1
|
Dong L, Liu JY, Wang GQ, Luo P, Huang JH, Lv JM, Chen GD, Cheng WB, Tian JZ, Lin FL, Hu D, Gao H. Identification of three novel P450 enzymes involved in the oxidative modification of a newly discovered fusicoccane diterpene. Bioorg Chem 2024; 152:107726. [PMID: 39182256 DOI: 10.1016/j.bioorg.2024.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Fusicoccane (FC)-type diterpenoids are a class of diterpenoids characterized by a unique 5-8-5 ring system and exhibit diverse biological activities. Recently, we identified a novel FC-type diterpene synthase MgMS, which produces a myrothec-15(17)-en-7-ol (1) hydrocarbon skeleton, however, its tailoring congeners have not been elucidated. Here, we discovered two additional gene clusters Bn and Np, each encoding a highly homologous terpene synthase to MgMS but distinct tailoring enzymes. Heterologous expression of the terpene synthases BnMS and NpMS yielded the same product as MgMS. Subsequent introduction of three P450 enzymes MgP450, BnP450 and NpP450 from individual gene clusters resulted in four new FC-type diterpenoids 2-5. Notably, MgP450 serves as the first enzyme responsible for hydroxylation of the C19 methyl group, whereas NpP450 functions as a multifunctional P450 enzyme involved in the oxidations at C5, C6, and C19 positions of the 5-8-5 tricyclic skeleton. C5 oxidation of the hydrocarbon skeleton 1 led to broadening of the NMR signals and incomplete spectra, which was resolved by high-temperature NMR spectral analysis.
Collapse
Affiliation(s)
- Lu Dong
- Guangdong Second Provincial General Hospital, Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou 510317, China; Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jing-Yuan Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Pan Luo
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jia-Hua Huang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Wei-Bin Cheng
- Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jun-Zhang Tian
- Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Fu-Long Lin
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| | - Dan Hu
- Guangdong Second Provincial General Hospital, Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou 510317, China; Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Wenger ES, Schultz K, Marmorstein R, Christianson DW. Engineering substrate channeling in a bifunctional terpene synthase. Proc Natl Acad Sci U S A 2024; 121:e2408064121. [PMID: 39365814 PMCID: PMC11474042 DOI: 10.1073/pnas.2408064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024] Open
Abstract
Fusicoccadiene synthase from Phomopsis amygdala (PaFS) is a bifunctional terpene synthase. It contains a prenyltransferase (PT) domain that generates geranylgeranyl diphosphate (GGPP) from dimethylallyl diphosphate and three equivalents of isopentenyl diphosphate, and a cyclase domain that converts GGPP into fusicoccadiene, a precursor of the diterpene glycoside Fusicoccin A. The two catalytic domains are connected by a flexible 69-residue linker. The PT domain mediates oligomerization to form predominantly octamers, with cyclase domains randomly splayed out around the PT core. Surprisingly, despite the random positioning of cyclase domains, substrate channeling is operative in catalysis since most of the GGPP generated by the PT remains on the enzyme for cyclization. Here, we demonstrate that covalent linkage of the PT and cyclase domains is not required for GGPP channeling, although covalent linkage may improve channeling efficiency. Moreover, GGPP competition experiments with other diterpene cyclases indicate that the PaFS PT and cyclase domains are preferential partners regardless of whether they are covalently linked or not. The cryoelectron microscopy structure of the 600-kD "linkerless" construct, in which the 69-residue linker is spliced out and replaced with the tripeptide PTQ, reveals that cyclase pairs associate with all four sides of the PT octamer and exhibit fascinating quaternary structural flexibility. These results suggest that optimal substrate channeling is achieved when a cyclase domain associates with the side of the PT octamer, regardless of whether the two domains are covalently linked and regardless of whether this interaction is transient or locked in place.
Collapse
Affiliation(s)
- Eliott S. Wenger
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| | - Kollin Schultz
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| |
Collapse
|
3
|
Liu JY, Lin FL, Taizoumbe KA, Lv JM, Wang YH, Wang GQ, Chen GD, Yao XS, Hu D, Gao H, Dickschat JS. A Functional Switch Between Asperfumene and Fusicoccadiene Synthase and Entrance to Asperfumene Biosynthesis through a Vicinal Deprotonation-Reprotonation Process. Angew Chem Int Ed Engl 2024; 63:e202407895. [PMID: 38949843 DOI: 10.1002/anie.202407895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
The diterpene synthase AfAS was identified from Aspergillus fumigatiaffinis. Its amino acid sequence and-according to a structural model-active site architecture are highly similar to those of the fusicocca-2,10(14)-diene synthase PaFS, but AfAS produces a structurally much more complex diterpene with a novel 6-5-5-5 tetracyclic skeleton called asperfumene. The cyclisation mechanism of AfAS was elucidated through isotopic labelling experiments and DFT calculations. The reaction cascade proceeds in its initial steps through similar intermediates as for the PaFS cascade, but then diverges through an unusual vicinal deprotonation-reprotonation process that triggers a skeletal rearrangement at the entrance to the steps leading to the unique asperfumene skeleton. The structural model revealed only one major difference between the active sites: The PaFS residue F65 is substituted by I65 in AfAS. Intriguingly, site-directed mutagenesis experiments with both diterpene synthases revealed that position 65 serves as a bidirectional functional switch for the biosynthesis of tetracyclic asperfumene versus structurally less complex diterpenes.
Collapse
Affiliation(s)
- Jing-Yuan Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Fu-Long Lin
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Kizerbo A Taizoumbe
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
4
|
Xu H, Goldfuss B, Dickschat JS. Common Biosynthesis of Non-Canonical C 16 Terpenes through a Fragmentation-Recombination Mechanism. Angew Chem Int Ed Engl 2024; 63:e202408809. [PMID: 38924286 DOI: 10.1002/anie.202408809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The biosynthesis of six recently reported non-canonical C16 sesquiterpenoids named after ancient Greek philosophers, archimedene, aristotelene, eratosthenene, pythagorene, α-democritene and anaximandrene, was investigated through density functional theory (DFT) calculations and isotopic labeling experiments. The results revealed for all compounds except archimedene a unique fragmentation-recombination mechanism as previously demonstrated for sodorifen biosynthesis, in addition to a remarkable "dancing" mechanism for anaximandrene biosynthesis.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
5
|
Li H, Dickschat JS. Enzymatic Synthesis of Diterpenoids from iso-GGPP III: A Geranylgeranyl Diphosphate Analog with a Shifted Double Bond. Chemistry 2024; 30:e202303560. [PMID: 37947363 DOI: 10.1002/chem.202303560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
The analog of the diterpene precursor geranylgeranyl diphosphate with a double bond shifted from C14=C15 to C15=C16 (named iso-GGPP III) has been synthesized and enzymatically converted with six bacterial diterpene synthases; this allowed the isolation of nine unnatural diterpenes. For some of the enzyme-substrate combinations, the different reactivity implemented in the substrate analog iso-GGPP III opened reaction pathways that are not observed with natural GGPP, resulting in the formation of diterpenes with novel skeletons. A stereoselective deuteration strategy was used to assign the absolute configurations of the isolated diterpenes.
Collapse
Affiliation(s)
- Heng Li
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
6
|
Taizoumbe KA, Goldfuss B, Dickschat JS. The Diterpenoid Substrate Analogue 19-nor-GGPP Reveals Pronounced Methyl Group Effects in Diterpene Cyclisations. Angew Chem Int Ed Engl 2024; 63:e202318375. [PMID: 38117607 DOI: 10.1002/anie.202318375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
The substrate analogue 19-nor-geranylgeranyl diphosphate (19-nor-GGPP) was synthesised and incubated with 20 diterpene synthases, resulting in the formation of diterpenoids in all cases. A total of 23 different compounds were isolated from these enzyme reactions and structurally characterised, if possible including the experimental determination of absolute configurations through a stereoselective deuteration approach. In several cases the missing 19-Me group in the substrate analogue resulted in opening of completely new reaction paths towards compounds with novel skeletons. DFT calculations were applied to gain a deeper understanding of these observed methyl group effects in diterpene biosynthesis.
Collapse
Affiliation(s)
- Kizerbo A Taizoumbe
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
7
|
Wenger ES, Christianson DW. Methods for the preparation and analysis of the diterpene cyclase fusicoccadiene synthase. Methods Enzymol 2023; 699:89-119. [PMID: 38942517 PMCID: PMC11213977 DOI: 10.1016/bs.mie.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Prenyltransferases are terpene synthases that combine 5-carbon precursor molecules into linear isoprenoids of varying length that serve as substrates for terpene cyclases, enzymes that catalyze fascinating cyclization reactions to form diverse terpene natural products. Terpenes and their derivatives comprise the largest class of natural products and have myriad functions in nature and diverse commercial uses. An emerging class of bifunctional terpene synthases contains both prenyltransferase and cyclase domains connected by a disordered linker in a single polypeptide chain. Fusicoccadiene synthase from Phomopsis amygdali (PaFS) is one of the most well-characterized members of this subclass and serves as a model system for the exploration of structure-function relationships. PaFS has been structurally characterized using a variety of biophysical techniques. The enzyme oligomerizes to form a stable core of six or eight prenyltransferase domains that produce a 20-carbon linear isoprenoid, geranylgeranyl diphosphate (GGPP), which then transits to the cyclase domains for the generation of fusicoccadiene. Cyclase domains are in dynamic equilibrium between randomly splayed-out and prenyltransferase-associated positions; cluster channeling is implicated for GGPP transit from the prenyltransferase core to the cyclase domains. In this chapter, we outline the methods we are developing to interrogate the nature of cluster channeling in PaFS, including enzyme activity and product analysis assays, approaches for engineering the linker segment connecting the prenyltransferase and cyclase domains, and structural analysis by cryo-EM.
Collapse
Affiliation(s)
- Eliott S Wenger
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Adhikari A, Shakya S, Shrestha S, Aryal D, Timalsina KP, Dhakal D, Khatri Y, Parajuli N. Biocatalytic role of cytochrome P450s to produce antibiotics: A review. Biotechnol Bioeng 2023; 120:3465-3492. [PMID: 37691185 DOI: 10.1002/bit.28548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
Cytochrome P450s belong to a family of heme-binding monooxygenases, which catalyze regio- and stereospecific functionalisation of C-H, C-C, and C-N bonds, including heteroatom oxidation, oxidative C-C bond cleavages, and nitrene transfer. P450s are considered useful biocatalysts for the production of pharmaceutical products, fine chemicals, and bioremediating agents. Despite having tremendous biotechnological potential, being heme-monooxygenases, P450s require either autologous or heterologous redox partner(s) to perform chemical transformations. Randomly distributed P450s throughout a bacterial genome and devoid of particular redox partners in natural products biosynthetic gene clusters (BGCs) showed an extra challenge to reveal their pharmaceutical potential. However, continuous efforts have been made to understand their involvement in antibiotic biosynthesis and their modification, and this review focused on such BGCs. Here, particularly, we have discussed the role of P450s involved in the production of macrolides and aminocoumarin antibiotics, nonribosomal peptide (NRPSs) antibiotics, ribosomally synthesized and post-translationally modified peptide (RiPPs) antibiotics, and others. Several reactions catalyzed by P450s, as well as the role of their redox partners involved in the BGCs of various antibiotics and their derivatives, have been primarily addressed in this review, which would be useful in further exploration of P450s for the biosynthesis of new therapeutics.
Collapse
Affiliation(s)
- Anup Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Sajan Shakya
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Shreesti Shrestha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Dipa Aryal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kavi Prasad Timalsina
- Department of Biotechnology, National College, Tribhuvan University, Kathmandu, Nepal
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida, USA
| | | | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
9
|
Zhang L, Zhang B, Zhu A, Liu SH, Wu R, Zhang X, Xu Z, Tan RX, Ge HM. Biosynthesis of Phomactin Platelet Activating Factor Antagonist Requires a Two-Enzyme Cascade. Angew Chem Int Ed Engl 2023; 62:e202312996. [PMID: 37804495 DOI: 10.1002/anie.202312996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
Phomactin diterpenoids possess a unique bicyclo[9.3.1]pentadecane skeleton with multiple oxidative modifications, and are good platelet-activating factor (PAF) antagonists that can inhibit PAF-induced platelet aggregation. In this study, we identified the gene cluster (phm) responsible for the biosynthesis of phomactins from a marine fungus, Phoma sp. ATCC 74077. Despite the complexity of their structures, phomactin biosynthesis only requires two enzymes: a type I diterpene cyclase PhmA and a P450 monooxygenase PhmC. PhmA was found to catalyze the formation of the phomactatriene, while PhmC sequentially catalyzes the oxidation of multiple sites, leading to the generation of structurally diverse phomactins. The rearrangement mechanism of the diterpene scaffold was investigated through isotope labeling experiments. Additionally, we obtained the crystal complex of PhmA with its substrate analogue FGGPP and elucidated the novel metal-ion-binding mode and enzymatic mechanism of PhmA through site-directed mutagenesis. This study provides the first insight into the biosynthesis of phomactins, laying the foundation for the efficient production of phomactin natural products using synthetic biology approaches.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Ao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Xuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
10
|
Taizoumbe KA, Steiner ST, Dickschat JS. Mechanistic Characterisation of Collinodiene Synthase, a Diterpene Synthase from Streptomyces collinus. Chemistry 2023; 29:e202302469. [PMID: 37579200 DOI: 10.1002/chem.202302469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Two homologs of the diterpene synthase CotB2 from Streptomyces collinus (ScCotB2) and Streptomyces iakyrus (SiCotB2) were investigated for their products by in vitro incubations of the recombinant enzymes with geranylgeranyl pyrophosphate, followed by compound isolation and structure elucidation by NMR. ScCotB2 produced the new compound collinodiene, besides the canonical CotB2 product cyclooctat-9-en-7-ol, dolabella-3,7,18-triene and dolabella-3,7,12-triene, while SiCotB2 gave mainly cyclooctat-9-en-7-ol and only traces of dolabella-3,7,18-triene. The cyclisation mechanism towards the ScCotB2 products and their absolute configurations were investigated through isotopic labelling experiments.
Collapse
Affiliation(s)
- Kizerbo A Taizoumbe
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Simon T Steiner
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
11
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
12
|
Alleman C, Gadais C, Legentil L, Porée FH. Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series. Beilstein J Org Chem 2023; 19:245-281. [PMID: 36895430 PMCID: PMC9989678 DOI: 10.3762/bjoc.19.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Terpene compounds probably represent the most diversified class of secondary metabolites. Some classes of terpenes, mainly diterpenes (C20) and sesterterpenes (C25) and to a lesser extent sesquiterpenes (C15), share a common bicyclo[3.6.0]undecane core which is characterized by the presence of a cyclooctane ring fused to a cyclopentane ring, i.e., a [5-8] bicyclic ring system. This review focuses on the different strategies elaborated to construct this [5-8] bicyclic ring system and their application in the total synthesis of terpenes over the last two decades. The overall approaches involve the construction of the 8-membered ring from an appropriate cyclopentane precursor. The proposed strategies include metathesis, Nozaki-Hiyama-Kishi (NHK) cyclization, Pd-mediated cyclization, radical cyclization, Pauson-Khand reaction, Lewis acid-promoted cyclization, rearrangement, cycloaddition and biocatalysis.
Collapse
Affiliation(s)
- Cécile Alleman
- Université Rennes, Faculté de Pharmacie, CNRS ISCR UMR 6226, F-35000 Rennes, France
| | - Charlène Gadais
- Université Rennes, Faculté de Pharmacie, CNRS ISCR UMR 6226, F-35000 Rennes, France
| | - Laurent Legentil
- Université Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
13
|
Li H, Dickschat JS. Diterpene Biosynthesis from Geranylgeranyl Diphosphate Analogues with Changed Reactivities Expands Skeletal Diversity. Angew Chem Int Ed Engl 2022; 61:e202211054. [PMID: 36066489 PMCID: PMC9826473 DOI: 10.1002/anie.202211054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 01/11/2023]
Abstract
Two analogues of the diterpene precursor geranylgeranyl diphosphate with shifted double bonds, named iso-GGPP I and iso-GGPP II, were enzymatically converted with twelve diterpene synthases from bacteria, fungi and protists. The changed reactivity in the substrate analogues resulted in the formation of 28 new diterpenes, many of which exhibit novel skeletons.
Collapse
Affiliation(s)
- Heng Li
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
14
|
Huang JH, Lv JM, Xiao LY, Xu Q, Lin FL, Wang GQ, Chen GD, Qin SY, Hu D, Gao H. Characterization of a new fusicoccane-type diterpene synthase and an associated P450 enzyme. Beilstein J Org Chem 2022; 18:1396-1402. [PMID: 36262672 PMCID: PMC9551204 DOI: 10.3762/bjoc.18.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/19/2022] [Indexed: 01/05/2023] Open
Abstract
Fusicoccane-type terpenoids are a subgroup of diterpenoids featured with a unique 5-8-5 ring system. They are widely distributed in nature and possess a variety of biological activities. Up to date, only five fusicoccane-type diterpene synthases have been identified. Here, we identify a two-gene biosynthetic gene cluster containing a new fusicoccane-type diterpene synthase gene tadA and an associated cytochrome P450 gene tadB from Talaromyces wortmannii ATCC 26942. Heterologous expression reveals that TadA catalyzes the formation of a new fusicoccane-type diterpene talaro-7,13-diene. D2O isotope labeling combined with site-directed mutagenesis indicates that TadA might employ a different C2,6 cyclization strategy from the known fusicoccane-type diterpene synthases, in which a neutral intermediate is firstly formed and then protonated by an environmental proton. In addition, we demonstrate that the associated cytochrome P450 enzyme TadB is able to catalyze multiple oxidation of talaro-7,13-diene to yield talaro-6,13-dien-5,8-dione.
Collapse
Affiliation(s)
- Jia-Hua Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Liang-Yan Xiao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Qian Xu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Fu-Long Lin
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Sheng-Ying Qin
- Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China,
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Biosynthesis of fusicoccane-type diterpenoids featuring a 5–8–5 tricyclic carbon skeleton. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Li H, Dickschat JS. Diterpene Biosynthesis from Geranylgeranyl Diphosphate Analogues with Changed Reactivities Expands Skeletal Diversity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heng Li
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé-Institute for Organic Chemistry and Biochemistry GERMANY
| | - Jeroen S. Dickschat
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institute for Organic Chemistry and Biochemistry Gerhard-Domagk-Straße 1 53121 Bonn GERMANY
| |
Collapse
|
17
|
Wang J, Xie Y, Song Y, Cong Z, Zhao K, Pang X, Liu Y, Huang X. New diterpene and indole alkaloid analogues from the Streptomyces malaysiensis SCSIO 41397. Chem Biodivers 2022; 19:e202200731. [PMID: 36036172 DOI: 10.1002/cbdv.202200731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022]
Abstract
One new cyclooctatin-type diterpenoid, 15-hydroxyl-cyclooctatin ( 1 ), and one new indole alkaloid, streptoprenylindole D ( 3 ), along with 9 known compounds, were isolated from the Streptomyces malaysiensis SCSIO 41397. Their structures were established on the basis of spectroscopic analysis, optical rotation, and by a comparison with data from the literature. All isolated compounds were evaluated for their antibacterial (MRSA), antitumor (22Rv1 and PC-3) and antiviral (HSV-1/2) activities. According to the analysis of biological gene clusters in the whole genome, we preliminarily locate the gene clusters related to the synthesis of 15-hydroxyl-cyclooctatin ( 1 ).
Collapse
Affiliation(s)
- Junfeng Wang
- South China Sea Institute of Oceanology Chinese Academy of Sciences, CAS Key Lab of Tropical Marine Bio-Resources, 164 West Xingangxi Road, 510301, Guangzhou, CHINA
| | - Yuhui Xie
- South China Sea Institute of Oceanology Chinese Academy of Sciences, Key Laboratory of Tropical Marine Bio-Resources and Ecology, 164 West Xingang Road, Guangzhou, CHINA
| | - Yue Song
- South China Sea Institute of Oceanology Chinese Academy of Sciences, Key Laboratory of Tropical Marine Bio-Resources and Ecology, 164nXingangxi Road, Guangzhou, CHINA
| | - Ziwen Cong
- South China Sea Institute of Oceanology Chinese Academy of Sciences, Key Laboratory of Tropical Marine Bio-Resources and Ecology, 164 West Xingang Road, Guangzhou, CHINA
| | - Kai Zhao
- South China Sea Institute of Oceanology Chinese Academy of Sciences, Key Laboratory of Tropical Marine Bio-Resources and Ecology, 164 West Xingang Road, Guangzhou, CHINA
| | - Xiaoyan Pang
- South China Sea Institute of Oceanology Chinese Academy of Sciences, Key Laboratory of Tropical Marine Bio-Resources and Ecology, 164 West Xingang Road, Guangzhou, CHINA
| | - Yonghong Liu
- South China Sea Institute of Oceanology Chinese Academy of Sciences, Key Laboratory of Tropical Marine Bio-Resources and Ecology, 164 West Xingang Road, Guangzhou, CHINA
| | - Xiaolong Huang
- Hainan University, School of Life Sciences, 58 Renmin Road, Haikou, CHINA
| |
Collapse
|
18
|
Gong K, Yong D, Fu J, Li A, Zhang Y, Li R. Diterpenoids from Streptomyces: Structures, Biosyntheses and Bioactivities. Chembiochem 2022; 23:e202200231. [PMID: 35585772 DOI: 10.1002/cbic.202200231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Indexed: 11/09/2022]
Abstract
Bacteria, especially Streptomyces spp., have been emerging as rich sources of natural diterpenoids with diverse structures and broad bioactivities. Here, we review diterpenoids biosynthesized by Streptomyces , with an emphasis on their structures, biosyntheses, and bioactivities. Although diterpenoids from Streptomyces are relatively rare compared to those from plants and fungi, their novel skeletons, biosyntheses and bioactivities present opportunities for discovering new drugs, enzyme mechanisms, and applications in bio-catalysis and metabolic pathway engineering.
Collapse
Affiliation(s)
- Kai Gong
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Daojing Yong
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Jun Fu
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Aiying Li
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Youming Zhang
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Ruijuan Li
- Shandong University, State Key Laboratory of Microbial Technology, Binhai Road 72, 266237, Qingdao, CHINA
| |
Collapse
|
19
|
Sun Z, Jamieson CS, Ohashi M, Houk KN, Tang Y. Discovery and characterization of a terpene biosynthetic pathway featuring a norbornene-forming Diels-Alderase. Nat Commun 2022; 13:2568. [PMID: 35546152 PMCID: PMC9095873 DOI: 10.1038/s41467-022-30288-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Pericyclases, enzymes that catalyze pericyclic reactions, form an expanding family of enzymes that have biocatalytic utility. Despite the increasing number of pericyclases discovered, the Diels-Alder cyclization between a cyclopentadiene and an olefinic dienophile to form norbornene, which is among the best-studied cycloadditions in synthetic chemistry, has surprisingly no enzymatic counterpart to date. Here we report the discovery of a pathway featuring a norbornene synthase SdnG for the biosynthesis of sordaricin-the terpene precursor of antifungal natural product sordarin. Full reconstitution of sordaricin biosynthesis reveals a concise oxidative strategy used by Nature to transform an entirely hydrocarbon precursor into the highly functionalized substrate of SdnG for intramolecular Diels-Alder cycloaddition. SdnG generates the norbornene core of sordaricin and accelerates this reaction to suppress host-mediated redox modifications of the activated dienophile. Findings from this work expand the scopes of pericyclase-catalyzed reactions and P450-mediated terpene maturation.
Collapse
Affiliation(s)
- Zuodong Sun
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - K N Houk
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
20
|
Chen B, Wu Q, Xu D, Zhang X, Ding Y, Bao S, Zhang X, Wang L, Chen Y. A Two-Phase Approach to Fusicoccane Synthesis To Uncover a Compound That Reduces Tumourigenesis in Pancreatic Cancer Cells. Angew Chem Int Ed Engl 2022; 61:e202117476. [PMID: 35166433 DOI: 10.1002/anie.202117476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Alterbrassicicene D (1) and 3(11)-epoxyhypoestenone (2) were synthesised via a two-phase approach featuring concise construction of the 5-8-5 tricyclic intermediate and a tandem base-mediated epoxide opening-transannular oxa-Michael addition cascade to forge the complex skeleton of 2. The route is scalable and we generated 15 g of the tricyclic intermediate in 8 steps from (R)-limonene and 720 mg of the penultimate bioactive intermediate in a protecting-group-free manner. Our synthesis enabled the structural determination of 2 and provided materials for preliminary anticancer evaluation. The penultimate intermediate showed therapeutic potential in terms of its ability to dramatically reduce the tumourigenic potential of PANC-1 pancreatic cancer cells according to a limiting dilution tumour-initiating assay. Our synthetic approach will facilitate unified access to naturally occurring fusicoccanes and their derivatives for anticancer evaluation.
Collapse
Affiliation(s)
- Bolin Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Qianwei Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Dongdong Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Xijing Zhang
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Yahui Ding
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Shiqi Bao
- Accendatech Company, Ltd, 7 Fengze Road, Tianjin, 300384, P. R. China
| | - Xuemei Zhang
- Accendatech Company, Ltd, 7 Fengze Road, Tianjin, 300384, P. R. China
| | - Liang Wang
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Yue Chen
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| |
Collapse
|
21
|
Zhang FL, Feng T. Diterpenes Specially Produced by Fungi: Structures, Biological Activities, and Biosynthesis (2010–2020). J Fungi (Basel) 2022; 8:jof8030244. [PMID: 35330246 PMCID: PMC8951520 DOI: 10.3390/jof8030244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/11/2022] Open
Abstract
Fungi have traditionally been a very rewarding source of biologically active natural products, while diterpenoids from fungi, such as the cyathane-type diterpenoids from Cyathus and Hericium sp., the fusicoccane-type diterpenoids from Fusicoccum and Alternaria sp., the guanacastane-type diterpenoids from Coprinus and Cercospora sp., and the harziene-type diterpenoids from Trichoderma sp., often represent unique carbon skeletons as well as diverse biological functions. The abundances of novel skeletons, biological activities, and biosynthetic pathways present new opportunities for drug discovery, genome mining, and enzymology. In addition, diterpenoids peculiar to fungi also reveal the possibility of differing biological evolution, although they have similar biosynthetic pathways. In this review, we provide an overview about the structures, biological activities, evolution, organic synthesis, and biosynthesis of diterpenoids that have been specially produced by fungi from 2010 to 2020. We hope this review provides timely illumination and beneficial guidance for future research works of scholars who are interested in this area.
Collapse
|
22
|
Chen B, Wu Q, Xu D, Zhang X, Ding Y, Bao S, Zhang X, Wang L, Chen Y. A Two‐Phase Approach to Fusicoccane Synthesis To Uncover a Compound That Reduces Tumourigenesis in Pancreatic Cancer Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bolin Chen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Qianwei Wu
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Dongdong Xu
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Xijing Zhang
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Yahui Ding
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Shiqi Bao
- Accendatech Company, Ltd 7 Fengze Road Tianjin 300384 P. R. China
| | - Xuemei Zhang
- Accendatech Company, Ltd 7 Fengze Road Tianjin 300384 P. R. China
| | - Liang Wang
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Yue Chen
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| |
Collapse
|
23
|
Zheng S, Guo J, Cheng F, Gao Z, Du L, Meng C, Li S, Zhang X. Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-driven bioproduction. Acta Pharm Sin B 2022; 12:2832-2844. [PMID: 35755277 PMCID: PMC9214053 DOI: 10.1016/j.apsb.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Algae are a large group of photosynthetic organisms responsible for approximately half of the earth's total photosynthesis. In addition to their fundamental ecological roles as oxygen producers and as the food base for almost all aquatic life, algae are also a rich source of bioactive natural products, including several clinical drugs. Cytochrome P450 enzymes (P450s) are a superfamily of biocatalysts that are extensively involved in natural product biosynthesis by mediating various types of reactions. In the post-genome era, a growing number of P450 genes have been discovered from algae, indicating their important roles in algal life-cycle. However, the functional studies of algal P450s remain limited. Benefitting from the recent technical advances in algae cultivation and genetic manipulation, the researches on P450s in algal natural product biosynthesis have been approaching to a new stage. Moreover, some photoautotrophic algae have been developed into “photo-bioreactors” for heterologous P450s to produce high-value added pharmaceuticals and chemicals in a carbon-neutral or carbon-negative manner. Here, we comprehensively review these advances of P450 studies in algae from 2000 to 2021.
Collapse
Affiliation(s)
- Shanmin Zheng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chunxiao Meng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China
- Corresponding authors. Tel./fax: +86 532 58632496.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Corresponding authors. Tel./fax: +86 532 58632496.
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Corresponding authors. Tel./fax: +86 532 58632496.
| |
Collapse
|
24
|
Shiraishi T, Xia J, Kato T, Kuzuyama T. Biosynthesis of the nucleoside antibiotic angustmycins: identification and characterization of the biosynthetic gene cluster reveal unprecedented dehydratase required for exo-glycal formation. J Antibiot (Tokyo) 2021; 74:830-833. [PMID: 34404922 DOI: 10.1038/s41429-021-00466-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
The nucleoside antibiotic angustmycin, produced by some Streptomyces strains, is composed of adenine and C6 sugar and shows antibiotic and antitumor activities. In this study, we propose a biosynthetic pathway for angustmycin using a heterologous expression experiment coupled with in silico analysis of the angustmycin biosynthetic gene (agm) cluster. The biochemical characterization of Agm6 demonstrated its role in angustmycin biosynthesis as an unprecedented dehydratase.
Collapse
Affiliation(s)
- Taro Shiraishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Eidgençssische Technische Hochschule (ETH) Zürich, Institute of Microbiology, Zurich, Switzerland
| | - Jiaqi Xia
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Teruhito Kato
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan. .,Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
25
|
Dickschat JS, Xu H. Mechanistic Investigations on Microbial Type I Terpene Synthases through Site-Directed Mutagenesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1675-8208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractDuring the past three decades many terpene synthases have been characterised from all kingdoms of life. Enzymes of type I, from bacteria, fungi and protists, commonly exhibit several highly conserved motifs and single residues, and the available crystal structures show a shared α-helical fold, while the overall sequence identity is generally low. Several enzymes have been studied by site-directed mutagenesis, giving valuable insights into terpene synthase catalysis and the intriguing mechanisms of terpene synthases. Some mutants are also preparatively useful and give higher yields than the wild type or a different product that is otherwise difficult to access. The accumulated knowledge obtained from these studies is presented and discussed in this review.1 Introduction2 Residues for Substrate Binding and Catalysis3 Residues with Structural Function4 Residues Contouring the Active Site Cavity5 Other Residues6 Conclusions
Collapse
|
26
|
Xu B, Tantillo DJ, Rudolf JD. Mechanistic Insights into the Formation of the 6,10‐Bicyclic Eunicellane Skeleton by the Bacterial Diterpene Synthase Bnd4. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Baofu Xu
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Dean J. Tantillo
- Department of Chemistry University of California-Davis Davis CA 95616 USA
| | - Jeffrey D. Rudolf
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| |
Collapse
|
27
|
Xu B, Tantillo DJ, Rudolf JD. Mechanistic Insights into the Formation of the 6,10-Bicyclic Eunicellane Skeleton by the Bacterial Diterpene Synthase Bnd4. Angew Chem Int Ed Engl 2021; 60:23159-23163. [PMID: 34378291 PMCID: PMC8511055 DOI: 10.1002/anie.202109641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/05/2022]
Abstract
The eunicellane diterpenoids are a unique family of natural products seen in marine organisms, plants, and bacteria. We used a series of biochemical, bioinformatics, and theoretical experiments to investigate the mechanism of the first diterpene synthase known to form the eunicellane skeleton. Deuterium labeling studies and quantum chemical calculations support that Bnd4, from Streptomyces sp. (CL12-4), forms the 6,10-bicyclic skeleton through a 1,10-cyclization, 1,3-hydride shift, and 1,14-cyclization cascade. Bnd4 also demonstrated sesquiterpene cyclase activity and the ability to prenylate small molecules. Bnd4 possesses a unique D94 NxxxD motif and mutation experiments confirmed an absolute requirement for D94 as well as E169.
Collapse
Affiliation(s)
- Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, CA, 95616, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
28
|
Hou A, Goldfuss B, Dickschat JS. Functional Switch and Ethyl Group Formation in the Bacterial Polytrichastrene Synthase from Chryseobacterium polytrichastri. Angew Chem Int Ed Engl 2021; 60:20781-20785. [PMID: 34318977 PMCID: PMC8518897 DOI: 10.1002/anie.202109465] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Indexed: 12/19/2022]
Abstract
A reinvestigation of the linalool synthase from Chryseobacterium polytrichastri uncovered its diterpene synthase activity, yielding polytrichastrene A and polytrichastrol A with new skeletons, besides known wanju-2,5-diene and thunbergol. The enzyme mechanism was investigated by isotopic labeling experiments and DFT calculations to explain an unusual ethyl group formation. Rationally designed exchanges of active site residues showed major functional switches, resulting for I66F in the production of five more new compounds, including polytrichastrene B and polytrichastrol B, while A87T, A192V and the double exchange A87T, A192V gave a product shift towards wanju-2,5-diene.
Collapse
Affiliation(s)
- Anwei Hou
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Bernd Goldfuss
- Department of ChemistryUniversity of CologneGreinstraße 450939CologneGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
29
|
Hou A, Goldfuss B, Dickschat JS. Funktionaler Schalter und Ethylgruppenbildung der Bakteriellen Polytrichastrensynthase aus
Chryseobacterium polytrichastri. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anwei Hou
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Bernd Goldfuss
- Department Chemie Universität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
30
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
31
|
Xu B, Li Z, Alsup TA, Ehrenberger MA, Rudolf JD. Bacterial diterpene synthases prenylate small molecules. ACS Catal 2021; 11:5906-5915. [PMID: 34796043 PMCID: PMC8594881 DOI: 10.1021/acscatal.1c01113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biosynthesis of terpenoid natural products begins with a carbocation-based cyclization or prenylation reaction. While these reactions are mechanistically similar, there are several families of enzymes, namely terpene synthases and prenyltransferases, that have evolved to specifically catalyze terpene cyclization or prenylation reactions. Here, we report that bacterial diterpene synthases, enzymes that are traditionally considered to be specific for cyclization, are capable of efficiently catalyzing both diterpene cyclization and the prenylation of small molecules. We investigated this unique dual reactivity of terpene synthases through a series of kinetic, biocatalytic, structural, and bioinformatics studies. Overall, this study unveils the ability of terpene synthases to catalyze C-, N-, O-, and S-prenylation on small molecules, proposes a substrate decoy mechanism for prenylation by terpene synthases, supports the physiological relevance of terpene synthase-catalyzed prenylation in vivo, and addresses questions regarding the evolution of prenylation function and its potential role in natural products biosynthesis.
Collapse
Affiliation(s)
- Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Tyler A. Alsup
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | | | - Jeffrey D. Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Shinada T. Biosynthetic Reaction Mechanism of Terpene Synthases by Using Deuterium Labelled Acyclic Terpenes. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Bhaskar P, Sareen D. Bioinformatics approach to understand nature's unified mechanism of stereo-divergent synthesis of isoprenoid skeletons. World J Microbiol Biotechnol 2020; 36:142. [PMID: 32851438 DOI: 10.1007/s11274-020-02918-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/13/2020] [Indexed: 11/27/2022]
Abstract
In isoprenoid metabolism, cyclisation is the important gateway to chemical diversity. Terpene synthase is responsible for the cyclisation of a few universal substrates forming hundreds of often stereo-chemically complex mono- and poly-cyclic terpene hydrocarbons with a broad spectrum of functions in pharmaceuticals, flavours and fragrance industry. Although they are discovered and characterised mainly from plants and fungi, yet only a small share of bacterial terpenes has been investigated so far owing to their low level of expression in wild-type microorganisms. Extensive bacterial genome mining has revealed a treasure trove of terpene synthase genes and their regulated heterologous overexpression has pitched-in to describe the biochemical function of putative genes and sequester new terpene metabolites. This review deals with the modern genome mining techniques and molecular methods, providing more experimental tools for studying the structure and functions of terpenoid metabolites and strongly supports the idea that genome mining is a utile approach in deciphering the terpenoid diversity in bacteria.
Collapse
Affiliation(s)
- Pranav Bhaskar
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Dipti Sareen
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
34
|
Lauterbach L, Goldfuss B, Dickschat JS. Two Diterpene Synthases from Chryseobacterium: Chryseodiene Synthase and Wanjudiene Synthase. Angew Chem Int Ed Engl 2020; 59:11943-11947. [PMID: 32342621 PMCID: PMC7383580 DOI: 10.1002/anie.202004691] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 01/11/2023]
Abstract
Two bacterial diterpene synthases (DTSs) from Chryseobacterium were characterised. The first enzyme yielded the new compound chryseodiene that closely resembles the known fusicoccane diterpenes from fungi, but its experimentally and computationally studied cyclisation mechanism is fundamentally different to the mechanism of fusicoccadiene synthase. The second enzyme produced wanjudiene, a diterpene hydrocarbon with a new skeleton, besides traces of the enantiomer of bonnadiene that was recently discovered from Allokutzneria albata.
Collapse
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Bernd Goldfuss
- Institute for Organic ChemistryUniversity of CologneGreinstraße 450939CologneGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
35
|
Lauterbach L, Dickschat JS. Sesquiterpene synthases for bungoene, pentalenene and epi-isozizaene from Streptomyces bungoensis. Org Biomol Chem 2020; 18:4547-4550. [PMID: 32253407 DOI: 10.1039/d0ob00606h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A sesquiterpene synthase from Streptomyces bungoensis was characterised and produces the new compound bungoene. The enzyme mechanism was deeply investigated using isotopically labelled substrates. Two other enzymes from S. bungoensis made epi-isozizaene and pentalenene. Synthetic oxidative chemistry towards structurally related fusagramineol and pentalenal was explored.
Collapse
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
36
|
Lauterbach L, Goldfuss B, Dickschat JS. Zwei Diterpensynthasen aus
Chryseobacterium
: Chryseodien‐Synthase und Wanjudien‐Synthase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Bernd Goldfuss
- Institut für Organische Chemie, Universität zu Köln Greinstraße 4 50939 Köln Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
37
|
Lin FL, Lauterbach L, Zou J, Wang YH, Lv JM, Chen GD, Hu D, Gao H, Yao XS, Dickschat JS. Mechanistic Characterization of the Fusicoccane-type Diterpene Synthase for Myrothec-15(17)-en-7-ol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00377] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fu-Long Lin
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, Bonn 53121, Germany
| | - Jian Zou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, P. R. China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Guangzhou 510632, P. R. China
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, Bonn 53121, Germany
| |
Collapse
|
38
|
Lee SR, Lee D, Park M, Lee JC, Park HJ, Kang KS, Kim CE, Beemelmanns C, Kim KH. Absolute Configuration and Corrected NMR Assignment of 17-Hydroxycyclooctatin, a Fused 5-8-5 Tricyclic Diterpene. JOURNAL OF NATURAL PRODUCTS 2020; 83:354-361. [PMID: 31990198 DOI: 10.1021/acs.jnatprod.9b00837] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The absolute configuration and corrected NMR assignment of 17-hydroxycyclooctatin isolated from Streptomyces sp. M56 recovered from a nest of South African Macrotermes natalensis termites are reported. 17-Hydroxycyclooctatin is a unique tricyclic diterpene (C20) consisting of a fused 5-8-5 ring system, and in this study, its structure was unambiguously determined by a combination of HR-ESIMS and 1D and 2D NMR spectroscopic experiments to produce corrected NMR assignments. The absolute configuration of 17-hydroxycyclooctatin is reported for the first time in the current study using chemical reactions and quantum chemical ECD calculations. The corrected NMR assignments were verified using a gauge-including atomic orbital NMR chemical shifts calculation, followed by DP4 probability. To understand the pharmacological properties of 17-hydroxycyclooctatin, a network pharmacological approach and molecular docking analyses were used, which also predicted its effects on human breast cancer cell lines. Cytotoxicity and antiestrogenic activity of 17-hydroxycyclooctatin were determined, and it was found this compound may be an ERα antagonist.
Collapse
Affiliation(s)
- Seoung Rak Lee
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Dahae Lee
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Musun Park
- College of Korean Medicine , Gachon University , Seongnam 13120 , Republic of Korea
| | - Joo Chan Lee
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Hyun-Ju Park
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine , Gachon University , Seongnam 13120 , Republic of Korea
| | - Chang-Eop Kim
- College of Korean Medicine , Gachon University , Seongnam 13120 , Republic of Korea
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute , Beutenbergstraße 11a , 07745 Jena , Germany
| | - Ki Hyun Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| |
Collapse
|
39
|
Raz K, Driller R, Brück T, Loll B, Major DT. Understanding the role of active site residues in CotB2 catalysis using a cluster model. Beilstein J Org Chem 2020; 16:50-59. [PMID: 31976016 PMCID: PMC6964657 DOI: 10.3762/bjoc.16.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/17/2019] [Indexed: 11/23/2022] Open
Abstract
Terpene cyclases are responsible for the initial cyclization cascade in the multistep synthesis of a large number of terpenes. CotB2 is a diterpene cyclase from Streptomyces melanosporofaciens, which catalyzes the formation of cycloocta-9-en-7-ol, a precursor to the next-generation anti-inflammatory drug cyclooctatin. In this work, we present evidence for the significant role of the active site's residues in CotB2 on the reaction energetics using quantum mechanical calculations in an active site cluster model. The results revealed the significant effect of the active site residues on the relative electronic energy of the intermediates and transition state structures with respect to gas phase data. A detailed understanding of the role of the enzyme environment on the CotB2 reaction cascade can provide important information towards a biosynthetic strategy for cyclooctatin and the biomanufacturing of related terpene structures.
Collapse
Affiliation(s)
- Keren Raz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ronja Driller
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
- present address: Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
- present address: Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Dan T Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
40
|
Zhang M, Yan S, Liang Y, Zheng M, Wu Z, Zang Y, Yu M, Sun W, Liu J, Ye Y, Wang J, Chen C, Zhu H, Zhang Y. Talaronoids A–D: four fusicoccane diterpenoids with an unprecedented tricyclic 5/8/6 ring system from the fungus Talaromyces stipitatus. Org Chem Front 2020. [DOI: 10.1039/d0qo00960a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Talaronoids A–D (1–4), four fusicoccane diterpenoids with an unexpected tricyclic 5/8/6 carbon skeleton from Talaromyces stipitatus, represent the first examples of natural products with a benzo[a]cyclopenta[d]cyclooctane skeleton.
Collapse
|
41
|
Calcagnile M, Tredici SM, Talà A, Alifano P. Bacterial Semiochemicals and Transkingdom Interactions with Insects and Plants. INSECTS 2019; 10:E441. [PMID: 31817999 PMCID: PMC6955855 DOI: 10.3390/insects10120441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023]
Abstract
A peculiar feature of all living beings is their capability to communicate. With the discovery of the quorum sensing phenomenon in bioluminescent bacteria in the late 1960s, it became clear that intraspecies and interspecies communications and social behaviors also occur in simple microorganisms such as bacteria. However, at that time, it was difficult to imagine how such small organisms-invisible to the naked eye-could influence the behavior and wellbeing of the larger, more complex and visible organisms they colonize. Now that we know this information, the challenge is to identify the myriad of bacterial chemical signals and communication networks that regulate the life of what can be defined, in a whole, as a meta-organism. In this review, we described the transkingdom crosstalk between bacteria, insects, and plants from an ecological perspective, providing some paradigmatic examples. Second, we reviewed what is known about the genetic and biochemical bases of the bacterial chemical communication with other organisms and how explore the semiochemical potential of a bacterium can be explored. Finally, we illustrated how bacterial semiochemicals managing the transkingdom communication may be exploited from a biotechnological point of view.
Collapse
Affiliation(s)
| | | | | | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (M.C.); (S.M.T.); (A.T.)
| |
Collapse
|
42
|
Helfrich EJN, Lin GM, Voigt CA, Clardy J. Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J Org Chem 2019; 15:2889-2906. [PMID: 31839835 PMCID: PMC6902898 DOI: 10.3762/bjoc.15.283] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Terpenoids are the largest and structurally most diverse class of natural products. They possess potent and specific biological activity in multiple assays and against diseases, including cancer and malaria as notable examples. Although the number of characterized terpenoid molecules is huge, our knowledge of how they are biosynthesized is limited, particularly when compared to the well-studied thiotemplate assembly lines. Bacteria have only recently been recognized as having the genetic potential to biosynthesize a large number of complex terpenoids, but our current ability to associate genetic potential with molecular structure is severely restricted. The canonical terpene biosynthetic pathway uses a single enzyme to form a cyclized hydrocarbon backbone followed by modifications with a suite of tailoring enzymes that can generate dozens of different products from a single backbone. This functional promiscuity of terpene biosynthetic pathways renders terpene biosynthesis susceptible to rational pathway engineering using the latest developments in the field of synthetic biology. These engineered pathways will not only facilitate the rational creation of both known and novel terpenoids, their development will deepen our understanding of a significant branch of biosynthesis. The biosynthetic insights gained will likely empower a greater degree of engineering proficiency for non-natural terpene biosynthetic pathways and pave the way towards the biotechnological production of high value terpenoids.
Collapse
Affiliation(s)
- Eric J N Helfrich
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, United States
| | - Geng-Min Lin
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, United States
| | - Christopher A Voigt
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, United States
| | - Jon Clardy
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, United States
| |
Collapse
|
43
|
Driller R, Garbe D, Mehlmer N, Fuchs M, Raz K, Major DT, Brück T, Loll B. Current understanding and biotechnological application of the bacterial diterpene synthase CotB2. Beilstein J Org Chem 2019; 15:2355-2368. [PMID: 31666870 PMCID: PMC6808215 DOI: 10.3762/bjoc.15.228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
CotB2 catalyzes the first committed step in cyclooctatin biosynthesis of the soil bacterium Streptomyces melanosporofaciens. To date, CotB2 represents the best studied bacterial diterpene synthase. Its reaction mechanism has been addressed by isoptope labeling, targeted mutagenesis and theoretical computations in the gas phase, as well as full enzyme molecular dynamic simulations. By X-ray crystallography different snapshots of CotB2 from the open, inactive, to the closed, active conformation have been obtained in great detail, allowing us to draw detailed conclusions regarding the catalytic mechanism at the molecular level. Moreover, numerous alternative geranylgeranyl diphosphate cyclization products obtained by CotB2 mutagenesis have exciting applications for the sustainable production of high value bioactive substances.
Collapse
Affiliation(s)
- Ronja Driller
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
- present address: Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
- present address: Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
| | - Daniel Garbe
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Monika Fuchs
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Keren Raz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| |
Collapse
|
44
|
Greule A, Stok JE, De Voss JJ, Cryle MJ. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat Prod Rep 2019; 35:757-791. [PMID: 29667657 DOI: 10.1039/c7np00063d] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2000 up to 2018 The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations. In this review, we aim to provide an overview of the range of chemical transformations that P450 enzymes can catalyse within bacterial secondary metabolism, with the intention to provide an important resource to aid in understanding of the potential roles of P450 enzymes within newly identified bacterial biosynthetic pathways.
Collapse
Affiliation(s)
- Anja Greule
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Affiliation(s)
- Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
46
|
Abstract
This Minireview summarises recent developments in the biosynthesis of diterpenes by diterpene synthases in bacteria. It is structured by the class of enzyme involved in the first committed step towards diterpenes, starting with type I diterpene synthases, followed by type II enzymes and the more recently discovered UbiA-related diterpene synthases. A special emphasis lies on the reaction mechanisms of diterpene synthases that convert simple linear precursors through cationic cascades into structurally complex, usually polycyclic carbon skeletons with multiple stereogenic centres. A further main focus of this Minireview is a discussion of how these mechanisms can be unravelled. Downstream modifications to bioactive molecules are also covered.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
47
|
Martín-Sánchez L, Singh KS, Avalos M, van Wezel GP, Dickschat JS, Garbeva P. Phylogenomic analyses and distribution of terpene synthases among Streptomyces. Beilstein J Org Chem 2019; 15:1181-1193. [PMID: 31293665 PMCID: PMC6604706 DOI: 10.3762/bjoc.15.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
Terpene synthases are widely distributed among microorganisms and have been mainly studied in members of the genus Streptomyces. However, little is known about the distribution and evolution of the genes for terpene synthases. Here, we performed whole-genome based phylogenetic analysis of Streptomyces species, and compared the distribution of terpene synthase genes among them. Overall, our study revealed that ten major types of terpene synthases are present within the genus Streptomyces, namely those for geosmin, 2-methylisoborneol, epi-isozizaene, 7-epi-α-eudesmol, epi-cubenol, caryolan-1-ol, cyclooctat-9-en-7-ol, isoafricanol, pentalenene and α-amorphene. The Streptomyces species divide in three phylogenetic groups based on their whole genomes for which the distribution of the ten terpene synthases was analysed. Geosmin synthases were the most widely distributed and were found to be evolutionary positively selected. Other terpene synthases were found to be specific for one of the three clades or a subclade within the genus Streptomyces. A phylogenetic analysis of the most widely distributed classes of Streptomyces terpene synthases in comparison to the phylogenomic analysis of this genus is discussed.
Collapse
Affiliation(s)
- Lara Martín-Sánchez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Mariana Avalos
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden,The Netherlands
| | - Gilles P van Wezel
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden,The Netherlands
| | - Jeroen S Dickschat
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
48
|
Rinkel J, Lauterbach L, Dickschat JS. Eine verzweigte Diterpenkaskade: der Mechanismus der Spinodien-Synthase aus Saccharopolyspora spinosa. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
49
|
Rinkel J, Lauterbach L, Dickschat JS. A Branched Diterpene Cascade: The Mechanism of Spinodiene Synthase from Saccharopolyspora spinosa. Angew Chem Int Ed Engl 2018; 58:452-455. [DOI: 10.1002/anie.201812216] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| |
Collapse
|
50
|
Driller R, Janke S, Fuchs M, Warner E, Mhashal AR, Major DT, Christmann M, Brück T, Loll B. Towards a comprehensive understanding of the structural dynamics of a bacterial diterpene synthase during catalysis. Nat Commun 2018; 9:3971. [PMID: 30266969 PMCID: PMC6162201 DOI: 10.1038/s41467-018-06325-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/28/2018] [Indexed: 11/24/2022] Open
Abstract
Terpenes constitute the largest and structurally most diverse natural product family. Most terpenoids exhibit a stereochemically complex macrocyclic core, which is generated by C–C bond forming of aliphatic oligo-prenyl precursors. This reaction is catalysed by terpene synthases (TPSs), which are capable of chaperoning highly reactive carbocation intermediates through an enzyme-specific reaction. Due to the instability of carbocation intermediates, the proteins’ structural dynamics and enzyme:substrate interactions during TPS catalysis remain elusive. Here, we present the structure of the diterpene synthase CotB2, in complex with an in crystallo cyclised abrupt reaction product and a substrate-derived diphosphate. We captured additional snapshots of the reaction to gain an overview of CotB2’s catalytic mechanism. To enhance insights into catalysis, structural information is augmented with multiscale molecular dynamic simulations. Our data represent fundamental TPS structure dynamics during catalysis, which ultimately enable rational engineering towards tailored terpene macrocycles that are inaccessible by conventional chemical synthesis. The bacterial diterpene synthase CotB2 catalyses the cyclisation of geranylgeranyl diphosphate to cyclooctat-9-en7-ol. Here the authors present various CotB2 structures including a trapped abrupt reaction product that were used for molecular dynamic simulations and allowed them to model all intermediates along the reaction cascade.
Collapse
Affiliation(s)
- Ronja Driller
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Sophie Janke
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Monika Fuchs
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany
| | - Evelyn Warner
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Anil R Mhashal
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Mathias Christmann
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany
| | - Bernhard Loll
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany.
| |
Collapse
|