1
|
Sasaki R, Hand BJ, Liao WY, Semmler JG, Opie GM. Investigating the Effects of Repetitive Paired-Pulse Transcranial Magnetic Stimulation on Visuomotor Training Using TMS-EEG. Brain Topogr 2024; 37:1158-1170. [PMID: 39066878 PMCID: PMC11408544 DOI: 10.1007/s10548-024-01071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
I-wave periodicity repetitive paired-pulse transcranial magnetic stimulation (iTMS) can modify acquisition of a novel motor skill, but the associated neurophysiological effects remain unclear. The current study therefore used combined TMS-electroencephalography (TMS-EEG) to investigate the neurophysiological effects of iTMS on subsequent visuomotor training (VT). Sixteen young adults (26.1 ± 5.1 years) participated in three sessions including real iTMS and VT (iTMS + VT), control iTMS and VT (iTMSControl + VT), or iTMS alone. Motor-evoked potentials (MEPs) and TMS-evoked potentials (TEPs) were measured before and after iTMS, and again after VT, to assess neuroplastic changes. Irrespective of the intervention, MEP amplitude was not changed after iTMS or VT. Motor skill was improved compared with baseline, but no differences were found between stimulus conditions. In contrast, the P30 peak was altered by VT when preceded by control iTMS (P < 0.05), but this effect was not apparent when VT was preceded by iTMS or following iTMS alone (all P > 0.15). In contrast to expectations, iTMS was unable to modulate MEP amplitude or influence motor learning. Despite this, changes in P30 amplitude suggested that motor learning was associated with altered cortical reactivity. Furthermore, this effect was abolished by priming with iTMS, suggesting an influence of priming that failed to impact learning.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Brodie J Hand
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Wei-Yeh Liao
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - John G Semmler
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - George M Opie
- Discipline of Physiology, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
2
|
Khatri UU, Pulliam K, Manesiya M, Cortez MV, Millán JDR, Hussain SJ. Personalized whole-brain activity patterns predict human corticospinal tract activation in real-time. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.607985. [PMID: 39229238 PMCID: PMC11370398 DOI: 10.1101/2024.08.15.607985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) interventions could feasibly treat stroke-related motor impairments, but their effects are highly variable. Brain state-dependent TMS approaches are a promising solution to this problem, but inter-individual variation in lesion location and oscillatory dynamics can make translating them to the poststroke brain challenging. Personalized brain state-dependent approaches specifically designed to address these challenges are therefore needed. METHODS As a first step towards this goal, we tested a novel machine learning-based EEG-TMS system that identifies personalized brain activity patterns reflecting strong and weak corticospinal tract (CST) output (strong and weak CST states) in healthy adults in real-time. Participants completed a single-session study that included the acquisition of a TMS-EEG-EMG training dataset, personalized classifier training, and real-time EEG-informed single pulse TMS during classifier-predicted personalized CST states. RESULTS MEP amplitudes elicited in real-time during personalized strong CST states were significantly larger than those elicited during personalized weak and random CST states. MEP amplitudes elicited in real-time during personalized strong CST states were also significantly less variable than those elicited during personalized weak CST states. Personalized CST states lasted for ~1-2 seconds at a time and ~1 second elapsed between consecutive similar states. Individual participants exhibited unique differences in spectro-spatial EEG patterns between personalized strong and weak CST states. CONCLUSION Our results show for the first time that personalized whole-brain EEG activity patterns predict CST activation in real-time in healthy humans. These findings represent a pivotal step towards using personalized brain state-dependent TMS interventions to promote poststroke CST function.
Collapse
Affiliation(s)
- Uttara U Khatri
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Kristen Pulliam
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Muskan Manesiya
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Melanie Vieyra Cortez
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - José del R. Millán
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
3
|
Morozova M, Nasibullina A, Yakovlev L, Syrov N, Kaplan A, Lebedev M. Tactile versus motor imagery: differences in corticospinal excitability assessed with single-pulse TMS. Sci Rep 2024; 14:14862. [PMID: 38937562 PMCID: PMC11211487 DOI: 10.1038/s41598-024-64665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Tactile Imagery (TI) remains a fairly understudied phenomenon despite growing attention to this topic in recent years. Here, we investigated the effects of TI on corticospinal excitability by measuring motor evoked potentials (MEPs) induced by single-pulse transcranial magnetic stimulation (TMS). The effects of TI were compared with those of tactile stimulation (TS) and kinesthetic motor imagery (kMI). Twenty-two participants performed three tasks in randomly assigned order: imagine finger tapping (kMI); experience vibratory sensations in the middle finger (TS); and mentally reproduce the sensation of vibration (TI). MEPs increased during both kMI and TI, with a stronger increase for kMI. No statistically significant change in MEP was observed during TS. The demonstrated differential effects of kMI, TI and TS on corticospinal excitability have practical implications for devising the imagery-based and TS-based brain-computer interfaces (BCIs), particularly the ones intended to improve neurorehabilitation by evoking plasticity changes in sensorimotor circuitry.
Collapse
Affiliation(s)
- Marina Morozova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Aigul Nasibullina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Lev Yakovlev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia.
| | - Nikolay Syrov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Alexander Kaplan
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail Lebedev
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| |
Collapse
|
4
|
Vescovo E, Cardellicchio P, Tomassini A, Fadiga L, D'Ausilio A. Excitatory/inhibitory motor balance reflects individual differences during joint action coordination. Eur J Neurosci 2024; 59:3403-3421. [PMID: 38666628 DOI: 10.1111/ejn.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/07/2024] [Accepted: 04/06/2024] [Indexed: 06/15/2024]
Abstract
Joint action (JA) is a continuous process of motor co-regulation based on the integration of contextual (top-down) and kinematic (bottom-up) cues from partners. The fine equilibrium between excitation and inhibition in sensorimotor circuits is, thus, central to such a dynamic process of action selection and execution. In a bimanual task adapted to become a unimanual JA task, the participant held a bottle (JA), while a confederate had to reach and unscrew either that bottle or another stabilized by a mechanical clamp (No_JA). Prior knowledge was manipulated in each trial such that the participant knew (K) or not (No_K) the target bottle in advance. Online transcranial magnetic stimulation (TMS) was administered at action-relevant landmarks to explore corticospinal excitability (CSE) and inhibition (cortical silent period [cSP]). CSE was modulated early on before the action started if prior information was available. In contrast, cSP modulation emerged later during the reaching action, regardless of prior information. These two indexes could thus reflect the concurrent elaboration of contextual priors (top-down) and the online sampling of partner's kinematic cues (bottom-up). Furthermore, participants selected either one of two possible behavioural strategies, preferring early or late force exertion on the bottle. One translates into a reduced risk of motor coordination failure and the other into reduced metabolic expenditure. Each strategy was characterised by a specific excitatory/inhibitory profile. In conclusion, the study of excitatory/inhibitory balance paves the way for the neurophysiological determination of individual differences in the combination of top-down and bottom-up processing during JA coordination.
Collapse
Affiliation(s)
- Enrico Vescovo
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Pasquale Cardellicchio
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Faro Viana F, Cotovio G, da Silva DR, Seybert C, Pereira P, Silva A, Carvalho F, Oliveira-Maia AJ. Reducing motor evoked potential amplitude variability through normalization. Front Psychiatry 2024; 15:1279072. [PMID: 38356910 PMCID: PMC10864444 DOI: 10.3389/fpsyt.2024.1279072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
BackgroundTranscranial Magnetic Stimulation (TMS) is used for in vivo assessment of human motor cortical excitability, with application of TMS pulses over the motor cortex resulting in muscle responses that can be recorded with electromyography (EMG) as Motor Evoked Potentials (MEPs). These have been widely explored as potential biomarkers for neuropsychiatric disorders but methodological heterogeneity in acquisition, and inherent high variability, have led to constraints in reproducibility. Normalization, consisting in scaling the signal of interest to a known and repeatable measurement, reduces variability and is standard practice for between-subject comparisons of EMG. The effect of normalization on variability of MEP amplitude has not yet been explored and was assessed here using several methods.MethodsThree maximal voluntary isometric contractions (MVICs) and 40 MEPs were collected from the right hand in healthy volunteers, with a retest session conducted 4 to 8 weeks later. MEP amplitude was normalized using either external references (MVICs) or internal references (extreme MEPs). Iterative re-sampling of 30 normalized MEPs per subject was repeated 5,000 times to define, for each normalization method, distributions for between-subject coefficients of variation (CV) of the mean MEP amplitude. Intra-class correlation coefficients (ICC) were used to assess the impact of normalization on test–retest stability of MEP amplitude measurements.ResultsIn the absence of normalization, MEPs collected from the right hand of 47 healthy volunteers were within reported values regarding between-subject variability (95% confidence intervals for the CV: [1.0567,1.0577]) and showed good temporal stability (ICC = 0.77). Internal reference normalization substantially reduced between-subject variability, by values of up to 64%, while external reference normalization had no impact or increased between-subject variability. Normalization with the smallest references reduced test–retest stability, with use of the largest references resulting in slight reduction or improvement of ICCs. Internal reference normalization using the largest MEPs was found to be robust to several sensitivity analyses.ConclusionInternal, but not external, reference normalization reduces between-subject variability of MEP amplitude, and has a minimal impact on within-subject variability when conducted with the largest references. Additional research is necessary to further validate these normalization methods toward potential use of MEPs as biomarkers of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Francisco Faro Viana
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Gonçalo Cotovio
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Daniel Rodrigues da Silva
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Carolina Seybert
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Patrícia Pereira
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- Portuguese Red Cross Health School, Lisbon, Portugal
| | - Artur Silva
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Filipe Carvalho
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Albino J. Oliveira-Maia
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Murphy OW, Hoy KE, Wong D, Bailey NW, Fitzgerald PB, Segrave RA. Effects of transcranial direct current stimulation and transcranial random noise stimulation on working memory and task-related EEG in major depressive disorder. Brain Cogn 2023; 173:106105. [PMID: 37963422 DOI: 10.1016/j.bandc.2023.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE To compare effects of transcranial direct current stimulation (tDCS) and transcranial random noise stimulation with a direct-current offset (tRNS + DC-offset) on working memory (WM) performance and task-related electroencephalography (EEG) in individuals with Major Depressive Disorder (MDD). METHODS Using a sham-controlled, parallel-groups design, 49 participants with MDD received either anodal tDCS (N = 16), high-frequency tRNS + DC-offset (N = 16), or sham stimulation (N = 17) to the left dorsolateral prefrontal cortex (DLPFC) for 20-minutes. The Sternberg WM task was completed with concurrent EEG recording before and at 5- and 25-minutes post-stimulation. Event-related synchronisation/desynchronisation (ERS/ERD) was calculated for theta, upper alpha, and gamma oscillations during WM encoding and maintenance. RESULTS tDCS significantly increased parieto-occipital upper alpha ERS/ERD during WM maintenance, observed on EEG recorded 5- and 25-minutes post-stimulation. tRNS + DC-offset did not significantly alter WM-related oscillatory activity when compared to sham stimulation. Neither tDCS nor tRNS + DC-offset improved WM performance to a significantly greater degree than sham stimulation. CONCLUSIONS Although tDCS induced persistent effects on WM-related oscillatory activity, neither tDCS nor tRNS + DC-offset enhanced WM performance in MDD. SIGNIFICANCE This reflects the first sham-controlled comparison of tDCS and tRNS + DC-offset in MDD. These findings directly contrast with evidence of tRNS-induced enhancements in WM in healthy individuals.
Collapse
Affiliation(s)
- O W Murphy
- Central Clinical School, Monash University, Clayton, VIC, Australia; Bionics Institute, East Melbourne, VIC, Australia.
| | - K E Hoy
- Central Clinical School, Monash University, Clayton, VIC, Australia; Bionics Institute, East Melbourne, VIC, Australia
| | - D Wong
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - N W Bailey
- Central Clinical School, Monash University, Clayton, VIC, Australia; Monarch Research Institute Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, Australian National University, Canberra, ACT, Australia
| | - P B Fitzgerald
- Monarch Research Institute Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, Australian National University, Canberra, ACT, Australia
| | - R A Segrave
- BrainPark, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
7
|
Seybert C, Cotovio G, Rodrigues da Silva D, Faro Viana F, Pereira P, Oliveira-Maia AJ. Replicability of motor cortex-excitability modulation by intermittent theta burst stimulation. Clin Neurophysiol 2023; 152:22-33. [PMID: 37269770 DOI: 10.1016/j.clinph.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Transcranial Magnetic Stimulation (TMS) allows for cortical-excitability (CE) assessment and its modulation has been associated with neuroplasticity-like phenomena, thought to be impaired in neuropsychiatric disorders. However, the stability of these measures has been challenged, defying their potential as biomarkers. This study aimed to test the temporal stability of cortical-excitability modulation and study the impact of individual and methodological factors in determining within- and between-subject variability. METHODS We recruited healthy-subjects to assess motor cortex (MC) excitability modulation, collecting motor evoked potentials (MEP) from both hemispheres, before and after left-sided intermittent theta burst stimulation (iTBS), to obtain a measure of MEPs change (delta-MEPs). To assess stability across-time, the protocol was repeated after 6 weeks. Socio-demographic and psychological variables were collected to test association with delta-MEPs. RESULTS We found modulatory effects on left MC and not on right hemisphere following iTBS of left MC. Left delta-MEP was stable across-time when performed immediately after iTBS (ICC = 0.69), only when obtained first in left hemisphere. We discovered similar results in a replication cohort testing only left MC (ICC = 0.68). No meaningful associations were found between demographic and psychological factors and delta-MEPs. CONCLUSIONS Delta-MEP is stable immediately after modulation and not impacted by different individual factors, including expectation about TMS-effect. SIGNIFICANCE Motor cortex excitability modulation immediately after iTBS should be further explored as a potential biomarker for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Carolina Seybert
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Gonçalo Cotovio
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | | | - Francisco Faro Viana
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; Department of Physics, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Pereira
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; Portuguese Red Cross Health School, Lisbon, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
8
|
Resolving equivocal gain modulation of corticospinal excitability. Neuroimage 2023; 269:119891. [PMID: 36706940 DOI: 10.1016/j.neuroimage.2023.119891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
The ratio between the input and output of neuronal populations, usually referred to as gain modulation, is rhythmically modulated along the oscillatory cycle. Previous research on spinal neurons, however, revealed contradictory findings: both uni- and bimodal patterns of increased responsiveness for synaptic input have been proposed for the oscillatory beta rhythm. In this study, we compared previous approaches of phase estimation directly on simulated data and empirically tested the corresponding predictions in healthy males and females. We applied single-pulse transcranial magnetic stimulation over the primary motor cortex at rest, and assessed the spinal output generated by this input. Specifically, the peak-to-peak amplitude of the motor evoked potential in the contralateral forearm was estimated as a function of the EMG phase at which the stimulus was applied. The findings indicated that human spinal neurons adhere to a unimodal pattern of increased responsiveness, and suggest that the rising phase of the upper beta band maximizes gain modulation. Importantly, a bimodal pattern of increased responsiveness was shown to result in an artifact during data analysis and filtering. This observation of invalid preprocessing could be generalized to other frequency bands (i.e., delta, theta, alpha, and gamma), different task conditions (i.e., voluntary muscle contraction), and EEG-based phase estimations. Appropriate analysis algorithms, such as broad-band filtering, enable us to accurately determine gain modulation of neuronal populations and to avoid erroneous phase estimations. This may facilitate novel phase-specific interventions for targeted neuromodulation.
Collapse
|
9
|
Hernandez-Pavon JC, Veniero D, Bergmann TO, Belardinelli P, Bortoletto M, Casarotto S, Casula EP, Farzan F, Fecchio M, Julkunen P, Kallioniemi E, Lioumis P, Metsomaa J, Miniussi C, Mutanen TP, Rocchi L, Rogasch NC, Shafi MM, Siebner HR, Thut G, Zrenner C, Ziemann U, Ilmoniemi RJ. TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimul 2023; 16:567-593. [PMID: 36828303 DOI: 10.1016/j.brs.2023.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution. Methodologically, the combination of TMS with EEG is challenging, and there are many open questions in the field. Different TMS-EEG equipment and approaches for data collection and analysis are used. The lack of standardization may affect reproducibility and limit the comparability of results produced in different research laboratories. In addition, there is controversy about the extent to which auditory and somatosensory inputs contribute to transcranially evoked EEG. This review provides a guide for researchers who wish to use TMS-EEG to study the reactivity of the human cortex. A worldwide panel of experts working on TMS-EEG covered all aspects that should be considered in TMS-EEG experiments, providing methodological recommendations (when possible) for effective TMS-EEG recordings and analysis. The panel identified and discussed the challenges of the technique, particularly regarding recording procedures, artifact correction, analysis, and interpretation of the transcranial evoked potentials (TEPs). Therefore, this work offers an extensive overview of TMS-EEG methodology and thus may promote standardization of experimental and computational procedures across groups.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | | | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Paolo Belardinelli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Elias P Casula
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Faranak Farzan
- Simon Fraser University, School of Mechatronic Systems Engineering, Surrey, British Columbia, Canada
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Petro Julkunen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Nigel C Rogasch
- University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Monash University, Melbourne, Australia
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, United Kingdom
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| |
Collapse
|
10
|
On the Homology of the Dominant and Non-Dominant Corticospinal Tracts: A Novel Neurophysiological Assessment. Brain Sci 2023; 13:brainsci13020278. [PMID: 36831821 PMCID: PMC9954672 DOI: 10.3390/brainsci13020278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVES The homology of hemispheric cortical areas plays a crucial role in brain functionality. Here, we extend this concept to the homology of the dominant and non-dominant hemi-bodies, investigating the relationship of the two corticospinal tracts (CSTs). The evoked responses provide an estimate of the number of in-phase recruitments via their amplitude as a suitable indicator of the neuronal projections' integrity. An innovative concept derived from experience in the somatosensory system is that their morphology reflects the recruitment pattern of the whole circuit. METHODS CST homology was assessed via the Fréchet distance between the morphologies of motor-evoked potentials (MEPs) using a transcranial magnetic stimulation (TMS) in the homologous left- and right-hand first dorsal interosseous muscles of 40 healthy volunteers (HVs). We tested the working hypothesis that the inter-side Fréchet distance was higher than the two intra-side distances. RESULTS In addition to a clear confirmation of the working hypothesis (p < 0.0001 for both hemi-bodies) verified in all single subjects, we observed that the intra-side Fréchet distance was higher for the dominant than the non-dominant one. Interhemispheric morphology similarity increased with right-handedness prevalence (p = 0.004). CONCLUSIONS The newly introduced measure of circuit recruitment patterning represents a potential benchmark for the evaluation of inter-lateral mechanisms expressing the relationship between homologous hemilateral structures subtending learning and suggests that variability in recruitment patterning physiologically increases in circuits expressing greater functionality.
Collapse
|
11
|
Stimulation with acoustic white noise enhances motor excitability and sensorimotor integration. Sci Rep 2022; 12:13108. [PMID: 35907889 PMCID: PMC9338990 DOI: 10.1038/s41598-022-17055-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Auditory white noise (WN) is widely used in neuroscience to mask unwanted environmental noise and cues, e.g. TMS clicks. However, to date there is no research on the influence of WN on corticospinal excitability and potentially associated sensorimotor integration itself. Here we tested the hypothesis, if WN induces M1 excitability changes and improves sensorimotor performance. M1 excitability (spTMS, SICI, ICF, I/O curve) and sensorimotor reaction-time performance were quantified before, during and after WN stimulation in a set of experiments performed in a cohort of 61 healthy subjects. WN enhanced M1 corticospinal excitability, not just during exposure, but also during silence periods intermingled with WN, and up to several minutes after the end of exposure. Two independent behavioural experiments highlighted that WN improved multimodal sensorimotor performance. The enduring excitability modulation combined with the effects on behaviour suggest that WN might induce neural plasticity. WN is thus a relevant modulator of corticospinal function; its neurobiological effects should not be neglected and could in fact be exploited in research applications.
Collapse
|
12
|
Bonnesen MT, Fuglsang SA, Siebner HR, Christiansen L. The recent history of afferent stimulation modulates corticospinal excitability. Neuroimage 2022; 258:119365. [PMID: 35690256 DOI: 10.1016/j.neuroimage.2022.119365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/01/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is widely used to probe corticospinal excitability and fast sensorimotor integration in the primary motor hand area (M1-HAND). A conditioning electrical stimulus, applied to the contralateral hand, can suppress the motor evoked potential (MEP) elicited by TMS of M1-HAND when the afferent stimulus arrives in M1-HAND at the time of TMS. The magnitude of this short-latency afferent inhibition (SAI) is expressed as the ratio between the conditioned and unconditioned MEP amplitude. OBJECTIVE/HYPOTHESIS We hypothesized that corticospinal excitability and SAI are influenced by the recent history of peripheral electrical stimulation. METHODS In twenty healthy participants, we recorded MEPs from the right first dorsal interosseus muscle. MEPs were evoked by single-pulse TMS of the left M1-HAND alone (unconditioned TMS) or by TMS preceded by electrical stimulation of the right index finger ("homotopic" conditioning) or little finger ("heterotopic" conditioning). The three conditions were either pseudo-randomly intermixed or delivered in blocks in which a single condition was repeated five or ten times. MEP amplitudes and SAI magnitudes were compared using linear mixed-effect models and one-way ANOVAs. RESULTS All stimulation protocols consistently produced SAI, which was stronger after homotopic stimulation. Randomly intermingling the three stimulation conditions reduced the relative magnitude of homotopic and heterotopic SAI as opposed to blocked stimulation. The apparent attenuation of SAI was caused by a suppression of the unconditioned but not the conditioned MEP amplitude during the randomly intermixed pattern. CONCLUSION(S) The recent history of afferent stimulation modulates corticospinal excitability. This "history effect" impacts on the relative magnitude of SAI depending on how conditioned and unconditioned responses are intermixed and needs to be taken into consideration when probing afferent inhibition and corticospinal excitability.
Collapse
Affiliation(s)
- Marie Trolle Bonnesen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Søren Asp Fuglsang
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.
| |
Collapse
|
13
|
Van der Cruijsen J, Jonker ZD, Andrinopoulou ER, Wijngaarden JE, Tangkau DA, Tulen JHM, Frens MA, Ribbers GM, Selles RW. Transcranial Direct Current Stimulation Targeting the Entire Motor Network Does Not Increase Corticospinal Excitability. Front Hum Neurosci 2022; 16:842954. [PMID: 35601898 PMCID: PMC9114302 DOI: 10.3389/fnhum.2022.842954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) over the contralateral primary motor cortex of the target muscle (conventional tDCS) has been described to enhance corticospinal excitability, as measured with transcranial magnetic stimulation. Recently, tDCS targeting the brain regions functionally connected to the contralateral primary motor cortex (motor network tDCS) was reported to enhance corticospinal excitability more than conventional tDCS. We compared the effects of motor network tDCS, 2 mA conventional tDCS, and sham tDCS on corticospinal excitability in 21 healthy participants in a randomized, single-blind within-subject study design. We applied tDCS for 12 min and measured corticospinal excitability with TMS before tDCS and at 0, 15, 30, 45, and 60 min after tDCS. Statistical analysis showed that neither motor network tDCS nor conventional tDCS significantly increased corticospinal excitability relative to sham stimulation. Furthermore, the results did not provide evidence for superiority of motor network tDCS over conventional tDCS. Motor network tDCS seems equally susceptible to the sources of intersubject and intrasubject variability previously observed in response to conventional tDCS.
Collapse
Affiliation(s)
- Joris Van der Cruijsen
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Zeb D. Jonker
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Rijndam Rehabilitation Centre, Rotterdam, Netherlands
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jessica E. Wijngaarden
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Ditte A. Tangkau
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joke H. M. Tulen
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maarten A. Frens
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerard M. Ribbers
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Rijndam Rehabilitation Centre, Rotterdam, Netherlands
| | - Ruud W. Selles
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
14
|
Matilainen N, Soldati M, Laakso I. The Effect of Inter-pulse Interval on TMS Motor Evoked Potentials in Active Muscles. Front Hum Neurosci 2022; 16:845476. [PMID: 35392119 PMCID: PMC8980278 DOI: 10.3389/fnhum.2022.845476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Objective The time interval between transcranial magnetic stimulation (TMS) pulses affects evoked muscle responses when the targeted muscle is resting. This necessitates using sufficiently long inter-pulse intervals (IPIs). However, there is some evidence that the IPI has no effect on the responses evoked in active muscles. Thus, we tested whether voluntary contraction could remove the effect of the IPI on TMS motor evoked potentials (MEPs). Methods In our study, we delivered sets of 30 TMS pulses with three different IPIs (2, 5, and 10 s) to the left primary motor cortex. These measurements were performed with the resting and active right hand first dorsal interosseous muscle in healthy participants (N = 9 and N = 10). MEP amplitudes were recorded through electromyography. Results We found that the IPI had no significant effect on the MEP amplitudes in the active muscle (p = 0.36), whereas in the resting muscle, the IPI significantly affected the MEP amplitudes (p < 0.001), decreasing the MEP amplitude of the 2 s IPI. Conclusions These results show that active muscle contraction removes the effect of the IPI on the MEP amplitude. Therefore, using active muscles in TMS motor mapping enables faster delivery of TMS pulses, reducing measurement time in novel TMS motor mapping studies.
Collapse
Affiliation(s)
- Noora Matilainen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
- *Correspondence: Noora Matilainen
| | - Marco Soldati
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
- Aalto Neuroimaging, Aalto University, Espoo, Finland
| |
Collapse
|
15
|
Kallioniemi E, Awiszus F, Pitkänen M, Julkunen P. Fast acquisition of resting motor threshold with a stimulus-response curve - Possibility or hazard for transcranial magnetic stimulation applications? Clin Neurophysiol Pract 2022; 7:7-15. [PMID: 35024510 PMCID: PMC8733273 DOI: 10.1016/j.cnp.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Objective Previous research has suggested that transcranial magnetic stimulation (TMS) related cortical excitability measures could be estimated quickly using stimulus-response curves with short interstimulus intervals (ISIs). Here we evaluated the resting motor threshold (rMT) estimated with these curves. Methods Stimulus-response curves were measured with three ISIs: 1.2-2 s, 2-3 s, and 3-4 s. Each curve was formed with 108 stimuli using stimulation intensities ranging from 0.75 to 1.25 times the rMTguess, which was estimated based on motor evoked potential (MEP) amplitudes of three scout responses. Results The ISI did not affect the rMT estimated from the curves (F = 0.235, p = 0.683) or single-trial MEP amplitudes at the group level (F = 0.90, p = 0.405), but a significant subject by ISI interaction (F = 3.64; p < 0.001) was detected in MEP amplitudes. No trend was observed which ISI was most excitable, as it varied between subjects. Conclusions At the group level, the stimulus-response curves are unaffected by the short ISI. At the individual level, these curves are highly affected by the ISI. Significance Estimating rMT using stimulus-response curves with short ISIs impacts the rMT estimate and should be avoided in clinical and research TMS applications.
Collapse
Key Words
- APB, abductor pollicis brevis
- EMG, electromyography
- ISI, interstimulus interval
- Interstimulus interval
- MEP, motor evoked potential
- MRI, magnetic resonance imaging
- MSO, maximum stimulator output
- Motor evoked potential
- Motor threshold
- SI, stimulation intensity
- Stimulus-response curve
- TMS, transcranial magnetic stimulation
- rMT, resting motor threshold
- rMTRR, resting motor threshold estimated with the Rossini-Rothwell method
- rMTestimate, resting motor threshold estimated with stimulus–response curves
- rMTguess, resting motor threshold estimated with prior information and three scout pulses
- rMTthreshold, resting motor threshold estimated with the threshold-hunting method
- rMTtrue, true resting motor threshold in simulations
Collapse
Affiliation(s)
- Elisa Kallioniemi
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States
| | - Friedemann Awiszus
- Neuromuscular Research Group at the Department of Orthopaedics, Otto-von-Guericke University, Magdeburg, Germany
| | - Minna Pitkänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Petro Julkunen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
16
|
Bihemispheric sensorimotor oscillatory network states determine cortical responses to transcranial magnetic stimulation. Brain Stimul 2021; 15:167-178. [PMID: 34896304 DOI: 10.1016/j.brs.2021.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Brain responses to external stimuli vary with fluctuating states of neuronal activity. Previous work has demonstrated effects of phase and power of the ongoing local sensorimotor μ-alpha-oscillation on responses to transcranial magnetic stimulation (TMS) of motor cortex (M1). However, M1 is part of a distributed network, and the effects of oscillatory activity in this network on TMS-evoked EEG responses (TEPs) have not been explored. OBJECTIVES To determine the effects of oscillatory activity in the bihemispheric sensorimotor network on TEPs. METHODS 31 healthy subjects received single-pulse TMS of the left M1 hand area during EEG recording. Ongoing bihemispheric sensorimotor cortex oscillatory states were reconstructed from the EEG directly preceding TMS, and inferred by a data-driven method combining a multivariate autoregressive model and a Hidden Markov model. TEP amplitudes (P25, N45, P70, N100 and P180) were then compared between different bihemispheric sensorimotor cortex oscillatory states. RESULTS Four bihemispheric sensorimotor cortex oscillatory states were identified, with different interhemispheric expressions of theta and alpha oscillations. High alpha-power states in the stimulated sensorimotor cortex increased P25 amplitude. Alpha power in the alpha-alpha state (stimulated - non-stimulated hemisphere) correlated in both hemispheres with N45 amplitude. Theta power in the alpha-theta state correlated in the non-stimulated hemisphere with P70 amplitude. CONCLUSIONS Bihemispheric sensorimotor cortex oscillatory states contribute to TEPs, with a relevance shift from stimulated to non-stimulated M1 from P25 over N45 to P70. This significantly extends previous findings: not only ongoing local oscillations but distributed network oscillatory states determine cortical responsiveness to external stimuli.
Collapse
|
17
|
Sham-derived effects and the minimal reliability of theta burst stimulation. Sci Rep 2021; 11:21170. [PMID: 34707206 PMCID: PMC8551312 DOI: 10.1038/s41598-021-98751-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Theta-burst stimulation (TBS) is a patterned form of repetitive transcranial magnetic stimulation (rTMS) that has been used to induce long-term modulation (plasticity) of corticospinal excitability in a drastically shorter duration protocol than conventional rTMS protocols. In this study we tested the reliability of the effects of two well defined TBS protocols, continuous TBS (cTBS) and intermittent TBS (iTBS), especially in relation to sham TBS, within and across the same 24 participants. All TBS protocols were repeated after approximately 1 month to assess the magnitude and reliability of the modulatory effects of each TBS protocol. Baseline and post-TBS changes in motor evoked potentials (MEP—measure of corticospinal excitability) amplitudes were compared across the cTBS, iTBS and sham TBS protocols and between the initial and retest visits. Overall, across participants, at the initial visit, iTBS facilitated MEPs as compared to baseline excitability, with sham eliciting the same effect. cTBS did not show a significant suppression of excitability compared to baseline MEPs at either visit, and even facilitated MEPs above baseline excitability at a single time point during the repeat visit. Otherwise, effects of TBS were generally diminished in the repeat visit, with iTBS and sham TBS replicating facilitation of MEPs above baseline excitability at similar time points. However, no protocol demonstrated consistent intra-individual modulation of corticospinal excitability upon retest. As the first study to test both iTBS and cTBS against sham TBS across repeat visits, our findings challenge the efficacy and reliability of TBS protocols and emphasize the importance of accounting for sham effects of TBS. Furthermore, given that therapeutic effects of TBS are hypothetically derived from consistent and repeated modulation of brain activity, the non-replicability of plasticity and sham effects call into question these basic mechanisms.
Collapse
|
18
|
Metsomaa J, Belardinelli P, Ermolova M, Ziemann U, Zrenner C. Causal decoding of individual cortical excitability states. Neuroimage 2021; 245:118652. [PMID: 34687858 DOI: 10.1016/j.neuroimage.2021.118652] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022] Open
Abstract
Brain responsiveness to stimulation fluctuates with rapidly shifting cortical excitability state, as reflected by oscillations in the electroencephalogram (EEG). For example, the amplitude of motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) of motor cortex changes from trial to trial. To date, individual estimation of the cortical processes leading to this excitability fluctuation has not been possible. Here, we propose a data-driven method to derive individually optimized EEG classifiers in healthy humans using a supervised learning approach that relates pre-TMS EEG activity dynamics to MEP amplitude. Our approach enables considering multiple brain regions and frequency bands, without defining them a priori, whose compound phase-pattern information determines the excitability. The individualized classifier leads to an increased classification accuracy of cortical excitability states from 57% to 67% when compared to μ-oscillation phase extracted by standard fixed spatial filters. Results show that, for the used TMS protocol, excitability fluctuates predominantly in the μ-oscillation range, and relevant cortical areas cluster around the stimulated motor cortex, but between subjects there is variability in relevant power spectra, phases, and cortical regions. This novel decoding method allows causal investigation of the cortical excitability state, which is critical also for individualizing therapeutic brain stimulation.
Collapse
Affiliation(s)
- J Metsomaa
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen
| | - P Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen; CIMeC, Center for Mind-Brain Sciences, University of Trento, Italy
| | - M Ermolova
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen
| | - U Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen.
| | - C Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Sasaki R, Kojima S, Onishi H. Do Brain-Derived Neurotrophic Factor Genetic Polymorphisms Modulate the Efficacy of Motor Cortex Plasticity Induced by Non-invasive Brain Stimulation? A Systematic Review. Front Hum Neurosci 2021; 15:742373. [PMID: 34650418 PMCID: PMC8505675 DOI: 10.3389/fnhum.2021.742373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Techniques of non-invasive brain stimulation (NIBS) of the human primary motor cortex (M1) are widely used in basic and clinical research to induce neural plasticity. The induction of neural plasticity in the M1 may improve motor performance ability in healthy individuals and patients with motor deficit caused by brain disorders. However, several recent studies revealed that various NIBS techniques yield high interindividual variability in the response, and that the brain-derived neurotrophic factor (BDNF) genotype (i.e., Val/Val and Met carrier types) may be a factor contributing to this variability. Here, we conducted a systematic review of all published studies that investigated the effects of the BDNF genotype on various forms of NIBS techniques applied to the human M1. The motor-evoked potential (MEP) amplitudes elicited by single-pulse transcranial magnetic stimulation (TMS), which can evaluate M1 excitability, were investigated as the main outcome. A total of 1,827 articles were identified, of which 17 (facilitatory NIBS protocol, 27 data) and 10 (inhibitory NIBS protocol, 14 data) were included in this review. More than two-thirds of the data (70.4–78.6%) on both NIBS protocols did not show a significant genotype effect of NIBS on MEP changes. Conversely, most of the remaining data revealed that the Val/Val type is likely to yield a greater MEP response after NIBS than the Met carrier type in both NIBS protocols (21.4–25.9%). Finally, to aid future investigation, we discuss the potential effect of the BDNF genotype based on mechanisms and methodological issues.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
20
|
Capaday C. On the variability of motor-evoked potentials: experimental results and mathematical model. Exp Brain Res 2021; 239:2979-2995. [PMID: 34324018 DOI: 10.1007/s00221-021-06169-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to determine the form of the relation between the mean amplitude and variance of motor-evoked potentials (MEP). To this end, single-pulse transcranial magnetic stimulation (TMS) was applied over the motor cortex of seventeen neurologically normal adult human subjects. The coil was positioned at a locus on the scalp that elicited an MEP in the first dorsal interosseous (FDI) at the lowest stimulus intensity. The subjects were instructed to maintain tonic activity in the FDI of 5 or 10% of the maximum voluntary contraction (MVC). The relation between MEP variance and amplitude was found to have an inverted parabolic shape, with maximal variance occurring near the half-maximal MEP amplitude. The coefficient of variation [Formula: see text] of MEPs decreased approximately as a rectangular hyperbolic function of MEP amplitude (i.e. ~ 1/MEP). A probabilistic model is proposed to explain the inverted parabolic relation between MEP variance and MEP amplitude, as well as the sigmoid shape of the MEP input-output relation (i.e. stimulus-response curve). The model is based on a description of α-motoneurons as binary threshold units, with unit thresholds distributed according to a positively skewed probability density function. The units are driven by noisy synaptic input currents having a Gaussian distribution. The model predicts an inverse parabolic relation between MEP variance and amplitude and a sigmoid input-output relation, as experimentally observed. Furthermore, increasing model motoneuron excitability by increasing the background synaptic drive increases MEP variability independently of MEP size, a surprising prediction. The model also explains the approximately rectangular hyperbolic relation between [Formula: see text] and MEP amplitude. The implications of these results for the interpretation of neurophysiological experiments and the statistical analysis of MEPs are discussed.
Collapse
Affiliation(s)
- Charles Capaday
- Department of Health and Human Physiology, Motor Control Laboratories, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
21
|
Jannati A, Ryan MA, Block G, Kayarian FB, Oberman LM, Rotenberg A, Pascual-Leone A. Modulation of motor cortical excitability by continuous theta-burst stimulation in adults with autism spectrum disorder. Clin Neurophysiol 2021; 132:1647-1662. [PMID: 34030059 PMCID: PMC8197744 DOI: 10.1016/j.clinph.2021.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To test whether change in motor evoked potential (ΔMEP) induced by continuous theta-burst stimulation (cTBS) of motor cortex (M1) distinguishes adults with autism spectrum disorder (ASD) from neurotypicals, and to explore the contribution of two common polymorphisms related to neuroplasticity. METHODS 44 adult neurotypical (NT) participants (age 21-65, 34 males) and 19 adults with ASD (age 21-58, 17 males) prospectively underwent M1 cTBS. Their data were combined with previously obtained results from 35 NT and 35 ASD adults. RESULTS ΔMEP at 15 minutes post-cTBS (T15) was a significant predictor of diagnosis (p = 0.04) in the present sample (n=63). T15 remained a significant predictor in a larger sample (n=91) and when partially imputed based on T10-T20 from a yet-greater sample (N=133). T15 also remained a significant predictor of diagnosis among brain-derived neurotrophic factor (BDNF) Met+ and apolipoprotein E (APOE) ε4- subjects (p's < 0.05), but not among Met- or ε4+ subjects (p's > 0.19). CONCLUSIONS ΔMEP at T15 post-cTBS is a significant biomarker for adults with ASD, and its utility is modulated by BDNF and APOE polymorphisms. SIGNIFICANCE M1 cTBS response is a physiologic biomarker for adults with ASD in large samples, and controlling for BDNF and APOE polymorphisms can improve its diagnostic utility.
Collapse
Affiliation(s)
- Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mary A Ryan
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Gabrielle Block
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Fae B Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lindsay M Oberman
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Guttman Brain Health Institute, Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Barcelona, Spain.
| |
Collapse
|
22
|
Harvey DY, DeLoretta L, Shah-Basak PP, Wurzman R, Sacchetti D, Ahmed A, Thiam A, Lohoff FW, Faseyitan O, Hamilton RH. Variability in cTBS Aftereffects Attributed to the Interaction of Stimulus Intensity With BDNF Val66Met Polymorphism. Front Hum Neurosci 2021; 15:585533. [PMID: 34220466 PMCID: PMC8249815 DOI: 10.3389/fnhum.2021.585533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To evaluate whether a common polymorphism (Val66Met) in the gene for brain-derived neurotrophic factor (BDNF)-a gene thought to influence plasticity-contributes to inter-individual variability in responses to continuous theta-burst stimulation (cTBS), and explore whether variability in stimulation-induced plasticity among Val66Met carriers relates to differences in stimulation intensity (SI) used to probe plasticity. Methods: Motor evoked potentials (MEPs) were collected from 33 healthy individuals (11 Val66Met) prior to cTBS (baseline) and in 10 min intervals immediately following cTBS for a total of 30 min post-cTBS (0 min post-cTBS, 10 min post-cTBS, 20 min post cTBS, and 30 min post-cTBS) of the left primary motor cortex. Analyses assessed changes in cortical excitability as a function of BDNF (Val66Val vs. Val66Met) and SI. Results: For both BDNF groups, MEP-suppression from baseline to post-cTBS time points decreased as a function of increasing SI. However, the effect of SI on MEPs was more pronounced for Val66Met vs. Val66Val carriers, whereby individuals probed with higher vs. lower SIs resulted in paradoxical cTBS aftereffects (MEP-facilitation), which persisted at least 30 min post-cTBS administration. Conclusions: cTBS aftereffects among BDNF Met allele carriers are more variable depending on the SI used to probe cortical excitability when compared to homozygous Val allele carriers, which could, to some extent, account for the inconsistency of previously reported cTBS effects. Significance: These data provide insight into the sources of cTBS response variability, which can inform how best to stratify and optimize its use in investigational and clinical contexts.
Collapse
Affiliation(s)
- Denise Y. Harvey
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Research Department, Moss Rehabilitation Research Institute, Philadelphia, PA, United States
| | - Laura DeLoretta
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Rachel Wurzman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniela Sacchetti
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ahmed Ahmed
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Abdou Thiam
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Falk W. Lohoff
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Olufunsho Faseyitan
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Jonker ZD, Gaiser C, Tulen JHM, Ribbers GM, Frens MA, Selles RW. No effect of anodal tDCS on motor cortical excitability and no evidence for responders in a large double-blind placebo-controlled trial. Brain Stimul 2020; 14:100-109. [PMID: 33197654 DOI: 10.1016/j.brs.2020.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has emerged as a non-invasive brain stimulation technique. Most studies show that anodal tDCS increases cortical excitability. However, this effect has been found to be highly variable. OBJECTIVE To test the effect of anodal tDCS on cortical excitability and the interaction effect of two participant-specific factors that may explain individual differences in sensitivity to anodal tDCS: the Brain Derived Neurotrophic Factor Val66Met polymorphism (BDNF genotype) and the latency difference between anterior-posterior and lateromedial TMS pulses (APLM latency). METHODS In 62 healthy participants, cortical excitability over the left motor cortex was measured before and after anodal tDCS at 2 mA for 20 min in a pre-registered, double-blind, randomized, placebo-controlled trial with repeated measures. RESULTS We did not find a main effect of anodal tDCS, nor an interaction effect of the participant-specific predictors. Moreover, further analyses did not provide evidence for the existence of responders and non-responders. CONCLUSION This study indicates that anodal tDCS at 2 mA for 20 min may not reliably affect cortical excitability.
Collapse
Affiliation(s)
- Zeb D Jonker
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Rehabilitation Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Rijndam Rehabilitation Center, Rotterdam, the Netherlands
| | - Carolin Gaiser
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joke H M Tulen
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gerard M Ribbers
- Department of Rehabilitation Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Rijndam Rehabilitation Center, Rotterdam, the Netherlands
| | - Maarten A Frens
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ruud W Selles
- Department of Rehabilitation Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Plastic and Reconstructive Surgery, Erasmus University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
24
|
Iacullo C, Diesburg DA, Wessel JR. Non-selective inhibition of the motor system following unexpected and expected infrequent events. Exp Brain Res 2020; 238:2701-2710. [PMID: 32948892 DOI: 10.1007/s00221-020-05919-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/02/2020] [Indexed: 01/16/2023]
Abstract
Motor inhibition is a key control mechanism that allows humans to rapidly adapt their actions in response to environmental events. One of the hallmark signatures of rapidly exerted, reactive motor inhibition is the non-selective suppression of cortico-spinal excitability (CSE): unexpected sensory stimuli lead to a suppression of CSE across the entire motor system, even in muscles that are inactive. Theories suggest that this reflects a fast, automatic, and broad engagement of inhibitory control, which facilitates behavioral adaptations to unexpected changes in the sensory environment. However, it is an open question whether such non-selective CSE suppression is truly due to the unexpected nature of the sensory event, or whether it is sufficient for an event to be merely infrequent (but not unexpected). Here, we report data from two experiments in which human subjects experienced both unexpected and expected infrequent events during a two-alternative forced-choice reaction time task while CSE was measured from a task-unrelated muscle. We found that expected infrequent events can indeed produce non-selective CSE suppression-but only when they occur during movement initiation. In contrast, unexpected infrequent events produce non-selective CSE suppression relative to frequent, expected events even in the absence of movement initiation. Moreover, CSE suppression due to unexpected events occurs at shorter latencies compared to expected infrequent events. These findings demonstrate that unexpectedness and stimulus infrequency have qualitatively different suppressive effects on the motor system. They also have key implications for studies that seek to disentangle neural and psychological processes related to motor inhibition and stimulus detection.
Collapse
Affiliation(s)
- Carly Iacullo
- Department of Psychological and Brain Sciences, University of Iowa, 376 Psychological and Brain Sciences Building, 340 Iowa Avenue, Iowa City, IA, 52240, USA
| | - Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, 376 Psychological and Brain Sciences Building, 340 Iowa Avenue, Iowa City, IA, 52240, USA
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, 376 Psychological and Brain Sciences Building, 340 Iowa Avenue, Iowa City, IA, 52240, USA.
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
25
|
Deficits in corticospinal control of stretch reflex thresholds in stroke: Implications for motor impairment. Clin Neurophysiol 2020; 131:2067-2078. [DOI: 10.1016/j.clinph.2020.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/24/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
|
26
|
Suckley JJ, Waters TJ, Tran M, Stapley PJ, Shemmell J, Walsh JA, McAndrew DJ. Randomising stimulus intensity improves the variability and reliability of the assessment of corticospinal excitability. J Neurosci Methods 2020; 342:108813. [PMID: 32562710 DOI: 10.1016/j.jneumeth.2020.108813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Advances in the control of transcranial magnetic stimulation (TMS) have enabled greater randomisation of stimulus intensity. It is unclear if such randomisation improves assessments of corticospinal excitability. NEW METHOD We recorded the amplitude of TMS-induced motor evoked potentials (MEPs) from the first dorsal interosseous muscle of eleven participants, during three TMS protocols: blocks of increasing intensity (IB), randomised blocks (RB) and inter-stimulus randomisation (IR). Stimulus intensities from 90 to 140% of active motor threshold described corticospinal input-output (I/O) properties. The experiment was repeated in five participants. RESULTS Although MEP amplitudes did not differ between IB, RB and IR stimulation protocols, variability was lowest in the IR protocol, compared to IB and RB protocols. Reliability was highest in the IR protocol, compared to IB and IR protocols. COMPARISON WITH EXISTING METHODS Randomising TMS intensity between each trial produces less variable and more reliable estimates of corticospinal excitability than previously used blocked protocols and produces the same I/O measures. CONCLUSIONS Inter-trial randomization of TMS intensities appears to be the most reliable method for constructing I/O curves at multiple time points and decreases the variability of responses.
Collapse
Affiliation(s)
- Jai J Suckley
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Timothy J Waters
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Michael Tran
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Paul J Stapley
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia; Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Jonathan Shemmell
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia; Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia; Neuromotor Research Laboratory, School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Joel A Walsh
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia; Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Darryl J McAndrew
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine & Health, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia; Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia; Discipline of Graduate Medicine, School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
27
|
Hassanzahraee M, Zoghi M, Jaberzadeh S. Longer Transcranial Magnetic Stimulation Intertrial Interval Increases Size, Reduces Variability, and Improves the Reliability of Motor Evoked Potentials. Brain Connect 2020; 9:770-776. [PMID: 31744309 DOI: 10.1089/brain.2019.0714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
High rates of variability in the amplitude of transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs), a popular method for assessing corticospinal excitability (CSE), make it essential to examine inherent reliability of the MEP amplitude. We aimed to investigate the effects of different intertrial intervals (ITIs) of single-pulse TMS on the amplitude, variability, and test-retest reliability of MEPs. Twenty-five TMS single pulses were recorded at four different ITIs of 5, 10, 15, and 20 sec from 15 healthy participants who attended two experimental sessions. Repeated measures analysis of variance (rmANOVA) and standardized z-value standard deviations (SDs) were used to investigate the effects of ITIs on MEP amplitudes and variability. Test-retest reliability of MEP amplitudes was also assessed using rmANOVA and intraclass correlation (ICC). rmANOVA revealed significantly larger MEP amplitudes following ITIs of 10, 15, and 20 sec compared with ITI 5, with no significant increases between ITIs of 15 and 20 sec. Standardized z-value SDs revealed variability rate reduction following longer ITIs with significant reductions occurring following ITIs of 10, 15, and 20 sec compared with ITI 5 with no significant difference between ITIs of 15 and 20 sec. rmANOVA showed no significant Time main effect on the MEP changes confirming within- and between-session agreement. ICCs reported significant within- and between-session reliability in all selected ITIs. The findings of the current study indicate that longer ITIs up to 15 sec can significantly induce larger MEPs with lower variability and higher reliability. The increase in ITIs not only reduces the chance of TMS-induced changes in CSE but also helps us to use this assessment tool in studies with smaller sample sizes.
Collapse
Affiliation(s)
- Maryam Hassanzahraee
- Noninvasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Melbourne, Australia
| | - Shapour Jaberzadeh
- Noninvasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
28
|
Lorenz S, Alex B, Kammer T. Ten minutes of transcranial static magnetic field stimulation does not reliably modulate motor cortex excitability. PLoS One 2020; 15:e0233614. [PMID: 32453767 PMCID: PMC7250443 DOI: 10.1371/journal.pone.0233614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, modulatory effects of static magnetic field stimulation (tSMS) on excitability of the motor cortex have been reported. In our previous study we failed to replicate these results. It was suggested that the lack of modulatory effects was due to the use of an auditory oddball task in our study. Thus, we aimed to evaluate the role of an oddball task on the effects of tSMS on motor cortex excitability. In a within-subject-design we compared 10 minutes tSMS with and without oddball task. In one of the two sessions subjects had to solve an auditory oddball task during the exposure to the magnet, whereas there was no task during exposure in the other session. Motor cortex excitability was measured before and after tSMS. No modulation was observed in any condition. However, when data were pooled regarding the order of the sessions, a trend for an increase of excitability was observed in the first session compared to the second session. We now can rule out that the auditory oddball task destroys tSMS effects, as postulated. Our results rather suggest that fluctuations in the amplitudes of single pulse motor evoked potentials may possibly mask weak modulatory effects but may also lead to false positive results if the number of subjects in a study is too low. In addition, there might be a habituation effect to the whole procedure, resulting in less variability when subjects underwent the same experiment twice.
Collapse
Affiliation(s)
- Sabrina Lorenz
- Department of Psychiatry, Section for Neurostimulation, University of Ulm, Ulm, Germany
- * E-mail:
| | - Birte Alex
- Department of Psychiatry, Section for Neurostimulation, University of Ulm, Ulm, Germany
| | - Thomas Kammer
- Department of Psychiatry, Section for Neurostimulation, University of Ulm, Ulm, Germany
| |
Collapse
|
29
|
Huang HW, Tsai JJ, Su PF, Mau YL, Wu YJ, Wang WC, Lin CCK. Cortical Excitability by Transcranial Magnetic Stimulation as Biomarkers for Seizure Controllability in Temporal Lobe Epilepsy. Neuromodulation 2020; 23:399-406. [PMID: 31840383 DOI: 10.1111/ner.13093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate whether indicators of cortical excitability are good biomarkers of seizure controllability in temporal lobe epilepsy (TLE). MATERIALS AND METHODS Three groups of subjects were recruited: those with poorly controlled (PC) TLE (N = 41), well-controlled (WC) TLE (N = 71), and healthy controls (N = 44). Short- and long-latency recovery curves were obtained by paired-pulse transcranial magnetic stimulation. Linear mixed effect models were used to study the effects of group, interstimulus interval (ISI), and antiepileptic drugs on long-interval intracortical inhibition (LICI) and short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). RESULTS The mixed effect model that did not incorporate antiepileptic drugs showed that group and ISI were significant factors for LICI and SICI/ICF. LICI in the healthy control group was greater than in the two epilepsy groups, and the difference was significant at ISIs of 50, 150, and 200 msec. In contrast, SICI/ICF in the PC group was greater than in the healthy control and WC groups, and the difference was significant at an ISI of 15 msec. However, due to large variance, it was difficult to identify a cutoff value with both good sensitivity and good specificity. Incorporating the information of antiepileptic drugs to the mixed effect model did not change the overall results. CONCLUSIONS Although LICI and SICI/ICF parameters were significantly different at the group level, they may not be suitable biomarkers for the controllability of TLE at the subject level.
Collapse
Affiliation(s)
- Han-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jing-Jane Tsai
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Fang Su
- Department of Statistics, College of Management, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Lin Mau
- Department of Statistics, College of Management, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Jen Wu
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chi Wang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chou-Ching K Lin
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
30
|
Guerra A, López-Alonso V, Cheeran B, Suppa A. Solutions for managing variability in non-invasive brain stimulation studies. Neurosci Lett 2020; 719:133332. [DOI: 10.1016/j.neulet.2017.12.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
|
31
|
Davila-Pérez P, Pascual-Leone A, Cudeiro J. Effects of Transcranial Static Magnetic Stimulation on Motor Cortex Evaluated by Different TMS Waveforms and Current Directions. Neuroscience 2019; 413:22-30. [PMID: 31195056 PMCID: PMC6688472 DOI: 10.1016/j.neuroscience.2019.05.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 11/20/2022]
Abstract
Transcranial static magnetic stimulation (tSMS) modulates cortical excitability probably by interacting with the GABA-glutamate intracortical balance. Different transcranial magnetic stimulation (TMS) waveforms probe distinct GABA-mediated cortical inhibition networks. The goal of the present work is to further characterize tSMS-induced changes in motor cortex reactivity and inhibition-excitation (I/E) balance. We hypothesized that tSMS affects particular cortical networks and thus, the effects of tSMS would be different depending on the TMS waveform used to assess its results. 23 healthy young adults completed two sessions of real or sham tSMS. The order of the sessions was randomized across participants. Motor evoked potentials (MEPs), cortical silent period (CSP), short- and long-interval intracortical inhibition (SICI and LICI), and intracortical facilitation (ICF) were assessed with TMS monophasic posterior-anterior (monoPA; n = 9), monophasic anterior-posterior (monoAP; n = 7), or biphasic (biAP-PA; n = 7) pulses. Repeated measures analyses of variance and appropriate pairwise comparisons were performed for each TMS measure. After 15 min of real tSMS, the MEP amplitudes decreased compared to sham and baseline, SICI and LICI showed greater inhibition, and a tendency towards longer CSPs and less facilitation was found. These results were only observed with monoPA TMS. MEP amplitude increased compared to sham with monoAP TMS, with no clear changes in general intracortical I/E balance. Biphasic TMS was not able to capture any effects of tSMS. The results show that the effects of tSMS on cortical excitability and inhibition involve specific interneuron circuits that are selectively activated by monoPA TMS.
Collapse
Affiliation(s)
- Paula Davila-Pérez
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Neuroscience and Motor Control Group (NEUROcom), Institute for Biomedical Research (INIBIC), Universidade da Coruña, A Coruña, Spain.
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Barcelona, Spain
| | - Javier Cudeiro
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Neuroscience and Motor Control Group (NEUROcom), Institute for Biomedical Research (INIBIC), Universidade da Coruña, A Coruña, Spain; Centro de Estimulación Cerebral de Galicia, A Coruña, Spain.
| |
Collapse
|
32
|
Ohashi H, Gribble PL, Ostry DJ. Somatosensory cortical excitability changes precede those in motor cortex during human motor learning. J Neurophysiol 2019; 122:1397-1405. [PMID: 31390294 DOI: 10.1152/jn.00383.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Motor learning is associated with plasticity in both motor and somatosensory cortex. It is known from animal studies that tetanic stimulation to each of these areas individually induces long-term potentiation in its counterpart. In this context it is possible that changes in motor cortex contribute to somatosensory change and that changes in somatosensory cortex are involved in changes in motor areas of the brain. It is also possible that learning-related plasticity occurs in these areas independently. To better understand the relative contribution to human motor learning of motor cortical and somatosensory plasticity, we assessed the time course of changes in primary somatosensory and motor cortex excitability during motor skill learning. Learning was assessed using a force production task in which a target force profile varied from one trial to the next. The excitability of primary somatosensory cortex was measured using somatosensory evoked potentials in response to median nerve stimulation. The excitability of primary motor cortex was measured using motor evoked potentials elicited by single-pulse transcranial magnetic stimulation. These two measures were interleaved with blocks of motor learning trials. We found that the earliest changes in cortical excitability during learning occurred in somatosensory cortical responses, and these changes preceded changes in motor cortical excitability. Changes in somatosensory evoked potentials were correlated with behavioral measures of learning. Changes in motor evoked potentials were not. These findings indicate that plasticity in somatosensory cortex occurs as a part of the earliest stages of motor learning, before changes in motor cortex are observed.NEW & NOTEWORTHY We tracked somatosensory and motor cortical excitability during motor skill acquisition. Changes in both motor cortical and somatosensory excitability were observed during learning; however, the earliest changes were in somatosensory cortex, not motor cortex. Moreover, the earliest changes in somatosensory cortical excitability predict the extent of subsequent learning; those in motor cortex do not. This is consistent with the idea that plasticity in somatosensory cortex coincides with the earliest stages of human motor learning.
Collapse
Affiliation(s)
- Hiroki Ohashi
- Haskins Laboratories, New Haven, Connecticut.,Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Paul L Gribble
- Haskins Laboratories, New Haven, Connecticut.,The Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - David J Ostry
- Haskins Laboratories, New Haven, Connecticut.,Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Burgess JD, Major BP, McNeel C, Clark GM, Lum JAG, Enticott PG. Learning to Expect: Predicting Sounds During Movement Is Related to Sensorimotor Association During Listening. Front Hum Neurosci 2019; 13:215. [PMID: 31333431 PMCID: PMC6624421 DOI: 10.3389/fnhum.2019.00215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Sensory experiences, such as sound, often result from our motor actions. Over time, repeated sound-producing performance can generate sensorimotor associations. However, it is not clear how sensory and motor information are associated. Here, we explore if sensory prediction is associated with the formation of sensorimotor associations during a learning task. We recorded event-related potentials (ERPs) while participants produced index and little finger-swipes on a bespoke device, generating novel sounds. ERPs were also obtained as participants heard those sounds played back. Peak suppression was compared to assess sensory prediction. Additionally, transcranial magnetic stimulation (TMS) was used during listening to generate finger-motor evoked potentials (MEPs). MEPs were recorded before and after training upon hearing these sounds, and then compared to reveal sensorimotor associations. Finally, we explored the relationship between these components. Results demonstrated that an increased positive-going peak (e.g., P2) and a suppressed negative-going peak (e.g., N2) were recorded during action, revealing some sensory prediction outcomes (P2: p = 0.050, ηp2 = 0.208; N2: p = 0.001, ηp2 = 0.474). Increased MEPs were also observed upon hearing congruent sounds compared with incongruent sounds (i.e., associated to a finger), demonstrating precise sensorimotor associations that were not present before learning (Index finger: p < 0.001, ηp2 = 0.614; Little finger: p < 0.001, ηp2 = 0.529). Consistent with our broad hypotheses, a negative association between the MEPs in one finger during listening and ERPs during performance of the other was observed (Index finger MEPs and Fz N1 action ERPs; r = −0.655, p = 0.003). Overall, data suggest that predictive mechanisms are associated with the fine-tuning of sensorimotor associations.
Collapse
Affiliation(s)
- Jed D Burgess
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Brendan P Major
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Claire McNeel
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
34
|
Khademi F, Royter V, Gharabaghi A. Distinct Beta-band Oscillatory Circuits Underlie Corticospinal Gain Modulation. Cereb Cortex 2019; 28:1502-1515. [PMID: 29415124 PMCID: PMC6093341 DOI: 10.1093/cercor/bhy016] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/09/2018] [Indexed: 01/13/2023] Open
Abstract
Rhythmic synchronization of neurons is known to affect neuronal interactions. In the motor system, oscillatory power fluctuations modulate corticospinal excitability. However, previous research addressing phase-specific gain modulation in the motor system has resulted in contradictory findings. It remains unclear how many time windows of increased responsiveness each oscillatory cycle provides. Moreover, we still lack conclusive evidence as to whether the motor cortex entails an intrinsic response modulation along the rhythm cycle, as shown for spinal neurons. We investigated this question with single-pulse transcranial magnetic stimulation over the primary motor cortex at rest. Application of near-motor threshold stimuli revealed a frequency- and phase-specific gain modulation at both cortical and spinal level, independent of the spontaneous oscillatory power fluctuations at each level. We detected bilateral sensorimotor circuits in the lower beta-band (14–17 Hz) and unilateral corticospinal circuits in the upper beta-band (20–24 Hz). These findings provide novel evidence that intrinsic activity in the human motor cortex modulates input gain along the beta oscillatory cycle within distinct circuits. In accordance with periodic alternations of synchronous hyper- and depolarization, increased neuronal responsiveness occurred once per oscillatory beta cycle. This information may lead to new brain state-dependent and circuit-specific interventions for targeted neuromodulation.
Collapse
Affiliation(s)
- Fatemeh Khademi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Vladimir Royter
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
35
|
Jannati A, Fried PJ, Block G, Oberman LM, Rotenberg A, Pascual-Leone A. Test-Retest Reliability of the Effects of Continuous Theta-Burst Stimulation. Front Neurosci 2019; 13:447. [PMID: 31156361 PMCID: PMC6533847 DOI: 10.3389/fnins.2019.00447] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/18/2019] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES The utility of continuous theta-burst stimulation (cTBS) as index of cortical plasticity is limited by inadequate characterization of its test-retest reliability. We thus evaluated the reliability of cTBS aftereffects, and explored the roles of age and common single-nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF) and apolipoprotein E (APOE) genes. METHODS Twenty-eight healthy adults (age range 21-65) underwent two identical cTBS sessions (median interval = 9.5 days) targeting the motor cortex. Intraclass correlation coefficients (ICCs) of the log-transformed, baseline-corrected amplitude of motor evoked potentials (ΔMEP) at 5-60 min post-cTBS (T5-T60) were calculated. Adjusted effect sizes for cTBS aftereffects were then calculated by taking into account the reliability of each cTBS measure. RESULTS ΔMEP at T50 was the most-reliable cTBS measure in the whole sample (ICC = 0.53). Area under-the-curve (AUC) of ΔMEPs was most reliable when calculated over the full 60 min post-cTBS (ICC = 0.40). cTBS measures were substantially more reliable in younger participants (< 35 years) and in those with BDNF Val66Val and APOE ε4- genotypes. CONCLUSION cTBS aftereffects are most reliable when assessed 50 min post-cTBS, or when cumulative ΔMEP measures are calculated over 30-60 min post-cTBS. Reliability of cTBS aftereffects is influenced by age, and BDNF and APOE polymorphisms. Reliability coefficients are used to adjust effect-size calculations for interpretation and planning of cTBS studies.
Collapse
Affiliation(s)
- Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Peter J. Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gabrielle Block
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Lindsay M. Oberman
- Neuroplasticity and Autism Spectrum Disorder Program, Department of Psychiatry and Human Behavior, E.P. Bradley Hospital, Warren Alpert Medical School, Brown University, East Providence, RI, United States
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Perceptual and Physiological Consequences of Dark Adaptation: A TMS-EEG Study. Brain Topogr 2019; 32:773-782. [DOI: 10.1007/s10548-019-00715-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
|
37
|
Bauer PR, Helling RM, Perenboom MJL, Lopes da Silva FH, Tolner EA, Ferrari MD, Sander JW, Visser GH, Kalitzin SN. Phase clustering in transcranial magnetic stimulation-evoked EEG responses in genetic generalized epilepsy and migraine. Epilepsy Behav 2019; 93:102-112. [PMID: 30875639 DOI: 10.1016/j.yebeh.2019.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Epilepsy and migraine are paroxysmal neurological conditions associated with disturbances of cortical excitability. No useful biomarkers to monitor disease activity in these conditions are available. Phase clustering was previously described in electroencephalographic (EEG) responses to photic stimulation and may be a potential epilepsy biomarker. OBJECTIVE The objective of this study was to investigate EEG phase clustering in response to transcranial magnetic stimulation (TMS), compare it with photic stimulation in controls, and explore its potential as a biomarker of genetic generalized epilepsy or migraine with aura. METHODS People with (possible) juvenile myoclonic epilepsy (JME), migraine with aura, and healthy controls underwent single-pulse TMS with concomitant EEG recording during the interictal period. We compared phase clustering after TMS with photic stimulation across the groups using permutation-based testing. RESULTS We included eight people with (possible) JME (five off medication, three on), 10 with migraine with aura, and 37 controls. The TMS and photic phase clustering spectra showed significant differences between those with epilepsy without medication and controls. Two phase clustering-based indices successfully captured these differences between groups. One participant was tested multiple times. In this case, the phase clustering-based indices were inversely correlated with the dose of antiepileptic medication. Phase clustering did not differ between people with migraine and controls. CONCLUSION We present methods to quantify phase clustering using TMS-EEG and show its potential value as a measure of brain network activity in genetic generalized epilepsy. Our results suggest that the higher propensity to phase clustering is not shared between genetic generalized epilepsy and migraine.
Collapse
Affiliation(s)
- Prisca R Bauer
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| | - Robert M Helling
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands
| | - Matthijs J L Perenboom
- Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Fernando H Lopes da Silva
- Center of Neurosciences, Swammerdam Institute of Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, the Netherlands; Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Gerhard H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands
| | - Stiliyan N Kalitzin
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, the Netherlands; Image Sciences Institute, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, the Netherlands
| |
Collapse
|
38
|
Chung SW, Sullivan CM, Rogasch NC, Hoy KE, Bailey NW, Cash RFH, Fitzgerald PB. The effects of individualised intermittent theta burst stimulation in the prefrontal cortex: A TMS-EEG study. Hum Brain Mapp 2018; 40:608-627. [PMID: 30251765 DOI: 10.1002/hbm.24398] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/08/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Recent studies have highlighted variability in response to theta burst stimulation (TBS) in humans. TBS paradigm was originally developed in rodents to mimic gamma bursts coupled with theta rhythms, and was shown to elicit long-term potentiation. The protocol was subsequently adapted for humans using standardised frequencies of stimulation. However, each individual has different rhythmic firing pattern. The present study sought to explore whether individualised intermittent TBS (Ind iTBS) could outperform the effects of two other iTBS variants. Twenty healthy volunteers received iTBS over left prefrontal cortex using 30 Hz at 6 Hz, 50 Hz at 5 Hz, or individualised frequency in separate sessions. Ind iTBS was determined using theta-gamma coupling during the 3-back task. Concurrent use of transcranial magnetic stimulation and electroencephalography (TMS-EEG) was used to track changes in cortical plasticity. We also utilised mood ratings using a visual analogue scale and assessed working memory via the 3-back task before and after stimulation. No group-level effect was observed following either 30 or 50 Hz iTBS in TMS-EEG. Ind iTBS significantly increased the amplitude of the TMS-evoked P60, and decreased N100 and P200 amplitudes. A significant positive correlation between neurophysiological change and change in mood rating was also observed. Improved accuracy in the 3-back task was observed following both 50 Hz and Ind iTBS conditions. These findings highlight the critical importance of frequency in the parameter space of iTBS. Tailored stimulation parameters appear more efficacious than standard paradigms in neurophysiological and mood changes. This novel approach presents a promising option and benefits may extend to clinical applications.
Collapse
Affiliation(s)
- Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Caley M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Neil W Bailey
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Robin F H Cash
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia.,Epworth Clinic, Epworth Healthcare, Melbourne, Australia
| |
Collapse
|
39
|
Takemi M, Maeda T, Masakado Y, Siebner HR, Ushiba J. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface. Neuroimage 2018; 183:597-605. [PMID: 30172003 DOI: 10.1016/j.neuroimage.2018.08.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 01/25/2023] Open
Abstract
Bridging between brain activity and machine control, brain-computer interface (BCI) can be employed to activate distributed neural circuits implicated in a specific aspect of motor control. Using a motor imagery-based BCI paradigm, we previously found a disinhibition within the primary motor cortex contralateral to the imagined movement, as evidenced by event-related desynchronization (ERD) of oscillatory cortical activity. Yet it is unclear whether this BCI approach does selectively facilitate corticomotor representations targeted by the imagery. To address this question, we used brain state-dependent transcranial magnetic stimulation while participants performed kinesthetic motor imagery of wrist movements with their right hand and received online visual feedback of the ERD. Single and paired-pulse magnetic stimulation were given to the left primary motor cortex at a low or high level of ERD to assess intracortical excitability. While intracortical facilitation showed no modulation by ERD, short-latency intracortical inhibition was reduced the higher the ERD. Intracortical disinhibition was only found in the agonist muscle targeted by motor imagery at high ERD level, but not in the antagonist muscle. Single pulse motor-evoked potential was also increased the higher the ERD. However, at high ERD level, this facilitatory effect on overall corticospinal excitability was not selective to the agonist muscle. Analogous results were found in two independent experiments, in which participants either performed kinesthetic motor imagery of wrist extension or flexion. Our results showed that motor imagery-based BCI can selectively disinhibit the corticomotor output to the agonist muscle, enabling effector-specific training in patients with motor paralysis.
Collapse
Affiliation(s)
- Mitsuaki Takemi
- School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, Kanagawa, Japan; Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Tsuyoshi Maeda
- School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Yoshihisa Masakado
- Department of Rehabilitation Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan; Keio Research Institute for Pure and Applied Sciences (KiPAS), Keio University, Kanagawa, Japan.
| |
Collapse
|
40
|
Temporal Profile and Limb-specificity of Phasic Pain-Evoked Changes in Motor Excitability. Neuroscience 2018; 386:240-255. [DOI: 10.1016/j.neuroscience.2018.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 12/17/2022]
|
41
|
Takarada Y, Nozaki D. Motivational goal-priming with or without awareness produces faster and stronger force exertion. Sci Rep 2018; 8:10135. [PMID: 29973646 PMCID: PMC6031684 DOI: 10.1038/s41598-018-28410-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 06/20/2018] [Indexed: 11/28/2022] Open
Abstract
Previous research has demonstrated that barely visible (subliminal) goal-priming with motivational reward can alter the state of the motor system and enhance motor output. Research shows that these affective-motivational effects result from associations between goal representations and positive affect without conscious awareness. Here, we tested whether motivational priming can increase motor output even if the priming is fully visible (supraliminal), and whether the priming effect occurs through increased cortical excitability. Groups of participants were primed with either barely visible or fully visible words related to effort and control sequences of random letters that were each followed by fully visible positively reinforcing words. The priming effect was measured behaviourally by handgrip force and reaction time to the grip cue after the priming was complete. Physiologically, the effects were measured by pupil dilation and motor-evoked potentials (MEPs) in response to transcranial magnetic stimulation during the priming task. Analysis showed that for both the supraliminal and subliminal conditions, reaction time decreased and total force, MEP magnitude, and pupil dilation increased. None of the priming-induced changes in behaviour or physiology differed significantly between the supraliminal and the subliminal groups, indicating that implicit motivation towards motor goals might not require conscious perception of the goals.
Collapse
Affiliation(s)
- Yudai Takarada
- Faculty of Sports Sciences, Waseda University, 2-579-15 Tokorozawa, Saitama, 359-1192, Japan.
| | - Daichi Nozaki
- Graduate School of Education, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
42
|
Visual Attention Affects the Amplitude of the Transcranial Magnetic Stimulation-associated Motor-evoked Potential: A Preliminary Study With Clinical Utility. J Psychiatr Pract 2018; 24:220-229. [PMID: 30427805 PMCID: PMC6530802 DOI: 10.1097/pra.0000000000000321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The transcranial magnetic stimulation (TMS)-elicited motor-evoked potential (MEP) is a valuable measure for clinical evaluations of various neurological disorders and is used to determine resting motor threshold for repetitive TMS dosing. Although MEP amplitude is primarily associated with motor system function, there is evidence that nonmotor factors may also influence amplitude. This experiment tested the hypotheses that manipulation of 2 factors (visual attention, cognitive regulation) in human participants would significantly affect MEP amplitude. METHODS Blocks of MEPs were recorded from the dominant right hand as participants (N=20) were instructed to shift their visual attention (toward and away from the hand) and cognitively regulate the MEPs (rest, attenuate MEP amplitude, potentiate MEP amplitude) using their thoughts (6 blocks, 20 pulses/block, randomized, 110% resting motor threshold). RESULTS MEP amplitude was significantly affected by the direction of visual attention; looking away from the hand led to higher amplitudes (P=0.003). The relationship with cognitive regulation was nonsignificant. CONCLUSIONS The significant effect of visual attention on MEP suggests that this should be a standardized parameter in clinical and research studies. These data underscore the importance of rigorous reporting of methods and use of standardized practices for MEP acquisition and TMS dosing to ensure consistent clinical measurement and treatment.
Collapse
|
43
|
Pellicciari MC, Bonnì S, Ponzo V, Cinnera AM, Mancini M, Casula EP, Sallustio F, Paolucci S, Caltagirone C, Koch G. Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. Neuroimage 2018; 175:365-378. [DOI: 10.1016/j.neuroimage.2018.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/21/2022] Open
|
44
|
de Goede AA, Ter Braack EM, van Putten MJAM. Accurate Coil Positioning is Important for Single and Paired Pulse TMS on the Subject Level. Brain Topogr 2018; 31:917-930. [PMID: 29943242 PMCID: PMC6182440 DOI: 10.1007/s10548-018-0655-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/07/2018] [Indexed: 12/04/2022]
Abstract
Function-guided navigation is commonly used when assessing cortical excitability using transcranial magnetic stimulation (TMS). However, the required accuracy, stability and the effect of a change in coil positioning are not entirely known. This study investigates the accuracy of function-guided navigation for determining the hotspot. Furthermore, it evaluates the effect of a change in coil location on the single and paired pulse excitability measures: motor evoked potential (MEP) amplitude, TMS evoked potential (TEP) and long intracortical inhibition (LICI), and of a change in coil orientation on LICI. Eight healthy subjects participated in the single pulse study, and ten in the paired pulse study. A robot-guided navigation system was used to ensure accurate and stable coil positioning at the motor hotspot as determined using function-guided navigation. In addition, we targeted four locations at 2 mm and four at 5 mm distance around the initially defined hotspot, and we increased and decreased the coil orientation by 10°. In none of the subjects, the largest MEP amplitudes were evoked at the originally determined hotspot, resulting in a poor accuracy of function-guided navigation. At the group level, a change in coil location had no significant effect on the MEP amplitude, TEP, or LICI, and a change in coil orientation did not significantly affected LICI. However, at the subject level significant effects on MEP amplitude, TEP, and LICI were found for changes in coil location or orientation, although absolute differences were relatively small and did not show a consistent pattern. This study indicates that a high accuracy in coil positioning is especially required to measure cortical excitability reliably in individual subjects using single or paired pulse TMS.
Collapse
Affiliation(s)
- Annika A de Goede
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, Carré 3.714, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Esther M Ter Braack
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, Carré 3.714, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, Carré 3.714, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, The Netherlands
| |
Collapse
|
45
|
Schilberg L, Engelen T, ten Oever S, Schuhmann T, de Gelder B, de Graaf TA, Sack AT. Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability. Cortex 2018; 103:142-152. [DOI: 10.1016/j.cortex.2018.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/11/2018] [Accepted: 03/01/2018] [Indexed: 01/26/2023]
|
46
|
Bauer PR, de Goede AA, Stern WM, Pawley AD, Chowdhury FA, Helling RM, Bouet R, Kalitzin SN, Visser GH, Sisodiya SM, Rothwell JC, Richardson MP, van Putten MJAM, Sander JW. Long-interval intracortical inhibition as biomarker for epilepsy: a transcranial magnetic stimulation study. Brain 2018; 141:409-421. [PMID: 29340584 PMCID: PMC5837684 DOI: 10.1093/brain/awx343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/08/2017] [Accepted: 10/24/2017] [Indexed: 11/13/2022] Open
Abstract
Cortical excitability, as measured by transcranial magnetic stimulation combined with electromyography, is a potential biomarker for the diagnosis and follow-up of epilepsy. We report on long-interval intracortical inhibition data measured in four different centres in healthy controls (n = 95), subjects with refractory genetic generalized epilepsy (n = 40) and with refractory focal epilepsy (n = 69). Long-interval intracortical inhibition was measured by applying two supra-threshold stimuli with an interstimulus interval of 50, 100, 150, 200 and 250 ms and calculating the ratio between the response to the second (test stimulus) and to the first (conditioning stimulus). In all subjects, the median response ratio showed inhibition at all interstimulus intervals. Using a mixed linear-effects model, we compared the long-interval intracortical inhibition response ratios between the different subject types. We conducted two analyses; one including data from the four centres and one excluding data from Centre 2, as the methods in this centre differed from the others. In the first analysis, we found no differences in long-interval intracortical inhibition between the different subject types. In all subjects, the response ratios at interstimulus intervals 100 and 150 ms showed significantly more inhibition than the response ratios at 50, 200 and 250 ms. Our second analysis showed a significant interaction between interstimulus interval and subject type (P = 0.0003). Post hoc testing showed significant differences between controls and refractory focal epilepsy at interstimulus intervals of 100 ms (P = 0.02) and 200 ms (P = 0.04). There were no significant differences between controls and refractory generalized epilepsy groups or between the refractory generalized and focal epilepsy groups. Our results do not support the body of previous work that suggests that long-interval intracortical inhibition is significantly reduced in refractory focal and genetic generalized epilepsy. Results from the second analysis are even in sharper contrast with previous work, showing inhibition in refractory focal epilepsy at 200 ms instead of facilitation previously reported. Methodological differences, especially shorter intervals between the pulse pairs, may have contributed to our inability to reproduce previous findings. Based on our results, we suggest that long-interval intracortical inhibition as measured by transcranial magnetic stimulation and electromyography is unlikely to have clinical use as a biomarker of epilepsy.
Collapse
Affiliation(s)
- Prisca R Bauer
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands
| | - Annika A de Goede
- Department of Clinical Neurophysiology, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - William M Stern
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0RJ, UK
| | - Adam D Pawley
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London 16 De Crespigny Park, London, SE5 8AF, UK
| | - Fahmida A Chowdhury
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London 16 De Crespigny Park, London, SE5 8AF, UK
| | - Robert M Helling
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands
- Image Sciences Institute, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Romain Bouet
- Lyon Neuroscience Research Center, INSERM U1028 - CNRS UMR5292, Université Claude Bernard Lyon1, Brain Dynamics and Cognition Team, Centre Hospitalier Le Vinatier (Bât. 452), 95 Bd Pinel, 69500 Bron, France
| | - Stiliyan N Kalitzin
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands
- Image Sciences Institute, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Gerhard H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands
| | - Sanjay M Sisodiya
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0RJ, UK
| | - John C Rothwell
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London 16 De Crespigny Park, London, SE5 8AF, UK
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, MIRA – Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Department of Clinical Neurophysiology and Neurology, Medisch Spectrum Twente, Koningsplein 1, 7512 KZ Enschede, The Netherlands
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands
- Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0RJ, UK
| |
Collapse
|
47
|
Raco V, Bauer R, Norim S, Gharabaghi A. Cumulative effects of single TMS pulses during beta-tACS are stimulation intensity-dependent. Brain Stimul 2017; 10:1055-1060. [DOI: 10.1016/j.brs.2017.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
|
48
|
Jannati A, Block G, Oberman LM, Rotenberg A, Pascual-Leone A. Interindividual variability in response to continuous theta-burst stimulation in healthy adults. Clin Neurophysiol 2017; 128:2268-2278. [PMID: 29028501 DOI: 10.1016/j.clinph.2017.08.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/10/2017] [Accepted: 08/23/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE We used complete-linkage cluster analysis to identify healthy subpopulations with distinct responses to continuous theta-burst stimulation (cTBS). METHODS 21 healthy adults (age±SD, 36.9±15.2years) underwent cTBS of left motor cortex. Natural log-transformed motor evoked potentials (LnMEPs) at 5-50min post-cTBS (T5-T50) were calculated. RESULTS Two clusters were found; Group 1 (n=12) that showed significant MEP facilitation at T15, T20, and T50 (p's<0.006), and Group 2 (n=9) that showed significant suppression at T5-T15 (p's<0.022). LnMEPs at T10 and T40 were best predictors of, and together accounted for 80% of, cluster assignment. In an exploratory analysis, we examined the roles of brain-derived neurotrophic factor (BDNF) and apolipoprotein E (APOE) polymorphisms in the cTBS response. Val66Met participants showed greater facilitation at T10 than Val66Val participants (p=0.025). BDNF and cTBS intensity predicted 59% of interindividual variability in LnMEP at T10. APOE did not significantly affect LnMEPs at any time point (p's>0.32). CONCLUSIONS Data-driven cluster analysis can identify healthy subpopulations with distinct cTBS responses. T10 and T40 LnMEPs were best predictors of cluster assignment. T10 LnMEP was influenced by BDNF polymorphism and cTBS intensity. SIGNIFICANCE Healthy adults can be sorted into subpopulations with distinct cTBS responses that are influenced by genetics.
Collapse
Affiliation(s)
- Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Gabrielle Block
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lindsay M Oberman
- Neuroplasticity and Autism Spectrum Disorder Program, Department of Psychiatry and Human Behavior, E.P. Bradley Hospital, Warrent Alpert Medical School of Brown University, East Providence, RI, USA
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Barcelona, Spain.
| |
Collapse
|
49
|
Fecchio M, Pigorini A, Comanducci A, Sarasso S, Casarotto S, Premoli I, Derchi CC, Mazza A, Russo S, Resta F, Ferrarelli F, Mariotti M, Ziemann U, Massimini M, Rosanova M. The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials. PLoS One 2017; 12:e0184910. [PMID: 28910407 PMCID: PMC5599017 DOI: 10.1371/journal.pone.0184910] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/01/2017] [Indexed: 01/05/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) can excite both cortico-cortical and cortico-spinal axons resulting in TMS-evoked potentials (TEPs) and motor-evoked potentials (MEPs), respectively. Despite this remarkable difference with other cortical areas, the influence of motor output and its amplitude on TEPs is largely unknown. Here we studied TEPs resulting from M1 stimulation and assessed whether their waveform and spectral features depend on the MEP amplitude. To this aim, we performed two separate experiments. In experiment 1, single-pulse TMS was applied at the same supra-threshold intensity on primary motor, prefrontal, premotor and parietal cortices and the corresponding TEPs were compared by means of local mean field power and time-frequency spectral analysis. In experiment 2 we stimulated M1 at resting motor threshold in order to elicit MEPs characterized by a wide range of amplitudes. TEPs computed from high-MEP and low-MEP trials were then compared using the same methods applied in experiment 1. In line with previous studies, TMS of M1 produced larger TEPs compared to other cortical stimulations. Notably, we found that only TEPs produced by M1 stimulation were accompanied by a late event-related desynchronization (ERD-peaking at ~300 ms after TMS), whose magnitude was strongly dependent on the amplitude of MEPs. Overall, these results suggest that M1 produces peculiar responses to TMS possibly reflecting specific anatomo-functional properties, such as the re-entry of proprioceptive feedback associated with target muscle activation.
Collapse
Affiliation(s)
- Matteo Fecchio
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Andrea Pigorini
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Angela Comanducci
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Isabella Premoli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Chiara-Camilla Derchi
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Alice Mazza
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Simone Russo
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Federico Resta
- Division of Radiology, Hospital Luigi Sacco, Milan, Italy
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, United States of America
| | - Maurizio Mariotti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
- IRCCS Fondazione Don Gnocchi Onlus, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
- Fondazione Europea per la Ricerca Biomedica Onlus, Milan, Italy
- * E-mail:
| |
Collapse
|
50
|
Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. Neuroimage 2017; 157:34-44. [PMID: 28572060 DOI: 10.1016/j.neuroimage.2017.05.060] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/08/2017] [Accepted: 05/27/2017] [Indexed: 01/28/2023] Open
Abstract
Scientists and clinicians have traditionally targeted single brain regions with stimulation to modulate brain function and disease. However, brain regions do not operate in isolation, but interact with other regions through networks. As such, stimulation of one region may impact and be impacted by other regions in its network. Here we test whether the effects of brain stimulation can be enhanced by simultaneously targeting a region and its network, identified with resting state functional connectivity MRI. Fifteen healthy participants received two types of transcranial direct current stimulation (tDCS): a traditional two-electrode montage targeting a single brain region (left primary motor cortex [M1]) and a novel eight-electrode montage targeting this region and its associated resting state network. As a control, 8 participants also received multifocal tDCS mismatched to this network. Network-targeted tDCS more than doubled the increase in left M1 excitability over time compared to traditional tDCS and the multifocal control. Modeling studies suggest these results are unlikely to be due to tDCS effects on left M1 itself, however it is impossible to completely exclude this possibility. It also remains unclear whether multifocal tDCS targeting a network selectively modulates this network and which regions within the network are most responsible for observed effects. Despite these limitations, network-targeted tDCS appears to be a promising approach for enhancing tDCS effects beyond traditional stimulation targeting a single brain region. Future work is needed to test whether these results extend to other resting state networks and enhance behavioral or therapeutic effects.
Collapse
|