGermany
| |
Collapse
|
14
|
Pacheco-Liñán PJ, Alonso-Moreno C, Carrillo-Hermosilla F, Garzón-Ruiz A, Martín C, Sáez C, Albaladejo J, Bravo I. Novel Fluorescence Guanidine Molecules for Selective Sulfate Anion Detection in Water Complex Samples over a Wide pH Range. ACS Sens 2021; 6:3224-3233. [PMID: 34464091 DOI: 10.1021/acssensors.1c00876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Quantitative analysis of sulfate anions in water still remains an important challenge for the society. Among all the methodologies, the most successful one is based on optical supramolecular receptors because the presence of small concentrations of sulfate anion modifies the photophysical properties of the receptor. In this case, fluorescence anion sensors have been designed by the incorporation of guanidine motifs into fluorenyl cores. The photophysical behaviors of the new mono- (M) and bis-guanidine (B) derivatives were studied through pH dependence, solvent effects, and ion sensing on steady-state spectra and time-resolved fluorescence spectroscopy. In more detail, the results demonstrate that M is a highly selective and sensitive sulfate ion receptor in real water samples and, even more importantly, its function remains unchanged at different ranges of pH. The reason behind this resides on the fluorescence quenching produced by an internal charge-transfer process when the sulfate anion is complexed with M. It is worth noting that the global and partial affinity constants (1010 M-2 and 105 M-1, respectively) of complex formation are far above from the current sulfate sensors in water (104 M-1) which give an LOD of 0.10 μM in water with an analytical range of 2.5-10 μM. On the other hand, although it would seem, at first sight, that the B derivate will be the most promising one, the possibility of having two simultaneous protonation states reduces the complex formation and, therefore, its sensitivity to sulfate anions. The results presented here offer the possibility of using a new molecule in water environments, which opens the door to infinite applications such as the detection of trace amounts of sulfate ions in food or water.
Collapse
Affiliation(s)
- Pedro J. Pacheco-Liñán
- Departamento de Química-Física. Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Albacete 02071, Spain
| | - Carlos Alonso-Moreno
- Departamento de Inorgánica, Orgánica y Bioquímica. Centro de Innovación en Química Avanzada (ORFEO-CINQA). Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Albacete 02071, Spain
- Unidad NanoCRIB. Centro Regional de Investigaciones Biomédicas, Albacete 02071, Spain
| | - Fernando Carrillo-Hermosilla
- Departamento de Inorgánica, Orgánica y Bioquímica. Centro de Innovación en Química Avanzada (ORFEO-CINQA). Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Andrés Garzón-Ruiz
- Departamento de Química-Física. Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Albacete 02071, Spain
| | - Cristina Martín
- Departamento de Química-Física. Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Albacete 02071, Spain
- Unidad NanoCRIB. Centro Regional de Investigaciones Biomédicas, Albacete 02071, Spain
| | - Carla Sáez
- Departamento de Química-Física. Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Albacete 02071, Spain
- Unidad NanoCRIB. Centro Regional de Investigaciones Biomédicas, Albacete 02071, Spain
| | - José Albaladejo
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10, Ciudad Real 13071, Spain
| | - Iván Bravo
- Departamento de Química-Física. Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Albacete 02071, Spain
- Unidad NanoCRIB. Centro Regional de Investigaciones Biomédicas, Albacete 02071, Spain
| |
Collapse
|
15
|
Mathew MM, Sreekanth A. N4-dibenzosuberene substituted thiosemicarbazones based targetable fluorescent probe for multi-anion recognition. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Reinke L, Koch M, Müller-Renno C, Kubik S. Selective sensing of adenosine monophosphate (AMP) over adenosine diphosphate (ADP), adenosine triphosphate (ATP), and inorganic phosphates with zinc(II)-dipicolylamine-containing gold nanoparticles. Org Biomol Chem 2021; 19:3893-3900. [PMID: 33949587 DOI: 10.1039/d1ob00341k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mixed monolayer-protected gold nanoparticles containing surface-bound triethylene glycol and dipicolylamine groups aggregated in water/methanol, 1 : 2 (v/v) in the presence of nucleotides, if the solution also contained zinc(ii) nitrate to convert the dipicolylamine units into the corresponding zinc complexes. Nanoparticle aggregation could be followed with the naked eye by the colour change of the solution from red to purple followed by nanoparticle precipitation. The sensitivity was highest for adenosine triphosphate (ATP), which could be detected at concentrations >10 μM, and decreased over adenosine diphosphate (ADP) to adenosine monophosphate (AMP), consistent with the typically higher affinity of zinc(ii)-dipicolylamine-derived receptors for higher charged nucleotides. Inorganic sodium diphosphate and triphosphate interfered in the assay by also inducing nanoparticle aggregation. However, while the nucleotide-induced aggregates persisted even at higher analyte concentrations, the nanoparticles that were precipitated with inorganic salts redissolved again when the salt concentration was increased. The thus resulting solutions retained their ability to respond to nucleotides, but they now preferentially responded to AMP. Accordingly, AMP could be sensed selectively at concentrations ≥50 μM in an aqueous environment, even in the presence of other nucleotides and inorganic anions. This work thus introduces a novel approach for the sensing of a nucleotide that is often the most difficult analyte to detect with other assays.
Collapse
Affiliation(s)
- Lena Reinke
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße 54, 67663 Kaiserslautern, Germany.
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Christine Müller-Renno
- Technische Universität Kaiserslautern, Fachbereich Physik und Forschungszentrum OPTIMAS, AG Grenzflächen, Nanomaterialien und Biophysik, Erwin-Schrödinger-Straße 56, 67663 Kaiserslautern, Germany
| | - Stefan Kubik
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße 54, 67663 Kaiserslautern, Germany.
| |
Collapse
|
17
|
Glyphosate and AMPA binding by two polyamino-phenolic ligands and their dinuclear Zn(II) complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
|
19
|
Bartoli F, Conti L, Romano GM, Massai L, Paoli P, Rossi P, Pietraperzia G, Gellini C, Bencini A. Protonation of cyclen-based chelating agents containing fluorescent moieties. NEW J CHEM 2021. [DOI: 10.1039/d1nj03539h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fluorescence emission properties of 1,4,7,10-tetraazacyclododecane-based receptors with appended heteroaromatic fluorophores are tuned by photoinduced electron and proton transfer processes.
Collapse
Affiliation(s)
- Francesco Bartoli
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Luca Conti
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Giammarco Maria Romano
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lara Massai
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Paola Paoli
- Department of Industrial Engineering, Università di Firenze, Via S. Marta 3, Florence, I-50139, Italy
| | - Patrizia Rossi
- Department of Industrial Engineering, Università di Firenze, Via S. Marta 3, Florence, I-50139, Italy
| | - Giangaetano Pietraperzia
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- European Laboratory for Non Linear Spectroscopy (LENS), Via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy
| | - Cristina Gellini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Andrea Bencini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
20
|
A new palladium complex as a dual fluorometric and colorimetric probe for rapid determination of sulfide anion. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Bartl J, Kubik S. Anion Binding of a Cyclopeptide-Derived Molecular Cage in Aqueous Solvent Mixtures. Chempluschem 2020; 85:963-969. [PMID: 32406613 DOI: 10.1002/cplu.202000255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Indexed: 11/06/2022]
Abstract
A molecular cage consisting of two cyclic hexapeptides with an alternating sequence of (2S,4S)-4-aminoproline and 6-aminopicolinic acid subunits, covalently linked via three diglycolic acid subunits, interacts with a variety of inorganic anions in acetonitrile/water. In the respective complexes, the anion resides in a cavity between the two cyclopeptide rings where it interacts with six converging NH groups. The cage binds sulfate anions in acetonitrile/water, 2 : 1 (v/v) with a log Ka of 6.7, ca. 2.5 orders of magnitude stronger than an analogous bis(cyclopeptide) with only one linker whose sulfate affinity log Ka amounts to 4.3. The preorganization induced by the three linking units is thus beneficial for sulfate binding. In addition, these linkers cause the dissociation of the sulfate complex to have a substantial Gibbs free energy of activation ΔG≠ of 68.9 kJ mol-1 and they also seem to affect anion selectivity as illustrated by the different effects some anions produce on the 1 H NMR spectra of the triply and singly-linked bis(cyclopeptides). Such anion binding cages represent promising scaffolds to mimic natural anion receptors such as the sulfate-binding protein.
Collapse
Affiliation(s)
- Julia Bartl
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany
| | - Stefan Kubik
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany
| |
Collapse
|
22
|
Savastano M, Fiaschi M, Ferraro G, Gratteri P, Mariani P, Bianchi A, Bazzicalupi C. Sensing Zn 2+ in Aqueous Solution with a Fluorescent Scorpiand Macrocyclic Ligand Decorated with an Anthracene Bearing Tail. Molecules 2020; 25:E1355. [PMID: 32192025 PMCID: PMC7146481 DOI: 10.3390/molecules25061355] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/16/2023] Open
Abstract
Synthesis of the new scorpiand ligand L composed of a [9]aneN3 macrocyclic ring bearing a CH2CH2NHCH2-anthracene tail is reported. L forms both cation (Zn2+) and anion (phosphate, benzoate) complexes. In addition, the zinc complexes of L bind these anions. The equilibrium constants for ligand protonation and complex formation were determined in 0.1 M NaCl aqueous solution at 298.1 ± 0.1 K by means of potentiometric (pH-metric) titrations. pH Controlled coordination/detachment of the ligand tail to Zn2+ switch on and off the fluorescence emission from the anthracene fluorophore. Accordingly, L is able to sense Zn2+ in the pH range 6-10 down to nM concentrations of the metal ion. L can efficiently sense Zn2+ even in the presence of large excess of coordinating anions, such as cyanide, sulphide, phosphate and benzoate, despite their ability to bind the metal ion.
Collapse
Affiliation(s)
- Matteo Savastano
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (M.S.); (M.F.); (G.F.); (P.M.); (C.B.)
| | - Matteo Fiaschi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (M.S.); (M.F.); (G.F.); (P.M.); (C.B.)
| | - Giovanni Ferraro
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (M.S.); (M.F.); (G.F.); (P.M.); (C.B.)
| | - Paola Gratteri
- Department of NEUROFARBA-Pharmaceutical and Nutraceutical section, and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| | - Palma Mariani
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (M.S.); (M.F.); (G.F.); (P.M.); (C.B.)
| | - Antonio Bianchi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (M.S.); (M.F.); (G.F.); (P.M.); (C.B.)
| | - Carla Bazzicalupi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy; (M.S.); (M.F.); (G.F.); (P.M.); (C.B.)
| |
Collapse
|
23
|
Pal S, Ghosh TK, Ghosh R, Mondal S, Ghosh P. Recent advances in recognition, sensing and extraction of phosphates: 2015 onwards. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213128] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Pont I, Martínez-Camarena Á, Galiana-Roselló C, Tejero R, Albelda MT, González-García J, Vilar R, García-España E. Development of Polyamine-Substituted Triphenylamine Ligands with High Affinity and Selectivity for G-Quadruplex DNA. Chembiochem 2020; 21:1167-1177. [PMID: 31701633 DOI: 10.1002/cbic.201900678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Indexed: 01/01/2023]
Abstract
Currently, significant efforts are devoted to designing small molecules able to bind selectively to guanine quadruplexes (G4s). These noncanonical DNA structures are implicated in various important biological processes and have been identified as potential targets for drug development. Previously, a series of triphenylamine (TPA)-based compounds, including macrocyclic polyamines, that displayed high affinity towards G4 DNA were reported. Following this initial work, herein a series of second-generation compounds, in which the central TPA has been functionalised with flexible and adaptive linear polyamines, are presented with the aim of maximising the selectivity towards G4 DNA. The acid-base properties of the new derivatives have been studied by means of potentiometric titrations, UV/Vis and fluorescence emission spectroscopy. The interaction with G4s and duplex DNA has been explored by using FRET melting assays, fluorescence spectroscopy and circular dichroism. Compared with previous TPA derivatives with macrocyclic substituents, the new ligands reported herein retain the G4 affinity, but display two orders of magnitude higher selectivity for G4 versus duplex DNA; this is most likely due to the ability of the linear substituents to embrace the G4 structure.
Collapse
Affiliation(s)
- Isabel Pont
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.,Department of Chemistry, Imperial College London, White City Campus, London, W12 OBZ, UK
| | - Álvaro Martínez-Camarena
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Cristina Galiana-Roselló
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Roberto Tejero
- Department of Physical Chemistry, University of Valencia, Dr. Moliner s/n, 46100, Burjassot, Spain
| | - M Teresa Albelda
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Jorge González-García
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.,Department of Chemistry, Imperial College London, White City Campus, London, W12 OBZ, UK
| | - Ramón Vilar
- Department of Chemistry, Imperial College London, White City Campus, London, W12 OBZ, UK
| | - Enrique García-España
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| |
Collapse
|
25
|
Savastano M, García-Gallarín C, López de la Torre MD, Bazzicalupi C, Bianchi A, Melguizo M. Anion-π and lone pair-π interactions with s-tetrazine-based ligands. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.010] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Wu X, Wang P, Turner P, Lewis W, Catal O, Thomas DS, Gale PA. Tetraurea Macrocycles: Aggregation-Driven Binding of Chloride in Aqueous Solutions. Chem 2019. [DOI: 10.1016/j.chempr.2019.02.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Rahman AB, Imafuku H, Miyazawa Y, Kafle A, Sakai H, Saga Y, Aoki S. Catalytic Hydrolysis of Phosphate Monoester by Supramolecular Phosphatases Formed from a Monoalkylated Dizinc(II) Complex, Cyclic Diimide Units, and Copper(II) in Two-Phase Solvent System. Inorg Chem 2019; 58:5603-5616. [PMID: 30969761 DOI: 10.1021/acs.inorgchem.8b03586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Design and synthesis of enzyme mimic with programmed molecular interaction among several building blocks including metal complexes and metal chelators is of intellectual and practical significance. The preparation of artificial enzymes that mimic the natural enzymes such as hydrolases, phosphatases, etc. remains a great challenge in the field of supramolecular chemistry. Herein we report on the design and synthesis of asymmetric (nonsymmetric) supermolecules by the 2:2:2 self-assembly of an amphiphilic zinc(II)-cyclen complex containing a 2,2'-bipyridyl linker and one long alkyl chain (Zn2L3), barbital analogues, and Cu2+ as model compounds of an enzyme alkaline phosphatase that catalyzes the hydrolysis of phosphate monoesters such as mono(4-nitrophenyl)phosphate at neutral pH in two-phase solvent system (H2O/CHCl3) in pH 7.4 and 37 °C. Hydrolytic activity of these complexes was found to be catalytic, and their catalytic turnover numbers are 3-4. The mechanistic studies based on the UV/vis and emission spectra of the H2O and CHCl3 phases of the reaction mixtures suggest that the hydrophilicity/hydrophobicity balance of the supramolecular catalysts is an important factor for catalytic activity.
Collapse
|
29
|
Troian-Gautier L, Turlington MD, Wehlin SAM, Maurer AB, Brady MD, Swords WB, Meyer GJ. Halide Photoredox Chemistry. Chem Rev 2019; 119:4628-4683. [PMID: 30854847 DOI: 10.1021/acs.chemrev.8b00732] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halide photoredox chemistry is of both practical and fundamental interest. Practical applications have largely focused on solar energy conversion with hydrogen gas, through HX splitting, and electrical power generation, in regenerative photoelectrochemical and photovoltaic cells. On a more fundamental level, halide photoredox chemistry provides a unique means to generate and characterize one electron transfer chemistry that is intimately coupled with X-X bond-breaking and -forming reactivity. This review aims to deliver a background on the solution chemistry of I, Br, and Cl that enables readers to understand and utilize the most recent advances in halide photoredox chemistry research. These include reactions initiated through outer-sphere, halide-to-metal, and metal-to-ligand charge-transfer excited states. Kosower's salt, 1-methylpyridinium iodide, provides an early outer-sphere charge-transfer excited state that reports on solvent polarity. A plethora of new inner-sphere complexes based on transition and main group metal halide complexes that show promise for HX splitting are described. Long-lived charge-transfer excited states that undergo redox reactions with one or more halogen species are detailed. The review concludes with some key goals for future research that promise to direct the field of halide photoredox chemistry to even greater heights.
Collapse
Affiliation(s)
- Ludovic Troian-Gautier
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Michael D Turlington
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Sara A M Wehlin
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Andrew B Maurer
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Matthew D Brady
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Wesley B Swords
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Gerald J Meyer
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
30
|
Sohn DH, Kim N, Jang S, Kang J. A fluoride selective water-soluble anion receptor based on a 1,2-phenylenediacetic acid and calcium ion dimer. NEW J CHEM 2019. [DOI: 10.1039/c9nj01436e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dimeric receptor 1 from 1,2-phenylenediacetic acid and calcium ions recognized fluoride ions almost exclusively in 100% water.
Collapse
Affiliation(s)
- Dae Hyup Sohn
- Department of Chemistry
- Sejong University
- Seoul 143-747
- South Korea
| | - Nayeon Kim
- Department of Chemistry
- Sejong University
- Seoul 143-747
- South Korea
| | - Soonmin Jang
- Department of Chemistry
- Sejong University
- Seoul 143-747
- South Korea
| | - Jongmin Kang
- Department of Chemistry
- Sejong University
- Seoul 143-747
- South Korea
| |
Collapse
|
31
|
Huang Z, Jia C, Wu B, Jansone-Popova S, Seipp CA, Custelcean R. Selective binding of (thio)sulfate and phosphate in water by quaternary ammonium functionalized oligo-ureas. Chem Commun (Camb) 2019; 55:1714-1717. [DOI: 10.1039/c8cc09550g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functionalization of oligo-ureas with quaternary ammonium groups leads to water soluble receptors for selective binding of adenosine phosphates in water.
Collapse
Affiliation(s)
- Zhe Huang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| | - Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| | | | - Charles A. Seipp
- Chemical Sciences Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - Radu Custelcean
- Chemical Sciences Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| |
Collapse
|
32
|
Zhan YY, Kojima T, Nakamura T, Takahashi T, Takahashi S, Haketa Y, Shoji Y, Maeda H, Fukushima T, Hiraoka S. Induced-fit expansion and contraction of a self-assembled nanocube finely responding to neutral and anionic guests. Nat Commun 2018; 9:4530. [PMID: 30382098 PMCID: PMC6208372 DOI: 10.1038/s41467-018-06874-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/27/2018] [Indexed: 01/03/2023] Open
Abstract
Induced-fit or conformational selection is of profound significance in biological regulation. Biological receptors alter their conformation to respond to the shape and electrostatic surfaces of guest molecules. Here we report a water-soluble artificial molecular host that can sensitively respond to the size, shape, and charged state of guest molecules. The molecular host, i.e. nanocube, is an assembled structure consisting of six gear-shaped amphiphiles (GSAs). This nanocube can expand or contract its size upon the encapsulation of neutral and anionic guest molecules with a volume ranging from 74 to 535 Å3 by induced-fit. The responding property of this nanocube, reminiscent of a feature of biological molecules, arises from the fact that the GSAs in the nanocubes are connected to each other only through the hydrophobic effect and very weak intermolecular interactions such as van der Waals and cation-π interactions.
Collapse
Affiliation(s)
- Yi-Yang Zhan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tatsuo Kojima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takashi Nakamura
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Toshihiro Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
33
|
Influence of aromatic nitro-substituents on auto-reusability of oxime-based fluoride receptors. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1526-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Burilov VA, Fatikhova GA, Dokuchaeva MN, Nugmanov RI, Mironova DA, Dorovatovskii PV, Khrustalev VN, Solovieva SE, Antipin IS. Synthesis of new p-tert-butylcalix[4]arene-based polyammonium triazolyl amphiphiles and their binding with nucleoside phosphates. Beilstein J Org Chem 2018; 14:1980-1993. [PMID: 30202452 PMCID: PMC6122204 DOI: 10.3762/bjoc.14.173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/13/2018] [Indexed: 01/10/2023] Open
Abstract
The synthesis of new calix[4]arenes adopting a cone stereoisomeric form bearing two or four azide fragments on the upper rim and water-soluble triazolyl amphiphilic receptors with two or four polyammonium headgroups via copper-catalyzed azide-alkyne cycloaddition reaction has been performed for the first time. It was found that the synthesized macrocycles form stable aggregates with hydrodynamic diameters between 150-200 nm and electrokinetic potentials about +40 to +60 mV in water solutions. Critical aggregation concentration (CAC) values were measured using a micelle method with pyrene and eosin Y as dye probes. The CAC values of tetraalkyl-substituted macrocycles 12a,b (5 µM for both) are significantly lower than those for dialkyl-substituted macrocycles 10a,b (790 and 160 µM, respectively). Premicellar aggregates of macrocycles 10a,b and 12a,b with the dye eosin Y were used for nucleotides sensing through a dye replacement procedure. It is unusual that disubstituted macrocycles 10a,b bind more effectively a less charged adenosine 5'-diphosphate (ADP) than adenosine 5'-triphosphate (ATP). A simple colorimetric method based on polydiacetylene vesicles decorated with 10b was elaborated for the naked-eye detection of ADP with a detection limit of 0.5 mM.
Collapse
Affiliation(s)
- Vladimir A Burilov
- Kazan Federal University, 18 Kremlevskaya st., Kazan 420008, Russian Federation
| | | | - Mariya N Dokuchaeva
- Kazan Federal University, 18 Kremlevskaya st., Kazan 420008, Russian Federation
| | - Ramil I Nugmanov
- Kazan Federal University, 18 Kremlevskaya st., Kazan 420008, Russian Federation
| | - Diana A Mironova
- Kazan Federal University, 18 Kremlevskaya st., Kazan 420008, Russian Federation
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", 1 Ak. Kurchatov Square, Moscow 123182, Russian Federation
| | - Victor N Khrustalev
- National Research Center "Kurchatov Institute", 1 Ak. Kurchatov Square, Moscow 123182, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay Street, Moscow 117198, Russin Federation
| | - Svetlana E Solovieva
- Kazan Federal University, 18 Kremlevskaya st., Kazan 420008, Russian Federation
- A. E. Arzubov Institute of Organic & Physical Chemistry, 8 Arzubov Street, Kazan 420088, Russian Federation
| | - Igor S Antipin
- Kazan Federal University, 18 Kremlevskaya st., Kazan 420008, Russian Federation
- A. E. Arzubov Institute of Organic & Physical Chemistry, 8 Arzubov Street, Kazan 420088, Russian Federation
| |
Collapse
|
35
|
Savastano M, Bazzicalupi C, García-Gallarín C, Giorgi C, López de la Torre MD, Pichierri F, Bianchi A, Melguizo M. Halide and hydroxide anion binding in water. Dalton Trans 2018; 47:3329-3338. [PMID: 29423483 DOI: 10.1039/c7dt04430e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The formation of halide and hydroxide anion complexes with two ligands L1 (3,6-bis(morpholin-4-ylmethyl)-1,2,4,5-tetrazine) and L2 (3,6-bis(morpholin-4-ylethyl)-1,2,4,5-tetrazine) was studied in aqueous solution, by means of potentiometric and ITC procedures. In the solid state, HF2-, Cl- and Br- complexes of H2L22+ were analysed by single crystal XRD measurements. Further information on the latter was obtained with the use of density functional theory (DFT) calculations in combination with the polarizable continuum model (PCM). The presence of two halide or bifluoride HF2- (F-H-F-) anions forming anion-π interactions, respectively above and below the ligand tetrazine ring, is the leitmotiv of the [(H2L2)X2] (X = HF2, Cl, Br, I) complexes in the solid state, while hydrogen bonding between the anions and protonated morpholine ligand groups contributes to strengthen the anion-ligand interaction, in particular in the case of Cl- and Br-. In contrast to the solid state, only the anion : ligand complexes of 1 : 1 stoichiometry were found in solution. The stability of these complexes displays the peculiar trend I- > F- > Br- > Cl- which was rationalized in terms of electrostatic, hydrogen bond, anion-π interactions and solvent effects. DFT calculations performed on [(H2L2)X]+ (X = F, Cl, Br, I) in PCM water suggested that the ligand assumes a U-shaped conformation to form one anion-π and two salt bridge interactions with the included anions and furnished structural information to interpret the solvation effects affecting complex formation. The formation of hydroxide anion complexes with neutral (not protonated) L1 and L2 molecules represents an unprecedented case in water. The stability of the [L(OH)]- (L = L1, L2) complexes is comparable to or higher than the stability of halide complexes with protonated ligand molecules, their formation being promoted by largely favourable enthalpic contributions that prevail over unfavourable entropic changes.
Collapse
Affiliation(s)
- M Savastano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jordan JH, Gibb CLD, Wishard A, Pham T, Gibb BC. Ion-Hydrocarbon and/or Ion-Ion Interactions: Direct and Reverse Hofmeister Effects in a Synthetic Host. J Am Chem Soc 2018; 140:4092-4099. [PMID: 29533064 PMCID: PMC10668597 DOI: 10.1021/jacs.8b00196] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A combination of 1H NMR spectroscopy, DLS, and turbidity measurements reveal that polarizable anions engender both the Hofmeister and reverse Hofmeister effects in positand 2. Host 2 possesses two principal and distinctly different binding sites: a "soft" nonpolar pocket and a "hard" crown of ammonium cations. NMR spectroscopy reveals that anion affinity to both sites is comparable, with each site showing characteristic selectivities. NMR spectroscopy also reveals that anions competitively bind to the pocket and induce the Hofmeister effect in host-guest binding at very low concentrations (∼2 mM). Furthermore, the suite of techniques utilized demonstrates that anion binding to both sites leads to charge attenuation, aggregation, and finally precipitation (the reverse Hofmeister effect). Anion-induced precipitation generally correlated with affinity, and comparisons between the free host and its adamantane carboxylate (Ada-CO2-) complex reveals that the reverse Hofmeister effect is attenuated by blocking anion binding/charge attenuation at the nonpolar pocket.
Collapse
Affiliation(s)
- Jacobs H. Jordan
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Corinne L. D. Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Anthony Wishard
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Thu Pham
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C. Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
37
|
Network Formation via Anion Coordination: Crystal Structures Based on the Interplay of Non-Covalent Interactions. Molecules 2018; 23:molecules23030572. [PMID: 29510481 PMCID: PMC6017772 DOI: 10.3390/molecules23030572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 12/31/2022] Open
Abstract
We describe the synthesis and the structural characterization of new H2L(CF3CO2)2 (1) and H2L(Ph2PO4)2 (2) compounds containing the diprotonated form (H2L2+) of the tetrazine-based molecule 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine. X-ray diffraction (XRD) analysis of single crystals of these compounds showed that H2L2+ displays similar binding properties toward both anions when salt bridge interactions are taken into account. Nevertheless, the different shapes, sizes and functionalities of trifluoroacetate and diphenyl phosphate anions define quite different organization patterns leading to the peculiar crystal lattices of 1 and 2. These three-dimensional (3D) architectures are self-assembled by a variety of non-covalent forces, among which prominent roles are played by fluorine–π (in 1) and anion–π (in 2) interactions.
Collapse
|
38
|
Mittapalli RR, Namashivaya SSR, Oshchepkov AS, Kuczyńska E, Kataev EA. Design of anion-selective PET probes based on azacryptands: the effect of pH on binding and fluorescence properties. Chem Commun (Camb) 2018; 53:4822-4825. [PMID: 28417123 DOI: 10.1039/c7cc01255a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design of PET probes for anions working in an aqueous buffered solution is described. The design has been used to develop selective fluorescent probes for sulfate and pyrophosphate. The relationship between the selectivity of receptors towards anions, their conformation, fluorescence response and the pH of the solution has been studied in detail.
Collapse
Affiliation(s)
- Ramana R Mittapalli
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
| | | | | | | | | |
Collapse
|
39
|
Savastano M, Bazzicalupi C, García C, Gellini C, López de la Torre MD, Mariani P, Pichierri F, Bianchi A, Melguizo M. Iodide and triiodide anion complexes involving anion-π interactions with a tetrazine-based receptor. Dalton Trans 2018; 46:4518-4529. [PMID: 28262880 DOI: 10.1039/c7dt00134g] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protonated forms of the tetrazine ligand L2 (3,6-bis(morpholin-4-ylethyl)-1,2,4,5-tetrazine) interact with iodide in aqueous solution forming relatively stable complexes (ΔG° = -11.6(4) kJ mol-1 for HL2+ + I- = (HL2)I and ΔG° = -13.4(2) kJ mol-1 for H2L22+ + I- = [(H2L2)I]+). When solutions of [(H2L2)I]+ are left in contact with air, crystals of the oxidation product (H2L2)2(I3)3I·4H2O are formed. Unfortunately, the low solubility of I3- complexes prevents the determination of their stability constants. The crystal structures of H2L2I2·H2O (1), H2L2(I3)2·2H2O (2) and (H2L2)2(I3)3I·4H2O (3) were determined by means of X-ray diffraction analyses. In all crystal structures, it was found that the interaction between I- and I3- with H2L22+ is dominated by anion interactions with the π electron density of the receptor. Only in the case of 1, the iodide anions involved in close anion-π interactions with the ligand tetrazine ring form an additional H-bond with the protonated morpholine nitrogen of an adjacent ligand molecule. Conversely, in crystals of 2 and 3 there are alternate segregated planes which contain only protonated ligands hydrogen-bonded to cocrystallized water molecules or I3- and I- forming infinite two-dimensional networks established through short interhalogen contacts, making these crystalline products good candidates to behave as solid conductors. In the solid complexes, the triiodide anion displays both end-on and side-on interaction modes with the tetrazine ring, in agreement with density functional theory calculations indicating a preference for the alignment of the I3- molecular axis with the molecular axis of the ligand. Further information about geometries and structures of triiodide anions in 2 and 3 was acquired by the analysis of their Raman spectra.
Collapse
Affiliation(s)
- Matteo Savastano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Celeste García
- Department of Inorganic and Organic Chemistry, University of Jaén 23071, Jaén, Spain.
| | - Cristina Gellini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | | | - Palma Mariani
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Fabio Pichierri
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
| | - Antonio Bianchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Manuel Melguizo
- Department of Inorganic and Organic Chemistry, University of Jaén 23071, Jaén, Spain.
| |
Collapse
|
40
|
Venkatesan V, Kumar SKA, Bothra S, Sahoo SK. Highly selective iodide sensing ability of an anthraquinone-derived Schiff base in semi-aqueous medium and its performance in antioxidation, anti-inflammation and HRBC membrane protection. NEW J CHEM 2018. [DOI: 10.1039/c7nj03824k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a new iodide (I−) ion selective chromogenic receptor (3) was developed by reacting 9,10-anthraquinone with 2,4-dinitrophenylhydrazine.
Collapse
Affiliation(s)
- Vetriarasu Venkatesan
- Department of Chemistry, School of Advanced Sciences, VIT University
- Vellore-632014
- India
| | - S. K. Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, VIT University
- Vellore-632014
- India
| | - Shilpa Bothra
- Department of Applied Chemistry, S. V. National Institute Technology
- Surat-395007
- India
| | - Suban K. Sahoo
- Department of Applied Chemistry, S. V. National Institute Technology
- Surat-395007
- India
| |
Collapse
|
41
|
Savastano M, García C, López de la Torre MD, Pichierri F, Bazzicalupi C, Bianchi A, Melguizo M. Interplay between salt bridge, hydrogen bond and anion-π interactions in thiocyanate binding. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.04.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Molina P, Zapata F, Caballero A. Anion Recognition Strategies Based on Combined Noncovalent Interactions. Chem Rev 2017; 117:9907-9972. [PMID: 28665114 DOI: 10.1021/acs.chemrev.6b00814] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights the most significant examples of an emerging field in the design of highly selective anion receptors. To date, there has been remarkable progress in the binding and sensing of anions. This has been driven in part by the discovery of ways to construct effective anion binding receptors using the dominant N-H functional groups and neutral and cationic C-H hydrogen bond donors, as well as underexplored strong directional noncovalent interactions such as halogen-bonding and anion-π interactions. In this review, we will describe a new and promising strategy for constructing anion binding receptors with distinct advantages arising from their elaborate design, incorporating multiple binding sites able to interact cooperatively with anions through these different kinds of noncovalent interactions. Comparisons with control species or solely hydrogen-bonding analogues reveal unique characteristics in terms of strength, selectivity, and interaction geometry, representing important advances in the rising field of supramolecular chemistry.
Collapse
Affiliation(s)
- Pedro Molina
- Departamento de Química Orgánica, Universidad de Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| | - Fabiola Zapata
- Departamento de Química Orgánica, Universidad de Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| | - Antonio Caballero
- Departamento de Química Orgánica, Universidad de Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| |
Collapse
|
43
|
Oshchepkov AS, Mittapalli RR, Fedorova OA, Kataev EA. Naphthalimide-Based Polyammonium Chemosensors for Anions: Study of Binding Properties and Sensing Mechanisms. Chemistry 2017; 23:9657-9665. [PMID: 28504844 DOI: 10.1002/chem.201701515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 11/05/2022]
Abstract
New naphthalimide-based receptors for anions have been synthesized. Efficient synthetic routes have been discovered to functionalize the naphthalimide core with branched polyamines. Binding and sensing properties of the receptors were studied by potentiometric, NMR and fluorescence titrations. The receptors bind selectively to the pyrophosphate anion in buffered aqueous solutions. The receptors with more than six amine groups in the structure demonstrated the highest affinities for pyrophosphate. The fluorescence response towards anions was found to be dependent on the position of the amine groups relative to the naphthalimide core, and on the pH of the buffered solution. Three sensing mechanisms have been found that explain fluorescence responses of receptors towards anions in an aqueous solution.
Collapse
Affiliation(s)
- Aleksandr S Oshchepkov
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany.,Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, 119991, Russian Federation.,Institute of Organoelement compounds of RAS, Vavilova Str., 28, Moscow, 119991, Russian Federation
| | - Ramana R Mittapalli
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Olga A Fedorova
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, 119991, Russian Federation.,Institute of Organoelement compounds of RAS, Vavilova Str., 28, Moscow, 119991, Russian Federation
| | - Evgeny A Kataev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| |
Collapse
|
44
|
Savastano M, Bazzicalupi C, Giorgi C, Gratteri P, Bianchi A. Cation, Anion and Ion-Pair Complexes with a G-3 Poly(ethylene imine) Dendrimer in Aqueous Solution. Molecules 2017; 22:molecules22050816. [PMID: 28509862 PMCID: PMC6154109 DOI: 10.3390/molecules22050816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 11/16/2022] Open
Abstract
The G-3 poly(ethylene imine) ligand L2 shows a multifaceted coordination ability, being able to bind metal cations, anions and ion-pairs. The equilibrium constants for the formation of metal (Cu2+, Zn2+), anion (SO₄2-) and ion-pair (Cu2+/SO₄2-) complexes were determined in 0.1 M Me₄NCl aqueous solution at 298.1 ± 0.1 K by means of potentiometric titrations. Thanks to its dendrimeric nature, L2 can form highly nucleated metal complexes, such as Cu₅L210+ and Zn₄L28+, in successive and well-defined complexation steps. Protonated forms of L2 give rise to relatively weak anion complexes with SO₄2-, but the addition of Cu2+ significantly enhances the binding ability of the ligand toward this anion below pH 9. In more alkaline solutions, an opposite trend is observed. The coordination properties of L2 are discussed with the support of modelling calculations. According to results, L2 is a promising molecule for the preparation of solid supported materials for the recovery of cations and anions from aqueous media and/or for applications in heterogeneous catalysis.
Collapse
Affiliation(s)
- Matteo Savastano
- Department of Chemistry "Ugo Schiff", via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Antonio Bianchi
- Department of Chemistry "Ugo Schiff", via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
45
|
Gorla L, Martí-Centelles V, Altava B, Burguete MI, Luis SV. Cu 2+ recognition by N,N'-benzylated bis(amino amides). Dalton Trans 2017; 46:2660-2669. [PMID: 28168262 DOI: 10.1039/c6dt04756d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two new C2-symmetric N,N'-benzylated bis(amino amides) have been synthesised and their interaction with different transition metals studied using a variety of techniques including UV-Vis and CD spectroscopy or ESI-MS. The determination of the corresponding stability constants with Cu2+ has been possible, in H2O/CH3CN 7/3 v/v, for one of these ligands (4) using potentiometric titrations. The results obtained reveal that N-benzylation affords significant changes to their properties and is accompanied by an appreciable decrease in the corresponding complexation stability constants. However, this, along with the low kinetics associated to Ni2+, facilitates the recognition of Cu2+ by 4 that can be followed by the naked-eye up to the submillimolar range. Very interestingly, the chiral nature of this ligand provides an intense and well defined CD curve for the corresponding Cu2+ complex, very sensitive to the coordination geometry, facilitating the analysis of this interaction even at the μM range. The formation by both ligands (3 and 4) of square planar complexes with Cu2+ and Ni2+ displaying a 1 : 1 stoichiometry was confirmed by their X-ray crystal structures.
Collapse
Affiliation(s)
- Lingaraju Gorla
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat s/n., 12071 Castellón, Spain.
| | - Vicente Martí-Centelles
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat s/n., 12071 Castellón, Spain.
| | - Belén Altava
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat s/n., 12071 Castellón, Spain.
| | - M Isabel Burguete
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat s/n., 12071 Castellón, Spain.
| | - Santiago V Luis
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat s/n., 12071 Castellón, Spain.
| |
Collapse
|
46
|
Bartoli F, Bencini A, Garau A, Giorgi C, Lippolis V, Lunghi A, Totti F, Valtancoli B. Di- and Triphosphate Recognition and Sensing with Mono- and Dinuclear Fluorescent Zinc(II) Complexes: Clues for the Design of Selective Chemosensors for Anions in Aqueous Media. Chemistry 2016; 22:14890-14901. [PMID: 27573342 DOI: 10.1002/chem.201602079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 11/09/2022]
Abstract
The synthesis of a new ligand (L1) containing two 1,4,7-triazacyclononane ([9]aneN3 ) moieties linked by a 4,5-dimethylenacridine unit is reported. The binding and fluorescence sensing properties toward Cu2+ , Zn2+ , Cd2+ , and Pb2+ of L1 and receptor L2, composed of two [9]aneN3 macrocycles bridged by a 6,6''-dimethylen-2,2':6',2''-terpyridine unit, have been studied by coupling potentiometric, UV/Vis absorption, and emission measurements in aqueous media. Both receptors can selectively detect Zn2+ thanks to fluorescence emission enhancement upon metal binding. The analysis of the binding and sensing properties of the Zn2+ complexes toward inorganic anions revealed that the dinuclear Zn2+ complex of L1 selectively binds and senses the triphosphate anion (TP), whereas the mononuclear Zn2+ complex of L2 displays selective recognition of diphosphate (DP). Binding of TP or DP induces emission quenching of the Zn2+ complexes with L1 and L2, respectively. These results are exploited to discuss the role played by pH, number of coordinated metal cations, and binding ability of the bridging units in metal and/or anion coordination and sensing.
Collapse
Affiliation(s)
- Francesco Bartoli
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy
| | - Andrea Bencini
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Alessandra Garau
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Italy
| | - Claudia Giorgi
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Italy.
| | - Alessandro Lunghi
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy
| | - Federico Totti
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy
| | - Barbara Valtancoli
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
47
|
El Sayed S, Milani M, Milanese C, Licchelli M, Martínez-Máñez R, Sancenón F. Anions as Triggers in Controlled Release Protocols from Mesoporous Silica Nanoparticles Functionalized with Macrocyclic Copper(II) Complexes. Chemistry 2016; 22:13935-13945. [DOI: 10.1002/chem.201601024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Sameh El Sayed
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM); Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería; Biomateriales y Nanomedicina (CIBER-BBN)
- Dipartimento di Chimica; Università di Pavia; via Taramelli 12 27100 Pavia Italy
| | - Michele Milani
- Dipartimento di Chimica; Università di Pavia; via Taramelli 12 27100 Pavia Italy
| | - Chiara Milanese
- Dipartimento di Chimica; Università di Pavia; via Taramelli 12 27100 Pavia Italy
| | - Maurizio Licchelli
- Dipartimento di Chimica; Università di Pavia; via Taramelli 12 27100 Pavia Italy
| | - Ramón Martínez-Máñez
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM); Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería; Biomateriales y Nanomedicina (CIBER-BBN)
| | - Félix Sancenón
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM); Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia; Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería; Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
48
|
Gorla L, Martí-Centelles V, Freimuth L, Altava B, Burguete MI, Luis SV. Cu(2+), Zn(2+), and Ni(2+) Complexes of C2-Symmetric Pseudopeptides with an Aromatic Central Spacer. Inorg Chem 2016; 55:7617-29. [PMID: 27438410 DOI: 10.1021/acs.inorgchem.6b01066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two new tetradentate C2-symmetric pseudopeptidic ligands derived from Val and Phe containing two amino and two amido groups and a central o-substituted aromatic spacer have been prepared. Their complexes with Cu(2+), Zn(2+), and Ni(2+) have been studied by potentiometry, UV-vis spectrophotometry, FT-IR, and ESI-MS. The presence of the aromatic spacer provides Cu(2+) complexes with stability constants several orders of magnitude higher than those observed for related ligands containing aliphatic central spacers. Besides, the formation of [MH-2L] complex species is favored. Crystal structures for the corresponding Cu(2+) and Ni(2+) have been obtained, revealing the metal atom in an essentially square-planar geometry, although, in several instances, the oxygen atom of an amide carbonyl of a second complex species can act as a fifth coordination site. In the case of Zn(2+), the only crystal structure obtained displays a square-pyramidal arrangement of the metal center. Finally, preliminary experiments show the catalytic activity of some of these complexes, in particular, Zn(2+) complexes, for epoxide ring-opening with using aniline as the nucleophile in a ligand accelerated process.
Collapse
Affiliation(s)
- Lingaraju Gorla
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I , Av. de Vicent Sos Baynat, s/n, 12071, Castellón, Spain
| | - Vicente Martí-Centelles
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I , Av. de Vicent Sos Baynat, s/n, 12071, Castellón, Spain
| | - Lena Freimuth
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I , Av. de Vicent Sos Baynat, s/n, 12071, Castellón, Spain
| | - Belén Altava
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I , Av. de Vicent Sos Baynat, s/n, 12071, Castellón, Spain
| | - M Isabel Burguete
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I , Av. de Vicent Sos Baynat, s/n, 12071, Castellón, Spain
| | - Santiago V Luis
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I , Av. de Vicent Sos Baynat, s/n, 12071, Castellón, Spain
| |
Collapse
|
49
|
Haque SA, Berkley RS, Fronczek FR, Hossain MA. Solution and structural binding studies of phosphate with thiophene-based azamacrocycles. INORG CHEM COMMUN 2016; 70:121-124. [PMID: 28216999 PMCID: PMC5310367 DOI: 10.1016/j.inoche.2016.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two thiophene-based monocyclic receptors L1 and L2 have been studied for phosphate binding in solutions (D2O and DMSO-d6 ) by 1H NMR and 31P NMR titrations, and in the solid state by single crystal X-ray analysis. Results from 1H NMR titrations suggest that the ligands bind phosphate anions in a 1:2 binding mode in DMSO-d6 , with the binding constants of 5.25 and 4.20 (in log K), respectively. The binding of phosphate to L1 and L2 was further supported by 31P NMR in D2O at pH = 5.2. The crystal structure of the phosphate complex of L1 reveals unambiguous proof for the formation of a ditopic complex via multiple hydrogen bonds from NH···O and CH···O interactions.
Collapse
Affiliation(s)
- Syed A. Haque
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| | - Rainier S. Berkley
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Md. Alamgir Hossain
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
50
|
Gregoliński J, Ślepokura K, Paćkowski T, Panek J, Stefanowicz P, Lisowski J. From 2 + 2 to 8 + 8 Condensation Products of Diamine and Dialdehyde: Giant Container-Shaped Macrocycles for Multiple Anion Binding. J Org Chem 2016; 81:5285-94. [DOI: 10.1021/acs.joc.6b00531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janusz Gregoliński
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Katarzyna Ślepokura
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Tomasz Paćkowski
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Jarosław Panek
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Piotr Stefanowicz
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Jerzy Lisowski
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|