1
|
Walunj D, Egarmina K, Zipin-Roitman A, Muddineni SSNA, Tkachenko I, Mitra P, Tobi D, Bazylevich A, Shpilberg O, Milyavsky M, Hershkovitz-Rokah O, Gellerman G. Novel dual action chimera doxorubizen demonstrates superior efficacy to doxorubicin in acute leukemia. Sci Rep 2025; 15:10607. [PMID: 40148439 PMCID: PMC11950436 DOI: 10.1038/s41598-025-94373-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Modifying existing drugs to enhance their activity and reduce toxicity is a major focus of drug development. We developed a novel class of dual-action chimeric molecules for cancer therapy, linking known drugs to a DNA-methylating monomethyl triazene moiety (azene) via nucleophilic substitution. In-vitro screening of these chimeras on various leukemia cell lines identified a potent chimera, doxorubizen, a sequel of the known DNA intercalator and topoisomerase 2 (Topo-II) inhibitor doxorubicin (Dox) and azene. Molecular docking and dynamic simulations showed doxorubizen as a more potent Topo-II inhibitor than Dox as it binds to major grooves in DNA. Moreover, the monomethyl triazene portion is positioned favorably through tetracene core intercalation, potentially facilitating methylation at nearby guanine bases. Doxorubizen demonstrated significantly higher cytotoxicity, mitochondrial depolarization, DNA intercalation, and cell death than Dox. A Topo-II activity assay confirmed potent enzyme inhibition by doxorubizen. The mechanism of action of doxorubizen involves the inhibition of DNA repair in proximity to double-strand breaks by guanine methylation, enhanced mitochondrial depolarization, and increased apoptosis. Furthermore, in an acute leukemia xenograft model, doxorubizen significantly reduced the leukemia burden compared to Dox while preserving body weight and liver function. This work underscores the therapeutic potential of doxorubizen in leukemia treatment.
Collapse
Affiliation(s)
- Dipak Walunj
- Department of Chemical Sciences, Ariel University, PO Box 3, Ariel, 40700, Israel
| | - Katarina Egarmina
- Department of Molecular Biology, Ariel University, Ariel, Israel
- Translational Research Lab, Assuta Medical Center, Tel Aviv, Israel
| | - Adi Zipin-Roitman
- Department of Pathology, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel- Aviv, Israel
| | | | - Iryna Tkachenko
- Department of Chemical Sciences, Ariel University, PO Box 3, Ariel, 40700, Israel
| | - Pousali Mitra
- Department of Chemical Sciences, Ariel University, PO Box 3, Ariel, 40700, Israel
| | - Dror Tobi
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Andrii Bazylevich
- Department of Chemical Sciences, Ariel University, PO Box 3, Ariel, 40700, Israel
| | - Ofer Shpilberg
- Adelson School of Medicine, Ariel University, Ariel, Israel
- Institute of Hematology, Assuta Medical Center, Tel Aviv, Israel
| | - Michael Milyavsky
- Department of Pathology, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel- Aviv, Israel.
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Ariel University, Ariel, Israel.
- Translational Research Lab, Assuta Medical Center, Tel Aviv, Israel.
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, PO Box 3, Ariel, 40700, Israel.
| |
Collapse
|
2
|
Jiang F, Zhang C, Wang X, Yin Y, Hong J, Tang H, Tang LJ, Wu Z. "Repair and fold" DNA nanotweezers for measuring DNA alkylation repair mediated by ALKBH. Analyst 2025; 150:1229-1234. [PMID: 40034040 DOI: 10.1039/d5an00099h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We report a novel DNA lesion-modified nanotweezer that underwent conformational switching upon ALKBH enzyme-mediated lesion repair. We demonstrated that the DNA lesion-modified nanotweezer enabled specific and rapid monitoring of ALKBH2 and ALKBH3 activities and screening of inhibitors. Importantly, this strategy allowed evaluating ALKBH2-associated drug resistance in cells.
Collapse
Affiliation(s)
- Fengze Jiang
- State Key Laboratory of Chemo/Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Cui Zhang
- State Key Laboratory of Chemo/Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiangnan Wang
- State Key Laboratory of Chemo/Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- School of Resource & Environment, Hunan University of Technology and Business, Changsha, Hunan 410082, China
| | - Yuan Yin
- State Key Laboratory of Chemo/Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jieling Hong
- State Key Laboratory of Chemo/Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hao Tang
- State Key Laboratory of Chemo/Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
3
|
Cheng L. Chemical Strategies to Modulate and Manipulate RNA Epigenetic Modifications. Acc Chem Res 2025. [PMID: 40100209 DOI: 10.1021/acs.accounts.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
ConspectusRNA epigenetics has rapidly emerged as a key frontier in chemical biology, revealing that modifications to RNA bases and riboses can fine-tune essential cellular processes such as gene expression, translation, and metabolic homeostasis. Traditionally, researchers have relied on manipulating the "writers," "erasers," and "readers" of RNA modifications─i.e., protein cofactors─to alter and study these marks. Those enzyme-centric strategies, including small molecule inhibitors and CRISPR/Cas-based genetic perturbations, have been highly effective and are advancing in clinical applications. However, purely chemical approaches for installing, removing, or transforming RNA modifications without enzyme disturbance have offered distinct advantages, such as temporal control, reversibility, and bypassing compensatory biological feedback mechanisms that often arise with genetic or enzymatic inhibition. Every chemist should be concerned about RNA modifications, because they represent a striking intersection of molecular recognition, organic transformation, and cellular function. The ability to direct chemical reactivity at specific nucleosides in RNA can illuminate how individual modifications impact the overall gene regulation. Further, since improper RNA modification and damage patterns are implicated in cancer, metabolic disorders, and neurodegeneration, these chemical repair tools have potential as diagnostic and therapeutic interventions. Beyond medicine, agriculture also stands to benefit from chemical control of nucleoside-based plant hormones, possibly leading to improved crop productivity and resilience.In this Account, we outline several innovative chemical strategies tailored to different classes of RNA modifications. Flavin-based bioorthogonal chemistry has enabled demethylation of N6-methyladenosine (m6A) independent of endogenous demethylases, while oxidative bioorthogonal reactions can convert 5-methylcytidine (m5C) into distinct formyl derivatives for labeling and sequencing. Nitrogen-oxide and photochemical routes provided access for the selective removal of the side chain of N6-isopentenyladenosine (i6A), offering insights for both cell biology and plant hormone research. We also showcase how rationally designed small molecules can rewire complex RNA damage repair pathways, facilitating selective correction of vinyl-adduct lesions otherwise resistant to enzymatic repair. These purely chemical methods bypass the constraints of enzyme dependence, affording temporal precision (e.g., via light activation) and site-selective modification or labeling of RNA. By strategically engineering reactivity, we have uncovered new epitranscriptomic phenomena, such as in situ generation of non-native RNA modification, that offer fresh capabilities for cell imaging or targeted manipulation of plant callus development. Together, these discoveries signal a paradigm shift: chemical tools can complement or even surpass conventional enzyme-based methods for investigating, editing, and repairing RNA modifications. The ramifications are broad. Chemists can leverage these new reactivities to dissect the molecular underpinnings of diseases linked to epitranscriptomic dysregulation and to engineer next-generation therapeutic, diagnostic, and sequencing platforms. Plant biologists can apply the same chemical strategies to hone agronomic traits, from seed vigor to stress resilience. Ultimately, as we have deepened the mechanistic insights and refined reaction design for increased biocompatibility, purely chemical control of the RNA epigenome is poised to become one of the mainstream approaches across fields spanning chemistry, biology, and medicine─fostering deeper understanding of RNA's role in health and disease and opening new avenues for precise interventions.
Collapse
Affiliation(s)
- Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Olatunji M, Liu Y. RNA damage and its implications in genome stability. DNA Repair (Amst) 2025; 147:103821. [PMID: 40043352 DOI: 10.1016/j.dnarep.2025.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Endogenous and environmental stressors can damage DNA and RNA to compromise genome and transcriptome stability and integrity in cells, leading to genetic instability and diseases. Recent studies have demonstrated that RNA damage can also modulate genome stability via RNA-templated DNA synthesis, suggesting that it is essential to maintain RNA integrity for the sustainment of genome stability. However, little is known about RNA damage and repair and their roles in modulating genome stability. Current efforts have mainly focused on revealing RNA surveillance pathways that detect and degrade damaged RNA, while the critical role of RNA repair is often overlooked. Due to their abundance and susceptibility to nucleobase damaging agents, it is essential for cells to evolve robust RNA repair mechanisms that can remove RNA damage, maintaining RNA integrity during gene transcription. This is supported by the discovery of the alkylated RNA nucleobase repair enzyme human AlkB homolog 3 that can directly remove the methyl group on damaged RNA nucleobases, predominantly in the nucleus of human cells, thereby restoring the integrity of the damaged RNA nucleobases. This is further supported by the fact that several DNA repair enzymes can also process RNA damage. In this review, we discuss RNA damage and its effects on cellular function, DNA repair, genome instability, and potential RNA damage repair mechanisms. Our review underscores the necessity for future research on RNA damage and repair and their essential roles in modulating genome stability.
Collapse
Affiliation(s)
- Mustapha Olatunji
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA; Department of Chemistry and Biochemistry, and Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
5
|
Zhao J, He C, Xie H, Zou Y, Yan Z, Deng J, Du Y, Yang W, Zhang X. Latent Association Between Diets and Glioma Risk: A Mendelian Randomization Analysis. Nutrients 2025; 17:582. [PMID: 39940440 PMCID: PMC11819737 DOI: 10.3390/nu17030582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Gliomas, particularly high-grade gliomas such as glioblastoma, represent a major challenge due to their poor prognosis. While dietary factors have been proposed as potential modulators of glioma risk, causal inference has been hindered by confounding and reverse causality in observational studies. This study employs Mendelian randomization to investigate the causal relationship between dietary factors and glioma risk. METHODS A two-sample MR framework was applied, utilizing genome-wide association study data for 22 dietary exposures and glioma risks, including both GBM and non-GBM subtypes. Instrumental variables (genetic variants) were identified for each dietary factor to address confounding and pleiotropy. Causal inference was conducted using inverse-variance weighted regression, complemented by MR-Egger and MR-PRESSO analyses to assess and correct for potential pleiotropy. RESULTS A positive causal association was observed between the intake of cooked vegetables and the GBM risk (OR = 6.55, 95% CI: 1.86-23.12, p = 0.00350). While alcohol intake demonstrated a protective effect for non-GBM risk (OR = 0.770, 95% CI: 0.61-0.97, p = 0.029), beer was substantially linked to an increased risk of non-GBM gliomas (OR = 4.82, 95% CI: 1.84-12.59, p = 0.0014). Other dietary factors did not exhibit significant causal associations. CONCLUSIONS These findings suggest that certain dietary factors, including cooked vegetable intake, beer consumption, and alcohol intake, may exert a causal influence on glioma risk. This study provides new insights into the potential dietary determinants of glioma and underscores the need for further investigation into modifiable risk factors for glioma prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiangheng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (J.Z.); (C.H.); (H.X.); (Y.Z.); (Z.Y.); (J.D.); (Y.D.); (W.Y.)
| |
Collapse
|
6
|
Keskin F, Noone H, Dickman MJ, Allen E, Mulcrone WD, Rasmussen LH, Bruun Hansen HC, O’Connor PJ, Povey AC, Margison GP, Williams DM. Bracken Fern Carcinogen, Ptaquiloside, Forms a Guanine O6-Adduct in DNA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1053-1061. [PMID: 39772526 PMCID: PMC11741102 DOI: 10.1021/acs.jafc.4c07187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Bracken fern (Pteridium sp.) is a viable and vigorous plant with invasive potential, ingestion of which causes chronic illness and cancers in farm animals. Bracken is a suspected human carcinogen, and exposure can result from ingestion of bracken-contaminated water, dairy products, or meat derived from livestock grazing on bracken fern. Bracken is also consumed in the diets of some communities. Ptaquiloside (PTQ), a known bracken carcinogen, is an illudane-type glycoside that forms a highly reactive electrophile, PTQ dienone, known to produce N7-guanine and N3-adenine adducts in DNA. Here, we demonstrate for the first time that PTQ dienone also produces an O6-alkylguanine (O6-PTBguanine) in DNA. Since O6-alkylguanines in DNA can be mutagenic, this work provides a potential mechanistic link between PTQ exposure and carcinogenicity. O6-PTBguanine is poorly repaired by O6-methylguanine-DNA methyltransferase that acts on other O6-alkylguanines, further highlighting the potential risk of exposure to bracken and PTQ.
Collapse
Affiliation(s)
- Fourat Keskin
- Centre
for Chemical Biology, Department of Chemistry, Institute for Nucleic
Acids, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Hannah Noone
- Centre
for Chemical Biology, Department of Chemistry, Institute for Nucleic
Acids, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Mark J. Dickman
- Department
of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Esther Allen
- Centre
for Chemical Biology, Department of Chemistry, Institute for Nucleic
Acids, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - William D. Mulcrone
- Centre
for Chemical Biology, Department of Chemistry, Institute for Nucleic
Acids, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Lars Holm Rasmussen
- Novonesis,
Microbe & Culture Research, Bøge Allé 10-12, Hørsholm DK-2970, Denmark
| | - Hans Christian Bruun Hansen
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Thorvaldsensvej
40, Frederiksberg C DK-1871, Denmark
| | - Peter J. O’Connor
- Centre
for Occupational and Environmental Health, School of Health Sciences,
Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - Andrew C. Povey
- Centre
for Occupational and Environmental Health, School of Health Sciences,
Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - Geoffrey P. Margison
- Centre
for Occupational and Environmental Health, School of Health Sciences,
Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, U.K.
| | - David M. Williams
- Centre
for Chemical Biology, Department of Chemistry, Institute for Nucleic
Acids, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
7
|
Zhang L, Gao T, Li Z, Chen C, Jiang D, Yin Y, Zheng Y, Cao P, Gong Y, Yang Z. Alkylated DNA repair by a novel HhH-GPD family protein from Crenarchaea. Nucleic Acids Res 2025; 53:gkaf012. [PMID: 39844456 PMCID: PMC11754123 DOI: 10.1093/nar/gkaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
HhH-GPD (helix-hairpin-helix-glycine/proline/aspartate) family proteins are involved in DNA damage repair. Currently, mechanism of alkylated DNA repair in Crenarchaea has not been fully clarified. The hyperthermophilic model crenarchaeon Saccharolobus islandicus REY15A possesses a novel HhH-GPD family protein (Sis-HhH-GPD), where its Ser152 corresponds to a conserved catalytic Asp in other HhH-GPD homologs. Herein, we report that Sis-HhH-GPD is a novel bi-functional glycosylase, capable of removing both 1-methyladenine (1-meA) from DNA and alkylated bases from DNA created by methyl methanesulfonate (MMS). Mutational analyses show that E134 is essential for catalysis, whereas S152 is not essential. Sis-HhH-GPD might utilize aromatic rings of Y154 and W57 to stack against 1-meA base for flipping-out and then be removed by E134. Additionally, R157, R161 and R200 participate in catalysis. Among four cysteine residues that potentially coordinate with the Fe-S cluster loop, C203, C210 and C219 are involved in catalysis. Importantly, Sis-HhH-GPD is responsible for repair of alkylated DNA created by MMS in vivo. Interestingly, genetic complementary data have confirmed physiological function of Sis-HhH-GPD in alkylated DNA repair and clarified functional roles of its four cysteine residues in vivo. Overall, we provide first evidence that HhH-GPD family protein from Crenarchaea functions in alkylated DNA repair.
Collapse
Affiliation(s)
- Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Yangzhou City, 225127, China
| | - Tian Gao
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Yangzhou City, 225127, China
| | - Zheng Li
- College of Plant Protection, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding City, Lianchi District, Hebei Province 071001, China
| | - Cai Chen
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Yangzhou City, 225127, China
| | - Donghao Jiang
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Yangzhou City, 225127, China
| | - Youcheng Yin
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Yangzhou City, 225127, China
| | - Yaqi Zheng
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Yangzhou City, 225127, China
| | - Peng Cao
- College of Chemistry and Life Science, Beijing University of Technology, No. 100 Pingleyuan Road, Chaoyang District, Beijing 100124, China
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Road, Shijingshan District, Beijing 100040, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding City, Lianchi District, Hebei Province 071001, China
| |
Collapse
|
8
|
Zaher HS, Mosammaparast N. RNA Damage Responses in Cellular Homeostasis, Genome Stability, and Disease. ANNUAL REVIEW OF PATHOLOGY 2025; 20:433-457. [PMID: 39476409 DOI: 10.1146/annurev-pathmechdis-111523-023516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
All cells are exposed to chemicals that can damage their nucleic acids. Cells must protect these polymers because they code for key factors or complexes essential for life. Much of the work on nucleic acid damage has naturally focused on DNA, partly due to the connection between mutagenesis and human disease, especially cancer. Recent work has shed light on the importance of RNA damage, which triggers a host of conserved RNA quality control mechanisms. Because many RNA species are transient, and because of their ability to be retranscribed, RNA damage has largely been ignored. Yet, because of the connection between damaged RNA and DNA during transcription, and the association between essential complexes that process or decode RNAs, notably spliceosomes and ribosomes, the appropriate handling of damaged RNAs is critical for maintaining cellular homeostasis. This notion is bolstered by disease states, including neurodevelopmental and neurodegenerative diseases, that may arise upon loss or misregulation of RNA quality control mechanisms.
Collapse
Affiliation(s)
- Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA;
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
9
|
Siddique YH, Varshney H, Subhan I, Gaur K, Fatima J, Jyoti S. Evaluation of the toxic potential of ethyl methanesulphonate (EMS) on Hydra vulgaris. Toxicol Rep 2024; 13:101839. [PMID: 39717858 PMCID: PMC11664085 DOI: 10.1016/j.toxrep.2024.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
The effect of EMS at final concentration of 0.09, 0.18, 0.27 and 0.37 mM was studied on Hydra vulgaris using morphological, regeneration, oxidative stress markers and DNA damage as parameters. The morphological scores showed a significant dose dependent difference in the Hydra exposed to 0.18, 0.27, and 0.37 mM of EMS for 24, 48, 72 and 96 h. The regeneration scores also showed a significant difference in the gastric region of Hydra exposed to 0.37 mM of EMS for 48 h. A significant difference in the scores of regeneration was observed for the mid body portion exposed to 0.18, 0.27 and 0.37 mM of EMS for 72 and 96 h of duration compared to control. A dose-dependent significant increase in the activities of glutathione-S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) was observed compared to control. The thiobarbituric acid reactive species (TBARS) levels were also significantly increased compared to control. The genotoxic damage was assessed in the cells of gastric region of the Hydra exposed to 0.09, 0.18, 0.27 and 0.37 mM of EMS for 48 h by performing comet assay. A significant dose-dependent increase in the DNA damage was observed compared to control.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Himanshi Varshney
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Iqra Subhan
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Kajal Gaur
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Javeria Fatima
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Smita Jyoti
- Department of Zoology, School of Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| |
Collapse
|
10
|
Duffin K, Mitchell RT, Brougham MFH, Hamer G, van Pelt AMM, Mulder CL. Impacts of cancer therapy on male fertility: Past and present. Mol Aspects Med 2024; 100:101308. [PMID: 39265489 DOI: 10.1016/j.mam.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024]
Abstract
Over the past two decades, advances in cancer therapy have significantly improved survival rates, particularly in childhood cancers. Still, many treatments pose a substantial risk for diminishing future fertility potential due to the gonadotoxic nature of many cancer regimens, justifying fertility preservation programs for both childhood and adult cancer patients. To assure a balance between offering fertility preservation and actual chance of infertility post-treatment, guidelines are in place. However, assessing the actual risk of infertility after treatment remains challenging, given the multi-faceted approach of many cancer treatment plans, which are continuously evolving. This review discusses the evolution of cancer therapy over the past 20 years and attempts to assess their impact on fertility after treatment. Overall, cancer regimens have shifted from broadly killing fast dividing cells to more targeting therapies, reducing collateral damage in general. Although progress has been made to reduce overall toxicity, unfortunately this does not automatically translate to reduced gonadotoxicity. Therefore, current fertility preservation programs continue to be an important part of cancer care.
Collapse
Affiliation(s)
- Kathleen Duffin
- Department of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK; Royal Hospital for Children and Young People, 50 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Rod T Mitchell
- Royal Hospital for Children and Young People, 50 Little France Crescent, Edinburgh, EH16 4TJ, UK; Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Mark F H Brougham
- Royal Hospital for Children and Young People, 50 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Ans M M van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands.
| | - Callista L Mulder
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Shinde S, Croft KD, Hodgson JM, Bondonno CP. Rapid analysis of N-nitrosamines in urine using ultra high-pressure liquid chromatography-mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8001-8009. [PMID: 39469813 DOI: 10.1039/d4ay01870b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
N-Nitrosamines, carcinogenic compounds present in dietary and environmental sources and formed endogenously, are believed to be linked with the presence of nitrate and nitrite, both within dietary sources and after intake. To fully evaluate this potential threat to human health, an accurate analytical method to measure N-nitrosamines in biological matrices is necessary. We report a simple, fast, selective mass spectrometry method to detect N-nitrosamines in human urine. Analysis of seven N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosopiperdine (NPIP), N-nitrosopyrrolidine (NPYR), N-nitrosodi-N-propylamine (NDPA) and N-nitrosodi-N-butylamine (NDBA) in urine was quantitated using Ultra High-Pressure Liquid Chromatography-tandem Mass spectrometry (UHPLC-MS/MS). A Sorbent supported Liquid Extraction (SLE) method was employed to extract N-nitrosamines from 24 hour collected human urine samples. The percent recovery varied between 74.3 to 110 and the limit of detection and limit of quantification ranged from 0.1 to 0.85 ng mL-1 and 0.22 to 2.06 ng mL-1 respectively. Precision for inter-day and intra-day assay yielded a % coefficient of variation between 4-10% for all measured compounds in urine. Linear regression analysis of calibration curves for N-nitrosamines measured in urine in the concentration range 0.4-12.8 ng mL-1 gave correlation coefficients, R2 0.9874-0.9962. Urinary excretion of N-nitrosamines measured in ten healthy subjects resulted in detection of most of the N-nitrosamines including NDMA, NDEA, NPYR, NDPA and NDBA by this method.
Collapse
Affiliation(s)
- S Shinde
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - K D Croft
- School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia
| | - J M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Level 3, Royal Perth Hospital Research Foundation. Rear 50 Murray St, Joondalup, Perth, Western Australia, Australia WA 6000.
| | - C P Bondonno
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Level 3, Royal Perth Hospital Research Foundation. Rear 50 Murray St, Joondalup, Perth, Western Australia, Australia WA 6000.
| |
Collapse
|
12
|
Yaakub H, Howell A, Margison GP, Povey AC. Development and Application of a Slot-Blot Assay Using the Damage Sensing Protein Atl1 to Detect and Quantify O6-Alkylated Guanine Bases in DNA. TOXICS 2024; 12:649. [PMID: 39330577 PMCID: PMC11435591 DOI: 10.3390/toxics12090649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
Humans are unavoidably exposed to numerous different mutagenic DNA alkylating agents (AAs), but their role in the initiation of cancers is uncertain, in part due to difficulties in assessing human exposure. To address this, we have developed a screening method that measures promutagenic O6-alkylguanines (O6-AlkGs) in DNA and applied it to human DNA samples. The method exploits the ability of the Schizosaccharomyces pombe alkyltransferase-like protein (Atl1) to recognise and bind to a wide range of O6-AlkGs in DNA. We established an Atl1-based slot-blot (ASB) assay and validated it using calf thymus DNA alkylated in vitro with a range of alkylating agents and both calf thymus and human placental DNA methylated in vitro with temozolomide (TMZ). ASB signals were directly proportional to the levels of O6-meG in these controls. Pre-treatment of DNA with the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) reduced binding of Atl1, confirming its specificity. In addition, MCF 10A cells were treated with 500 μM TMZ and the extracted DNA, analysed using the ASB, was found to contain 1.34 fmoles O6 -meG/μg DNA. Of six human breast tumour DNA samples assessed, five had detectable O6-AlkG levels (mean ± SD 1.24 ± 0.25 O6-meG equivalents/μg DNA. This study shows the potential usefulness of the ASB assay to detect and quantify total O6-AlkGs in human DNA samples.
Collapse
Affiliation(s)
- Hanum Yaakub
- Epidemiology and Public Health Group, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.Y.); (G.P.M.)
| | - Anthony Howell
- Prevent Breast Cancer Centre, Wythenshawe Hospital Manchester Universities Foundation Trust, Wythenshawe, Manchester M23 9LT, UK;
- Manchester Breast Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4GJ, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Geoffrey P. Margison
- Epidemiology and Public Health Group, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.Y.); (G.P.M.)
| | - Andrew C. Povey
- Epidemiology and Public Health Group, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.Y.); (G.P.M.)
| |
Collapse
|
13
|
Latancia MT, Leandro GDS, Bastos AU, Moreno NC, Ariwoola ABA, Martins DJ, Ashton NW, Ribeiro VC, Hoch NC, Rocha CRR, Woodgate R, Menck CFM. Human translesion DNA polymerases ι and κ mediate tolerance to temozolomide in MGMT-deficient glioblastoma cells. DNA Repair (Amst) 2024; 141:103715. [PMID: 39029375 PMCID: PMC11330349 DOI: 10.1016/j.dnarep.2024.103715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor associated with poor patient survival. The current standard treatment involves invasive surgery, radiotherapy, and chemotherapy employing temozolomide (TMZ). Resistance to TMZ is, however, a major challenge. Previous work from our group has identified candidate genes linked to TMZ resistance, including genes encoding translesion synthesis (TLS) DNA polymerases iota (Polɩ) and kappa (Polκ). These specialized enzymes are known for bypassing lesions and tolerating DNA damage. Here, we investigated the roles of Polɩ and Polκ in TMZ resistance, employing MGMT-deficient U251-MG glioblastoma cells, with knockout of either POLI or POLK genes encoding Polɩ and Polκ, respectively, and assess their viability and genotoxic stress responses upon subsequent TMZ treatment. Cells lacking either of these polymerases exhibited a significant decrease in viability following TMZ treatment compared to parental counterparts. The restoration of the missing polymerase led to a recovery of cell viability. Furthermore, knockout cells displayed increased cell cycle arrest, mainly in late S-phase, and lower levels of genotoxic stress after TMZ treatment, as assessed by a reduction of γH2AX foci and flow cytometry data. This implies that TMZ treatment does not trigger a significant H2AX phosphorylation response in the absence of these proteins. Interestingly, combining TMZ with Mirin (double-strand break repair pathway inhibitor) further reduced the cell viability and increased DNA damage and γH2AX positive cells in TLS KO cells, but not in parental cells. These findings underscore the crucial roles of Polɩ and Polκ in conferring TMZ resistance and the potential backup role of homologous recombination in the absence of these TLS polymerases. Targeting these TLS enzymes, along with double-strand break DNA repair inhibition, could, therefore, provide a promising strategy to enhance TMZ's effectiveness in treating GBM.
Collapse
Affiliation(s)
- Marcela Teatin Latancia
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Giovana da Silva Leandro
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - André Uchimura Bastos
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Natália Cestari Moreno
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Abu-Bakr Adetayo Ariwoola
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil.
| | - Davi Jardim Martins
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Nicholas William Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Victória Chaves Ribeiro
- Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Nicolas Carlos Hoch
- Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Clarissa Ribeiro Reily Rocha
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil.
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | | |
Collapse
|
14
|
Zhou Y, Jia P, Fang Y, Zhu W, Gong Y, Fan T, Yin J. Comprehensive understanding of the adverse effects associated with temozolomide: a disproportionate analysis based on the FAERS database. Front Pharmacol 2024; 15:1437436. [PMID: 39246656 PMCID: PMC11377320 DOI: 10.3389/fphar.2024.1437436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Background Temozolomide, which is the standard drug for glioma treatment, has several Adverse events (AEs) in the treatment of gliomas and other tumors that are not yet fully understood. This is due to the pharmacological nature of the alkylating agent. A significant proportion of these effects have not been systematically documented or reported. Methods We selected data from the United States FDA Adverse Event Reporting System (FAERS) database from the first quarter of 2004 to the fourth quarter of 2023. Four algorithms were used for disproportionate analysis, with the objective of assessing the association between temozolomide and related adverse events. Results In this study, 20,079,906 case reports were collected from the FAERS database, of which 15,152 adverse events related to temozolomide were reported. A total of 352 preferred terms (PTs) and 24 system organ classes (SOCs) that were significantly disproportionally related to the four algorithms were included. The SOCs included blood and lymphatic system disorders (χ2 = 18,220.09, n = 4,325); skin and subcutaneous tissue disorders (χ2 = 408.06, n = 1,347); investigations (χ2 = 639.44, n = 3,925); musculoskeletal and connective tissue disorders (χ2 = 1,317.29, n = 588); and psychiatric disorders (χ2 = 1,098.47, n = 877). PT levels were screened for adverse drug reaction signals consistent with drug inserts, such as anemia, thrombocytopenia, liver function abnormalities, nausea and vomiting, as well as rarely reported adverse drug reactions, such as aplastic anemia, myelodysplastic syndromes, electrolyte disorders, cerebral edema, and high-frequency mutations. Conclusion The results of our investigation demonstrated both adverse effects that had been reported and a multitude of unreported adverse effects that were serious in nature and lacked a clear cause. These novel findings suggest that more attention should be given to the clinical conditions of patients after treatment to provide a more comprehensive perspective and understanding for further clarifying the safety of temozolomide.
Collapse
Affiliation(s)
- Yusen Zhou
- Department of Neurosurgery, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China
| | - Peng Jia
- Department of Surgery, 94750th Hospital of Chinese People's Liberation Army, Longyan, Fujian, China
| | - Yuting Fang
- Department of Neurosurgery, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China
| | - Wei Zhu
- Department of Surgery, 94750th Hospital of Chinese People's Liberation Army, Longyan, Fujian, China
| | - Yong Gong
- Department of Neurosurgery, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China
| | - Tianyu Fan
- Department of Neurosurgery, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China
| | - Jiangliu Yin
- Department of Neurosurgery, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China
| |
Collapse
|
15
|
Gutierrez R, Chan AYS, Lai SWT, Itoh S, Lee DH, Sun K, Battad A, Chen S, O'Connor TR, Shuck SC. Lack of mismatch repair enhances resistance to methylating agents for cells deficient in oxidative demethylation. J Biol Chem 2024; 300:107492. [PMID: 38925328 PMCID: PMC11326903 DOI: 10.1016/j.jbc.2024.107492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The human alkylation B (AlkB) homologs, ALKBH2 and ALKBH3, respond to methylation damage to maintain genomic integrity and cellular viability. Both ALKBH2 and ALKBH3 are direct reversal repair enzymes that remove 1-methyladenine (1meA) and 3-methylcytosine (3meC) lesions commonly generated by alkylating chemotherapeutic agents. Thus, the existence of deficiencies in ALKBH proteins can be exploited in synergy with chemotherapy. In this study, we investigated possible interactions between ALKBH2 and ALKBH3 with other proteins that could alter damage response and discovered an interaction with the mismatch repair (MMR) system. To test whether the lack of active MMR impacts ALKBH2 and/or ALKBH3 response to methylating agents, we generated cells deficient in ALKBH2, ALKBH3, or both in addition to Mlh homolog 1 (MLH1), another MMR protein. We found that MLH1koALKBH3ko cells showed enhanced resistance toward SN1- and SN2-type methylating agents, whereas MLH1koALKBH2ko cells were only resistant to SN1-type methylating agents. Concomitant loss of ALKBH2 and ALKBH3 (ALKBH2ko3ko) rendered cells sensitive to SN1- and SN2-agents, but the additional loss of MLH1 enhanced resistance to both types of damage. We also showed that ALKBH2ko3ko cells have an ATR-dependent arrest at the G2/M checkpoint, increased apoptotic signaling, and replication fork stress in response to methylation. However, these responses were not observed with the loss of functional MLH1 in MLH1koALKBH2ko3ko cells. Finally, in MLH1koALKBH2ko3ko cells, we observed elevated mutant frequency in untreated and temozolomide treated cells. These results suggest that obtaining a more accurate prognosis of chemotherapeutic outcome requires information on the functionality of ALKBH2, ALKBH3, and MLH1.
Collapse
Affiliation(s)
- Roberto Gutierrez
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Annie Yin S Chan
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Shunsuke Itoh
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Dong-Hyun Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, South Korea
| | - Kelani Sun
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Alana Battad
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Shiuan Chen
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Timothy R O'Connor
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA.
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA.
| |
Collapse
|
16
|
Qu M, Chen J, Xu B, Shi Q, Zhao S, Wang Z, Li Z, Ma B, Xu H, Ye Q, Xie J. Assessing genotoxic effects of chemotherapy agents by a robust in vitro assay based on mass spectrometric quantification of γ-H2AX in HepG2 cells. Front Pharmacol 2024; 15:1356753. [PMID: 38962306 PMCID: PMC11219945 DOI: 10.3389/fphar.2024.1356753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Chemotherapy has already proven widely effective in treating cancer. Chemotherapeutic agents usually include DNA damaging agents and non-DNA damaging agents. Assessing genotoxic effect is significant during chemotherapy drug development, since the ability to attack DNA is the major concern for DNA damaging agents which relates to the therapeutic effect, meanwhile genotoxicity should also be evaluated for chemotherapy agents' safety especially for non-DNA damaging agents. However, currently applicability of in vitro genotoxicity assays is hampered by the fact that genotoxicity results have comparatively high false positive rates. γ-H2AX has been shown to be a bifunctional biomarker reflecting both DNA damage response and repair. Previously, we developed an in vitro genotoxicity assay based on γ-H2AX quantification using mass spectrometry. Here, we employed the assay to quantitatively assess the genotoxic effects of 34 classic chemotherapy agents in HepG2 cells. Results demonstrated that the evaluation of cellular γ-H2AX could be an effective approach to screen and distinguish types of action of different classes of chemotherapy agents. In addition, two crucial indexes of DNA repair kinetic curve, i.e., k (speed of γ-H2AX descending) and t50 (time required for γ-H2AX to drop to half of the maximum value) estimated by our developed online tools were employed to further evaluate nine representative chemotherapy agents, which showed a close association with therapeutic index or carcinogenic level. The present study demonstrated that mass spectrometric quantification of γ-H2AX may be an appropriate tool to preliminarily evaluate genotoxic effects of chemotherapy agents.
Collapse
Affiliation(s)
- Minmin Qu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jia Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bin Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qinyun Shi
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shujing Zhao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhaoxia Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhi Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bo Ma
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hua Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Jianwei Xie
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
17
|
Liu X, Wang J, Wu LJ, Trinh B, Tsai RYL. IMPDH Inhibition Decreases TERT Expression and Synergizes the Cytotoxic Effect of Chemotherapeutic Agents in Glioblastoma Cells. Int J Mol Sci 2024; 25:5992. [PMID: 38892179 PMCID: PMC11172490 DOI: 10.3390/ijms25115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
IMP dehydrogenase (IMPDH) inhibition has emerged as a new target therapy for glioblastoma multiforme (GBM), which remains one of the most refractory tumors to date. TCGA analyses revealed distinct expression profiles of IMPDH isoenzymes in various subtypes of GBM and low-grade glioma (LGG). To dissect the mechanism(s) underlying the anti-tumor effect of IMPDH inhibition in adult GBM, we investigated how mycophenolic acid (MPA, an IMPDH inhibitor) treatment affected key oncogenic drivers in glioblastoma cells. Our results showed that MPA decreased the expression of telomerase reverse transcriptase (TERT) in both U87 and U251 cells, and the expression of O6-methylguanine-DNA methyltransferase (MGMT) in U251 cells. In support, MPA treatment reduced the amount of telomere repeats in U87 and U251 cells. TERT downregulation by MPA was associated with a significant decrease in c-Myc (a TERT transcription activator) in U87 but not U251 cells, and a dose-dependent increase in p53 and CCCTC-binding factor (CTCF) (TERT repressors) in both U87 and U251 cells. In U251 cells, MPA displayed strong cytotoxic synergy with BCNU and moderate synergy with irinotecan, oxaliplatin, paclitaxel, or temozolomide (TMZ). In U87 cells, MPA displayed strong cytotoxic synergy with all except TMZ, acting primarily through the apoptotic pathway. Our work expands the mechanistic potential of IMPDH inhibition to TERT/telomere regulation and reveals a synthetic lethality between MPA and anti-GBM drugs.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Junying Wang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Laura J. Wu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Britni Trinh
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Robert Y. L. Tsai
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Herr LM, Schaffer ED, Fuchs KF, Datta A, Brosh RM. Replication stress as a driver of cellular senescence and aging. Commun Biol 2024; 7:616. [PMID: 38777831 PMCID: PMC11111458 DOI: 10.1038/s42003-024-06263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Replication stress refers to slowing or stalling of replication fork progression during DNA synthesis that disrupts faithful copying of the genome. While long considered a nexus for DNA damage, the role of replication stress in aging is under-appreciated. The consequential role of replication stress in promotion of organismal aging phenotypes is evidenced by an extensive list of hereditary accelerated aging disorders marked by molecular defects in factors that promote replication fork progression and operate uniquely in the replication stress response. Additionally, recent studies have revealed cellular pathways and phenotypes elicited by replication stress that align with designated hallmarks of aging. Here we review recent advances demonstrating the role of replication stress as an ultimate driver of cellular senescence and aging. We discuss clinical implications of the intriguing links between cellular senescence and aging including application of senotherapeutic approaches in the context of replication stress.
Collapse
Affiliation(s)
- Lauren M Herr
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ethan D Schaffer
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kathleen F Fuchs
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Arindam Datta
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
19
|
Waldum H, Slupphaug G. Correctly identifying the cells of origin is essential for tailoring treatment and understanding the emergence of cancer stem cells and late metastases. Front Oncol 2024; 14:1369907. [PMID: 38660133 PMCID: PMC11040596 DOI: 10.3389/fonc.2024.1369907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Malignancy manifests itself by deregulated growth and the ability to invade surrounding tissues or metastasize to other organs. These properties are due to genetic and/or epigenetic changes, most often mutations. Many aspects of carcinogenesis are known, but the cell of origin has been insufficiently focused on, which is unfortunate since the regulation of its growth is essential to understand the carcinogenic process and guide treatment. Similarly, the concept of cancer stem cells as cells having the ability to stop proliferation and rest in a state of dormancy and being resistant to cytotoxic drugs before "waking up" and become a highly malignant tumor recurrence, is not fully understood. Some tumors may recur after decades, a phenomenon probably also connected to cancer stem cells. The present review shows that many of these questions are related to the cell of origin as differentiated cells being long-term stimulated to proliferation.
Collapse
Affiliation(s)
- Helge Waldum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
20
|
Koirala RP, Adhikari NP. Base flipping mechanism and binding strength of methyl-damaged DNA during the interaction with AGT. J Biol Phys 2024; 50:71-87. [PMID: 38150168 PMCID: PMC11413403 DOI: 10.1007/s10867-023-09649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Methyl damage to DNA bases is common in the cell nucleus. O6-alkylguanine-DNA alkyl transferase (AGT) may be a promising candidate for direct damage reversal in methylated DNA (mDNA) at the O6 point of the guanine. Indeed, atomic-level investigations in the contact region of AGT-DNA complex can provide an in-depth understanding of their binding mechanism, allowing to evaluate the silico-drug nature of AGT and its utility in removing methyl damage in DNA. In this study, molecular dynamics (MD) simulation was utilized to examine the flipping of methylated nucleotide, the binding mechanism between mDNA and AGT, and the comparison of binding strength prior and post methyl transfer to AGT. The study reveals that methylation at the O6 atom of guanine weakens the hydrogen bond (H-bond) between guanine and cytosine, permitting for the flipping of such nucleotide. The formation of a H-bond between the base pair of methylated nucleotide (i.e., cytosine) and the intercalated arginine of AGT also forces the nucleotide to rotate. Following that, electrostatics and van der Waals contacts as well as hydrogen bonding contribute to form the complex of DNA and protein. The stronger binding of AGT with DNA before methyl transfer creates the suitable condition to transfer methyl adduct from DNA to AGT.
Collapse
|
21
|
Henn JG, Bernardes Ferro M, Lopes Alves GA, Pires Peña F, de Oliveira JVR, de Souza BM, da Silva LF, Rapack Jacinto Silva V, Silva Pinheiro AC, Steffens Reinhardt L, Morás AM, Nugent M, da Rosa RG, Silveira Aguirre TA, Moura DJ. Development and characterization of a temozolomide-loaded nanoemulsion and the effect of ferrocene pre and co-treatments in glioblastoma cell models. Pharmacol Rep 2023; 75:1597-1609. [PMID: 37837521 DOI: 10.1007/s43440-023-00537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Glioblastoma is a severe brain tumor that requires aggressive treatment involving surgery, radiotherapy, and chemotherapy, offering a survival rate of only 15 months. Fortunately, recent nanotechnology progress has enabled novel approaches and, alongside ferrocenes' unique properties of cytotoxicity, sensitization, and interaction with reactive oxygen species, have brought new possibilities to complement chemotherapy in nanocarrier systems, enhancing treatment results. METHODS In this work, we developed and characterized a temozolomide-loaded nanoemulsion and evaluated its cytotoxic potential in combination with ferrocene in the temozolomide-resistant T98G and temozolomide-sensitive U87 cell lines. The effects of the treatments were assessed through acute assays of cell viability, cell death, mitochondrial alterations, and a treatment protocol simulation based on different two-cycle regimens. RESULTS Temozolomide nanoemulsion showed a z-average diameter of 173.37 ± 0.86 nm and a zeta potential of - 6.53 ± 1.13 mV. Physicochemical characterization revealed that temozolomide is probably associated with nanoemulsion droplets instead of being entrapped within the nanostructure, allowing a rapid drug release. In combination with ferrocene, temozolomide nanoemulsion reduced glioblastoma cell viability in both acute and two-cycle regimen assays. The combined treatment approach also reversed T98G's temozolomide-resistant profile by altering the mitochondrial membrane potential of the cells, thus increasing reactive oxygen species generation, and ultimately inducing cell death. CONCLUSIONS Altogether, our results indicate that using nanoemulsion containing temozolomide in combination with ferrocene is an effective approach to improve glioblastoma therapy outcomes.
Collapse
Affiliation(s)
- Jeferson Gustavo Henn
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Co. Westmeath, N37HD68, Ireland
| | - Matheus Bernardes Ferro
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Gabriel Antonio Lopes Alves
- Laboratório de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Flávia Pires Peña
- Laboratório de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - João Vitor Raupp de Oliveira
- Laboratório de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Bárbara Müller de Souza
- Departamento de Química Inorgânica, Universidade Federal do Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Leonardo Fonseca da Silva
- Departamento de Química Inorgânica, Universidade Federal do Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Victória Rapack Jacinto Silva
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Ana Carolina Silva Pinheiro
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Luiza Steffens Reinhardt
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Ana Moira Morás
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Michael Nugent
- Materials Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Co. Westmeath, N37HD68, Ireland
| | - Ricardo Gomes da Rosa
- Departamento de Química Inorgânica, Universidade Federal do Rio Grande do Sul, 9500 Bento Gonçalves Avenue, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Tanira Alessandra Silveira Aguirre
- Laboratório de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Dinara Jaqueline Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, 245 Sarmento Leite Street, Lab. 714, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil.
| |
Collapse
|
22
|
Tsao N, Ashour ME, Mosammaparast N. How RNA impacts DNA repair. DNA Repair (Amst) 2023; 131:103564. [PMID: 37776841 PMCID: PMC11232704 DOI: 10.1016/j.dnarep.2023.103564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
The central dogma of molecular biology posits that genetic information flows unidirectionally, from DNA, to RNA, and finally to protein. However, this directionality is broken in some cases, such as reverse transcription where RNA is converted to DNA by retroviruses and certain transposable elements. Our genomes have evolved and adapted to the presence of reverse transcription. Similarly, our genome is continuously maintained by several repair pathways to reverse damage due to various endogenous and exogenous sources. More recently, evidence has revealed that RNA, while in certain contexts may be detrimental for genome stability, is involved in promoting certain types of DNA repair. Depending on the pathway in question, the size of these DNA repair-associated RNAs range from one or a few ribonucleotides to long fragments of RNA. Moreover, RNA is highly modified, and RNA modifications have been revealed to be functionally associated with specific DNA repair pathways. In this review, we highlight aspects of this unexpected layer of genomic maintenance, demonstrating how RNA may influence DNA integrity.
Collapse
Affiliation(s)
- Ning Tsao
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mohamed E Ashour
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Klein MDO, Francisco LFV, Gomes INF, Serrano SV, Reis RM, Silveira HCS. Hazard assessment of antineoplastic drugs and metabolites using cytotoxicity and genotoxicity assays. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 892:503704. [PMID: 37973299 DOI: 10.1016/j.mrgentox.2023.503704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
Antineoplastic drugs are among the most toxic pharmaceuticals. Their release into the aquatic ecosystems has been reported, giving rise to concerns about the adverse effects, including cytotoxicity and genotoxicity, that they may have on exposed organisms. In this study, we analyzed the cytotoxicity and genotoxicity of 5-fluorouracil (5-FU) and its metabolite alpha-fluoro-beta-alanine (3-NH2-F); gemcitabine (GEM) and its metabolite 2'-deoxy-2',2'-difluorouridine (2-DOH-DiF); as well as cyclophosphamide (CP) on the HepG2 cell line. Drug concentrations were based on those previously observed in the effluent of a major cancer hospital in Brazil. The study found that GEM, 2-DOH-DiF and 5-FU resulted in reduced cell viability. No reduction in cell viability was observed for CP and 3-NH2-F. Genotoxic assessment revealed damage in the form of nucleoplasmic bridges for CP and 3-NH2-F. The tested concentrations of all compounds resulted in significantly increased MNi and NBUDs. The results showed that these compounds induced cytotoxic and genotoxic effects in HepG2 cells at concentrations found in the environment. To the best of our knowledge, this study is the first to report on the cytogenotoxic impacts of the metabolites 3-NH2-F and 2-DOH-DiF in HepG2 cells. These findings may help in the development of public policies that could minimize potential environmental contamination.
Collapse
Affiliation(s)
| | | | | | - Sergio V Serrano
- Barretos School of Health Sciences-FACISB, Barretos, São Paulo 14785-002, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Henrique C S Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; University of Cuiabá, Cuiabá, Mato Grosso, Brazil; University of Anhaguera, São Paulo, Brazil.
| |
Collapse
|
24
|
Moog S, Lamartina L, Bani MA, Al Ghuzlan A, Friboulet L, Italiano A, Lacroix L, Postel Vinay S, Tselikas L, Deschamps F, Bonnet B, Pani F, Baudin E, Hadoux J. Alkylating Agent-Induced High Tumor Mutational Burden in Medullary Thyroid Cancer and Response to Immune Checkpoint Inhibitors: Two Case Reports. Thyroid 2023; 33:1368-1373. [PMID: 37698883 DOI: 10.1089/thy.2023.0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Background: Patients with metastatic medullary thyroid cancer (MTC) who progressed under tyrosine kinase inhibitors can benefit from an alkylating agent such as dacarbazine or temozolomide. Patient Findings: We describe two patients with metastatic MTC who developed a hypermutant phenotype after alkylating agent treatment. This phenotype was characterized by a high tumor mutational burden (TMB) and a mutational signature indicative of alkylating agent mutagenesis (single-base substitution 11). Both patients received immune checkpoint inhibitors, with partial morphological responses, clinical benefit, and progression-free survival of 6 and 9 months, respectively. Summary and Conclusions: Based on the described observations, we suggest that a hypermutant phenotype may be induced after alkylating agent treatment for MTC and the sequential use of immunotherapy should be further explored as a treatment option for MTC patients with increased TMB.
Collapse
Affiliation(s)
- Sophie Moog
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| | - Livia Lamartina
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| | - Mohamed-Amine Bani
- Département de Biologie et Pathologie Médicale, Institut Gustave Roussy, Villejuif, France
| | - Abir Al Ghuzlan
- Département de Biologie et Pathologie Médicale, Institut Gustave Roussy, Villejuif, France
| | - Luc Friboulet
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Villejuif, France
| | - Antoine Italiano
- Département d'Innovation Thérapeutique et Essais Précoces, and Institut Gustave Roussy, Villejuif, France
| | - Ludovic Lacroix
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Villejuif, France
| | - Sophie Postel Vinay
- Département d'Innovation Thérapeutique et Essais Précoces, and Institut Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Villejuif, France
| | - Lambros Tselikas
- Département de Radiologie Interventionnelle, Institut Gustave Roussy, Villejuif, France
| | - Frédéric Deschamps
- Département de Radiologie Interventionnelle, Institut Gustave Roussy, Villejuif, France
| | - Baptiste Bonnet
- Département de Radiologie Interventionnelle, Institut Gustave Roussy, Villejuif, France
| | - Fabiana Pani
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| | - Eric Baudin
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| | - Julien Hadoux
- Service d'Oncologie Endocrinienne, Département d'Imagerie, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
25
|
Grin IR, Petrova DV, Endutkin AV, Ma C, Yu B, Li H, Zharkov DO. Base Excision DNA Repair in Plants: Arabidopsis and Beyond. Int J Mol Sci 2023; 24:14746. [PMID: 37834194 PMCID: PMC10573277 DOI: 10.3390/ijms241914746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.
Collapse
Affiliation(s)
- Inga R. Grin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Daria V. Petrova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
26
|
Hudson KM, Klimczak LJ, Sterling JF, Burkholder AB, Kazanov M, Saini N, Mieczkowski PA, Gordenin DA. Glycidamide-induced hypermutation in yeast single-stranded DNA reveals a ubiquitous clock-like mutational motif in humans. Nucleic Acids Res 2023; 51:9075-9100. [PMID: 37471042 PMCID: PMC10516655 DOI: 10.1093/nar/gkad611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Mutagens often prefer specific nucleotides or oligonucleotide motifs that can be revealed by studying the hypermutation spectra in single-stranded (ss) DNA. We utilized a yeast model to explore mutagenesis by glycidamide, a simple epoxide formed endogenously in humans from the environmental toxicant acrylamide. Glycidamide caused ssDNA hypermutation in yeast predominantly in cytosines and adenines. The most frequent mutations in adenines occurred in the nAt→nGt trinucleotide motif. Base substitutions A→G in this motif relied on Rev1 translesion polymerase activity. Inactivating Rev1 did not alter the nAt trinucleotide preference, suggesting it may be an intrinsic specificity of the chemical reaction between glycidamide and adenine in the ssDNA. We found this mutational motif enriched in published sequencing data from glycidamide-treated mouse cells and ubiquitous in human cancers. In cancers, this motif was positively correlated with the single base substitution (SBS) smoking-associated SBS4 signature, with the clock-like signatures SBS1, SBS5, and was strongly correlated with smoking history and with age of tumor donors. Clock-like feature of the motif was also revealed in cells of human skin and brain. Given its pervasiveness, we propose that this mutational motif reflects mutagenic lesions to adenines in ssDNA from a potentially broad range of endogenous and exogenous agents.
Collapse
Affiliation(s)
- Kathleen M Hudson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Joan F Sterling
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Adam B Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| | - Marat D Kazanov
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Natalie Saini
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Piotr A Mieczkowski
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA
| |
Collapse
|
27
|
Wu H, Zhang Y, Xu H, Xu B, Chen J, Guo L, Liu Q, Xie J. Urinary Profile of Alkylated DNA Adducts and DNA Oxidative Damage in Sulfur Mustard-Exposed Rats Revealed by Mass Spectrometry Quantification. Chem Res Toxicol 2023; 36:1495-1502. [PMID: 37625021 DOI: 10.1021/acs.chemrestox.3c00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Alkylation reagents, represented by sulfur mustard (SM), can damage DNA molecules directly as well as lead to oxidative stress, causing DNA lesions indirectly. Correspondingly, two types of biomarkers including alkylated DNA adducts and oxidative DNA adducts are commonly involved in the research of DNA damage evaluation caused by these agents. However, the correlations and differences of the occurrence, duration, severity, and traceability between alkylation and oxidation lesions on the DNA molecular level reflected by these two types of biomarkers have not been systematically studied. A simultaneous determination method for four alkylated DNA adducts, i.e., N7-(2-hydroxyethylthioethyl)2'-guanine (N7-HETEG), O6-(2-hydroxyethylthioethyl)-2'-guanine (O6-HETEG), N3-(2-hydroxyethylthioethyl)-2'-adenine (N3-HETEA), and bis(2-ethyl-N7-guanine)thioether (Bis-G), and the oxidative adduct 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in urine samples by isotope-dilution high-performance liquid chromatography-tandem mass spectrometry (ID-HPLC-MS/MS) was built with a lower limit of detection of 0.02 ng/mL (except Bis-G, 0.05 ng/mL) and a recovery of 79-111%. The profile of these adducts was simultaneously monitored in urine samples after SD rats' dermal exposure to SM in three dose levels (1, 3, and 10 mg/kg). The time-effect and dose-effect experiments revealed that when exposed to SM, DNA alkylation lesions would happen earlier than those of oxidation. For the two types of biomarkers, alkylated DNA adducts showed an obvious dose-effect relationship and could be used as internal exposure dose and effect biomarkers, while 8-OH-dG did not show a correlation with exposure dose, demonstrating that it was more suitable as a biomarker for DNA oxidative lesions but not an indicator for the extent of cytotoxicity and internal exposure.
Collapse
Affiliation(s)
- Haijiang Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Qin Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
28
|
Jones AB, Schanel TL, Rigsby MR, Griguer CE, McFarland BC, Anderson JC, Willey CD, Hjelmeland AB. Tumor Treating Fields Alter the Kinomic Landscape in Glioblastoma Revealing Therapeutic Vulnerabilities. Cells 2023; 12:2171. [PMID: 37681903 PMCID: PMC10486683 DOI: 10.3390/cells12172171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Treatment for the deadly brain tumor glioblastoma (GBM) has been improved through the non-invasive addition of alternating electric fields, called tumor treating fields (TTFields). Improving both progression-free and overall survival, TTFields are currently approved for treatment of recurrent GBMs as a monotherapy and in the adjuvant setting alongside TMZ for newly diagnosed GBMs. These TTFields are known to inhibit mitosis, but the full molecular impact of TTFields remains undetermined. Therefore, we sought to understand the ability of TTFields to disrupt the growth patterns of and induce kinomic landscape shifts in TMZ-sensitive and -resistant GBM cells. We determined that TTFields significantly decreased the growth of TMZ-sensitive and -resistant cells. Kinomic profiling predicted kinases that were induced or repressed by TTFields, suggesting possible therapy-specific vulnerabilities. Serving as a potential pro-survival mechanism for TTFields, kinomics predicted the increased activity of platelet-derived growth-factor receptor alpha (PDGFRα). We demonstrated that the addition of the PDGFR inhibitor, crenolanib, to TTFields further reduced cell growth in comparison to either treatment alone. Collectively, our data suggest the efficacy of TTFields in vitro and identify common signaling responses to TTFields in TMZ-sensitive and -resistant populations, which may support more personalized medicine approaches.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| | - Taylor L. Schanel
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.L.S.); (J.C.A.)
| | - Mikayla R. Rigsby
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| | - Corinne E. Griguer
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA;
| | - Braden C. McFarland
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| | - Joshua C. Anderson
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.L.S.); (J.C.A.)
| | - Christopher D. Willey
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.L.S.); (J.C.A.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| |
Collapse
|
29
|
Laskar BI, Mishra AK, Shukla PK. Role of graphene in scavenging methyl cations: a DFT study. J Mol Model 2023; 29:299. [PMID: 37646844 DOI: 10.1007/s00894-023-05662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023]
Abstract
CONTEXT It is known that methylating agents methylate DNA by transferring a methyl cation (CH3+) to the nucleophilic sites in DNA bases and DNA methylation is implicated in cancer and other pathological conditions. Therefore, it is important to scavenge CH3+ ion in order to protect DNA from methylation. Graphene is considered to be a versatile material for use in a wide variety of fields including sensors, antioxidants, drug delivery and DNA sequencing. In this work, we have theoretically investigated the interaction of CH3+ ions with graphene surface with an aim to understand if pristine graphene can be used as a substrate to adsorb CH3+ cations generated from harmful methylating agents. The computed adsorption energies show that adsorption of one, two and three CH3+ ions on graphene is favourable as the adducts thus formed are found to be substantially stable in both gas phase and aqueous media. The Bader charge transfer analysis and density of states (DOS) calculation also indicate a strong interaction between graphene and CH3+ ions. Thus, our results show that pristine graphene can be used as a substrate to scavenge CH3+ ions. METHODS The spin polarised density functional theory (DFT) calculations employing PBE functional, ultrasoft pseudopotentials and plane wave basis set having kinetic energy cut-offs of 40 Ry and 400 Ry, respectively, for wave functions and charge densities were carried out to study the adsorption of CH3+ ion(s) on the pristine graphene surface. The Grimme's DFT-D2 method was used for the estimation of van der Waals interactions. The 'dipole correction' along z-direction was also applied for adsorption study. The Marzari-Vanderbilt smearing and Monkhorst-Pack k-point grid were employed for the Brillouin zone sampling. A 6 × 6 graphene supercell with a vertical cell dimension of 18 Å was considered for the adsorption study. The charge transfer between the CH3+ ion(s) and graphene was estimated using Bader charge analysis. The implicit solvation model (SCCS) was used to estimate the solvent effect of aqueous media. All the calculations were performed using QUANTUM ESPRESSO package.
Collapse
Affiliation(s)
| | - Abhishek Kumar Mishra
- Department of Physics, Applied Science Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | | |
Collapse
|
30
|
Gateva S, Jovtchev G, Angelova T, Gerasimova T, Dobreva A, Mileva M. Cytogenetic Studies on Genoprotective Effect of Rosa damascena Mill. Hydrosol in Plant and Lymphocyte Test Systems. Life (Basel) 2023; 13:1753. [PMID: 37629611 PMCID: PMC10455691 DOI: 10.3390/life13081753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Bulgarian Rosa damascena Mill. is has been known since ancient times for its high-quality oil, hydrosol, and other aromatic products. Rose hydrosol has various biological activities, but no research on its anticytotoxic/antigenotoxic effects exists. This study aimed to assess its defense potential against the genotoxin N-methyl-N'-nitro-N-nitrosoguanidine and to test its cytotoxic/genotoxic activity in plant and human lymphocyte test systems. Endpoints for cytotoxicity (mitotic index and nuclear division index) and genotoxicity (chromosome aberration and micronuclei) were used. Hydrosol was applied as a single treatment in concentrations ranging from 3% to 20% (4 h) to assess its cytotoxic and genotoxic effects. Its protective potential against MNNG was tested by applying an experimental scheme involving (i) conditioning treatment with non-toxic or slightly toxic concentrations of hydrosol, followed by genotoxin challenge (50 μg/mL) with a 4 h intertreatment time and (ii) treatment with hydrosol and mutagen with no time between the treatments. Hydrosol induces low cytotoxicity and clastogenicity, demonstrating cytoprotective/genoprotective effects against the mutagen in both applied test systems. The hydrosol defense potential was expressed by a more than twofold reduction in both chromosomal aberrations and micronuclei and by enhancing the mitotic activity compared with that of the mutagen, regardless of the experimental conditions. The results are promising for further hydrosol applications in pharmaceutical and medical practice.
Collapse
Affiliation(s)
- Svetla Gateva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria; (S.G.); (G.J.); (T.A.); (T.G.)
| | - Gabriele Jovtchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria; (S.G.); (G.J.); (T.A.); (T.G.)
| | - Tsveta Angelova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria; (S.G.); (G.J.); (T.A.); (T.G.)
| | - Tsvetelina Gerasimova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria; (S.G.); (G.J.); (T.A.); (T.G.)
| | - Ana Dobreva
- Institute for Roses and Aromatic Plants, Agricultural Academy, 49 Osvobojdenie Blvd, 6100 Kazanlak, Bulgaria;
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| |
Collapse
|
31
|
Gu L, Hickey RJ, Malkas LH. Therapeutic Targeting of DNA Replication Stress in Cancer. Genes (Basel) 2023; 14:1346. [PMID: 37510250 PMCID: PMC10378776 DOI: 10.3390/genes14071346] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/30/2023] Open
Abstract
This article reviews the currently used therapeutic strategies to target DNA replication stress for cancer treatment in the clinic, highlighting their effectiveness and limitations due to toxicity and drug resistance. Cancer cells experience enhanced spontaneous DNA damage due to compromised DNA replication machinery, elevated levels of reactive oxygen species, loss of tumor suppressor genes, and/or constitutive activation of oncogenes. Consequently, these cells are addicted to DNA damage response signaling pathways and repair machinery to maintain genome stability and support survival and proliferation. Chemotherapeutic drugs exploit this genetic instability by inducing additional DNA damage to overwhelm the repair system in cancer cells. However, the clinical use of DNA-damaging agents is limited by their toxicity and drug resistance often arises. To address these issues, the article discusses a potential strategy to target the cancer-associated isoform of proliferating cell nuclear antigen (caPCNA), which plays a central role in the DNA replication and damage response network. Small molecule and peptide agents that specifically target caPCNA can selectively target cancer cells without significant toxicity to normal cells or experimental animals.
Collapse
Affiliation(s)
- Long Gu
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Robert J Hickey
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Linda H Malkas
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
32
|
Sae-Khow K, Phuengmaung P, Issara-Amphorn J, Makjaroen J, Visitchanakun P, Boonmee A, Benjaskulluecha S, Palaga T, Leelahavanichkul A. Less Severe Polymicrobial Sepsis in Conditional mgmt-Deleted Mice Using LysM-Cre System, Impacts of DNA Methylation and MGMT Inhibitor in Sepsis. Int J Mol Sci 2023; 24:10175. [PMID: 37373325 DOI: 10.3390/ijms241210175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The O6-methylguanine-DNA methyltransferase (MGMT) is a DNA suicide repair enzyme that might be important during sepsis but has never been explored. Then, the proteomic analysis of lipopolysaccharide (LPS)-stimulated wild-type (WT) macrophages increased proteasome proteins and reduced oxidative phosphorylation proteins compared with control, possibly related to cell injury. With LPS stimulation, mgmt null (mgmtflox/flox; LysM-Crecre/-) macrophages demonstrated less profound inflammation; supernatant cytokines (TNF-α, IL-6, and IL-10) and pro-inflammatory genes (iNOS and IL-1β), with higher DNA break (phosphohistone H2AX) and cell-free DNA, but not malondialdehyde (the oxidative stress), compared with the littermate control (mgmtflox/flox; LysM-Cre-/-). In parallel, mgmt null mice (MGMT loss only in the myeloid cells) demonstrated less severe sepsis in the cecal ligation and puncture (CLP) model (with antibiotics), as indicated by survival and other parameters compared with sepsis in the littermate control. The mgmt null protective effect was lost in CLP mice without antibiotics, highlighting the importance of microbial control during sepsis immune modulation. However, an MGMT inhibitor in CLP with antibiotics in WT mice attenuated serum cytokines but not mortality, requiring further studies. In conclusion, an absence of mgmt in macrophages resulted in less severe CLP sepsis, implying a possible influence of guanine DNA methylation and repair in macrophages during sepsis.
Collapse
Affiliation(s)
- Kritsanawan Sae-Khow
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salisa Benjaskulluecha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
33
|
Saisorn W, Phuengmaung P, Issara-Amphorn J, Makjaroen J, Visitchanakun P, Sae-Khow K, Boonmee A, Benjaskulluecha S, Nita-Lazar A, Palaga T, Leelahavanichkul A. Less Severe Lipopolysaccharide-Induced Inflammation in Conditional mgmt-Deleted Mice with LysM-Cre System: The Loss of DNA Repair in Macrophages. Int J Mol Sci 2023; 24:10139. [PMID: 37373287 DOI: 10.3390/ijms241210139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the known influence of DNA methylation from lipopolysaccharide (LPS) activation, data on the O6-methylguanine-DNA methyltransferase (MGMT, a DNA suicide repair enzyme) in macrophages is still lacking. The transcriptomic profiling of epigenetic enzymes from wild-type macrophages after single and double LPS stimulation, representing acute inflammation and LPS tolerance, respectively, was performed. Small interfering RNA (siRNA) silencing of mgmt in the macrophage cell line (RAW264.7) and mgmt null (mgmtflox/flox; LysM-Crecre/-) macrophages demonstrated lower secretion of TNF-α and IL-6 and lower expression of pro-inflammatory genes (iNOS and IL-1β) compared with the control. Macrophage injury after a single LPS dose and LPS tolerance was demonstrated by reduced cell viability and increased oxidative stress (dihydroethidium) compared with the activated macrophages from littermate control mice (mgmtflox/flox; LysM-Cre-/-). Additionally, a single LPS dose and LPS tolerance also caused mitochondrial toxicity, as indicated by reduced maximal respiratory capacity (extracellular flux analysis) in the macrophages of both mgmt null and control mice. However, LPS upregulated mgmt only in LPS-tolerant macrophages but not after the single LPS stimulation. In mice, the mgmt null group demonstrated lower serum TNF-α, IL-6, and IL-10 than control mice after either single or double LPS stimulation. Suppressed cytokine production resulting from an absence of mgmt in macrophages caused less severe LPS-induced inflammation but might worsen LPS tolerance.
Collapse
Affiliation(s)
- Wilasinee Saisorn
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases NIH, Bethesda, MD 20892-1892, USA
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kritsanawan Sae-Khow
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salisa Benjaskulluecha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases NIH, Bethesda, MD 20892-1892, USA
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
34
|
Georgieva M, Vassileva V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int J Mol Sci 2023; 24:ijms24065105. [PMID: 36982199 PMCID: PMC10049000 DOI: 10.3390/ijms24065105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.
Collapse
|
35
|
Bessler L, Vogt LM, Lander M, Dal Magro C, Keller P, Kühlborn J, Kampf CJ, Opatz T, Helm M. A New Bacterial Adenosine-Derived Nucleoside as an Example of RNA Modification Damage. Angew Chem Int Ed Engl 2023; 62:e202217128. [PMID: 36629490 DOI: 10.1002/anie.202217128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
The fields of RNA modification and RNA damage both exhibit a plethora of non-canonical nucleoside structures. While RNA modifications have evolved to improve RNA function, the term RNA damage implies detrimental effects. Based on stable isotope labelling and mass spectrometry, we report the identification and characterisation of 2-methylthio-1,N6-ethenoadenosine (ms2 ϵA), which is related to 1,N6-ethenoadenine, a lesion resulting from exposure of nucleic acids to alkylating chemicals in vivo. In contrast, a sophisticated isoprene labelling scheme revealed that ms2 ϵA biogenesis involves cleavage of a prenyl moiety in the known transfer RNA (tRNA) modification 2-methylthio-N6-isopentenyladenosine (ms2 i6 A). The relative abundance of ms2 ϵA in tRNAs from translating ribosomes suggests reduced function in comparison to its parent RNA modification, establishing the nature of the new structure in a newly perceived overlap of the two previously separate fields, namely an RNA modification damage.
Collapse
Affiliation(s)
- Larissa Bessler
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Lea-Marie Vogt
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Marc Lander
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Christina Dal Magro
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Patrick Keller
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Jonas Kühlborn
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christopher J Kampf
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
36
|
Rajasree SC, Takezawa Y, Shionoya M. Cu II-mediated stabilisation of DNA duplexes bearing consecutive ethenoadenine lesions and its application to a metal-responsive DNAzyme. Chem Commun (Camb) 2023; 59:1006-1009. [PMID: 36524578 DOI: 10.1039/d2cc06179a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-mediated nucleobase pairing can play a central role in the expression of metal-responsive DNA functions. We report the CuII-mediated stabilisation of DNA duplexes bearing damaged nucleobases, 1,N6-ethenoadenine (εA), as metal-binding sites, which was utilised to construct a metal-responsive DNAzyme. Consecutive incorporation of three or more εA-εA mismatch pairs allowed for CuII-dependent significant duplex stabilisation through metal-mediated εA-CuII-εA base pairing. Subsequently, a split DNAzyme with three εA-CuII-εA base pairs was strategically designed. The activity of the εA-modified DNAzyme was enhanced by 5.3-fold upon addition of CuII ions. This study demonstrates the utility of εA lesions for building metal-responsive DNA architectures.
Collapse
Affiliation(s)
- Silpa Chandran Rajasree
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
37
|
Fresnais M, Jung I, Klein UB, Miller AK, Turcan S, Haefeli WE, Burhenne J, Longuespée R. Important Requirements for Desorption/Ionization Mass Spectrometric Measurements of Temozolomide-Induced 2'-Deoxyguanosine Methylations in DNA. Cancers (Basel) 2023; 15:cancers15030716. [PMID: 36765673 PMCID: PMC9913758 DOI: 10.3390/cancers15030716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
In clinical pharmacology, drug quantification is mainly performed from the circulation for pharmacokinetic purposes. Finely monitoring the chemical effect of drugs at their chemical sites of action for pharmacodynamics would have a major impact in several contexts of personalized medicine. Monitoring appropriate drug exposure is particularly challenging for alkylating drugs such as temozolomide (TMZ) because there is no flow equilibrium that would allow reliable conclusions to be drawn about the alkylation of the target site from plasma concentrations. During the treatment of glioblastoma, it appears, therefore, promising to directly monitor the alkylating effect of TMZ rather than plasma exposure, ideally at the site of action. Mass spectrometry (MS) is a method of choice for the quantification of methylated guanines and, more specifically, of O6-methylguanines as a marker of TMZ exposure at the site of action. Depending on the chosen strategy to analyze modified purines and 2'-deoxynucleosides, the analysis of methylated guanines and 2'-deoxyguanosines is prone to important artefacts due to the overlap between masses of (i) guanines from DNA and RNA, and (ii) different methylated species of guanines. Therefore, the specific analysis of O6-methyl-2'deoxyguanosine, which is the product of the TMZ effect, is highly challenging. In this work, we report observations from matrix-assisted laser desorption/ionization (MALDI), and desorption electrospray ionization (DESI) MS analyses. These allow for the construction of a decision tree to initiate studies using desorption/ionization MS for the analysis of 2'-deoxyguanosine methylations induced by TMZ.
Collapse
Affiliation(s)
- Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ina Jung
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Uli B. Klein
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Aubry K. Miller
- Cancer Drug Development, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Walter E. Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Correspondence: author:
| |
Collapse
|
38
|
Jaiswal AS, Williamson EA, Jaiswal AS, Kong K, Hromas RA. In Vitro Reconstitutive Base Excision Repair (BER) Assay. Methods Mol Biol 2023; 2701:91-112. [PMID: 37574477 DOI: 10.1007/978-1-0716-3373-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The mammalian cell genome is continuously exposed to endogenous and exogenous insults that modify its DNA. These modifications can be single-base lesions, bulky DNA adducts, base dimers, base alkylation, cytosine deamination, nitrosation, or other types of base alteration which interfere with DNA replication. Mammalian cells have evolved with a robust defense mechanism to repair these base modifications (damages) to preserve genomic stability. Base excision repair (BER) is the major defense mechanism for cells to remove these oxidative or alkylated single-base modifications. The base excision repair process involves replacement of a single-nucleotide residue by two sub-pathways, the single-nucleotide (SN) and the multi-nucleotide or long-patch (LP) base excision repair pathways. These reactions have been reproduced in vitro using cell free extracts or purified recombinant proteins involved in the base excision repair pathway. In the present chapter, we describe the detailed methodology to reconstitute base excision repair assay systems. These reconstitutive BER assay systems use artificially synthesized and modified DNA. These reconstitutive assay system will be a true representation of biologically occurring damages and their repair.
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA.
- Division of Hematology and Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Elizabeth A Williamson
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Arunima S Jaiswal
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Kimi Kong
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Robert A Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
39
|
Cui C, Ma Z, Wan H, Gao J, Zhou B. GhALKBH10 negatively regulates salt tolerance in cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:87-100. [PMID: 36215791 DOI: 10.1016/j.plaphy.2022.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The alpha-ketoglutarate-dependent dioxygenase (AlkB) gene family plays an essential role in regulating plant development and stress response. However, the AlkB gene family is still not well understood in cotton. In this study, 40 AlkB genes in cotton and Arabidopsis are identified and classified into three classes based on phylogenetic analysis. Their protein motifs and exon/intron structures are highly conserved. Chromosomal localization and synteny analysis suggested that segmental or whole-genome duplication and polyploidization events contributed to the expansion of the cotton AlkB gene family. Furthermore, the AlkB genes showed dynamic spatiotemporal expression patterns and diverse responses to abiotic stresses. Among them, GhALKBH10 was down-regulated under various abiotic stresses and its subcellular expression was localized in cytoplasm and nucleus. Silencing GhALKBH10 in cotton increased antioxidant capacity and reduced cytoplasmic Na+ concentration, thereby improved the plant tolerance to salinity. Conversely, overexpression (OE) of GhALKBH10 in Arabidopsis markedly weakened the plant tolerance to salinity. The global m6A levels measured in VIGS and OE transgenic lines showed that they were significantly higher in TRV: GhALKBH10 plants (VIGS) than in TRV: 00 plants but significantly lower in OE plants than wild-type plants under salt stress, which could be considered as a potential m6A demethylase in cotton. Our results suggest that the GhALKBH10 gene negatively regulates salt tolerance in plants, which provides information of the cotton AlkB family and an understanding of GhALKBH10 function under salt condition as well as a new gene for salt-tolerant cotton breeding.
Collapse
Affiliation(s)
- Changjiang Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, China
| | - Zhifeng Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, China
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, China
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-sponsored By Province and Ministry, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
40
|
Abstract
Cancer is a worldwide problem afflicting 19 million people. Inhibition of DNA synthesis has been a cornerstone of anticancer therapy. A variety of chemotherapy drugs have been developed and many of these are aimed at inhibiting DNA synthesis, as they damage DNA, form DNA adduct and interfere with DNA synthesis. Another type of chemotherapy interferes with the synthesis of nucleotide pools. There are also other types of drugs that inhibit topoisomerases resulting in the interference with DNA replication and transcription. Significant progress has been made regarding radiation therapy that includes X-ray (and γ-ray), proton therapy and heavy ion therapy. The Auger therapy is a type of radiation therapy that differs from X-ray, proton or heavy ion therapy. The method relies on the use of high Z elements such as gadolinium, iodine, gold or silver. Irradiation of these elements results in the release of electrons including the Auger electrons that have strong DNA damaging effect. Tamanoi et al. developed novel nanoparticles containing gadolinium or iodine to place high Z elements at the periphery of the nucleus thus localizing them close to DNA. Irradiation with monochromatic X-ray resulted in the formation of double-strand DNA breaks leading to the destruction of tumor mass. Comparison of conventional X-ray therapy and the Auger therapy is discussed.
Collapse
Affiliation(s)
- Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan.
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan; Center for Integrative Medicine and Physics, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Kellum AH, Pallan PS, Nilforoushan A, Sturla SJ, Stone MP, Egli M. Conformation and Pairing Properties of an O6-Methyl-2'-deoxyguanosine-Directed Benzimidazole Nucleoside Analog in Duplex DNA. Chem Res Toxicol 2022; 35:1903-1913. [PMID: 35973057 PMCID: PMC9988402 DOI: 10.1021/acs.chemrestox.2c00165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
O6-Methyl-2'-deoxyguanosine (O6-MeG) is one of the most common DNA lesions and arises as a consequence of both xenobiotic carcinogens and endogenous methylation by S-adenosylmethionine. O6-MeG frequently causes G-to-A mutations during DNA replication due to the misincorporation of dTTP and continued DNA synthesis. Efforts to detect DNA adducts such as O6-MeG, and to understand their impacts on DNA structure and function, have motivated the creation of nucleoside analogs with altered base moieties to afford a more favorable interaction with the adduct as compared to the unmodified nucleotide. Such analogs directed at O6-MeG include benzimidazolinone and benzimidazole nucleotides, as well as their extended π surface analogs naphthimidazolinone and napthimidazole derivatives. These analogs form a more stable pair with O6-MeG than with G, most likely due to a combination of H-bonding and stacking. While extending the π surface of the analogs enhances their performance as adduct-directed probes, the precise origins of the increased affinity between the synthetic analogs and O6-MeG remain unclear. To better understand relevant conformational and pairing properties, we used X-ray crystallography and analyzed the structures of the DNA duplexes with naphthimidazolinone inserted opposite G or O6-MeG. The structures reveal a complex interaction of the analog found either in an anti orientation and stacked inside the duplex, either above or below G or O6-MeG, or in a syn orientation and paired opposite G with formation of a single H-bond. The experimental structural data are consistent with the stabilizing effect of the synthetic analog observed in UV melting experiments and calculations and moreover reveal that the origin of these observations appears to be superior stacking between O6-MeG and the extended π system of the synthetic probe.
Collapse
Affiliation(s)
- Andrew H Kellum
- Department of Chemistry, Vanderbilt University, College of Arts and Science, Nashville, Tennessee 37235, United States
| | - Pradeep S Pallan
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Arman Nilforoushan
- Department of Health Sciences and Technology, ETH Zürich, Zurich 8092, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Zurich 8092, Switzerland
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University, College of Arts and Science, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
42
|
Du Y, Wu T. Heart failure and cancer: From active exposure to passive adaption. Front Cardiovasc Med 2022; 9:992011. [PMID: 36304546 PMCID: PMC9592839 DOI: 10.3389/fcvm.2022.992011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
The human body seems like a "balance integrator." On the one hand, the body constantly actively receives various outside stimuli and signals to induce changes. On the other hand, several internal regulations would be initiated to adapt to these changes. In most cases, the body could keep the balance in vitro and in vivo to reach a healthy body. However, in some cases, the body can only get to a pathological balance. Actively exposed to unhealthy lifestyles and passively adapting to individual primary diseases lead to a similarly inner environment for both heart failure and cancer. To cope with these stimuli, the body must activate the system regulation mechanism and face the mutual interference. This review summarized the association between heart failure and cancer from active exposure to passive adaption. Moreover, we hope to inspire researchers to contemplate these two diseases from the angle of overall body consideration.
Collapse
Affiliation(s)
- Yantao Du
- Ningbo Institute of Medical Science, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Tao Wu
- Department of Cardiovascular Center, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
43
|
Mustafa M, Ali A, Siddiqui SA, Mir AR, Kausar T, Nayeem SM, Abidi M, Habib S. Biophysical characterization of structural and conformational changes in methylmethane sulfonate modified DNA leading to the frizzled backbone structure and strand breaks in DNA. J Biomol Struct Dyn 2022; 40:7598-7611. [PMID: 33719845 DOI: 10.1080/07391102.2021.1899051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/01/2021] [Indexed: 12/26/2022]
Abstract
Methyl methanesulfonate (MMS) is a highly toxic DNA-alkylating agent that has a potential to damage the structural integrity of DNA. This work employed multiple biophysical and computational methods to report the MMS mediated structural alterations in the DNA (MMS-DNA). Spectroscopic techniques and gel electrophoresis studies revealed MMS induced exposure of chromophoric groups of DNA; methylation mediated anti→syn conformational change, DNA fragmentation and reduced nucleic acid stability. MMS induced single-stranded regions in the DNA were observed in nuclease S1 assay. FT-IR results indicated MMS mediated loss of the assigned peaks for DNA, partial loss of C-O ribose, loss of deoxyribose region, C-O stretching and bending of the C-OH groups of hexose sugar, a progressive shift in the assigned guanine and adenine peaks, loss of thymine peak, base stacking and presence of C-O-H vibrations of glucose and fructose, indicating direct strand breaks in DNA due to backbone loss. Isothermal titration calorimetry showed MMS-DNA interaction as exothermic with moderate affinity. Dynamic light scattering studies pointed towards methylation followed by the generation of single-stranded regions. Electron microscopy pictured the loss of alignment in parallel base pairs and showed the formation of fibrous aggregates in MMS-DNA. Molecular docking found MMS in close contact with the ribose sugar of DNA backbone having non-bonded interactions. Molecular dynamic simulations confirmed that MMS is capable of interacting with DNA at two levels, one at the level of nitrogenous bases and another at the DNA backbone. The study offers insights into the molecular interaction of MMS and DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahid Ali Siddiqui
- Department of Radiotherapy, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abdul Rouf Mir
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Tasneem Kausar
- Department of Chemistry, Faculty of Science, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahid M Nayeem
- Department of Chemistry, Faculty of Science, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Minhal Abidi
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
44
|
Marçal R, Pacheco M, Guilherme S. Unveiling the nexus between parental exposure to toxicants and heritable spermiotoxicity - Is life history a shield or a shadow? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103955. [PMID: 35970510 DOI: 10.1016/j.etap.2022.103955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The knowledge on parental experiences is critical to predict how organisms react to environmental challenges. So, the DNA integrity of Procambarus clarkii spermatozoa exposed ex vivo to the herbicide penoxsulam (Px) or ethyl methanesulfonate (EMS; model genotoxicant) was assessed with and without the influence of in vivo parental exposure to the same agents. The parental exposure alone did not affect the DNA of unexposed spermatozoa. However, the history of Px exposure increased the vulnerability to oxidative lesions in Px-exposed offspring. Otherwise, parental exposure to EMS allowed the development of protection mechanisms expressed when F1 was also exposed to EMS, unveiling life history as a shield. The parental exposure to a different agent adverse and decisively affected Px spermiotoxic potential, pointing out life history as a shadow to progeny. Given the complexity of the aquatic contamination scenarios, involving mixtures, the spermiotoxicity of Px to wild P. clarkii populations emerged as probable.
Collapse
Affiliation(s)
- R Marçal
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - M Pacheco
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - S Guilherme
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
45
|
Wang L, Zhang H, Chen W, Chen H, Xiao J, Chen X. Recent advances in DNA glycosylase assays. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Zhang J, Wang Y, Wang Y, Zhang P, Chen HY, Huang S. Discrimination between Different DNA Lesions by Monitoring Single-Molecule Polymerase Stalling Kinetics during Nanopore Sequencing. NANO LETTERS 2022; 22:5561-5569. [PMID: 35713465 DOI: 10.1021/acs.nanolett.2c01833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
O6-Carboxymethylguanosine (O6-CMG), O6-methylguanosine (O6-MeG), and abasic site (AP site) are DNA lesions induced by alkylating agents. Identification of these lesions in DNA may aid in understanding their relevance to carcinogenesis and may be used for diagnosis. Nanopore sequencing (NPS) may directly report nucleotide modifications solely from the nanopore readout. However, the conventional NPS strategy still suffers from interferences from neighboring sequences. Instead, by observation of the enzymatic stalling kinetics caused by the O6-CMG, O6-MeG, or AP site, discrimination between different DNA lesions is directly achieved. This strategy is not interfered with by the sequence context around the lesion. The lesion, which retards the movement of the DNA through the pore, efficiently prohibits misreading of the DNA lesion. These results suggest a new strategy in the identification of DNA lesions or DNA modifications. It also provides a high-resolution biophysical tool to investigate enzymatic kinetics caused by DNA lesions and the corresponding enzymes.
Collapse
Affiliation(s)
- Jinyue Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Yu Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| |
Collapse
|
47
|
Marçal R, Marques AM, Pacheco M, Guilherme S. Improving knowledge on genotoxicity dynamics in somatic and germ cells of crayfish (Procambarus clarkii). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:296-307. [PMID: 36054159 DOI: 10.1002/em.22501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The harmful effects of pesticides can be extended beyond the exposure time scale. Appraisals combining exposure and long-term post-exposure periods appear as an unavoidable approach in pesticide risk assessment, thus allowing a better understanding of the real impact of agrochemicals in non-target organisms. This study aimed to evaluate the progression of genetic damage in somatic and germ tissues of the crayfish Procambarus clarkii, also seeking for gender-specificities, following exposure (7 days) to penoxsulam (23 μg L-1 ) and a post-exposure (70 days) period. The same approach was applied to the model genotoxicant ethyl methanesulfonate (EMS; 5 mg L-1 ) as a complementary mean to improve knowledge on genotoxicity dynamics (induction vs. recovery). Penoxsulam induced DNA damage in all tested tissues, disclosing tissue- and gender-specificities, where females showed to be more vulnerable than males in the gills, while males demonstrated higher susceptibility in what concerns internal organs, that is, hepatopancreas and gonad. Crayfish were unable to recover from the DNA damage induced by EMS in gills and hepatopancreas (both genders) as well as in spermatozoa. The genotoxicity in the hepatopancreas was only perceptible in the post-exposure period. Oxidative DNA lesions were identified in hepatopancreas and spermatozoa of EMS-exposed crayfish. The spermatozoa proved to be the most vulnerable cell type. It became clear that the characterization of the genotoxic hazard of a given agent must integrate a complete set of information, addressing different types of DNA damage, tissue- and gender-specificities, as well as a long-term appraisal of temporal progression of damage.
Collapse
Affiliation(s)
- Raquel Marçal
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ana Margarida Marques
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Mário Pacheco
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sofia Guilherme
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
48
|
Bleisch R, Freitag L, Ihadjadene Y, Sprenger U, Steingröwer J, Walther T, Krujatz F. Strain Development in Microalgal Biotechnology-Random Mutagenesis Techniques. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070961. [PMID: 35888051 PMCID: PMC9315690 DOI: 10.3390/life12070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Microalgal biomass and metabolites can be used as a renewable source of nutrition, pharmaceuticals and energy to maintain or improve the quality of human life. Microalgae’s high volumetric productivity and low impact on the environment make them a promising raw material in terms of both ecology and economics. To optimize biotechnological processes with microalgae, improving the productivity and robustness of the cell factories is a major step towards economically viable bioprocesses. This review provides an overview of random mutagenesis techniques that are applied to microalgal cell factories, with a particular focus on physical and chemical mutagens, mutagenesis conditions and mutant characteristics.
Collapse
Affiliation(s)
- Richard Bleisch
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Leander Freitag
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Yob Ihadjadene
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Una Sprenger
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Juliane Steingröwer
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Thomas Walther
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
| | - Felix Krujatz
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany; (R.B.); (L.F.); (Y.I.); (U.S.); (J.S.); (T.W.)
- Biotopa gGmbH—Center for Applied Aquaculture & Bioeconomy, 01454 Radeberg, Germany
- Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, 02763 Zittau, Germany
- Correspondence:
| |
Collapse
|
49
|
Tan T, Li Y, Tang B, Chen Y, Chen X, Xie Q, Hu Z, Chen G. Knockout of SlALKBH2 weakens the DNA damage repair ability of tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111266. [PMID: 35487670 DOI: 10.1016/j.plantsci.2022.111266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
During the growth and evolution of plants, genomic DNA is subject to constant assault from endogenous and environmental DNA damage compounds, which will result in mutagenic or genotoxic covalent adducts. Whether for prokaryotes, eukaryotes or even viruses, maintaining genome integrity is critical for the continuation of life. Escherichia coli and mammals have evolved the AlkB family of Fe(II)/alpha-ketoglutarate-dependent dioxygenases that repair DNA alkylation damage. We identified a functional homologue with EsAlkB and HsALKBH2 in tomatoes, and named it SlALKBH2. In our study, the SlALKBH2 knockout mutant showed hypersensitivity to the DNA mutagen MMS and displayed more severe growth abnormalities than wild-type plants under mutagen treatment, such as slow growth, leaf deformation and early senescence. Additionally, genes with high transcriptional activity, such as rDNA, have increased methylation under MMS treatment. In conclusion, this study shows that the tomato SlALKBH2 gene may play an important role in ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Tingting Tan
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yangyang Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Boyan Tang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yating Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xinru Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
50
|
Rodrigues-Souza I, Pessatti JBK, da Silva LR, de Lima Bellan D, de Souza IR, Cestari MM, de Assis HCS, Rocha HAO, Simas FF, da Silva Trindade E, Leme DM. Protective potential of sulfated polysaccharides from tropical seaweeds against alkylating- and oxidizing-induced genotoxicity. Int J Biol Macromol 2022; 211:524-534. [PMID: 35577199 DOI: 10.1016/j.ijbiomac.2022.05.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/18/2022]
Abstract
Sulfated polysaccharides (SPs) from seaweeds are potential bioactive natural compounds, but their DNA protective activity is poorly explored. This article aimed to evaluate the genotoxic/antigenotoxic potentials of a sulfated heterofucan from brown seaweed Spatoglossum schröederi (Fucan A - FA) and a sulfated galactan from green seaweed Codium isthomocladum (3G4S) using in vitro Comet assay (alkaline and oxidative versions) with HepG2 cells. The antioxidant activity of these SPs was evaluated by total antioxidant capacity, radical scavenging, metal chelating, and antioxidant enzyme activity assays. Both SPs were not genotoxic. FA and 3G4S displayed strong antigenotoxic activity against oxidizing chemical (H2O2) but not against alkylating chemical (MMS). The DNA damage reduction after a pre-treatment of 72 h with these SPs was 81.42% to FA and 81.38% to 3G4S. In simultaneous exposure to FA or 3G4S with H2O2, HepG2 cells presented 48.04% and 55.41% of DNA damage reduction compared with the control, respectively. The antigenotoxicity of these SPs relates to direct antioxidant activity by blockage of the initiation step of the oxidative chain reaction. Therefore, we conclude that FA and 3G4S could be explored as functional natural compounds with antigenotoxic activity due to their great protection against oxidative DNA damage.
Collapse
Affiliation(s)
| | | | | | - Daniel de Lima Bellan
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | | | | | | | | | - Daniela Morais Leme
- Departament of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|