1
|
Wang X, Qu Z, Zhao S, Luo L, Yan L. Wnt/β-catenin signaling pathway: proteins' roles in osteoporosis and cancer diseases and the regulatory effects of natural compounds on osteoporosis. Mol Med 2024; 30:193. [PMID: 39468464 PMCID: PMC11520425 DOI: 10.1186/s10020-024-00957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Osteoblasts are mainly derived from mesenchymal stem cells in the bone marrow. These stem cells can differentiate into osteoblasts, which have the functions of secreting bone matrix, promoting bone formation, and participating in bone remodeling. The abnormality of osteoblasts can cause a variety of bone-related diseases, including osteoporosis, delayed fracture healing, and skeletal deformities. In recent years, with the side effects caused by the application of PTH drugs, biphosphonate drugs, and calmodulin drugs, people have carried out more in-depth research on the mechanism of osteoblast differentiation, and are actively looking for natural compounds for the treatment of osteoporosis. The Wnt/β-catenin signaling pathway is considered to be one of the important pathways of osteoblast differentiation, and has become an important target for the treatment of osteoporosis. The Wnt/β-catenin signaling pathway, whether its activation is enhanced or its expression is weakened, will cause a variety of diseases including tumors. This review will summarize the effect of Wnt/β-catenin signaling pathway on osteoblast differentiation and the correlation between the related proteins in the pathway and human diseases. At the same time, the latest research progress of natural compounds targeting Wnt/β-catenin signaling pathway against osteoporosis is summarized.
Collapse
Affiliation(s)
- Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Medical University, Xi'an, China
| | - Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Luo
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Mei Y, Wang NN. New insights into the regulation of ethylene biosynthesis during leaf senescence in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:5-6. [PMID: 38840567 DOI: 10.1111/nph.19890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This article is a Commentary on Zhu et al. (2024), 244: 116–130.
Collapse
Affiliation(s)
- Yuanyuan Mei
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ning Ning Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Zhu GQ, Qu L, Xue HW. Casein kinase 1 AELs promote senescence by enhancing ethylene biosynthesis through phosphorylating WRKY22 transcription factor. THE NEW PHYTOLOGIST 2024; 244:116-130. [PMID: 38702992 DOI: 10.1111/nph.19785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/07/2024] [Indexed: 05/06/2024]
Abstract
Leaf senescence is a complex process regulated by developmental and environmental factors, and plays a pivotal role in the development and life cycle of higher plants. Casein kinase 1 (CK1) is a highly conserved serine/threonine protein kinase in eukaryotes and functions in various cellular processes including cell proliferation, light signaling and hormone effects of plants. However, the biological function of CK1 in plant senescence remains unclear. Through systemic genetic and biochemical studies, we here characterized the function of Arabidopsis EL1-like (AEL), a CK1, in promoting leaf senescence by stimulating ethylene biosynthesis through phosphorylating transcription factor WRKY22. Seedlings lacking or overexpressing AELs presented delayed or accelerated leaf senescence, respectively. AELs interact with and phosphorylate WRKY22 at Thr57, Thr60 and Ser69 residues to enhance whose transactivation activity. Being consistent, increased or suppressed phosphorylation of WRKY22 resulted in the promoted or delayed leaf senescence. WRKY22 directly binds to promoter region and stimulates the transcription of 1-amino-cyclopropane-1-carboxylate synthase 7 gene to promote ethylene level and hence leaf senescence. Our studies demonstrated the crucial role of AEL-mediated phosphorylation in regulating ethylene biosynthesis and promoting leaf senescence by enhancing WRKY22 transactivation activity, which helps to elucidate the fine-controlled ethylene biosynthesis and regulatory network of leaf senescence.
Collapse
Affiliation(s)
- Guo-Qing Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Meléndez RA, Wynn DT, Merugu SB, Singh P, Kaplan KP, Robbins DJ. Exploring the role of casein kinase 1α splice variants across cancer cell lines. Biochem Biophys Res Commun 2024; 723:150189. [PMID: 38852281 PMCID: PMC11287285 DOI: 10.1016/j.bbrc.2024.150189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Casein kinase 1α (CK1α) is a serine/threonine protein kinase that acts in various cellular processes affecting cell division and signal transduction. CK1α is present as multiple splice variants that are distinguished by the presence or absence of a long insert (L-insert) and a short carboxyl-terminal insert (S-insert). When overexpressed, zebrafish CK1α splice variants exhibit different biological properties, such as subcellular localization and catalytic activity. However, whether endogenous, alternatively spliced CK1α gene products also differ in their biological functions has yet to be elucidated. Here, we identify a panel of splice variant specific CK1α antibodies and use them to show that four CK1α splice variants are expressed in mammals. We subsequently show that the relative abundance of CK1α splice variants varies across distinct mouse tissues and between various cancer cell lines. Furthermore, we identify pathways whose expression is noticeably altered in cell lines enriched with select splice variants of CK1α. Finally, we show that the S-insert of CK1α promotes the growth of HCT 116 cells as cells engineered to lack the S-insert display decreased cell growth. Together, we provide tools and methods to identify individual CK1α splice variants, which we use to begin to uncover the differential biological properties driven by specific splice variants of mammalian CK1α.
Collapse
Affiliation(s)
- Ricardo A Meléndez
- Department of Biochemistry and Molecular Biology University of Miami Miller School of Medicine Miami FL, USA; Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA
| | - Daniel T Wynn
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA
| | - Siva Bharath Merugu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA
| | - Prerna Singh
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA
| | - Kenton P Kaplan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA
| | - David J Robbins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C, USA.
| |
Collapse
|
5
|
Luo X, Zhang D, Zheng J, Liu H, Sun L, Guo H, Wang L, Cui S. Casein kinase 1α mediates estradiol secretion via CYP19A1 expression in mouse ovarian granulosa cells. BMC Biol 2024; 22:176. [PMID: 39183304 PMCID: PMC11346181 DOI: 10.1186/s12915-024-01957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Casein kinase 1α (CK1α), expressed in both ovarian germ and somatic cells, is involved in the initial meiosis and primordial follicle formation of mouse oocytes. Using in vitro and in vivo experiments in this study, we explored the function and mechanism of CK1α in estrogen synthesis in mice ovarian granulosa cells. METHODS A CK1α knockout (cKO) mouse model, targeted specifically to ovarian granulosa cells (GCs), was employed to establish the influence of CK1α on in vivo estrogen synthesis. The influence of CK1α deficiency on GCs was determined in vivo and in vitro by immunofluorescence analysis and Western blot assay. Transcriptome profiling, differentially expressed genes and gene functional enrichment analyses, and computation protein-protein docking, were further employed to assess the CK1α pathway. Furthermore, wild-type female mice were treated with the CK1α antagonist D4476 to elucidate the CK1α's role in estrogen regulation. RESULTS Ovarian GCs CK1α deficiency impaired fertility and superovulation of female mice; also, the average litter size and the estradiol (E2) level in the serum of cKO female mice were decreased by 57.3% and 87.4% vs. control mice, respectively. This deficiency disrupted the estrous cycle and enhanced the apoptosis in the GCs. We observed that CK1α mediated the secretion of estradiol in mouse ovarian GCs via the cytochrome P450 subfamily 19 member 1 (CYP19A1). CONCLUSIONS These findings improve the existing understanding of the regulation mechanism of female reproduction and estrogen synthesis. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Xuan Luo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Longjie Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Hongzhou Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Lei Wang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
6
|
Hassan AM, Khateb AM, Turkistani SA, Alhamdan MM, Garout RM, Dwivedi VD, Azhar EI. Structural analogs of 2-(4-fluorophenyl)-6-methyl-3-(pyridin-4-yl)pyrazolo[1,5-a]pyridine for targeting Candida albicans non-essential stress kinase Yck2 through protein-ligand binding and dynamics analysis. Front Chem 2024; 12:1430157. [PMID: 39193538 PMCID: PMC11347327 DOI: 10.3389/fchem.2024.1430157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024] Open
Abstract
The rise in drug-resistant fungal infections poses a significant public health concern, necessitating the development of new antifungal therapies. We aimed to address this challenge by targeting a yeast casein kinase of Candida albicans for antifungal drug development. The compound library contained 589 chemical structures similar to the previously identified kinase inhibitor GW461484A. Through virtual screening, four compounds with the PubChem IDs 102583821, 12982634, 102487860, and 86260205 were selected based on their binding energies. Hydrophobic bonds and van der Waals interactions stabilised the docked complexes. Comprehensive interaction studies and a 200-nanosecond molecular dynamics simulation suggested that these molecules can maintain stable interactions with the target, as evidenced by satisfactory RMSD and RMSF values. The Rg-RMSD-based Free Energy Landscape of these complexes indicated thermodynamic stability due to the presence of conformers with global minima. These promising findings highlight the potential for developing novel antifungal therapies targeting Yck2 in C. albicans. Further experimental validation is required to assess the efficacy of these compounds as antifungal agents. This research provides a significant step towards combating antifungal resistance and opens up a new avenue for drug discovery.
Collapse
Affiliation(s)
- Ahmed M. Hassan
- Special Infectious Agents Unit—BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aiah M. Khateb
- Special Infectious Agents Unit—BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Taibah University, Medina, Saudi Arabia
| | - Safaa A. Turkistani
- Special Infectious Agents Unit—BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Meshari M. Alhamdan
- Special Infectious Agents Unit—BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Family Medicine Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed M. Garout
- Special Infectious Agents Unit—BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Molecular Diagnostics Laboratory, Clinical Laboratory Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India
| | - Esam I. Azhar
- Special Infectious Agents Unit—BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Lin YC, Sun DP, Hsieh TH, Chen CH. Targeting CK1δ and CK1ε as a New Therapeutic Approach for Clear Cell Renal Cell Carcinoma. Pharmacology 2024:1-11. [PMID: 38955142 DOI: 10.1159/000540182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/30/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Kidney cancer ranks as the ninth most common cancer in men and the fourteenth in women globally, with renal cell carcinoma (RCC) being the most prevalent type. Despite advances in therapeutic strategies targeting angiogenesis and immune checkpoints, the absence of reliable markers for patient selection and limited duration of disease control underline the need for innovative approaches. CK1δ and CK1ε are highly conserved serine/threonine kinases involved in cell cycle regulation, apoptosis, and circadian rhythm. While CK1δ dysregulation is reportedly associated with breast and bladder cancer progression, their role in RCC remains elusive. This study aimed to investigate the feasibility of CK1δ/ε as new therapeutic targets for RCC patients. METHODS The relationship between CK1δ/ε and RCC progression was evaluated by the analysis of microarray dataset and TCGA database. The anticancer activity of CK1δ/ε inhibitor was examined by MTT/SRB assay, and apoptotic cell death was analyzed by flow cytometry and Western blotting. RESULTS Our data demonstrate that the gene expression of CSNK1D and CSNK1E is significantly higher in clear cell RCC (ccRCC) tissues compared to normal kidney samples, which is correlated with lower survival rates in ccRCC patients. SR3029, a selective inhibitor targeting CK1δ/ε, significantly suppresses the viability and proliferation of ccRCC cell lines regardless of the status of VHL deficiency. Importantly, the inhibitor promotes the population of subG1 cells and induces apoptosis, and ectopically expression of CK1δ partially rescued SR3029-induced apoptosis in ccRCC cells. CONCLUSION These findings underscore the crucial role of CK1δ and CK1ε in ccRCC progression, suggesting CK1δ/ε inhibitors as new therapeutic options for ccRCC patients.
Collapse
Affiliation(s)
- Yu-Chen Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ding-Ping Sun
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
- Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Chun-Han Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Lishman-Walker E, Coffey K. Casein Kinase 1α-A Target for Prostate Cancer Therapy? Cancers (Basel) 2024; 16:2436. [PMID: 39001502 PMCID: PMC11240421 DOI: 10.3390/cancers16132436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
The androgen receptor (AR) is a key driver of prostate cancer (PCa) and, as such, current mainstay treatments target this molecule. However, resistance commonly arises to these therapies and, therefore, additional targets must be evaluated to improve patient outcomes. Consequently, alternative approaches for indirectly targeting the AR are sought. AR crosstalk with other signalling pathways, including several protein kinase signalling cascades, has been identified as a potential route to combat therapy resistance. The casein kinase 1 (CK1) family of protein kinases phosphorylate a multitude of substrates, allowing them to regulate a diverse range of pathways from the cell cycle to DNA damage repair. As well as its role in several signalling pathways that are de-regulated in PCa, mutational data suggest its potential to promote prostate carcinogenesis. CK1α is one isoform predicted to regulate AR activity via phosphorylation and has been implicated in the progression of several other cancer types. In this review, we explore how the normal biological function of CK1 is de-regulated in cancer, the impact on signalling pathways and how this contributes towards prostate tumourigenesis, with a particular focus on the CK1α isoform as a novel therapeutic target for PCa.
Collapse
Affiliation(s)
- Emma Lishman-Walker
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kelly Coffey
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
9
|
Glennie L, Solà MC, Xunclà M, Español GA, Garcia-Arumí E, Tizzano EF, Wood NT, Macartney TJ, Lasa-Aranzasti A, Sapkota GP. A novel FAM83G variant from palmoplantar keratoderma patient disrupts WNT signalling via loss of FAM83G-CK1α interaction. Open Biol 2024; 14:240075. [PMID: 39043225 PMCID: PMC11265864 DOI: 10.1098/rsob.240075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Palmoplantar keratoderma (PPK) is a multi-faceted skin disorder characterized by the thickening of the epidermis and abrasions on the palms and soles of the feet. Among the genetic causes, biallelic pathogenic variants in the FAM83G gene have been associated with PPK in dogs and humans. Here, a novel homozygous variant (c.794G>C, p.Arg265Pro) in the FAM83G gene, identified by whole exome sequencing in a 60-year-old female patient with PPK, is reported. The patient exhibited alterations in the skin of both hands and feet, dystrophic nails, thin, curly and sparse hair, long upper eyelid eyelashes, and poor dental enamel. FAM83G activates WNT signalling through association with ser/thr protein kinase CK1α. When expressed in FAM83G-/- DLD1 colorectal cancer cells, the FAM83GR265P variant displayed poor stability, a loss of interaction with CK1α and attenuated WNT signalling response. These defects persisted in skin fibroblast cells derived from the patient. Our findings imply that the loss of FAM83G-CK1α interaction and subsequent attenuation of WNT signalling underlie the pathogenesis of PPK caused by the FAM83GR265P variant.
Collapse
Affiliation(s)
- Lorraine Glennie
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, UK
| | - Marta Codina Solà
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Mar Xunclà
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | | | - Elena Garcia-Arumí
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Eduardo Fidel Tizzano
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Nicola T. Wood
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, UK
| | - Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Gopal P. Sapkota
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, UK
| |
Collapse
|
10
|
Wei Y, Zhong S, Yang H, Wang X, Lv B, Bian Y, Pei Y, Xu C, Zhao Q, Wu Y, Luo D, Wang F, Sun H, Chen Y. Current therapy in amyotrophic lateral sclerosis (ALS): A review on past and future therapeutic strategies. Eur J Med Chem 2024; 272:116496. [PMID: 38759454 DOI: 10.1016/j.ejmech.2024.116496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the first and second motoneurons (MNs), associated with muscle weakness, paralysis and finally death. The exact etiology of the disease still remains unclear. Currently, efforts to develop novel ALS treatments which target specific pathomechanisms are being studied. The mechanisms of ALS pathogenesis involve multiple factors, such as protein aggregation, glutamate excitotoxicity, oxidative stress, mitochondrial dysfunction, apoptosis, inflammation etc. Unfortunately, to date, there are only two FDA-approved drugs for ALS, riluzole and edavarone, without curative treatment for ALS. Herein, we give an overview of the many pathways and review the recent discovery and preclinical characterization of neuroprotective compounds. Meanwhile, drug combination and other therapeutic approaches are also reviewed. In the last part, we analyze the reasons of clinical failure and propose perspective on the treatment of ALS in the future.
Collapse
Affiliation(s)
- Yuqing Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng Zhong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huajing Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xueqing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Daying Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
11
|
Zalaquett NG, Salameh E, Kim JM, Ghanbarian E, Tawk K, Abouzari M. The Dawn and Advancement of the Knowledge of the Genetics of Migraine. J Clin Med 2024; 13:2701. [PMID: 38731230 PMCID: PMC11084801 DOI: 10.3390/jcm13092701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Migraine is a prevalent episodic brain disorder known for recurrent attacks of unilateral headaches, accompanied by complaints of photophobia, phonophobia, nausea, and vomiting. Two main categories of migraine are migraine with aura (MA) and migraine without aura (MO). Main body: Early twin and population studies have shown a genetic basis for these disorders, and efforts have been invested since to discern the genes involved. Many techniques, including candidate-gene association studies, loci linkage studies, genome-wide association, and transcription studies, have been used for this goal. As a result, several genes were pinned with concurrent and conflicting data among studies. It is important to understand the evolution of techniques and their findings. Conclusions: This review provides a chronological understanding of the different techniques used from the dawn of migraine genetic investigations and the genes linked with the migraine subtypes.
Collapse
Affiliation(s)
- Nader G. Zalaquett
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Elio Salameh
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Jonathan M. Kim
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Elham Ghanbarian
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Karen Tawk
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
13
|
Zhang D, Lu C, Zhou Y, Luo X, Guo H, Zhang J, Gao Q, Liu H, Shang C, Cui S. CK1α deficiency impairs mouse uterine adenogenesis by inducing epithelial cell apoptosis through GSK3β pathway and inhibiting Foxa2 expression through p53 pathway†. Biol Reprod 2024; 110:246-260. [PMID: 37944068 DOI: 10.1093/biolre/ioad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Uterine glands and their secretions are crucial for conceptus survival and implantation in rodents and humans. In mice, the development of uterine gland known as adenogenesis occurs after birth, whereas the adenogenesis in humans initiates from fetal life and completed at puberty. Uterine adenogenesis involves dynamic epithelial cell proliferation, differentiation, and apoptosis. However, it is largely unexplored about the mechanisms governing adenogenesis. CK1α plays important roles in regulating cell division, differentiation, and death, but it is unknown whether CK1α affects adenogenesis. In the current study, uterus-specific CK1α knockout female mice (Csnk1a1d/d) were infertile resulted from lack of uterine glands. Subsequent analysis revealed that CK1α deletion induced massive apoptosis in uterine epithelium by activating GSK3β, which was confirmed by injections of GSK3β inhibitor SB216763 to Csnk1a1d/d females, and the co-treatment of SB216763 and CK1 inhibitor d4476 on cultured epithelial cells. Another important finding was that our results revealed CK1α deficiency activated p53, which then blocked the expression of Foxa2, an important factor for glandular epithelium development and function. This was confirmed by that Foxa2 expression level was elevated in p53 inhibitor pifithrin-α injected Csnk1a1d/d mouse uterus and in vitro dual-luciferase reporter assay between p53 and Foxa2. Collectively, these studies reveal that CK1α is a novel factor regulating uterine adenogenesis by inhibiting epithelial cell apoptosis through GSK3β pathway and regulating Foxa2 expression through p53 pathway. Uncovering the mechanisms of uterine adenogenesis is expected to improve pregnancy success in humans and other mammals.
Collapse
Affiliation(s)
- Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Chenyang Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Xuan Luo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Hongzhou Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jinglin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Qiao Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Chongxing Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
14
|
Suryavanshi P, Sawant-Pokam P, Clair S, Brennan KC. Increased presynaptic excitability in a migraine with aura mutation. Brain 2024; 147:680-697. [PMID: 37831655 PMCID: PMC10834252 DOI: 10.1093/brain/awad326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 10/15/2023] Open
Abstract
Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.
Collapse
Affiliation(s)
- Pratyush Suryavanshi
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Punam Sawant-Pokam
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Sarah Clair
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
15
|
Hoyos Sanchez MC, Ospina Zapata HS, Suarez BD, Ospina C, Barbosa HJ, Carranza Martinez JC, Vallejo GA, Urrea Montes D, Duitama J. A phased genome assembly of a Colombian Trypanosoma cruzi TcI strain and the evolution of gene families. Sci Rep 2024; 14:2054. [PMID: 38267502 PMCID: PMC10808112 DOI: 10.1038/s41598-024-52449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Chagas is an endemic disease in tropical regions of Latin America, caused by the parasite Trypanosoma cruzi. High intraspecies variability and genome complexity have been challenges to assemble high quality genomes needed for studies in evolution, population genomics, diagnosis and drug development. Here we present a chromosome-level phased assembly of a TcI T. cruzi strain (Dm25). While 29 chromosomes show a large collinearity with the assembly of the Brazil A4 strain, three chromosomes show both large heterozygosity and large divergence, compared to previous assemblies of TcI T. cruzi strains. Nucleotide and protein evolution statistics indicate that T. cruzi Marinkellei separated before the diversification of T. cruzi in the known DTUs. Interchromosomal paralogs of dispersed gene families and histones appeared before but at the same time have a more strict purifying selection, compared to other repeat families. Previously unreported large tandem arrays of protein kinases and histones were identified in this assembly. Over one million variants obtained from Illumina reads aligned to the primary assembly clearly separate the main DTUs. We expect that this new assembly will be a valuable resource for further studies on evolution and functional genomics of Trypanosomatids.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, 79106, USA
| | | | - Brayhan Dario Suarez
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Carlos Ospina
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Hamilton Julian Barbosa
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | | | - Gustavo Adolfo Vallejo
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Daniel Urrea Montes
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
16
|
Tan L, Yan M, Su Z, Wang H, Li H, Zhao X, Liu S, Zhang L, Sun Q, Lu D. R-spondin-1 induces Axin degradation via the LRP6-CK1ε axis. Cell Commun Signal 2024; 22:14. [PMID: 38183076 PMCID: PMC10768284 DOI: 10.1186/s12964-023-01456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
R-spondins (RSPOs) are secreted signaling molecules that potentiate the Wnt/β-catenin pathway by cooperating with Wnt ligands. RSPO1 is crucial in tissue development and tissue homeostasis. However, the molecular mechanism by which RSPOs activate Wnt/β-catenin signaling remains elusive. In this study, we found that RSPOs could mediate the degradation of Axin through the ubiquitin-proteasome pathway. The results of Co-IP showed that the recombinant RSPO1 protein promoted the interaction between Axin1 and CK1ε. Either knockout of the CK1ε gene or treatment with the CK1δ/CK1ε inhibitor SR3029 caused an increase in Axin1 protein levels and attenuated RSPO1-induced degradation of the Axin1 protein. Moreover, we observed an increase in the number of associations of LRP6 with CK1ε and Axin1 following RSPO1 stimulation. Overexpression of LRP6 further potentiated Axin1 degradation mediated by RSPO1 or CK1ε. In addition, recombinant RSPO1 and Wnt3A proteins synergistically downregulated the protein expression of Axin1 and enhanced the transcriptional activity of the SuperTOPFlash reporter. Taken together, these results uncover the novel mechanism by which RSPOs activate Wnt/β-catenin signaling through LRP6/CK1ε-mediated degradation of Axin.
Collapse
Affiliation(s)
- Lifeng Tan
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Mengfang Yan
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hanbin Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Huan Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
17
|
Zhou M, Han Y, Jiang J. Ulk4 promotes Shh signaling by regulating Stk36 ciliary localization and Gli2 phosphorylation. eLife 2023; 12:RP88637. [PMID: 38096226 PMCID: PMC10721220 DOI: 10.7554/elife.88637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The Hedgehog (Hh) family of secreted proteins governs embryonic development and adult tissue homeostasis through the Gli family of transcription factors. Gli is thought to be activated at the tip of primary cilium, but the underlying mechanism has remained poorly understood. Here, we show that Unc-51-like kinase 4 (Ulk4), a pseudokinase and a member of the Ulk kinase family, acts in conjunction with another Ulk family member Stk36 to promote Gli2 phosphorylation and Hh pathway activation. Ulk4 interacts with Stk36 through its N-terminal region containing the pseudokinase domain and with Gli2 via its regulatory domain to bridge the kinase and substrate. Although dispensable for Hh-induced Stk36 kinase activation, Ulk4 is essential for Stk36 ciliary tip localization, Gli2 phosphorylation, and activation. In response to Hh, both Ulk4 and Stk36 colocalize with Gli2 at ciliary tip, and Ulk4 and Stk36 depend on each other for their ciliary tip accumulation. We further show that ciliary localization of Ulk4 depends on Stk36 kinase activity and phosphorylation of Ulk4 on Thr1023, and that ciliary tip accumulation of Ulk4 is essential for its function in the Hh pathway. Taken together, our results suggest that Ulk4 regulates Hh signaling by promoting Stk36-mediated Gli2 phosphorylation and activation at ciliary tip.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
18
|
Tomaz KCP, Tavella TA, Borba JVB, Salazar-Alvarez LC, Levandoski JE, Mottin M, Sousa BKP, Moreira-Filho JT, Almeida VM, Clementino LC, Bourgard C, Massirer KB, Couñago RM, Andrade CH, Sunnerhagen P, Bilsland E, Cassiano GC, Costa FTM. Identification of potential inhibitors of casein kinase 2 alpha of Plasmodium falciparum with potent in vitro activity. Antimicrob Agents Chemother 2023; 67:e0058923. [PMID: 37819090 PMCID: PMC10649021 DOI: 10.1128/aac.00589-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/11/2023] [Indexed: 10/13/2023] Open
Abstract
Drug resistance to commercially available antimalarials is a major obstacle in malaria control and elimination, creating the need to find new antiparasitic compounds with novel mechanisms of action. The success of kinase inhibitors for oncological treatments has paved the way for the exploitation of protein kinases as drug targets in various diseases, including malaria. Casein kinases are ubiquitous serine/threonine kinases involved in a wide range of cellular processes such as mitotic checkpoint signaling, DNA damage response, and circadian rhythm. In Plasmodium, it is suggested that these protein kinases are essential for both asexual and sexual blood-stage parasites, reinforcing their potential as targets for multi-stage antimalarials. To identify new putative PfCK2α inhibitors, we utilized an in silico chemogenomic strategy involving virtual screening with docking simulations and quantitative structure-activity relationship predictions. Our investigation resulted in the discovery of a new quinazoline molecule (542), which exhibited potent activity against asexual blood stages and a high selectivity index (>100). Subsequently, we conducted chemical-genetic interaction analysis on yeasts with mutations in casein kinases. Our chemical-genetic interaction results are consistent with the hypothesis that 542 inhibits yeast Cka1, which has a hinge region with high similarity to PfCK2α. This finding is in agreement with our in silico results suggesting that 542 inhibits PfCK2α via hinge region interaction.
Collapse
Affiliation(s)
- Kaira C. P. Tomaz
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
| | - Tatyana A. Tavella
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
| | - Joyce V. B. Borba
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - Luis C. Salazar-Alvarez
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
| | - João E. Levandoski
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | - Melina Mottin
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - Bruna K. P. Sousa
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - José T. Moreira-Filho
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - Vitor M. Almeida
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética(CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Leandro C. Clementino
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
| | - Catarina Bourgard
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Katlin B. Massirer
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética(CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Rafael M. Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética(CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carolina H. Andrade
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás (UFG), Goiânia, Brazil
- Center for Research and Advancement of Fragments and Molecular Targets (CRAFT), University of São Paulo, São Paulo, Brazil
- Center for Excellence in Artificial Intelligence (CEIA), Institute of Informatics, Universidade Federal de Goiás, Goiânia, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Elizabeth Bilsland
- Department of Structural and Functional Biology, Synthetic Biology Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gustavo C. Cassiano
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Fabio T. M. Costa
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
19
|
Qu L, Liu M, Zheng L, Wang X, Xue H. Data-independent acquisition-based global phosphoproteomics reveal the diverse roles of casein kinase 1 in plant development. Sci Bull (Beijing) 2023; 68:2077-2093. [PMID: 37599176 DOI: 10.1016/j.scib.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Casein kinase 1 (CK1) is serine/threonine protein kinase highly conserved among eukaryotes, and regulates multiple developmental and signaling events through phosphorylation of target proteins. Arabidopsis early flowering 1 (EL1)-like (AELs) are plant-specific CK1s with varied functions, but identification and validation of their substrates is a major bottleneck in elucidating their physiological roles. Here, we conducted a quantitative phosphoproteomic analysis in data-independent acquisition mode to systematically identify CK1 substrates. We extracted proteins from seedlings overexpressing individual AEL genes (AEL1/2/3/4-OE) or lacking AEL function (all ael single mutants and two triple mutants) to identify the high-confidence phosphopeptides with significantly altered abundance compared to wild-type Col-0. Among these, we selected 3985 phosphopeptides with higher abundance in AEL-OE lines or lower abundance in ael mutants compared with Col-0 as AEL-upregulated phosphopeptides, and defined 1032 phosphoproteins. Eight CK1s substrate motifs were enriched among AEL-upregulated phosphopeptides and verified, which allowed us to predict additional candidate substrates and functions of CK1s. We functionally characterized a newly identified substrate C3H17, a CCCH-type zinc finger transcription factor, through biochemical and genetic analyses, revealing a role for AEL-promoted C3H17 protein stability and transactivation activity in regulating embryogenesis. As CK1s are highly conserved across eukaryotes, we searched the rice, mouse, and human protein databases using newly identified CK1 substrate motifs, yielding many more candidate substrates than currently known, largely expanding our understanding of the common and distinct functions exerted by CK1s in Arabidopsis and humans, facilitating future mechanistic studies of CK1-mediated phosphorylation in different species.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Moyang Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingli Zheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongwei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
20
|
Meier L, Gahr BM, Roth A, Gihring A, Kirschner S, Woitaske-Proske C, Baier J, Peifer C, Just S, Knippschild U. Zebrafish as model system for the biological characterization of CK1 inhibitors. Front Pharmacol 2023; 14:1245246. [PMID: 37753113 PMCID: PMC10518421 DOI: 10.3389/fphar.2023.1245246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Introduction: The CK1 family is involved in a variety of physiological processes by regulating different signaling pathways, including the Wnt/β-catenin, the Hedgehog and the p53 signaling pathways. Mutations or dysregulation of kinases in general and of CK1 in particular are known to promote the development of cancer, neurodegenerative diseases and inflammation. There is increasing evidence that CK1 isoform specific small molecule inhibitors, including CK1δ- and CK1ε-specific inhibitors of Wnt production (IWP)-based small molecules with structural similarity to benzimidazole compounds, have promising therapeutic potential. Methods: In this study, we investigated the suitability of the zebrafish model system for the evaluation of such CK1 inhibitors. To this end, the kinetic parameters of human CK1 isoforms were compared with those of zebrafish orthologues. Furthermore, the effects of selective CK1δ inhibition during zebrafish embryonic development were analyzed in vivo. Results: The results revealed that zebrafish CK1δA and CK1δB were inhibited as effectively as human CK1δ by compounds G2-2 with IC50 values of 345 and 270 nM for CK1δA and CK1δB versus 503 nM for human CK1δ and G2-3 exhibiting IC50 values of 514 and 561 nM for zebrafish CK1δA and B, and 562 nM for human CK1δ. Furthermore, the effects of selective CK1δ inhibition on zebrafish embryonic development in vivo revealed phenotypic abnormalities indicative of downregulation of CK1δ. Treatment of zebrafish embryos with selected inhibitors resulted in marked phenotypic changes including blood stasis, heart failure, and tail malformations. Conclusion: The results suggest that the zebrafish is a suitable in vivo assay model system for initial studies of the biological relevance of CK1δ inhibition.
Collapse
Affiliation(s)
- Laura Meier
- Surgery Center, Department of General- and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| | - Bernd Martin Gahr
- Molecular Cardiology, Department of Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | - Aileen Roth
- Surgery Center, Department of General- and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| | - Adrian Gihring
- Surgery Center, Department of General- and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| | - Stefan Kirschner
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Joana Baier
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Peifer
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | - Uwe Knippschild
- Surgery Center, Department of General- and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
21
|
Wang J, Hu B, Wang W. Prognostic value and immunological role of CSNK1D in human cancers. Aging (Albany NY) 2023; 15:8948-8975. [PMID: 37688771 PMCID: PMC10522368 DOI: 10.18632/aging.205009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/24/2023] [Indexed: 09/11/2023]
Abstract
CSNK1D, also known as CK1δ, is a crucial gene involved in various biological processes such as cell cycle, transcriptional regulation, apoptosis, cell polarity, and cell motility. It is associated with different cancers and neurodegenerative diseases. This study aimed to investigate the role of CSNK1D in multiple human cancers, particularly hepatocellular carcinoma (HCC), through in vitro experiments. The research utilized various online resources and databases like UCSC, NCBI, GEPIA2, HPA, cBioPortal, SangerBox, UALCAN, and TCGA for analyzing CSNK1D expression, prognosis significance, immune features, and gene alterations in cancers. RT-PCR was employed to evaluate CSNK1D expression in normal liver and liver cancer cell lines. In vitro experiments, including CCK-8, Edu, wound healing, and Transwell assays, were conducted to assess CSNK1D's biological function in HCC cells. Results demonstrated consistent upregulation of CSNK1D in various tumors. Heightened CSNK1D expression correlated with reduced overall survival and disease-free survival rates in different cancer patient cohorts. Significant associations were found between CSNK1D expression levels and immune cell infiltrations, immune checkpoint inhibitors, tumor mutation burden, and microsatellite instability across multiple malignancies. Notably, statistical analyses using TCGA and ICGC data identified CSNK1D as a robust and independent prognostic biomarker in HCC. Inhibiting CSNK1D expression effectively hindered cell proliferation, migration, and invasion in cellular experiments. In conclusion, this study suggests that CSNK1D may serve as a biomarker for tumor prognosis and immunotherapy. It influences the proliferation and metastasis of HCC cells.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Baohong Hu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Weixing Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|
22
|
Wang B, Zhang J, Zhang D, Lu C, Liu H, Gao Q, Niu T, Yin M, Cui S. Casein Kinase 1α as a Novel Factor Affects Thyrotropin Synthesis via PKC/ERK/CREB Signaling. Int J Mol Sci 2023; 24:7034. [PMID: 37108197 PMCID: PMC10138882 DOI: 10.3390/ijms24087034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Casein kinase 1α (CK1α) is present in multiple cellular organelles and plays various roles in regulating neuroendocrine metabolism. Herein, we investigated the underlying function and mechanisms of CK1α-regulated thyrotropin (thyroid-stimulating hormone (TSH)) synthesis in a murine model. Immunohistochemistry and immunofluorescence staining were performed to detect CK1α expression in murine pituitary tissue and its localization to specific cell types. Tshb mRNA expression in anterior pituitary was detected using real-time and radioimmunoassay techniques after CK1α activity was promoted and inhibited in vivo and in vitro. Relationships among TRH/L-T4, CK1α, and TSH were analyzed with TRH and L-T4 treatment, as well as thyroidectomy, in vivo. In mice, CK1α was expressed at higher levels in the pituitary gland tissue than in the thyroid, adrenal gland, or liver. However, inhibiting endogenous CK1α activity in the anterior pituitary and primary pituitary cells significantly increased TSH expression and attenuated the inhibitory effect of L-T4 on TSH. In contrast, CK1α activation weakened TSH stimulation by thyrotropin-releasing hormone (TRH) by suppressing protein kinase C (PKC)/extracellular signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling. CK1α, as a negative regulator, mediates TRH and L-T4 upstream signaling by targeting PKC, thus affecting TSH expression and downregulating ERK1/2 phosphorylation and CREB transcriptional activity.
Collapse
Affiliation(s)
- Bingjie Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Jinglin Zhang
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China
| | - Chenyang Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Qiao Gao
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China
| | - Tongjuan Niu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Mengqing Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
23
|
Thermal Titration Molecular Dynamics (TTMD): Not Your Usual Post-Docking Refinement. Int J Mol Sci 2023; 24:ijms24043596. [PMID: 36835004 PMCID: PMC9968212 DOI: 10.3390/ijms24043596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Molecular docking is one of the most widely used computational approaches in the field of rational drug design, thanks to its favorable balance between the rapidity of execution and the accuracy of provided results. Although very efficient in exploring the conformational degrees of freedom available to the ligand, docking programs can sometimes suffer from inaccurate scoring and ranking of generated poses. To address this issue, several post-docking filters and refinement protocols have been proposed throughout the years, including pharmacophore models and molecular dynamics simulations. In this work, we present the first application of Thermal Titration Molecular Dynamics (TTMD), a recently developed method for the qualitative estimation of protein-ligand unbinding kinetics, to the refinement of docking results. TTMD evaluates the conservation of the native binding mode throughout a series of molecular dynamics simulations performed at progressively increasing temperatures with a scoring function based on protein-ligand interaction fingerprints. The protocol was successfully applied to retrieve the native-like binding pose among a set of decoy poses of drug-like ligands generated on four different pharmaceutically relevant biological targets, including casein kinase 1δ, casein kinase 2, pyruvate dehydrogenase kinase 2, and SARS-CoV-2 main protease.
Collapse
|
24
|
Djck1α Is Required for Proper Regeneration and Maintenance of the Medial Tissues in Planarians. Cells 2023; 12:cells12030473. [PMID: 36766815 PMCID: PMC9913719 DOI: 10.3390/cells12030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
CK1α (Casein kinase 1α) is a member of the casein kinase 1(CK1) family that is involved in diverse cellular processes, but its functions remain unclear in stem cell development. Freshwater planarians are capable of whole-body regeneration, making it a classic model for the study of regeneration, tissue homeostasis, and polarity in vivo. To investigate the roles of CK1α in regeneration and homeostasis progress, we characterize a homolog of CK1α from planarian Dugesia japonica. We find that Djck1α, which shows an enriched expression pattern in the nascent tissues, is widely expressed especially in the medial regions of planarians. Knockdown of CK1α by RNAi presents a thicker body due to dorsal hyperplasia, along with defects in the medial tissues including nerve proliferation, missing epidermis, intestine disturbance, and hyper-proliferation during the progression of regeneration and homeostasis. Moreover, we find that the ck1α RNAi animals exhibit expansion of the midline marker slit. The eye deficiency induced by slit RNAi can be rescued by ck1α and slit double RNAi. These results suggest that ck1α is required for the medial tissue regeneration and maintenance in planarian Dugesia japonica by regulating the expression of slit, which helps to further investigate the regulation of planarian mediolateral axis.
Collapse
|
25
|
Montalto G, Ricciarelli R. Tau, tau kinases, and tauopathies: An updated overview. Biofactors 2023. [PMID: 36688478 DOI: 10.1002/biof.1930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 01/24/2023]
Abstract
Tau is a macrotubule-associated protein primarily involved in the stabilization of the cytoskeleton. Under normal conditions, phosphorylation reduces the affinity of tau for tubulin, allowing the protein to detach from microtubules and ensuring the system dynamics in neuronal cells. However, hyperphosphorylated tau aggregates into paired helical filaments, the main constituents of neurofibrillary tangles found in the brains of patients with Alzheimer's disease and other tauopathies. In this review, we provide an overview of the structure of tau and the pathophysiological roles of tau phosphorylation. We also evaluate the major protein kinases involved and discuss the progress made in the development of drug therapies aimed at inhibiting tau kinases.
Collapse
Affiliation(s)
- Giulia Montalto
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
26
|
Zhao X, Zhang T, Bai L, Zhao S, Guo Y, Li Z. CKL2 mediates the crosstalk between abscisic acid and brassinosteroid signaling to promote swift growth recovery after stress in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:64-81. [PMID: 36282494 DOI: 10.1111/jipb.13397] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Plants must adapt to the constantly changing environment. Adverse environmental conditions trigger various defensive responses, including growth inhibition mediated by phytohormone abscisic acid (ABA). When the stress recedes, plants must transit rapidly from stress defense to growth recovery, but the underlying mechanisms by which plants switch promptly and accurately between stress resistance and growth are poorly understood. Here, using quantitative phosphoproteomics strategy, we discovered that early ABA signaling activates upstream components of brassinosteroid (BR) signaling through CASEIN KINASE 1-LIKE PROTEIN 2 (CKL2). Further investigations showed that CKL2 interacts with and phosphorylates BRASSINOSTEROID INSENSITIVE1 (BRI1), the main BR receptor, to maintain the basal activity of the upstream of BR pathway in plants exposed to continuous stress conditions. When stress recedes, the elevated phosphorylation of BRI1 by CKL2 contributes to the swift reactivation of BR signaling, which results in quick growth recovery. These results suggest that CKL2 plays a critical regulatory role in the rapid switch between growth and stress resistance. Our evidence expands the understanding of how plants modulate stress defense and growth by integrating ABA and BR signaling cascades.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tianren Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Bai
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan, 250014, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
27
|
Pavan M, Menin S, Bassani D, Sturlese M, Moro S. Qualitative Estimation of Protein-Ligand Complex Stability through Thermal Titration Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:5715-5728. [PMID: 36315402 PMCID: PMC9709921 DOI: 10.1021/acs.jcim.2c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The prediction of ligand efficacy has long been linked to thermodynamic properties such as the equilibrium dissociation constant, which considers both the association and the dissociation rates of a defined protein-ligand complex. In the last 15 years, there has been a paradigm shift, with an increased interest in the determination of kinetic properties such as the drug-target residence time since they better correlate with ligand efficacy compared to other parameters. In this article, we present thermal titration molecular dynamics (TTMD), an alternative computational method that combines a series of molecular dynamics simulations performed at progressively increasing temperatures with a scoring function based on protein-ligand interaction fingerprints for the qualitative estimation of protein-ligand-binding stability. The protocol has been applied to four different pharmaceutically relevant test cases, including protein kinase CK1δ, protein kinase CK2, pyruvate dehydrogenase kinase 2, and SARS-CoV-2 main protease, on a variety of ligands with different sizes, structures, and experimentally determined affinity values. In all four cases, TTMD was successfully able to distinguish between high-affinity compounds (low nanomolar range) and low-affinity ones (micromolar), proving to be a useful screening tool for the prioritization of compounds in a drug discovery campaign.
Collapse
|
28
|
Acha P, Mallo M, Solé F. Myelodysplastic Syndromes with Isolated del(5q): Value of Molecular Alterations for Diagnostic and Prognostic Assessment. Cancers (Basel) 2022; 14:5531. [PMID: 36428627 PMCID: PMC9688702 DOI: 10.3390/cancers14225531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematological neoplasms characterized by ineffective hematopoiesis in one or more bone marrow cell lineages. Consequently, patients present with variable degrees of cytopenia and dysplasia. These characteristics constitute the basis for the World Health Organization (WHO) classification criteria of MDS, among other parameters, for the current prognostic scoring system. Although nearly half of newly diagnosed patients present a cytogenetic alteration, and almost 90% of them harbor at least one somatic mutation, MDS with isolated del(5q) constitutes the only subtype clearly defined by a cytogenetic alteration. The results of several clinical studies and the advances of new technologies have allowed a better understanding of the biological basis of this disease. Therefore, since the first report of the "5q- syndrome" in 1974, changes and refinements have been made in the definition and the characteristics of the patients with MDS and del(5q). Moreover, specific genetic alterations have been found to be associated with the prognosis and response to treatments. The aim of this review is to summarize the current knowledge of the molecular background of MDS with isolated del(5q), focusing on the clinical and prognostic relevance of cytogenetic alterations and somatic mutations.
Collapse
Affiliation(s)
- Pamela Acha
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Mar Mallo
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Microarrays Unit, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
29
|
Zhou M, Han Y, Wang B, Cho YS, Jiang J. Dose-dependent phosphorylation and activation of Hh pathway transcription factors. Life Sci Alliance 2022; 5:5/11/e202201570. [PMID: 36271509 PMCID: PMC9445324 DOI: 10.26508/lsa.202201570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Graded Hedgehog (Hh) signaling is mediated by graded Cubitus interruptus (Ci)/Gli transcriptional activity, but how the Hh gradient is converted into the Ci/Gli activity gradient remains poorly understood. Here, we show that graded Hh induces a progressive increase in Ci phosphorylation at multiple Fused (Fu)/CK1 sites including a cluster located in the C-terminal Sufu-binding domain. We demonstrated that Fu directly phosphorylated Ci on S1382, priming CK1 phosphorylation on adjacent sites, and that Fu/CK1-mediated phosphorylation of the C-terminal sites interfered with Sufu binding and facilitated Ci activation. Phosphorylation at the N-terminal, middle, and C-terminal Fu/CK1 sites occurred independently of one another and each increased progressively in response to increasing levels of Hh or increasing amounts of Hh exposure time. Increasing the number of phospho-mimetic mutations of Fu/CK1 sites resulted in progressively increased Ci activation by alleviating Sufu-mediated inhibition. We found that the C-terminal Fu/CK1 phosphorylation cluster is conserved in Gli2 and contributes to its dose-dependent activation. Our study suggests that the Hh signaling gradient is translated into a Ci/Gli phosphorylation gradient that activates Ci/Gli by gradually releasing Sufu-mediated inhibition.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bing Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yong Suk Cho
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
30
|
Sun C, He C, Zhong C, Liu S, Liu H, Luo X, Li J, Zhang Y, Guo Y, Yang B, Wang P, Deng X. Bifunctional regulators of photoperiodic flowering in short day plant rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1044790. [PMID: 36340409 PMCID: PMC9630834 DOI: 10.3389/fpls.2022.1044790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Photoperiod is acknowledged as a crucial environmental factor for plant flowering. According to different responses to photoperiod, plants were divided into short-day plants (SDPs), long-day plants (LDPs), and day-neutral plants (DNPs). The day length measurement system of SDPs is different from LDPs. Many SDPs, such as rice, have a critical threshold for day length (CDL) and can even detect changes of 15 minutes for flowering decisions. Over the last 20 years, molecular mechanisms of flowering time in SDP rice and LDP Arabidopsis have gradually clarified, which offers a chance to elucidate the differences in day length measurement between the two types of plants. In Arabidopsis, CO is a pivotal hub in integrating numerous internal and external signals for inducing photoperiodic flowering. By contrast, Hd1 in rice, the homolog of CO, promotes and prevents flowering under SD and LD, respectively. Subsequently, numerous dual function regulators, such as phytochromes, Ghd7, DHT8, OsPRR37, OsGI, OsLHY, and OsELF3, were gradually identified. This review assesses the relationship among these regulators and a proposed regulatory framework for the reversible mechanism, which will deepen our understanding of the CDL regulation mechanism and the negative response to photoperiod between SDPs and LDPs.
Collapse
Affiliation(s)
- Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Changcai He
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Zhong
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shihang Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongying Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xu Luo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuxiu Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuting Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Baier A, Szyszka R. CK2 and protein kinases of the CK1 superfamily as targets for neurodegenerative disorders. Front Mol Biosci 2022; 9:916063. [PMID: 36275622 PMCID: PMC9582958 DOI: 10.3389/fmolb.2022.916063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Casein kinases are involved in a variety of signaling pathways, and also in inflammation, cancer, and neurological diseases. Therefore, they are regarded as potential therapeutic targets for drug design. Recent studies have highlighted the importance of the casein kinase 1 superfamily as well as protein kinase CK2 in the development of several neurodegenerative pathologies, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. CK1 kinases and their closely related tau tubulin kinases as well as CK2 are found to be overexpressed in the mammalian brain. Numerous substrates have been detected which play crucial roles in neuronal and synaptic network functions and activities. The development of new substances for the treatment of these pathologies is in high demand. The impact of these kinases in the progress of neurodegenerative disorders, their bona fide substrates, and numerous natural and synthetic compounds which are able to inhibit CK1, TTBK, and CK2 are discussed in this review.
Collapse
Affiliation(s)
- Andrea Baier
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ryszard Szyszka
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
32
|
Oocyte Casein kinase 1α deletion causes defects in primordial follicle formation and oocyte loss by impairing oocyte meiosis and enhancing autophagy in developing mouse ovary. Cell Death Dis 2022; 8:388. [PMID: 36115846 PMCID: PMC9482644 DOI: 10.1038/s41420-022-01184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022]
Abstract
Casein kinase 1α is a member of CK1 family, which is ubiquitously expressed and plays multiple functions, including its potential roles in regulating cell division. But the functions of CK1α in mammalian oogenesis and folliculogenesis remain elusive. In this study, we assayed the cell type of CK1α expression in the developing mouse ovary and confirmed that CK1α was highly expressed in ovaries after birth. The oocyte-specific CK1α knockout (cKO) mouse model was then established by crossing Ddx4-Cre mice with Csnk1a1-floxp mice, and the effects of CK1α deletion on oogenesis and folliculogenesis were identified. The results showed that oocyte CK1α deletion impaired the progression of oocyte meiosis and primordial follicle formation during meiotic prophase I, which subsequently caused oocyte loss and mouse infertility. Further, the in vivo CK1α deletion and in vitro inhibition of CK1 activity resulted in the defects of DNA double-strand break (DSB) repair, whereas apoptosis and autophagy were enhanced in the developing ovary. These may contribute to oocyte loss and infertility in cKO mice. It is thus concluded that CK1α is essential for mouse oogenesis and folliculogenesis by involving in regulating the processes of oocyte meiosis and DNA DSB repair during meiotic prophase I of mouse oocytes. However, the related signaling pathway and molecular mechanisms need to be elucidated further.
Collapse
|
33
|
Alharbi KS, Singh Y, Afzal O, Alfawaz Altamimi AS, Kazmi I, Al-Abbasi FA, Alzarea SI, Chellappan DK, Singh SK, Dua K, Gupta G. Molecular explanation of Wnt/βcatenin antagonist pyrvinium mediated calcium equilibrium changes in aging cardiovascular disorders. Mol Biol Rep 2022; 49:11101-11111. [DOI: 10.1007/s11033-022-07863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
|
34
|
Wang G, Gao G, Yang X, Yang X, Ma P. Casein kinase CK2 structure and activities in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153767. [PMID: 35841742 DOI: 10.1016/j.jplph.2022.153767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Casein kinase CK2 is a highly conserved serine/threonine protein kinase and exists in all eukaryotes. It has been demonstrated to be widely involved in the biological processes of plants. The CK2 holoenzyme is a heterotetramer consisting of two catalytic subunits (α and/or α') and two regulatory subunits (β). CK2 in plants is generally encoded by multiple genes, with monomeric and oligomeric forms present in the tissue. Various subunit genes of CK2 have been cloned and characterized from Arabidopsis thaliana, tobacco, maize, wheat, tomato, and other plants. This paper reviews the structural features of CK2, provides a clear classification of its physiological functions and mechanisms of action, and elaborates on the regulation of CK2 activity to provide a knowledge base for subsequent studies of CK2 in plants.
Collapse
Affiliation(s)
- Guanfeng Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Geling Gao
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiangna Yang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiangdong Yang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
35
|
Sunkari YK, Meijer L, Flajolet M. The protein kinase CK1: Inhibition, activation, and possible allosteric modulation. Front Mol Biosci 2022; 9:916232. [PMID: 36090057 PMCID: PMC9449355 DOI: 10.3389/fmolb.2022.916232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Protein kinases play a vital role in biology and deregulation of kinases is implicated in numerous diseases ranging from cancer to neurodegenerative diseases, making them a major target class for the pharmaceutical industry. However, the high degree of conservation that exists between ATP-binding sites among kinases makes it difficult for current inhibitors to be highly specific. In the context of neurodegeneration, several groups including ours, have linked different kinases such as CK1 and Alzheimer’s disease for example. Strictly CK1-isoform specific regulators do not exist and known CK1 inhibitors are inhibiting the enzymatic activity, targeting the ATP-binding site. Here we review compounds known to target CK1, as well as other inhibitory types that could benefit CK1. We introduce the DNA-encoded library (DEL) technology that might represent an interesting approach to uncover allosteric modulators instead of ATP competitors. Such a strategy, taking into account known allosteric inhibitors and mechanisms, might help designing modulators that are more specific towards a specific kinase, and in the case of CK1, toward specific isoforms.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Laurent Meijer
- Perha Pharmaceuticals, Hôtel de Recherche, Roscoff, France
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- *Correspondence: Marc Flajolet, ,
| |
Collapse
|
36
|
Zhu J, Hu D, Liu Q, Hou R, Xu JR, Wang G. Stage-Specific Genetic Interaction between FgYCK1 and FgBNI4 during Vegetative Growth and Conidiation in Fusarium graminearum. Int J Mol Sci 2022; 23:9106. [PMID: 36012372 PMCID: PMC9408904 DOI: 10.3390/ijms23169106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
Abstract
CK1 casein kinases are well conserved in filamentous fungi. However, their functions are not well characterized in plant pathogens. In Fusarium graminearum, deletion of FgYCK1 caused severe growth defects and loss of conidiation, fertility, and pathogenicity. Interestingly, the Fgyck1 mutant was not stable and often produced fast-growing spontaneous suppressors. Suppressor mutations were frequently identified in the FgBNI4 gene by sequencing analyses. Deletion of the entire FgBNI4 or disruptions of its conserved C-terminal region could suppress the defects of Fgyck1 in hyphal growth and conidiation, indicating the genetic relationship between FgYCK1 and FgBNI4. Furthermore, the Fgyck1 mutant showed defects in polarized growth, cell wall integrity, internalization of FgRho1 and vacuole fusion, which were all partially suppressed by deletion of FgBNI4. Overall, our results indicate a stage-specific functional relationship between FgYCK1 and FgBNI4, possibly via FgRho1 signaling for regulating polarized hyphal growth and cell wall integrity.
Collapse
Affiliation(s)
- Jindong Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Denghui Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Qianqian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Rui Hou
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
37
|
Heredia-García G, Gómez-Oliván LM, Elizalde-Velázquez GA, Cardoso-Vera JD, Orozco-Hernández JM, Rosales-Pérez KE, García-Medina S, Islas-Flores H, Galar-Martínez M, Dublán-García O. Multi-biomarker approach and IBR index to evaluate the effects of bisphenol A on embryonic stages of zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103925. [PMID: 35835282 DOI: 10.1016/j.etap.2022.103925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
This study assessed the effects of Bisphenol A in embryonic stages of zebrafish, applying an IBR multi-biomarker approach that included alterations in growth and oxidative status and relates it with the expression of Nrf1, Nrf2, Wnt3a, Wnt8a, COX-2, Qdpra, and DKK1 genes. For this purpose, we exposed zebrafish embryos to eight environmentally relevant concentrations of BPA (220, 380, 540, 700, 860, 1180, 1340, and 1500 ng L-1) until 96 h post-fertilization. Our results show that BPA induces several malformations in embryos (developmental delay, hypopigmentation, tail malformations, and on), leading to their death. The LC50, EC50 of malformations, and teratogenic index (TI) were 1234.60 ng L-1, 987.77 ng L-1, and 1.25, respectively; thus, this emerging contaminant is teratogenic. Regarding oxidative stress and gene expression, we demonstrated BPA altered oxidative status and the gene expression in embryos of Danio rerio.
Collapse
Affiliation(s)
- Gerardo Heredia-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, 07700 Ciudad de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, 07700 Ciudad de México, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
38
|
Zhuang X, Guo X, Gu T, Xu X, Qin L, Xu K, He Z, Zhang K. Phosphorylation of plant virus proteins: Analysis methods and biological functions. Front Microbiol 2022; 13:935735. [PMID: 35958157 PMCID: PMC9360750 DOI: 10.3389/fmicb.2022.935735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation is one of the most extensively investigated post-translational modifications that orchestrate a variety of cellular signal transduction processes. The phosphorylation of virus-encoded proteins plays an important regulatory role in the infection cycle of such viruses in plants. In recent years, molecular mechanisms underlying the phosphorylation of plant viral proteins have been widely studied. Based on recent publications, our study summarizes the phosphorylation analyses of plant viral proteins and categorizes their effects on biological functions according to the viral life cycle. This review provides a theoretical basis for elucidating the molecular mechanisms of viral infection. Furthermore, it deepens our understanding of the biological functions of phosphorylation in the interactions between plants and viruses.
Collapse
Affiliation(s)
- Xinjian Zhuang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tianxiao Gu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiaowei Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lang Qin
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhen He
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China,Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China,*Correspondence: Kun Zhang, ;
| |
Collapse
|
39
|
Effects and Prognostic Values of Circadian Genes CSNK1E/GNA11/KLF9/THRAP3 in Kidney Renal Clear Cell Carcinoma via a Comprehensive Analysis. Bioengineering (Basel) 2022; 9:bioengineering9070306. [PMID: 35877357 PMCID: PMC9311602 DOI: 10.3390/bioengineering9070306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most prevalent and deadly types of renal cancer in adults. Recent research has identified circadian genes as being involved in the development and progression of KIRC by altering their expression. This study aimed to identify circadian genes that are differentially expressed in KIRC and assess their role in KIRC progression. In KIRC, there were 553 differentially expressed rhythm genes (DERGs), with 300 up-regulated and 253 down-regulated DERGs. Functional enrichment analyses showed that DERGs were greatly enriched in the circadian rhythm and immune response pathways. Survival analyses indicated that higher expression levels of CSNK1E were related to shorter overall survival of KIRC patients, whereas lower expression levels of GNA11, KLF9, and THRAP3 were associated with shorter overall survival of KIRC patients. Through cell assay verification, the mRNA level of CSNK1E was significantly up-regulated, whereas the mRNA levels of GNA11, KLF9, and THRAP3 were dramatically down-regulated in KIRC cells, which were consistent with the bioinformatics analysis of KIRC patient samples. Age, grade, stage, TM classification, and CSNK1E expression were all shown to be high-risk variables, whereas GNA11, KLF9, and THRAP3 expression were found to be low-risk factors in univariate Cox analyses. Multivariate Cox analyses showed that CSNK1E and KLF9 were also independently related to overall survival. Immune infiltration analysis indicated that the proportion of immune cells varied greatly between KIRC tissues and normal tissue, whereas CSNK1E, GNA11, KLF9, and THRAP3 expression levels were substantially linked with the infiltration abundance of immune cells and immunological biomarkers. Moreover, interaction networks between CSNK1E/GNA11/KLF9/THRAP3 and immune genes were constructed to explore the stream connections. The findings could help us better understand the molecular mechanisms of KIRC progression, and CSNK1E/GNA11/KLF9/THRAP3 might be used as molecular targets for chronotherapy in KIRC patients in the near future.
Collapse
|
40
|
Pavan M, Menin S, Bassani D, Sturlese M, Moro S. Implementing a Scoring Function Based on Interaction Fingerprint for Autogrow4: Protein Kinase CK1δ as a Case Study. Front Mol Biosci 2022; 9:909499. [PMID: 35874609 PMCID: PMC9301033 DOI: 10.3389/fmolb.2022.909499] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 01/23/2023] Open
Abstract
In the last 20 years, fragment-based drug discovery (FBDD) has become a popular and consolidated approach within the drug discovery pipeline, due to its ability to bring several drug candidates to clinical trials, some of them even being approved and introduced to the market. A class of targets that have proven to be particularly suitable for this method is represented by kinases, as demonstrated by the approval of BRAF inhibitor vemurafenib. Within this wide and diverse set of proteins, protein kinase CK1δ is a particularly interesting target for the treatment of several widespread neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Computational methodologies, such as molecular docking, are already routinely and successfully applied in FBDD campaigns alongside experimental techniques, both in the hit-discovery and in the hit-optimization stage. Concerning this, the open-source software Autogrow, developed by the Durrant lab, is a semi-automated computational protocol that exploits a combination between a genetic algorithm and a molecular docking software for de novo drug design and lead optimization. In the current work, we present and discuss a modified version of the Autogrow code that implements a custom scoring function based on the similarity between the interaction fingerprint of investigated compounds and a crystal reference. To validate its performance, we performed both a de novo and a lead-optimization run (as described in the original publication), evaluating the ability of our fingerprint-based protocol to generate compounds similar to known CK1δ inhibitors based on both the predicted binding mode and the electrostatic and shape similarity in comparison with the standard Autogrow protocol.
Collapse
|
41
|
Pharmacotherapy alleviates pathological changes in human direct reprogrammed neuronal cell model of myotonic dystrophy type 1. PLoS One 2022; 17:e0269683. [PMID: 35776705 PMCID: PMC9249217 DOI: 10.1371/journal.pone.0269683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a trinucleotide repeat disorder affecting multiple organs. However, most of the research is focused on studying and treating its muscular symptoms. On the other hand, despite the significant impact of the neurological symptoms on patients’ quality of life, no drug therapy was studied due to insufficient reproducibility in DM1 brain-specific animal models. To establish DM1 neuronal model, human skin fibroblasts were directly converted into neurons by using lentivirus expressing small hairpin RNA (shRNA) against poly-pyrimidine tract binding protein (PTBP). We found faster degeneration in DM1 human induced neurons (DM1 hiNeurons) compared to control human induced neurons (ctrl hiNeurons), represented by lower viability from 10 days post viral-infection (DPI) and abnormal axonal growth at 15 DPI. Nuclear RNA foci were present in most of DM1 hiNeurons at 10 DPI. Furthermore, DM1 hiNeurons modelled aberrant splicing of MBNL1 and 2, MAPT, CSNK1D and MPRIP at 10 DPI. We tested two drugs that were shown to be effective for DM1 in non-neuronal model and found that treatment of DM1 hiNeurons with 100 nM or 200 nM actinomycin D (ACT) for 24 h resulted in more than 50% reduction in the number of RNA foci per nucleus in a dose dependent manner, with 16.5% reduction in the number of nuclei containing RNA foci at 200 nM and treatment with erythromycin at 35 μM or 65 μM for 48 h rescued mis-splicing of MBNL1 exon 5 and MBNL 2 exons 5 and 8 up to 17.5%, 10% and 8.5%, respectively. Moreover, erythromycin rescued the aberrant splicing of MAPT exon 2, CSNK1D exon 9 and MPRIP exon 9 to a maximum of 46.4%, 30.7% and 19.9%, respectively. These results prove that our model is a promising tool for detailed pathogenetic examination and novel drug screening for the nervous system.
Collapse
|
42
|
Liu X, Zhang XJ. Decreased Expressions of CK1α and PTEN in Sinonasal Inverted Papilloma. Appl Immunohistochem Mol Morphol 2022; 30:469-475. [PMID: 35588152 DOI: 10.1097/pai.0000000000001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
Abstract
To investigate the diagnostic value of casein kinase 1α (CK1α) and phosphatase and tensin homolog (PTEN) in sinonasal inverted papilloma (SNIP), 42 control subjects and 56 SNIP patients were recruited in this study. Demographic and clinical characteristics, computerized tomography scans and endoscopic examinations were analyzed according to the Krouse staging system. Real-time quantitative-polymerase chain reaction and Western blotting were performed to detect CK1α and PTEN expression levels in different subgroups. Receiver operating characteristic and correlation analyses were conducted to assess their clinical significance in SNIP diagnosis. The expression levels of CK1α and PTEN were decreased in SNIP patients. Interestingly, the declined mRNA levels were consistent with the elevated Krouse staging and closely associated with the pathophysiological characteristics. Their expression levels also negatively correlated with neutrophil counts and positively correlated with lymphocyte counts in the blood of SNIP patients. This study suggests that CK1α and PTEN might be useful biomarkers for the occurrence and recurrence diagnosis of SNIP.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Otolaryngology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Jiangsu, China
| | | |
Collapse
|
43
|
Lu C, Zhang D, Zhang J, Li L, Qiu J, Gou K, Cui S. Casein kinase 1α regulates murine spermatogenesis via p53-Sox3 signaling. Development 2022; 149:275697. [DOI: 10.1242/dev.200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/31/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Casein kinase 1α (CK1α), acting as one member of the β-catenin degradation complex, negatively regulates the Wnt/β-catenin signaling pathway. CK1α knockout usually causes both Wnt/β-catenin and p53 activation. Our results demonstrated that conditional disruption of CK1α in spermatogonia impaired spermatogenesis and resulted in male mouse infertility. The progenitor cell population was dramatically decreased in CK1α conditional knockout (cKO) mice, while the proliferation of spermatogonial stem cells (SSCs) was not affected. Furthermore, our molecular analyses identified that CK1α loss was accompanied by nuclear stability of p53 protein in mouse spermatogonia, and dual-luciferase reporter and chromatin immunoprecipitation assays revealed that p53 directly targeted the Sox3 gene. In addition, the p53 inhibitor pifithrin α (PFTα) partially rescued the phenotype observed in cKO mice. Collectively, our data suggest that CK1α regulates spermatogenesis and male fertility through p53-Sox3 signaling, and they deepen our understanding of the regulatory mechanism underlying the male reproductive system.
Collapse
Affiliation(s)
- Chenyang Lu
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Jinglin Zhang
- Institute of Reproduction and Metabolism, Yangzhou University 2 , Yangzhou 225009, Jiangsu , People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University 3 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Liuhui Li
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Jingtao Qiu
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Kemian Gou
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University 2 , Yangzhou 225009, Jiangsu , People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses 4 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University 2 , Yangzhou 225009, Jiangsu , People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses 4 , Yangzhou 225009, Jiangsu , People's Republic of China
| |
Collapse
|
44
|
Kishino Y, Matsukawa K, Matsumoto T, Miyazaki R, Wakabayashi T, Nonaka T, Kametani F, Hasegawa M, Hashimoto T, Iwatsubo T. Casein kinase 1δ/ε phosphorylates fused in sarcoma (FUS) and ameliorates FUS-mediated neurodegeneration. J Biol Chem 2022; 298:102191. [PMID: 35753345 PMCID: PMC9293781 DOI: 10.1016/j.jbc.2022.102191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Aberrant cytoplasmic accumulation of an RNA-binding protein, fused in sarcoma (FUS), characterizes the neuropathology of subtypes of ALS and frontotemporal lobar degeneration, although the effects of post-translational modifications of FUS, especially phosphorylation, on its neurotoxicity have not been fully characterized. Here, we show that casein kinase 1δ (CK1δ) phosphorylates FUS at 10 serine/threonine residues in vitro using mass spectrometric analyses. We also show that phosphorylation by CK1δ or CK1ε significantly increased the solubility of FUS in human embryonic kidney 293 cells. In transgenic Drosophila that overexpress wt or P525L ALS-mutant human FUS in the retina or in neurons, we found coexpression of human CK1δ or its Drosophila isologue Dco in the photoreceptor neurons significantly ameliorated the observed retinal degeneration, and neuronal coexpression of human CK1δ extended fly life span. Taken together, our data suggest a novel regulatory mechanism of the assembly and toxicity of FUS through CK1δ/CK1ε-mediated phosphorylation, which could represent a potential therapeutic target in FUS proteinopathies.
Collapse
Affiliation(s)
- Yuya Kishino
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo; Department of Pathology, Graduate School of Medicine, The University of Tokyo; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Koji Matsukawa
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo
| | - Taisei Matsumoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo
| | - Ryota Miyazaki
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Tomoko Wakabayashi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo; Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science
| | - Fuyuki Kametani
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry; Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo.
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo.
| |
Collapse
|
45
|
Hippocampal proteins discovery of diabetes-induced central neuropathy based on proteomics. Neuroreport 2022; 33:354-362. [PMID: 35594437 DOI: 10.1097/wnr.0000000000001790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Growing evidence suggests that diabetes can cause multifactorial damage to the central nervous system (CNS) and may lead to dementia. However, the underlying mechanism of diabetes-induced central neuropathy remains sparse. In recent years, proteomics has provided better methods and means in analyzing the molecular mechanisms of disease. We applied proteomics to investigate the changes of hippocampal proteins in diabetic rats, with a view to discover the biomarkers of diabetes-induced central neuropathy and elucidated the potential biological relationships. METHODS Male Wistar rats were randomly divided into the control group and model group. The model group rats were injected intraperitoneally with streptozotocin. Morris water maze test was performed to evaluate the learning and memory of rats, and the hippocampus was taken out. Proteomics were adopted to investigate the changes of differentially expressed proteins. RESULTS Compared with the control group, the escape latency of the diabetic rats was significantly increased (P < 0.01, P < 0.05). It was presented that four differentially expressed proteins might be the potential biomarkers of diabetes-induced central neuropathy: septin 5, GRB2 related binding protein 2 (GAB2), casein kinase 1ε (CK1ε), aquaporin 4 (AQP4). These differentially expressed proteins were mainly involved in the following signaling pathways: apoptosis, glycine/serine/threonine metabolic and GTPase signaling pathway. CONCLUSIONS These findings provided reference insights into the underlying molecular pathogenesis of diabetes-induced CNS neuropathy.
Collapse
|
46
|
Schulte AM, Kolarski D, Sundaram V, Srivastava A, Tama F, Feringa BL, Szymanski W. Light-Control over Casein Kinase 1δ Activity with Photopharmacology: A Clear Case for Arylazopyrazole-Based Inhibitors. Int J Mol Sci 2022; 23:ijms23105326. [PMID: 35628143 PMCID: PMC9140716 DOI: 10.3390/ijms23105326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Protein kinases are responsible for healthy cellular processes and signalling pathways, and their dysfunction is the basis of many pathologies. There are numerous small molecule inhibitors of protein kinases that systemically regulate dysfunctional signalling processes. However, attaining selectivity in kinase inhibition within the complex human kinome is still a challenge that inspires unconventional approaches. One of those approaches is photopharmacology, which uses light-controlled bioactive molecules to selectively activate drugs only at the intended space and time, thereby avoiding side effects outside of the irradiated area. Still, in the context of kinase inhibition, photopharmacology has thus far been rather unsuccessful in providing light-controlled drugs. Here, we present the discovery and optimisation of a photoswitchable inhibitor of casein kinase 1δ (CK1δ), important for the control of cell differentiation, circadian rhythm, DNA repair, apoptosis, and numerous other signalling processes. Varying the position at which the light-responsive azobenzene moiety has been introduced into a known CK1δ inhibitor, LH846, revealed the preferred regioisomer for efficient photo-modulation of inhibitory activity, but the photoswitchable inhibitor suffered from sub-optimal (photo)chemical properties. Replacement of the bis-phenyl azobenzene group with the arylazopyrazole moiety yielded a superior photoswitch with very high photostationary state distributions, increased solubility and a 10-fold difference in activity between irradiated and thermally adapted samples. The reasons behind those findings are explored with molecular docking and molecular dynamics simulations. Results described here show how the evaluation of privileged molecular architecture, followed by the optimisation of the photoswitchable unit, is a valuable strategy for the challenging design of the photoswitchable kinase inhibitors.
Collapse
Affiliation(s)
- Albert M. Schulte
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (A.M.S.); (D.K.)
| | - Dušan Kolarski
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (A.M.S.); (D.K.)
| | - Vidya Sundaram
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India; (V.S.); (A.S.)
| | - Ashutosh Srivastava
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India; (V.S.); (A.S.)
| | - Florence Tama
- Institute of Transformative BioMolecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan;
- Department of Physics, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Computational Structural Biology Unit, RIKEN-Center for Computational Science, Chuo, Kobe 650-0047, Japan
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (A.M.S.); (D.K.)
- Correspondence: (B.L.F.); (W.S.)
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands; (A.M.S.); (D.K.)
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Correspondence: (B.L.F.); (W.S.)
| |
Collapse
|
47
|
Roth A, Gihring A, Bischof J, Pan L, Oswald F, Knippschild U. CK1 Is a Druggable Regulator of Microtubule Dynamics and Microtubule-Associated Processes. Cancers (Basel) 2022; 14:1345. [PMID: 35267653 PMCID: PMC8909099 DOI: 10.3390/cancers14051345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Protein kinases of the Casein Kinase 1 family play a vital role in the regulation of numerous cellular processes. Apart from functions associated with regulation of proliferation, differentiation, or apoptosis, localization of several Casein Kinase 1 isoforms to the centrosome and microtubule asters also implicates regulatory functions in microtubule dynamic processes. Being localized to the spindle apparatus during mitosis Casein Kinase 1 directly modulates microtubule dynamics by phosphorylation of tubulin isoforms. Additionally, site-specific phosphorylation of microtubule-associated proteins can be related to the maintenance of genomic stability but also microtubule stabilization/destabilization, e.g., by hyper-phosphorylation of microtubule-associated protein 1A and RITA1. Consequently, approaches interfering with Casein Kinase 1-mediated microtubule-specific functions might be exploited as therapeutic strategies for the treatment of cancer. Currently pursued strategies include the development of Casein Kinase 1 isoform-specific small molecule inhibitors and therapeutically useful peptides specifically inhibiting kinase-substrate interactions.
Collapse
Affiliation(s)
- Aileen Roth
- University Medical Center Ulm, Department of General, and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (A.R.); (A.G.); (J.B.)
| | - Adrian Gihring
- University Medical Center Ulm, Department of General, and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (A.R.); (A.G.); (J.B.)
| | - Joachim Bischof
- University Medical Center Ulm, Department of General, and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (A.R.); (A.G.); (J.B.)
| | - Leiling Pan
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Uwe Knippschild
- University Medical Center Ulm, Department of General, and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (A.R.); (A.G.); (J.B.)
| |
Collapse
|
48
|
Kim JH, Bloor D, Rodriguez R, Mohler E, Mailloux L, Melton S, Jung D. Casein kinases are required for the stability of the glucose-sensing receptor Rgt2 in yeast. Sci Rep 2022; 12:1598. [PMID: 35102180 PMCID: PMC8803954 DOI: 10.1038/s41598-022-05569-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
In yeast, glucose induction of HXT (glucose transporter gene) expression is achieved via the Rgt2 and Snf3 glucose sensing receptor (GSR)-mediated signal transduction pathway. The membrane-associated casein kinases Yck1 and Yck2 (Ycks) are involved in this pathway, but their exact role remains unclear. Previous work suggests that the Ycks are activated by the glucose-bound GSRs and transmit the glucose signal from the plasma membrane to the nucleus. However, here we provide evidence that the YCks are constitutively active and required for the stability of the Rgt2 receptor. Cell surface levels of Rgt2 are significantly decreased in a yck1Δyck2ts mutant, but this is not due to endocytosis-mediated vacuolar degradation of the receptor. Similar observations are made in an akr1Δ mutant, where the Ycks are no longer associated with the membrane, and in a sod1Δ mutant in which the kinases are unstable. Of note, in an akr1Δ mutant, both the Ycks and Rgt2 are mislocalized to the cytoplasm, where Rgt2 is stable and functions as an effective receptor for glucose signaling. We also demonstrate that Rgt2 is phosphorylated on the putative Yck consensus phosphorylation sites in its C-terminal domain (CTD) in a Yck-dependent manner and that this glucose-induced modification is critical for its stability and function. Thus, these results indicate a role for the Ycks in stabilizing Rgt2 and suggest that Rgt2 may use glucose binding as a molecular switch not to activate the Ycks but to promote Yck-dependent interaction and phosphorylation of the CTD that increases its stability.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA.
| | - Daniel Bloor
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Rebeca Rodriguez
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Emma Mohler
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Levi Mailloux
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Sarah Melton
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Dajeong Jung
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| |
Collapse
|
49
|
Manni S, Fregnani A, Quotti Tubi L, Spinello Z, Carraro M, Scapinello G, Visentin A, Barilà G, Pizzi M, Dei Tos AP, Vianello F, Zambello R, Gurrieri C, Semenzato G, Trentin L, Piazza F. Protein Kinase CK1α Sustains B-Cell Receptor Signaling in Mantle Cell Lymphoma. Front Oncol 2021; 11:733848. [PMID: 34722279 PMCID: PMC8551451 DOI: 10.3389/fonc.2021.733848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Mantle Cell Lymphoma (MCL) is still an incurable B-cell malignancy characterized by poor prognosis and frequent relapses. B Cell Receptor (BCR) signaling inhibitors, in particular of the kinases BTK and PI3Kγ/δ, have demonstrated clinically meaningful anti-proliferative effects in B cell tumors. However, refractoriness to these drugs may develop, portending a dismal prognosis. Protein kinase CK1α is an emerging pro-growth enzyme in B cell malignancies. In multiple myeloma, this kinase sustains β-catenin and AKT-dependent survival and is involved in the activation of NF-κB in B cells. In this study, we analyzed the role of CK1α on MCL cell survival and proliferation, on the regulation of BCR-related BTK, NF-κB, PI3K/AKT signaling cascades and the effects of CK1α chemical inhibition or gene silencing in association with the BTK inhibitor Ibrutinib or the PI3Kγ/δ inhibitor Duvelisib. CK1α was found highly expressed in MCL cells as compared to normal B cells. The inactivation/loss of CK1α caused MCL cell apoptosis and proliferation arrest. CK1α sustained BCR signaling, in particular the NF-κB, AKT and BTK pathways by modulating the phosphorylation of Ser 652 on CARD11, Ser 536 p65 on NF-κB, Ser 473 on AKT, Tyr 223 on BTK, as well as the protein levels. We also provided evidence that CK1α-mediated regulation of CARD11 and BTK likely implicates a physical interaction. The combination of CK1α inhibition with Ibrutinib or Duvelisib synergistically increased cytotoxicity, leading to a further decrease of the activation of BCR signaling pathways. Therefore, CK1α sustains MCL growth through the regulation of BCR-linked survival signaling cascades and protects from Ibrutinib/Duvelisib-induced apoptosis. Thus, CK1α could be considered as a rational molecular target for the treatment of MCL, in association with novel agents.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Anna Fregnani
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Zaira Spinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Carraro
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Greta Scapinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Andrea Visentin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gregorio Barilà
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Pizzi
- Department of Medicine-DIMED, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine-DIMED, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Fabrizio Vianello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
| | - Renato Zambello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Livio Trentin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
50
|
Kong F, Dong D, Li N, Sun B, Sun M. Characterization of PyMAPK2, a D group mitogen-activated protein kinase gene from Pyropia yezoensis responding to various abiotic stress. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|