1
|
Tan W, Xiao C, Ma M, Cao Y, Huang Z, Wang X, Kang R, Li Z, Li E. Role of non-coding RNA in lineage plasticity of prostate cancer. Cancer Gene Ther 2024:10.1038/s41417-024-00834-z. [PMID: 39496938 DOI: 10.1038/s41417-024-00834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024]
Abstract
The treatment of prostate cancer (PCa) has made great progress in recent years, but treatment resistance always develops and can even lead to fatal disease. Exploring the mechanism of drug resistance is of great significance for improving treatment outcomes and developing biomarkers with predictive value. It is increasingly recognized that mechanism of drug resistance in advanced PCa is related to lineage plasticity and tissue differentiation. Specifically, one of the mechanisms by which castration-resistant prostate cancer (CRPC) cells acquire drug resistance and transform into neuroendocrine prostate cancer (NEPC) cells is lineage plasticity. NEPC is a subtype of PCa that is highly aggressive and lethal, with a median survival of only 7 months. With the development of high-throughput RNA sequencing technology, more and more non-coding RNAs have been identified, which play important roles in different diseases through different mechanisms. Several ncRNAs have shown great potential in PCa lineage plasticity and as biomarkers. In the review, the role of ncRNA in PCa lineage plasticity and its use as biomarkers were reviewed.
Collapse
Affiliation(s)
- Wenhui Tan
- Institute of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Min Ma
- Institute of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Youhan Cao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhenguo Huang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaolan Wang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhenfa Li
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China.
| | - Ermao Li
- Institute of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Qi XL, Luo GQ, Tuersun A, Chen M, Wu GB, Zheng L, Li HJ, Lou XL, Luo M. Construction of an endoplasmic reticulum stress and cuproptosis -related lncRNAs signature in chemosensitivity in hepatocellular carcinoma by comprehensive bioinformatics analysis. Heliyon 2024; 10:e38342. [PMID: 39398070 PMCID: PMC11471205 DOI: 10.1016/j.heliyon.2024.e38342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) and cuproptosis have remarkable effects on hepatocellular carcinoma (HCC) leading to a poor prognosis. The current study aimed to explore credible signature for predicting the prognosis of HCC based on ERS and cuproptosis-related lncRNAs. In our study, clinical and transcriptomic profiles of HCC patients were obtained from the Cancer Genome Atlas (TCGA) database. An ERS and cuproptosis-related lncRNA prognostic signature, including NRAV, SNHG3, LINC00839 and AC004687.1, was determined by correlation tests, Cox regression analysis, least absolute shrinkage, and selection operator (LASSO) methods. Survival and predictive value were evaluated using Kaplan-Meier and receiver operating characteristic (ROC) curves, while calibration and nomograms curves were developed. Besides the enrichment analyses for ERS and cuproptosis-related lncRNAs, mutational status and immune status were assessed with TMB and ESTIMATE. Additionally, consensus cluster analysis was employed to compare cancer subtype differences, while drug sensitivity and immunologic efficacy were evaluated for further exploration. qRT-PCR and CCK-8 were utilized to verify the alteration of the prognostic lncRNAs expression and proliferation in vitro. High-risk groups exhibited poorer prognosis. The signature exhibited robust predictive value as an independent prognostic indicator and showed significant correlation with clinicopathological features. In the enriched analysis, biological membrane pathways were enriched. Low-risk patients had lower TMB and higher immune status. A cluster analysis revealed that cluster 2 had the best clinical immunological efficacy and most active immune function. In brief, our constructed signature with ERS and cuproptosis-related lncRNAs was associated survival outcomes of HCC, and can be used to predict the clinical classification and curative effect.
Collapse
Affiliation(s)
- Xiao-Liang Qi
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gu-Qing Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Abudukadier Tuersun
- Department of General Surgery, Kashgar Prefecture Second People's Hospital of Xinjiang Uygur Autonomous Regions, Kashgar, Xinjiang, China
| | - Min Chen
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Bo Wu
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Jie Li
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Lou Lou
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Maqbool M, Hussain MS, Bisht AS, Kumari A, Kamran A, Sultana A, Kumar R, Khan Y, Gupta G. Connecting the dots: LncRNAs in the KRAS pathway and cancer. Pathol Res Pract 2024; 262:155570. [PMID: 39226802 DOI: 10.1016/j.prp.2024.155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as important participants in several biological functions, particularly their complex interactions with the KRAS pathway, which provide insights into the significant roles lncRNAs play in cancer development. The KRAS pathway, a central signaling cascade crucial for cell proliferation, survival, and differentiation, stands out as a key therapeutic target due to its aberrant activation in many human cancers. Recent investigations have unveiled a myriad of lncRNAs, such as H19, ANRIL, and MEG3, intricately modulating the KRAS pathway, influencing both its activation and repression through various mechanisms, including epigenetic modifications, transcriptional regulation, and post-transcriptional control. These lncRNAs function as fine-tuners, delicately orchestrating the balance required for normal cellular function. Their dysregulation has been linked to the development and progression of multiple malignancies, including lung, pancreatic, and colorectal carcinomas, which frequently harbor KRAS mutations. This scrutiny delves into the functional diversity of specific lncRNAs within the KRAS pathway, elucidating their molecular mechanisms and downstream effects on cancer phenotypes. Additionally, it underscores the diagnostic and prognostic potential of these lncRNAs as indicators for cancer detection and assessment. The complex regulatory network that lncRNAs construct within the context of the KRAS pathway offers important insights for the creation of focused therapeutic approaches, opening new possibilities for precision medicine in oncology. However, challenges such as the dual roles of lncRNAs in different cancer types and the difficulty in therapeutically targeting these molecules highlight the ongoing debates and need for further research. As ongoing studies unveil the complexities of lncRNA-mediated KRAS pathway modulation, the potential for innovative cancer interventions becomes increasingly promising.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Alka Kumari
- University institute of pharmacy, Chandigarh University, Gharaun, Punjab 140413, India
| | - Almaz Kamran
- HIMT College of Pharmacy, Plot No. 08, Knowledge Park - 1, Greater Noida, Uttar Pradesh 201310, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University, Deralakatte, Mangalore, Karnataka, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yumna Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
4
|
Wang Z, Tang P, Xiao H, Peng S, Chen J, Wang Y, Xu J, Yan Q, Zhang J, Deng J, Ma Q, Zhu H, Luo W, Zhang D, Wang L, Qin J, Lan W, Jiang J, Liu Q. Histone demethylase PHF8 promotes prostate cancer metastasis via the E2F1-SNAI1 axis. J Pathol 2024; 264:68-79. [PMID: 39022843 DOI: 10.1002/path.6325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/21/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Metastasis is the primary culprit behind cancer-related fatalities in multiple cancer types, including prostate cancer. Despite great advances, the precise mechanisms underlying prostate cancer metastasis are far from complete. By using a transgenic mouse prostate cancer model (TRAMP) with and without Phf8 knockout, we have identified a crucial role of PHF8 in prostate cancer metastasis. By complexing with E2F1, PHF8 transcriptionally upregulates SNAI1 in a demethylation-dependent manner. The upregulated SNAI1 subsequently enhances epithelial-to-mesenchymal transition (EMT) and metastasis. Given the role of the abnormally activated PHF8/E2F1-SNAI1 axis in prostate cancer metastasis and poor prognosis, the levels of PHF8 or the activity of this axis could serve as biomarkers for prostate cancer metastasis. Moreover, targeting this axis could become a potential therapeutic strategy for prostate cancer treatment. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ze Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Peng Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Haiyang Xiao
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jian Chen
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qian Yan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Junying Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, PR China
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Jie Deng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qiang Ma
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Hailin Zhu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Weiming Luo
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| |
Collapse
|
5
|
Wang G, Mao X, Wang W, Wang X, Li S, Wang Z. Bioprinted research models of urological malignancy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230126. [PMID: 39175884 PMCID: PMC11335473 DOI: 10.1002/exp.20230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 08/24/2024]
Abstract
Urological malignancy (UM) is among the leading threats to health care worldwide. Recent years have seen much investment in fundamental UM research, including mechanistic investigation, early diagnosis, immunotherapy, and nanomedicine. However, the results are not fully satisfactory. Bioprinted research models (BRMs) with programmed spatial structures and functions can serve as powerful research tools and are likely to disrupt traditional UM research paradigms. Herein, a comprehensive review of BRMs of UM is presented. It begins with a brief introduction and comparison of existing UM research models, emphasizing the advantages of BRMs, such as modeling real tissues and organs. Six kinds of mainstream bioprinting techniques used to fabricate such BRMs are summarized with examples. Thereafter, research advances in the applications of UM BRMs, such as culturing tumor spheroids and organoids, modeling cancer metastasis, mimicking the tumor microenvironment, constructing organ chips for drug screening, and isolating circulating tumor cells, are comprehensively discussed. At the end of this review, current challenges and future development directions of BRMs and UM are highlighted from the perspective of interdisciplinary science.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Xiongmin Mao
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wang Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaolong Wang
- Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sheng Li
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zijian Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| |
Collapse
|
6
|
Tong T, Huang M, Yan B, Lin B, Yu J, Teng Q, Li P, Pang J. Hippo signaling modulation and its biological implications in urological malignancies. Mol Aspects Med 2024; 98:101280. [PMID: 38870717 DOI: 10.1016/j.mam.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/27/2024] [Accepted: 05/19/2024] [Indexed: 06/15/2024]
Abstract
Although cancer diagnosis and treatment have rapidly advanced in recent decades, urological malignancies, which have high morbidity and mortality rates, are among the most difficult diseases to treat. The Hippo signaling is an evolutionarily conserved pathway in organ size control and tissue homeostasis maintenance. Its downstream effectors, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), are key modulators of numerous physiological and pathological processes. Recent work clearly indicates that Hippo signaling is frequently altered in human urological malignancies. In this review, we discuss the disparate viewpoints on the upstream regulators of YAP/TAZ and their downstream targets and systematically summarize the biological implications. More importantly, we highlight the molecular mechanisms involved in Hippo-YAP signaling to improve our understanding of its role in every stage of prostate cancer, bladder cancer and kidney cancer progression. A better understanding of the biological outcomes of YAP/TAZ modulation will contribute to the establishment of future therapeutic approaches.
Collapse
Affiliation(s)
- Tongyu Tong
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Mengjun Huang
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Binyuan Yan
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Bingbiao Lin
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Qiliang Teng
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Jun Pang
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
7
|
Wang L, Li B, Cheng D. Influence of Long Non-Coding RNAs on Human Oocyte Development. Pharmgenomics Pers Med 2024; 17:337-345. [PMID: 38979513 PMCID: PMC11229482 DOI: 10.2147/pgpm.s449101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Recent research findings have highlighted the pivotal roles played by lncRNAs in both normal human development and disease pathogenesis. LncRNAs are expressed in oocytes and early embryos, and their expression levels change dynamically once the embryonic genome is activated during early human embryonic development. Abnormal expression of lncRNAs was found in follicular fluid, granulosa cells and oocytes of patients, and these lncRNAs were related to cell proliferation and apoptosis, nuclear maturation and follicle development. The expression levels of some lncRNAs in cumulus cells demonstrate correlations with the quality of oocytes and early embryos. This paper aims to present a comprehensive overview of the influence of LncRNAs on the developmental process of human oocytes as well as their involvement in certain infertility-related diseases.
Collapse
Affiliation(s)
- Leitong Wang
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| | - Baoshan Li
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| | - Dongkai Cheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| |
Collapse
|
8
|
Alharthi NS, Al-Zahrani MH, Hazazi A, Alhuthali HM, Gharib AF, Alzahrani S, Altalhi W, Almalki WH, Khan FR. Exploring the lncRNA-VEGF axis: Implications for cancer detection and therapy. Pathol Res Pract 2024; 253:154998. [PMID: 38056133 DOI: 10.1016/j.prp.2023.154998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Cancer is a complicated illness that spreads indefinitely owing to epigenetic, genetic, and genomic alterations. Cancer cell multidrug susceptibility represents a severe barrier in cancer therapy. As a result, creating effective therapies requires a better knowledge of the mechanisms driving cancer development, progress, and resistance to medications. The human genome is predominantly made up of long non coding RNAs (lncRNAs), which are currently identified as critical moderators in a variety of biological functions. Recent research has found that changes in lncRNAs are closely related to cancer biology. The vascular endothelial growth factor (VEGF) signalling system is necessary for angiogenesis and vascular growth and has been related to an array of health illnesses, such as cancer. LncRNAs have been identified to alter a variety of cancer-related processes, notably the division of cells, movement, angiogenesis, and treatment sensitivity. Furthermore, lncRNAs may modulate immune suppression and are being investigated as possible indicators for early identification of cancer. Various lncRNAs have been associated with cancer development and advancement, serving as cancer-causing or suppressing genes. Several lncRNAs have been demonstrated through research to impact the VEGF cascade, resulting in changes in angiogenesis and tumor severity. For example, the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to foster the formation of oral squamous cell carcinoma and the epithelial-mesenchymal transition by stimulating the VEGF-A and Notch systems. Plasmacytoma variant translocation 1 (PVT1) promotes angiogenesis in non-small-cell lung cancer by affecting miR-29c and boosting the VEGF cascade. Furthermore, lncRNAs regulate VEGF production and angiogenesis by interacting with multiple downstream signalling networks, including Wnt, p53, and AKT systems. Identifying how lncRNAs engage with the VEGF cascade in cancer gives beneficial insights into tumor biology and possible treatment strategies. Exploring the complicated interaction between lncRNAs and the VEGF pathway certainly paves avenues for novel ways to detect better accurately, prognosis, and cure cancers. Future studies in this area could open avenues toward the creation of innovative cancer therapy regimens that enhance the lives of patients.
Collapse
Affiliation(s)
- Nahed S Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudia Arabia
| | | | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Hayaa Moeed Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shatha Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Altalhi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences AlQuwayiyah, Shaqra University, Saudi Arabia.
| |
Collapse
|
9
|
Darvish M. LncRNA FTH1P3: A New Biomarker for Cancer-Related Therapeutic Development. Curr Mol Med 2024; 24:576-584. [PMID: 37491858 DOI: 10.2174/1566524023666230724141353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
Cancer is a persistent and urgent health problem that affects the entire world. Not long ago, regulatory biomolecules referred to as long noncoding RNAs (lncRNAs) might have value for their innate abundance and stability. These single-stranded RNAs potentially interfere with several physiological and biochemical cellular processes involved in many human pathological situations, particularly cancer diseases. Ferritin heavy chain1 pseudogene 3 (FTH1P3), a lncRNA that is ubiquitously transcribed and belongs to the ferritin heavy chain (FHC) family, represents a novel class of lncRNAs primarily found in oral squamous cell carcinoma. Further research has shown that FTH1P3 is involved in other malignancies such as uveal melanoma, glioma, esophageal squamous cell carcinoma, non-small cell lung cancer, breast cancer, laryngeal squamous cell carcinoma, and cervical cancer. Accordingly, FTH1P3 significantly enhances cancer symptoms, including cell proliferation, invasion, metastasis, chemoresistance, and inhibition of apoptosis through many specific mechanisms. Notably, the clinical data significantly demonstrated the association of FTH1P3 overexpression with poor prognosis and poor overall survival within the examined samples. Here, we summarize all the research published to date (13 articles) on FTH1P3, focusing on the biological function underlying the regulatory mechanism and its possible clinical relevance.
Collapse
Affiliation(s)
- Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
10
|
Zhou F. Prognostic value of CASC15 and LINC01600 as competitive endogenous RNAs in lung adenocarcinoma: An observational study. Medicine (Baltimore) 2023; 102:e36026. [PMID: 37960753 PMCID: PMC10637420 DOI: 10.1097/md.0000000000036026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) can directly or indirectly regulate gene expression through interacting with microRNAs (miRNAs). Competitive endogenous RNAs render the roles of lncRNAs more complicated in the process of tumor occurrence and progression. However, the prognostic value of lncRNAs as potential biomarkers and their functional roles as competitive endogenous RNAs have not been clearly described for lung adenocarcinoma (LUAD). In the present study, the aberrant expression profiles of lncRNAs and miRNAs were analyzed at cBioPortal by interrogating LUAD dataset from The Cancer Genome Atlas (TCGA) database with 517 tissue samples. A total of 92 lncRNAs and 125 miRNAs with highly genetic alterations were identified. Further bioinformatics analysis was performed to construct a LUAD-related lncRNA-miRNA-mRNA ceRNA network, which included 24 highly altered lncRNAs, 21 miRNAs and 142 mRNAs. Some key lncRNAs in this network were subsequently identified as LUAD prognosis-related, and of those, CASC15 and LINC01600 both performed the potential prognostic characteristics with LUAD regarding OS and recurrence. Comprehensive analysis indicated that the expression of LINC01600 was significantly associated with KRAS mutation and lymph node metastasis, and CASC15 and LINC01600 were significantly tended towards co-occurrence, which may be due to the similarity of genes co-expressed by these 2 lncRNAs. Our findings provided novel insight into better understanding of ceRNA regulatory mechanisms in the pathogenesis of LUAD and facilitated the identification of potential biomarkers for prognosis.
Collapse
Affiliation(s)
- Fangbin Zhou
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
11
|
Tajik F, Fattahi F, Rezagholizadeh F, Bouzari B, Babaheidarian P, Baghai Wadji M, Madjd Z. Nuclear overexpression of DNA damage-inducible transcript 4 (DDIT4) is associated with aggressive tumor behavior in patients with pancreatic tumors. Sci Rep 2023; 13:19403. [PMID: 37938616 PMCID: PMC10632485 DOI: 10.1038/s41598-023-46484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
DNA damage-inducible transcript 4 (DDIT4) is induced in various cellular stress conditions. Several studies showed that the dysregulation of DDIT4 is involved in different malignancies with paradoxical expressions and roles. Therefore, this study investigated the clinical significance, prognostic, and diagnostic value of DDIT4 in different types of pancreatic tumors (PT). The expression of DDIT4 and long non-coding RNA (TPTEP1) in mRNA level was examined in 27 fresh PT samples using Real-time quantitative PCR (RT-qPCR). Moreover, 200 formalin-fixed paraffin-embedded PT tissues, as well as 27 adjacent normal tissues, were collected to evaluate the clinical significance, prognostic, and diagnosis value of DDIT4 expression by immunohistochemistry (IHC) on tissue microarrays (TMA) slides. The results of RT-qPCR showed that the expression of DDIT4 in tumor samples was higher than in normal samples which was associated with high tumor grade (P = 0.015) and lymphovascular invasion (P = 0.048). Similar to this, IHC findings for nucleus, cytoplasm, and membrane localization showed higher expression of DDIT4 protein in PT samples rather than in nearby normal tissues. A statistically significant association was detected between a high level of nuclear expression of DDIT4 protein, and lymphovascular invasion (P = 0.025), as well as advanced TNM stage (P = 0.034) pancreatic ductal adenocarcinoma (PDAC) and in pancreatic neuroendocrine tumor (PNET), respectively. In contrast, a low level of membranous expression of DDIT4 protein showed a significant association with advanced histological grade (P = 0.011), margin involvement (P = 0.007), perineural invasion (P = 0.023), as well as lymphovascular invasion (P = 0.005) in PDAC. No significant association was found between survival outcomes and expression of DDIT4 in both types. It was found that DDIT4 has rational accuracy and high sensitivity as a diagnostic marker. Our results revealed a paradoxical role of DDIT4 expression protein based on the site of nuclear and membranous expression. The findings of this research indicated that there is a correlation between elevated nuclear expression of DDIT4 and the advancement and progression of disease in patients with PT. Conversely, high membranous expression of DDIT4 was associated with less aggressive tumor behavior in patients with PDAC. However, further studies into the prognostic value and biological function of DDIT4 are needed in future studies.
Collapse
Affiliation(s)
- Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Surgery, University of California, Irvine, CA, USA
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Fereshteh Rezagholizadeh
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Baghai Wadji
- Department of Surgery, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Chen J, Zhang D, Ren X, Wang P. A comprehensive prognostic and immunological analysis of telomere-related lncRNAs in kidney renal clear cell carcinoma. Aging (Albany NY) 2023; 15:11012-11032. [PMID: 37847171 PMCID: PMC10637817 DOI: 10.18632/aging.205056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/28/2023] [Indexed: 10/18/2023]
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most prevalent malignant tumors of the urinary system, with a high recurrence and metastasis rate. Telomeres and long non-coding RNAs (lncRNAs) have been documented playing critical roles in cancer progression. However, the prognostic significance of telomere-related lncRNA (TRLs) in KIRC is less well-defined. The Cancer Genome Atlas database was applied to retrieve the expression profiles and corresponding clinical information of KIRC patients. To create the TRLs prognostic signature, univariate Cox regression, least absolute shrinkage and selection operator analyses were performed. The prognostic signature, comprised of nine prognostic TRLs, was developed and demonstrated superior prognostic ability for KIRC patients. Additionally, the risk score acted as an independent prognostic indicator. A nomogram incorporating age, grade, stage, and signature-based risk scores was also developed and exhibited excellent predictive accuracy. Several immune activities were associated with the signature, as determined by gene function analysis. Further analysis revealed differences in the status of immunity and the tumor microenvironment between low- and high-risk groups. Notably, KIRC patients with high-risk scores were more responsive to immunotherapy and chemotherapy. To summarize, our study developed a new prognostic signature consisting of nine telomere-related lncRNA that can precisely predict the prognosis of KIRC patients. The signature was shown to be of substantial value for the tumor microenvironment and tumor mutation burden, thereby contributing to a framework for the individualized treatment of patients.
Collapse
Affiliation(s)
- Ji Chen
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dong Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiangbin Ren
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
13
|
Zheng R, Gao F, Mao Z, Xiao Y, Yuan L, Huang Z, Lv Q, Qin C, Du M, Zhang Z, Wang M. LncRNA BCCE4 Genetically Enhances the PD-L1/PD-1 Interaction in Smoking-Related Bladder Cancer by Modulating miR-328-3p-USP18 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303473. [PMID: 37705121 PMCID: PMC10602555 DOI: 10.1002/advs.202303473] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Indexed: 09/15/2023]
Abstract
Identification of cancer-associated variants, especially those in functional regions of long noncoding RNAs (lncRNAs), has become an essential task in tumor etiology. However, the genetic function of lncRNA variants involved in bladder cancer susceptibility remains poorly understood. Herein, it is identified that the rs62483508 G > A variant in microRNA response elements (MREs) of lncRNA Bladder cancer Cell Cytoplasm-Enriched abundant transcript 4 (BCCE4) is significantly associated with decreased bladder cancer risk (odds ratio = 0.84, P = 7.33 × 10-8 ) in the Chinese population (3603 cases and 4986 controls) but not in the European population. The protective genetic effect of the rs62483508 A allele is found in smokers or cigarette smoke-related carcinogen 4-aminobiphenyl (4-ABP) exposure. Subsequent biological experiments reveal that the A allele of rs62483508 disrupts the binding affinity of miR-328-3p to facilitate USP18 from miRNA-mediated degradation and thus specifically attenuates the downstream PD-L1/PD-1 interaction. LncRNA BCCE4 is also enriched in exosomes from bladder cancer plasma, tissues, and cells. This comprehensive study clarifies the genetic mechanism of lncRNA BCCE4 in bladder cancer susceptibility and its role in the regulation of the immune response in tumorigenesis. The findings provide a valuable predictor of bladder cancer risk that can facilitate diagnosis and prevention.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Fang Gao
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Key Laboratory of Environmental Medicine EngineeringMinistry of Education of ChinaSchool of Public HealthSoutheast UniversityNanjing210009China
| | - Zhenguang Mao
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Yanping Xiao
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Lin Yuan
- Department of UrologyJiangsu Province Hospital of TCMNanjing210029China
- Department of Integrated Traditional Chinese and Western Medicine Tumor Research LabNanjing210028China
| | - Zhengkai Huang
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qiang Lv
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Chao Qin
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Mulong Du
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of BiostatisticsCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Zhengdong Zhang
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- Institute of Clinical ResearchThe Affiliated Taizhou People's Hospital of NanjingMedical UniversityTaizhou225300China
| | - Meilin Wang
- Department of Environmental GenomicsJiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211166China
- Department of Genetic ToxicologyThe Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjing211166China
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215008China
| |
Collapse
|
14
|
Pei L, Yan D, He Q, Kong J, Yang M, Ruan H, Lin Q, Huang L, Huang J, Lin T, Qin H. LncRNA MIR4435-2HG drives cancer progression by modulating cell cycle regulators and mTOR signaling in stroma-enriched subtypes of urothelial carcinoma of the bladder. Cell Oncol (Dordr) 2023; 46:1509-1527. [PMID: 37355516 PMCID: PMC10618329 DOI: 10.1007/s13402-023-00826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND The risk for recurrence and metastasis after treatment for urothelial carcinoma of the bladder (UCB) is high. Therefore, identifying efficient prognostic markers and novel therapeutic targets is urgently needed. Several long noncoding RNAs (lncRNAs) have been reported to be correlated with UCB progression. In this study, we found that the subtype-specific lncRNA MIR4435-2 host gene (MIR4435-2HG) plays a novel oncogenic role in UCB. METHODS RNA-Seq data of TCGA/BLCA were analyzed. The expression of MIR4435-2HG was measured by qRT-PCR in 16 pairs of bladder cancer tissues and adjacent normal tissues. The clinical relecance of MIR4435-2HG was validated via in situ hybridization performed on an in-house cohort of 116 UCB patient samples. RNA pull-down followed by mass spectrometry was performed to identify MIR4435-2HG-binding proteins. To identify signaling pathways involved in MIR4435-2HG activity, comprehensive in vitro and in vivo studies and RNA-Seq assays were performed using UCB cells in which MIR4435-2HG expression was knocked down or exogenously overexpressed. In addition, we performed RNA immunoprecipitation and Western blot analyses to validate the identified MIR4435-2HG-binding proteins and to determine the molecular mechanisms by which MIR4435-2HG promotes UCB progression. RESULTS We found that MIR4435-2HG was significantly upregulated in the stromal-enriched subtype of UCB. Increased MIR4435-2HG expression was positively correlated with a high histological grade, advanced T stages, larger tumors, lymph node metastasis and a poor prognosis. In vitro experiments revealed that MIR4435-2HG expression silencing suppressed cell proliferation and induced apoptosis. Inhibition of MIR4434-2HG delayed xenograft tumor growth, while MIR4435-2HG overexpression reversed the MIR4435-2HG silencing-induced inhibition of UCB tumor phenotype acquisition. Mechanistically, we found that MIR4435-2HG positively regulated the expression of a variety of cell cycle regulators, including BRCA2 and CCND1. Knocking down MIR4435-2HG increased the sensitivity of tumor cells to the VEGFR inhibitor cediranib. Furthermore, we found that MIR4435-2HG regulated mTOR signaling and epithelial-mesenchymal transition (EMT) signaling pathways by modulating the phosphorylation of mTOR, 70S6K and 4EBP1. Finally, we confirmed that MIR4435-2HG enhances tumor metastasis through regulation of the EMT pathway. CONCLUSIONS Our data indicate that upregulated MIR4435-2HG expression levels are significantly correlated with a poor prognosis of UCB patients. MIR4435-2HG promotes bladder cancer progression, mediates cell cycle (de)regulation and modulates mTOR signaling. MIR4435-2HG is an oncogenic lncRNA in UCB that may serve as a diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Lu Pei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Yan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingqing He
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianqiu Kong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meihua Yang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglian Ruan
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Qiongqiong Lin
- Department of Pathology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifang Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
15
|
Lu S, Zhang X, Cai Z, Xi Z, Wang F, Wang X, Li W, Dai P. Identification of novel lncRNA prognostic biomarkers and their associated ceRNAs in bladder urothelial carcinoma. J Biochem Mol Toxicol 2023; 37:e23441. [PMID: 37393523 DOI: 10.1002/jbt.23441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/19/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
Bladder urothelial carcinoma (BUCA) is a common malignant tumor with a high rate of metastasis and recurrence. The lack of specific and sensitive biomarkers for the prognostic assessment makes it important to seek alternatives. Recent studies have demonstrated that long noncoding RNAs (lncRNAs) function as competitive endogenous RNAs (ceRNAs) and play an important role in BUCA prognosis. Therefore, this study aimed to establish a prognosis-related lncRNAs-microRNAs (miRNAs)-messenger RNA (mRNA) (pceRNA) network and identify novel prognostic biomarkers. Integrated weighted coexpression analysis, functional clustering, and ceRNA network were used for the prognostic assessment of BUCA. The transcriptome sequencing datasets of lncRNA, miRNA, and mRNA from The Cancer Genome Atlas database were used for the identification of key lncRNAs and construction of the lncRNAs expression signature for prognostic prediction of BUCA patients. Then, 14 differentially expressed lncRNAs (DE-lncRNAs) were identified as candidate prognostic RNAs based on the ceRNAs network and functional clustering. In the Cox regression analysis, two (AC008676.1 and ADAMTS9-AS1) of all DE-lncRNAs were significantly associated with overall survival (OS) of BUCA patients. This two DE-lncRNA signature was significantly correlated with OS and was an independent prognostic factor, which was confirmed in an independent dataset of GSE216037. Moreover, we constructed the pceRNA network that includes 2 DE-lncRNAs, 9 DE-miRNAs, and 10 DE-mRNAs. Pathway enrichment analysis showed that AC008676.1 and ADAMTS9-AS1 are involved in several cancer-related pathways such as proteoglycans in cancer and TGF-beta signaling pathway. The novel-identified DE-lncRNA prognostic signature and the pceRNA network in this study will be valuable risk predictors and diagnostic markers for BUCA.
Collapse
Affiliation(s)
- Sihai Lu
- School of Life Sciences, Northwest University, Xi'an, China
- Shaanxi Lifegen Co. Ltd., Xi'an, China
- National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | | | - Zhiye Cai
- School of Life Sciences, Northwest University, Xi'an, China
| | - Ziyi Xi
- School of Life Sciences, Northwest University, Xi'an, China
| | - Fei Wang
- School of Life Sciences, Northwest University, Xi'an, China
| | - Xuan Wang
- School of Life Sciences, Northwest University, Xi'an, China
| | - Wenqi Li
- School of Life Sciences, Northwest University, Xi'an, China
| | - Penggao Dai
- School of Life Sciences, Northwest University, Xi'an, China
- Shaanxi Lifegen Co. Ltd., Xi'an, China
| |
Collapse
|
16
|
Wu C, Hou X, Li S, Luo S. Long noncoding RNA ZEB1-AS1 attenuates ferroptosis of gastric cancer cells through modulating miR-429/BGN axis. J Biochem Mol Toxicol 2023; 37:e23381. [PMID: 37128782 DOI: 10.1002/jbt.23381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/19/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Gastric cancer (GC) is the fifth utmost common malignant cancer type globally, in which ferroptosis acts a critical function in the progress of GC. Long noncoding RNA ZEB1-AS1 has been recognized in numerous cancers, but the role of ZEB1-AS1 in ferroptosis remains obscure. Hence, we investigated the efficacy of ZEB1-AS1 on ferroptosis of GC cells. The cell growth and viability were analyzed via cell counting kit assay and xenograft tumor model in vivo and in vitro, respectively. The RNA and protein expression were measured by qRT-PCR and western blot analysis assay, respectively. The levels of Fe2+ , malondialdehyde (MDA), and lipid reactive oxygen species (ROS) were tested to determine ferroptosis. The erastin and RSL3 were used to induce ferroptosis. The mechanism was analyzed via luciferase reporter gene and RIP assays. The treatment of ferroptosis inducer Erastin and RSL3 suppressed the viability of GC cells and the ZEB1-AS1 overexpression rescued the phenotype in the cells. The levels of Fe2+ , MDA, and ROS were enhanced through the depletion of ZEB1-AS1 in Erastin/RSL3 treated GC cells. ZEB1-AS1 directly sponged miR-429 in GC cells and miR-429 targeted BGN in GC cells, and the inhibition of miR-429 rescued ZEB1-AS1 depletion-inhibited BGN expression. We validated that miR-429 induced and BGN-repressed ferroptosis in cancer cells. The BGN overexpression and miR-429 suppression could reverse the efficacy of ZEB1-AS1 on proliferation and ferroptosis in cancer cells. The expression of ZEB1-AS1 and BGN was enhanced and miR-429 expression was decreased in clinical GC tissues. ZEB1-AS1 attenuated ferroptosis of cancer cells by modulating miR-429/BGN axis.
Collapse
Affiliation(s)
- Chen Wu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xinfang Hou
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shuai Li
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Suxia Luo
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Feng J, Wang M, Du GS, Peng K, Li LQ, Li XS. Crosstalk between autophagy and bladder transitional cell carcinoma by autophagy-related lncRNAs. Medicine (Baltimore) 2023; 102:e34130. [PMID: 37390250 PMCID: PMC10313302 DOI: 10.1097/md.0000000000034130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
The aim of this study was to investigate the crosstalk between autophagy and bladder transitional cell carcinoma (TCC) by autophagy-related long noncoding RNAs (lncRNAs). A total of 400 TCC patients from The Cancer Genome Atlas were enrolled in this study. We identified the autophagy-related lncRNA expression profile of the TCC patients and then constructed a prognostic signature using the least absolute shrinkage and selection operation and Cox regression. Risk, survival, and independent prognostic analyses were carried out. Receiver operating characteristic curve, nomogram, and calibration curves were explored. Gene Set Enrichment Analysis was employed to verify the enhanced autophagy-related functions. Finally, we compared the signature with several other lncRNA-based signatures. A 9-autophagy-related lncRNA signature was established by least absolute shrinkage and selection operation-Cox regression that was significantly associated with overall survival in TCC. Among them, 8 of the 9 lncRNAs were protective factors while the remaining was a risk factor. The risk scores calculated by the signature showed significant prognostic value in survival analysis between the high- or low-risk groups. The 5-year survival rate for the high-risk group was 26.0% while the rate for the low-risk group was 56.0% (P < .05). Risk score was the only significant risk factor in the multivariate Cox regression survival analysis (P < .001). A nomogram connecting this signature with clinicopathologic characteristics was assembled. To assess the performance of the nomogram, a C-index (0.71) was calculated, which showed great convergence with an ideal model. The Gene Set Enrichment Analysis results demonstrated 2 major autophagy-related pathways were significantly enhanced in TCC. And this signature performed a similar predictive effect as other publications. The crosstalk between autophagy and TCC is significant, and this 9 autophagy-related lncRNA signature is a great predictor of TCC.
Collapse
Affiliation(s)
- Jie Feng
- Special Medical Department, Chongqing General Hospital, Chongqing PR China
| | - Min Wang
- Special Medical Department, Chongqing General Hospital, Chongqing PR China
| | - Guang-Sheng Du
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, PR China
| | - Ke Peng
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, PR China
| | - Li-Qi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, PR China
| | - Xiang-Sheng Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, PR China
| |
Collapse
|
18
|
Wang S, Pang X, Tong L, Fan H, Jiang J, Zhao M, Yu X, Li M, Liang J, Fan Y, Zhang X, Tang Y, Sun Y, Liang X. LncRNA SELL/L-selectin Promotes HPV-Positive HNSCC Progression and Drives Fucoidan-Mediated Therapeutic Strategies. Acta Biomater 2023:S1742-7061(23)00335-5. [PMID: 37330030 DOI: 10.1016/j.actbio.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Positive human papillomavirus (HPV+) head and neck squamous cell carcinoma (HNSCC) presents a higher risk of lymph node metastasis and poor prognosis. Here, advanced microarray analysis of clinically collected HNSCC tissues revealed significant upregulation of the lncRNA SELL in HPV+ HNSCC, and its overexpression was obviously associated with lymph node metastasis. The lncRNA SELL could function as a promigratory and proinvasive mediator as well as an inducer of M1-like tumour-associated macrophages (TAM) by increasing the level of L-selectin. Furthermore, fucoidan, as an L-selectin inhibitor, obviously weakened the formation of tongue lesions induced by 4-Nitroquinoline N-oxide (4-NQO) in HPV16 E6/E7 transgenic mice. This result drove us to synchronously develop a nanodelivery platform to verify fucoidan-mediated anti-growth and anti-metastasis effects. This work highlighted the important influence of the lncRNA SELL/L-selectin on promoting HPV+ HNSCC progression and proposed a potential fucoidan-mediated therapeutic strategy. STATEMENT OF SIGNIFICANCE: Head and neck squamous cell carcinoma (HNSCC) patients with human papillomavirus (HPV) involvement present a greater risk of lymph node metastasis than HPV negative HNSCC patients. However, treatment protocols, including surgery and platinum-based chemo- and radiotherapy, have not improved the 5-year overall survival due to the high tendency of lymphatic metastasis. Here, microarray of clinical HNSCC samples confirms the oncogenic significance of lncRNA SELL, which acts as an M1-like TAM inducer and promotes tumorigenesis by upregulating L-selectin. Fucoidan, as an L-selectin inhibitor, suppresses tongue lesions in transgenic mice, and a fucoidan-mediated nanodelivery platform inhibits HPV+ HNSCC growth. The present study highlights lncRNA SELL/L-selectin on promoting HPV+ HNSCC progression and proposes a potential fucoidan-mediated therapeutic.
Collapse
Affiliation(s)
- Shasha Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Tong
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Huayang Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingda Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Xianghua Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yaling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China.
| | - Xinhua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Shen H, Song H, Wang S, Su D, Sun Q. NEAT1 enhances MPP + -induced pyroptosis in a cell model of Parkinson's disease via targeting miR-5047/YAF2 signaling. Immun Inflamm Dis 2023; 11:e817. [PMID: 37382256 PMCID: PMC10288836 DOI: 10.1002/iid3.817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/11/2023] [Accepted: 03/07/2023] [Indexed: 06/30/2023] Open
Abstract
PURPOSE Parkinson's disease (PD) is the second most frequent neurodegenerative disease. The aim of our study is to explore the role and the regulatory mechanism of long noncoding RNA (lncRNA) NEAT1 in MPP+ -induced pyroptosis in a cell model of PD. MATERIALS AND METHODS MPP+ -treated SH-SY5Y cells were used as an in vitro model of dopaminergic neurons for PD. Expression levels of miR-5047 and YAF2 mRNA were determined through qRT-PCR. TUNEL staining was carried out to analyze neuronal apoptosis. Luciferase activity assay was accomplished to analyze the combination of miR-5047 with NEAT1 or YAF2 3'-UTR region. Besides, concentrations of IL-1β and IL-18 in supernatant samples were analyzed by using ELISA assay. Expression level of proteins were examined through Western blot. RESULTS NEAT1 and YAF2 expression were increased, while miR-5047 expression was declined in the SH-SY5Y cells treated with MPP+ . NEAT1 was a positively regulator to SH-SY5Y cells pyroptosis induced by MPP+ . In addition, YAF2 was a downstream target of miR-5047. NEAT1 promoted YAF2 expression via inhibiting miR-5047. Importantly, the promotion of NEAT1 to SH-SY5Y cells pyroptosis induced by MPP+ was rescued by miR-5047 mimic transfection or YAF2 downregulation. CONCLUSION In conclusion, NEAT1 was increased in MPP+ -induced SH-SY5Y cells, and it promoted MPP+ -induced pyroptosis through facilitating YAF2 expression by sponging miR-5047.
Collapse
Affiliation(s)
- Hong Shen
- Department of EncephalopathySecond People's HospitalSuzhou CityJiangsu ProvinceChina
| | - Hui Song
- Department of Neurology, TaiHe HospitalHubei University of MedicineShiyan CityHubei ProvinceChina
| | - Songlin Wang
- Department of Neurology, TaiHe HospitalHubei University of MedicineShiyan CityHubei ProvinceChina
| | - Daojing Su
- Department of Orthopaedic Rehabilitation, TaiHe HospitalHubei University of MedicineShiyan CityHubei ProvinceChina
| | - Qiang Sun
- Department of Neurology, TaiHe HospitalHubei University of MedicineShiyan CityHubei ProvinceChina
| |
Collapse
|
20
|
Alidadi M, Hjazi A, Ahmad I, Mahmoudi R, Sarrafha M, Reza Hosseini-Fard S, Ebrahimzade M. Exosomal non-coding RNAs: Emerging therapeutic targets in atherosclerosis. Biochem Pharmacol 2023; 212:115572. [PMID: 37127247 DOI: 10.1016/j.bcp.2023.115572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Atherosclerosis is an LDL-driven and inflammatory disorder of the sub-endothelial space. Available data have proposed that various factors could affect atherosclerosis pathogenesis, including inflammation, oxidation of LDL particles, endothelial dysfunction, foam cell formation, proliferation, and migration of vascular smooth muscle cells (VSMCs). In addition, other research indicated that the crosstalk among atherosclerosis-induced cells is a crucial factor in modulating atherosclerosis. Extracellular vesicles arenanoparticleswith sizes ranging from 30-150 nm, playing an important role in various pathophysiological situations. Exosomes, asa form of extracellular vesicles, could affect the crosstalk between sub-endothelial cells. They can transport bioactive components like proteins, lipids, RNA, and DNA. As an important cargo in exosomes, noncoding RNAs (ncRNAs) including microRNAs, long noncoding RNAs, and circular RNAs could modulate cellular functions by regulating the transcription, epigenetic alteration, and translation. The current work aimed to investigate the underlying molecular mechanisms of exosomal ncRNA as well as their potential as a diagnostic biomarker and therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Mahdi Alidadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Sarrafha
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
21
|
Mishra A, Kumar R, Mishra SN, Vijayaraghavalu S, Tiwari NK, Shukla GC, Gurusamy N, Kumar M. Differential Expression of Non-Coding RNAs in Stem Cell Development and Therapeutics of Bone Disorders. Cells 2023; 12:cells12081159. [PMID: 37190068 PMCID: PMC10137108 DOI: 10.3390/cells12081159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Stem cells' self-renewal and multi-lineage differentiation are regulated by a complex network consisting of signaling factors, chromatin regulators, transcription factors, and non-coding RNAs (ncRNAs). Diverse role of ncRNAs in stem cell development and maintenance of bone homeostasis have been discovered recently. The ncRNAs, such as long non-coding RNAs, micro RNAs, circular RNAs, small interfering RNA, Piwi-interacting RNAs, etc., are not translated into proteins but act as essential epigenetic regulators in stem cells' self-renewal and differentiation. Different signaling pathways are monitored efficiently by the differential expression of ncRNAs, which function as regulatory elements in determining the fate of stem cells. In addition, several species of ncRNAs could serve as potential molecular biomarkers in early diagnosis of bone diseases, including osteoporosis, osteoarthritis, and bone cancers, ultimately leading to the development of new therapeutic strategies. This review aims to explore the specific roles of ncRNAs and their effective molecular mechanisms in the growth and development of stem cells, and in the regulation of osteoblast and osteoclast activities. Furthermore, we focus on and explore the association of altered ncRNA expression with stem cells and bone turnover.
Collapse
Affiliation(s)
- Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Satya Narayan Mishra
- Maa Gayatri College of Pharmacy, Dr. APJ Abdul Kalam Technical University, Prayagraj 211009, India
| | | | - Neeraj Kumar Tiwari
- Department of IT-Satellite Centre, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Girish C Shukla
- Department of Biological, Geological, and Environmental Sciences, 2121 Euclid Ave., Cleveland, OH 44115, USA
- Center for Gene Regulation in Health and Disease, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
22
|
Li Z, Zhao J, Huang X, Wang J. An m7G-related lncRNA signature predicts prognosis and reveals the immune microenvironment in bladder cancer. Sci Rep 2023; 13:4302. [PMID: 36922569 PMCID: PMC10017825 DOI: 10.1038/s41598-023-31424-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Bladder cancer (BC) is a representative malignant tumor type, and the significance of N7-methyguanosine (m7G)-related lncRNAs in BC is still unclear. Utilizing m7G-related lncRNAs, we developed a prognostic model to evaluate BC's prognosis and tumor immunity. First, we selected prognostic lncRNAs related to m7G by co-expression analysis and univariate Cox regression and identified two clusters by consensus clustering. The two clusters differed significantly in terms of overall survival, clinicopathological factors, and immune microenvironment. Then, we further constructed a linear stepwise regression signature by multivariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis. Patients fell into high-risk (HR) and low-risk (LR) groups considering the train group risk score. HR group had worse prognoses when stratified by clinicopathological factors. The receiver operating curve (ROC) suggested that the signature had a better prognostic value. Tumor mutation burden (TMB) showed a negative relevance to the risk score, and patients with low TMB presented a better prognosis. Validation of the signature was carried out with multivariate and univariate Cox regression analysis, nomogram, principal component analysis (PCA), C-Index, and quantitative reverse transcriptase PCR (qRT-PCR). Finally, the gene set enrichment analysis (GSEA) demonstrated the enrichment of tumor-related pathways in HR groups, and single-sample gene set enrichment analysis (ssGSEA) indicated a close association of risk score with tumor immunity. According to the drug sensitivity test, the signature could predict the effects of conventional chemotherapy drugs. In conclusion, our study indicates the close relevance of m7G-related lncRNAs to BC, and the established risk signature can effectively evaluate patient prognosis and tumor immunity and is expected to become a novel prognostic marker for BC patients.
Collapse
Affiliation(s)
- Zhenchi Li
- Department of Urology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, China.,Graduate School of Dalian Medical University, No. 9 West Section, Lushun South Road, Dalian, Liaoning, China
| | - Jie Zhao
- Department of Urology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, China.,Graduate School of Dalian Medical University, No. 9 West Section, Lushun South Road, Dalian, Liaoning, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiangping Wang
- Department of Urology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, China.
| |
Collapse
|
23
|
Chen LJ, Chen X, Niu XH, Peng XF. LncRNAs in colorectal cancer: Biomarkers to therapeutic targets. Clin Chim Acta 2023; 543:117305. [PMID: 36966964 DOI: 10.1016/j.cca.2023.117305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in men and women worldwide. As early detection is associated with lower mortality, novel biomarkers are urgently needed for timely diagnosis and appropriate management of patients to achieve the best therapeutic response. Long noncoding RNAs (lncRNAs) have been reported to play essential roles in CRC progression. Accordingly, the regulatory roles of lncRNAs should be better understood in general and for identifying diagnostic, prognostic and predictive biomarkers in CRC specifically. In this review, the latest advances on the potential diagnostic and prognostic lncRNAs as biomarkers in CRC samples were highlighted, Current knowledge on dysregulated lncRNAs and their potential molecular mechanisms were summarized. The potential therapeutic implications and challenges for future and ongoing research in the field were also discussed. Finally, novel insights on the underlying mechanisms of lncRNAs were examined as to their potential role as biomarkers and therapeutic targets in CRC. This review may be used to design future studies and advanced investigations on lncRNAs as biomarkers for the diagnosis, prognosis and therapy in CRC.
Collapse
Affiliation(s)
- Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiang Chen
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Hua Niu
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
24
|
Wang H, Feng Y, Zheng X, Xu X. The Diagnostic and Therapeutic Role of snoRNA and lincRNA in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15041007. [PMID: 36831352 PMCID: PMC9954389 DOI: 10.3390/cancers15041007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Bladder cancer is one of the most common malignancies of the urinary tract and can be divided into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Although the means of diagnosis and treatment have continually improved in recent years, the recurrence rate of bladder cancer remains high, and patients with MIBC typically have an unfavourable prognosis and a low quality of life. Emerging evidence demonstrates that long noncoding RNAs play a crucial role in the carcinogenesis and progression of bladder cancer. Long intergenic noncoding RNAs (lincRNAs) are a subgroup of long noncoding RNAs (lncRNAs) that do not overlap protein-coding genes. The potential role of lincRNAs in the regulation of gene expression has been explored in depth in recent years. Small nucleolar RNAs (snoRNAs) are a class of noncoding RNAs (ncRNAs) that mainly exist in the nucleolus, are approximately 60-300 nucleotides in length, and are hosted inside the introns of genes. Small nucleolar RNA host genes (SNHGs) have been associated with the origin and development of bladder cancer. In this review, we aim to comprehensively summarize the biological functions of these molecules in bladder cancer.
Collapse
Affiliation(s)
- Hao Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yanfei Feng
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiangyi Zheng
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Correspondence: (X.Z.); (X.X.)
| | - Xin Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Correspondence: (X.Z.); (X.X.)
| |
Collapse
|
25
|
Yan X, Jia H, Zhao J. LncRNA MEG3 attenuates the malignancy of retinoblastoma cells through inactivating PI3K /Akt/mTOR signaling pathway. Exp Eye Res 2023; 226:109340. [PMID: 36476400 DOI: 10.1016/j.exer.2022.109340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Retinoblastoma (RB) is the most common neoplasm found in the eye of children. There are increasing interests to develop targeted gene therapy for this disease. This study was performed to investigate the impact of long non-coding RNA (lncRNA) MEG3 on the biological features of RB cells. Vector overexpressing MEG3 was constructed and introduced into two RB cell lines. Transfected RB cells were assessed for proliferation, apoptosis, migration ability, expression levels of important genes in the PI3K/Akt/mTOR signaling pathway using qRT-PCR and Western blot analysis. Xenograft mouse models were constructed to determine the tumorigenicity of RB cells overexpressing MEG3. MEG3 mRNA level was significantly lower in RB cells than in non-cancer cells (p < 0.01). Overexpressing MEG3 resulted in significant reduction in cell proliferation (p < 0.05), migration (p < 0.01) and significant increase in apoptosis (p < 0.01). After overexpressing MEG3, p-PI3K, p-Akt and p-mTOR levels were significantly downregulated (p < 0.01). Furthermore, in the xenograft model, RB cells overexpressing MEG3 generated significantly smaller tumors as compared to RB cells that did not overexpress MEG3 (p < 0.05). Our data suggest that MEG3 increases apoptosis and reduces tumorigenicity of RB cells through inactivating the PI3K/Akt/mTOR pathway. Therefore, MEG3 could be further investigated as a potential new therapeutic agent and target for RB therapy.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Department of Ophthalmology, Handan Central Hospital, Handan, China
| | - Haibo Jia
- Department of Neurosurgery, Handan Central Hospital, Handan, China.
| | - Junbo Zhao
- Department of Ophthalmology, Handan Central Hospital, Handan, China
| |
Collapse
|
26
|
Qiu T, Xue M, Li X, Li F, Liu S, Yao C, Chen W. Comparative evaluation of long non-coding RNA-based biomarkers in the urinary sediment and urinary exosomes for non-invasive diagnosis of bladder cancer. Mol Omics 2022; 18:938-947. [PMID: 36164958 DOI: 10.1039/d2mo00107a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bladder cancer (BC) frequently causes a heavy disease burden for patients because of its easy recurrence. There is still a lack of convenient and effective methods to diagnose or monitor BC in the clinic. Emerging evidence suggests that long non-coding RNAs (lncRNAs) in urine are promising biomarkers for BC diagnosis. This study aimed to evaluate the performance of lncRNAs in urine for BC diagnosis. Seven lncRNAs (UCA1, H19, MALAT1, TUG1, GAS5, RMRP, and LINC01517) were selected as candidates by analyzing The Cancer Genome Atlas database or the literature. Expression of the candidate lncRNAs in the urinary sediment and exosomes was determined in a training cohort (n = 42) and an independent validation cohort (n = 56). Compared with normal controls, the patients with BC had a higher expression of RMRP, UCA1 and MALAT1 in the urinary exosomes and a higher expression of MALAT1 in the urinary sediment. Compared with MALAT1 in the urinary sediment, RMRP, UCA1, and MALAT1 in urinary exosomes exhibited higher combined diagnostic performance for BC diagnosis. Furthermore, higher RMRP expression in urinary exosomes was correlated with advanced tumor stages. A lncRNA panel consisting of urinary exosomal RMRP, UCA1 and MALAT1 was used to establish the support vector machine (SVM) model. An area under receiver operating characteristic (ROC) curve of the lncRNA panel predicted by the SVM model was 0.875 (sensitivity = 80.0% and specificity = 81.4%). Therefore, the lncRNA panel consisting of three urinary exosomal RMRP, UCA1 and MALAT1 has the potential to be biomarkers for BC diagnosis.
Collapse
Affiliation(s)
- Tongtong Qiu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China. .,Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an 710068, P. R. China
| | - Mei Xue
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Fangyuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| | - Shanshan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| | - Chenyu Yao
- State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Materials Protection, Wuhan 430030, P. R. China
| | - Wei Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| |
Collapse
|
27
|
Feng ZH, Liang YP, Cen JJ, Yao HH, Lin HS, Li JY, Liang H, Wang Z, Deng Q, Cao JZ, Huang Y, Wei JH, Luo JH, Chen W, Chen ZH. m6A-immune-related lncRNA prognostic signature for predicting immune landscape and prognosis of bladder cancer. J Transl Med 2022; 20:492. [PMID: 36309694 PMCID: PMC9617388 DOI: 10.1186/s12967-022-03711-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background N6-methyladenosine (m6A) related long noncoding RNAs (lncRNAs) may have prognostic value in bladder cancer for their key role in tumorigenesis and innate immunity. Methods Bladder cancer transcriptome data and the corresponding clinical data were acquired from the Cancer Genome Atlas (TCGA) database. The m6A-immune-related lncRNAs were identified using univariate Cox regression analysis and Pearson correlation analysis. A risk model was established using least absolute shrinkage and selection operator (LASSO) Cox regression analyses, and analyzed using nomogram, time-dependent receiver operating characteristics (ROC) and Kaplan–Meier survival analysis. The differences in infiltration scores, clinical features, and sensitivity to Talazoparib of various immune cells between low- and high-risk groups were investigated. Results Totally 618 m6A-immune-related lncRNAs and 490 immune-related lncRNAs were identified from TCGA, and 47 lncRNAs of their intersection demonstrated prognostic values. A risk model with 11 lncRNAs was established by Lasso Cox regression, and can predict the prognosis of bladder cancer patients as demonstrated by time-dependent ROC and Kaplan–Meier analysis. Significant correlations were determined between risk score and tumor malignancy or immune cell infiltration. Meanwhile, significant differences were observed in tumor mutation burden and stemness-score between the low-risk group and high-risk group. Moreover, high-risk group patients were more responsive to Talazoparib. Conclusions An m6A-immune-related lncRNA risk model was established in this study, which can be applied to predict prognosis, immune landscape and chemotherapeutic response in bladder cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03711-1.
Collapse
|
28
|
Yu D, Zhang X, Gao L, Qian S, Tang H, Shao N. Development and validation of a novel immunotype for prediction of overall survival in patients with clear cell renal cell carcinoma. Front Oncol 2022; 12:924072. [PMID: 36237315 PMCID: PMC9552763 DOI: 10.3389/fonc.2022.924072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/06/2022] [Indexed: 11/14/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a highly immunogenic tumor. The purpose of the present study was to establish a novel immunotype for different immune infiltration and overall survival (OS) of patients with ccRCC. Methods Based on the Cancer Genome Atlas Project (TCGA) database (discovery set), a novel immunotype was established using ssGSEA methods. The databases of Fudan University Shanghai Cancer Center (FUSCC) and Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine (XHH) served as an external validation set. GSEA was carried out to identify the immunotype associated signal transduction pathways. Results A total of 652 ccRCC patients were included in our study. We constructed a novel immunotype of ccRCC to classify patients into three groups: high-immunity, moderate-immunity, and low-immunity. The high-immunity and moderate-immunity groups had higher ImmuneScores, ESTIMATEScores, StromalScores, and lower tumor purity than that of the low-immunity group in both sets. Additionally, the patients from the high-immunity and moderate-immunity groups had longer survival than patients from low-immunity group in both discovery set and validation set (HR = 2.54, 95% CI: 1.56–4.13, p < 0.01; HR = 2.75, 95% CI: 1.24–6.11, p = 0.01). Conclusion In summary, we defined a novel immunotype of ccRCC. The immune types could be used as a clinical predictive tool to identify ccRCC patients with different survival. In addition, the immune-related biological signaling pathway also brought new insights on the mechanism of ccRCC.
Collapse
Affiliation(s)
- Deshui Yu
- Department of Urology, Second People’s Hospital of Wuxi Affiliated to Nanjing Medical University, Wuxi, China
| | - Xuanzhi Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lixia Gao
- Department of Operation Room, Second People’s Hospital of Wuxi Affiliated to Nanjing Medical University, Wuxi, China
| | - Subo Qian
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Tang
- Department of Pathology, The Affiliated WuXi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Ning Shao, ; Hong Tang,
| | - Ning Shao
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ning Shao, ; Hong Tang,
| |
Collapse
|
29
|
Gao H, Chen W, Pan G, Liu H, Qian J, Tang W, Wang W, Qian S. A regulatory circuit of lncRNA NLGN1-AS1 and Wnt signalling controls clear cell renal cell carcinoma phenotypes through FZD4-modulated pathways. Aging (Albany NY) 2022; 15:15624-15639. [PMID: 36170021 PMCID: PMC10781459 DOI: 10.18632/aging.204263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent evidence has indicated that long non-coding RNAs (lncRNAs) were emerged as key molecules in clear cell renal cell carcinoma (ccRCC). TCGA database showed that the expression level of lncRNA NLGN1-AS1 was up-regulated in ccRCC; However, whether NLGN1-AS1 implicated in the malignant progression of ccRCC remained unclear. METHODS Based on TCGA database, candidate lncRNAs were selected and quantitative real-time PCR (qRT-PCR) was utilized to verify the expression levels of candidate lncRNAs in human ccRCC tissues. Loss-of-function experiments were performed to examine the biological functions of NLGN1-AS1 both in vitro and in vivo. According to bioinformatics analysis, fluorescence reporter assays and rescue experiments, the underlying mechanisms of NLGN1-AS1 in ccRCC cell lines were so clearly understood. RESULTS As a novel lncRNA, NLGN1-AS1 was up-regulated in ccRCC cell lines and associated with poor prognosis of and ccRCC patients, which was correlated with the progression of ccRCC. Functionally, the down-regulation of NLGN1-AS1 significantly decreased the proliferation of ccRCC cells both in vitro and in vivo. Bioinformatics analysis and luciferase report assays identified that miR-136-5p was a direct target of NLGN1-AS1. We also determined that FZD4 were inhibitory targets of miR-136-5p, and that Wnt/β-catenin signaling was inhibited by both NLGN1-AS1 knockdown and miR-136-5p over-expression. In addition, we found that the suppression of proliferation and the inhibition of Wnt/β-catenin pathway induced by NLGN1-AS1 knockdown would require the over-expression of FZD4. CONCLUSIONS Our findings suggested that lncRNA NLGN1-AS1 could promote the progression of ccRCC by targeting miR-136-5p/FZD4 and Wnt/β-catenin pathway, and might serve as a novel potential therapeutic target to inhibit the progression of ccRCC.
Collapse
Affiliation(s)
- Haifeng Gao
- Department of Urology, Binhai County People’s Hospital, Yancheng 224500, China
| | - Wei Chen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Gaojian Pan
- Department of Urology, Yancheng Third People’s Hospital, Yancheng 224000, China
| | - Hui Liu
- Department of Urology, Binhai County People’s Hospital, Yancheng 224500, China
| | - Jinke Qian
- Department of Urology, Binhai County People’s Hospital, Yancheng 224500, China
| | - Weijun Tang
- Department of Oncology, Huaian Hospital of Huaian City, Huai’an 223200, China
| | - Wei Wang
- Department of Oncology, Huaian Hospital of Huaian City, Huai’an 223200, China
| | - Shilei Qian
- Department of Urology, Binhai County People’s Hospital, Yancheng 224500, China
| |
Collapse
|
30
|
Ke H, Ren Z, Qi J, Chen S, Tseng GC, Ye Z, Ma T. High-dimension to high-dimension screening for detecting genome-wide epigenetic and noncoding RNA regulators of gene expression. Bioinformatics 2022; 38:4078-4087. [PMID: 35856716 PMCID: PMC9438953 DOI: 10.1093/bioinformatics/btac518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION The advancement of high-throughput technology characterizes a wide variety of epigenetic modifications and noncoding RNAs across the genome involved in disease pathogenesis via regulating gene expression. The high dimensionality of both epigenetic/noncoding RNA and gene expression data make it challenging to identify the important regulators of genes. Conducting univariate test for each possible regulator-gene pair is subject to serious multiple comparison burden, and direct application of regularization methods to select regulator-gene pairs is computationally infeasible. Applying fast screening to reduce dimension first before regularization is more efficient and stable than applying regularization methods alone. RESULTS We propose a novel screening method based on robust partial correlation to detect epigenetic and noncoding RNA regulators of gene expression over the whole genome, a problem that includes both high-dimensional predictors and high-dimensional responses. Compared to existing screening methods, our method is conceptually innovative that it reduces the dimension of both predictor and response, and screens at both node (regulators or genes) and edge (regulator-gene pairs) levels. We develop data-driven procedures to determine the conditional sets and the optimal screening threshold, and implement a fast iterative algorithm. Simulations and applications to long noncoding RNA and microRNA regulation in Kidney cancer and DNA methylation regulation in Glioblastoma Multiforme illustrate the validity and advantage of our method. AVAILABILITY AND IMPLEMENTATION The R package, related source codes and real datasets used in this article are provided at https://github.com/kehongjie/rPCor. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hongjie Ke
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD 20742, USA
| | - Zhao Ren
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jianfei Qi
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
| | - Shuo Chen
- Department of Epidemiology & Public Health, University of Maryland, Baltimore, MD 21201, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhenyao Ye
- Department of Epidemiology & Public Health, University of Maryland, Baltimore, MD 21201, USA
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
31
|
Cai D, Zhou Z, Wei G, Wu P, Kong G. Construction and verification of a novel hypoxia-related lncRNA signature related with survival outcomes and immune microenvironment of bladder urothelial carcinoma by weighted gene co-expression network analysis. Front Genet 2022; 13:952369. [PMID: 36118856 PMCID: PMC9471150 DOI: 10.3389/fgene.2022.952369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Bladder urothelial carcinoma (BLCA) is a common malignant tumor with the greatest recurrence rate of any solid tumor. Hypoxia is crucial in the growth and immune escape of malignant tumors. To predict clinical outcomes and immunological microenvironment of patients with BLCA, a hypoxia-related long non-coding RNA (HRlncRNA) signature was established. Methods: The Cancer Genome Atlas (TCGA) provided us with the differentially expressed profile of HRlncRNAs as well as clinical data from patients with BLCA, and we used weighted gene co-expression network analysis (WGCNA) to identify gene modules associated with malignancies. Results: Finally, Cox analysis revealed that HRlncRNAs, which comprised 13 lncRNAs, were implicated in the predictive signature. The training, testing, and overall cohorts of BLCA patients were divided into the low-risk group and high-risk group based on the median of the risk score. The Kaplan–Meier curves revealed that BLCA patients with a high-risk score had a poor prognosis, and the difference between subgroups was statistically significant. The receiver operating characteristic curves revealed that this signature outperformed other strategies in terms of predicting ability. Multivariate analysis revealed that the risk score was an independent prognostic index for overall survival (HR = 1.411; 1.259–1.582; p < 0.001). Then, a nomogram with clinicopathological features and risk score was established. This signature could effectively enhance the capacity to predict survival, according to the calibration plots, stratification, and clinical analysis. The majority of Kyoto Encyclopedia of Genes and Genomes (KEGG) were WNT, MAPK, and ERBB signaling pathways. Two groups had different immune cell subtypes, immune checkpoints, immunotherapy response, and anti-tumor drug sensitivity, which might result in differing survival outcomes. We then validated the differential expression of signature-related genes between tumor and normal tissues using TCGA paired data. Conclusion: This prognostic signature based on 13 HRlncRNAs may become a novel and potential prognostic biomarker, providing more accurate clinical decision-making and effective treatment for BLCA patients.
Collapse
Affiliation(s)
- Dawei Cai
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhongbao Zhou
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Guangzhu Wei
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Peishan Wu
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Guangqi Kong
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- *Correspondence: Guangqi Kong,
| |
Collapse
|
32
|
Epidemiology and Prevention of Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14164059. [PMID: 36011051 PMCID: PMC9406474 DOI: 10.3390/cancers14164059] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
With 400,000 diagnosed and 180,000 deaths in 2020, renal cell carcinoma (RCC) accounts for 2.4% of all cancer diagnoses worldwide. The highest disease burden developed countries, primarily in Europe and North America. Incidence is projected to increase in the future as more countries shift to Western lifestyles. Risk factors for RCC include fixed factors such as gender, age, and hereditary diseases, as well as intervening factors such as smoking, obesity, hypertension, diabetes, diet and alcohol, and occupational exposure. Intervening factors in primary prevention, understanding of congenital risk factors and the establishment of early diagnostic tools are important for RCC. This review will discuss RCC epidemiology, risk factors, and biomarkers involved in reducing incidence and improving survival.
Collapse
|
33
|
Mao W, Wang K, Zhang W, Chen S, Xie J, Zheng Z, Li X, Zhang N, Zhang Y, Zhang H, Peng B, Yao X, Che J, Zheng J, Chen M, Li W. Transfection with Plasmid-Encoding lncRNA-SLERCC nanoparticle-mediated delivery suppressed tumor progression in renal cell carcinoma. J Exp Clin Cancer Res 2022; 41:252. [PMID: 35986402 PMCID: PMC9389749 DOI: 10.1186/s13046-022-02467-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background The accumulating evidence confirms that long non-coding RNAs (lncRNAs) play a critical regulatory role in the progression of renal cell carcinoma (RCC). But, the application of lncRNAs in gene therapy remains scarce. Here, we investigated the efficacy of a delivery system by introducing the plasmid-encoding tumor suppressor lncRNA-SLERCC (SLERCC) in RCC cells. Methods We performed lncRNAs expression profiling in paired cancer and normal tissues through microarray and validated in our clinical data and TCGA dataset. The Plasmid-SLERCC@PDA@MUC12 nanoparticles (PSPM-NPs) were tested in vivo and in vitro, including cellular uptake, entry, CCK-8 assay, tumor growth inhibition, histological assessment, and safety evaluations. Furthermore, experiments with nude mice xenografts model were performed to evaluate the therapeutic effect of PSPM-NPs nanotherapeutic system specific to the SLERCC. Results We found that the expression of SLERCC was downregulated in RCC tissues, and exogenous upregulation of SLERCC could suppress metastasis of RCC cells. Furthermore, high expression DNMT3A was recruited at the SLERCC promoter, which induced aberrant hypermethylation, eventually leading to downregulation of SLERCC expression in RCC. Mechanistically, SLERCC could directly bind to UPF1 and exert tumor-suppressive effects through the Wnt/β-catenin signaling pathway, thereby inhibiting progression and metastasis in RCC. Subsequently, the PSPM-NPs nanotherapeutic system can effectively inhibit the growth of RCC metastases in vivo. Conclusions Our findings suggested that SLERCC is a promising therapeutic target and that plasmid-encapsulated nanomaterials targeting transmembrane metastasis markers may open a new avenue for the treatment in RCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02467-2.
Collapse
|
34
|
Geng H, Qian R, Zhang L, Yang C, Xia X, Wang C, Zhao G, Zhang Z, Zhu C. Clinical outcomes and potential therapies prediction of subgroups based on a ferroptosis-related long non-coding RNA signature for gastric cancer. Aging (Albany NY) 2022; 14:6358-6376. [PMID: 35969182 PMCID: PMC9417219 DOI: 10.18632/aging.204227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/26/2022] [Indexed: 01/17/2023]
Abstract
Background: Gastric cancer (GC) is one of the most aggressive malignant tumors worldwide. Ferroptosis is a kind of iron-dependent cell death, which is proved to be closely related to tumor progression. In this study, we aim at constructing a ferroptosis-related lncRNAs signature to predict the prognosis of GC and explore potential therapies. Methods: Ferroptosis-Related LncRNAs Signature for GC patients (FRLSG) was constructed through univariate Cox regression, the LASSO algorithm, and multivariate Cox regression. Kaplan–Meier analysis, receiver operating characteristic curves, and risk score plot were applied to verify the predictive power of FRLSG. Gene Set Enrichment Analysis (GSEA) and immune infiltration analyses were conducted to explore the potential clinical value of the FRLSG. In addition, drug sensitivity prediction was applied to identify chemotherapeutic drugs with potential therapeutic effect. Results: Five ferroptosis-related lncRNAs (AC004816.1, AC005532.1, LINC01357, AL355574.1 and AL049840.4) were identified to construct FRLSG, whose expression level in GC were confirmed by experimental validation. Kaplan-Meier curve and ROC curve proved the reliability and effectiveness of the FRLSG in predicting the prognosis for GC patients. Several immune-related pathways were enriched in the high-FRLSG group, and further immune infiltration analyses demonstrated the high immune infiltration status of the high-FRLSG group. In addition, 19 and 24 candidate drugs with potential therapeutic effect were identified for the high- and low-FRLSG groups, respectively. Conclusions: FRLSG was an effective tool in predicting the prognosis of GC, which might help to prioritize potential therapeutics for GC patients.
Collapse
Affiliation(s)
- Haigang Geng
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruolan Qian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linmeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Xia
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Ning X, Zhao J, He F, Yuan Y, Li B, Ruan J. lncRNA NUTM2A-AS1 Targets the SRSF1/Trim37 Signaling Pathway to Promote the Proliferation and Invasion of Breast Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3299336. [PMID: 35959349 PMCID: PMC9363211 DOI: 10.1155/2022/3299336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Method Using the tumor database (TCGA) and analysis platform (GEPIA), NUTM2A-AS1 expression in breast cancer cases was compared with the normal cases. In addition, Kaplan-Meier curve of overall survival according to the various levels of NUTM2A-AS1 was assessed. Then, we constructed a knockdown plasmid of NUTM2A-AS1 and successfully reduced the expression function of NUTM2A-AS1 in BC cells. Results We found NUTM2A-AS1 could promote the malignant phenotype of proliferation and invasion of BC. In terms of mechanism research, NUTM2A-AS1 was mainly located in the cytoplasm of BC cells, which indicated that NUTM2A-AS1 may achieve its function through transcriptional or posttranscriptional regulation pathways. While knocking down NUTM2A-AS1, we detected several major molecules of the trim family. The results showed that only trim37 mRNA was significantly affected, and protein detection also showed that knockdown NUTM2A-AS1 expression could reduce the expression of trim37. The results of RIP experiments suggested that NUTM2A-AS1 played a key role by combining with SRSF1 and affecting the interaction between SRSF1 and trim37 mRNA. The stability test of mRNA also confirmed that during the knockdown of NUTM2A-AS1, the mRNA stability of trim37 decreased significantly, but this downward trend could be reversed by overexpressed SRSF1. The above results suggested that NUTM2A-AS1 could maintain the stability and expression of trim37 through SRSF1 pathway. The results of rescue experiment showed the overexpression of trim37, while knocking down NUTM2A-AS1 could reverse the decrease of proliferation and invasiveness of BC cells induced by NUTM2A-AS1 knockdown. Conclusion Therefore, trim37 is seen as a necessary target for NUTM2A-AS1 to exert the biological function of BC. Additionally, NUTM2A-AS1 is to regulate the malignant phenotype of BC through NUTM2A-AS1/trim37 pathway.
Collapse
Affiliation(s)
- Xiaojie Ning
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei Province, China
| | - Jianguo Zhao
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei Province, China
| | - Fan He
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei Province, China
| | - Yuan Yuan
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei Province, China
| | - Bin Li
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei Province, China
| | - Jian Ruan
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei Province, China
| |
Collapse
|
36
|
Hussain S, Tulsyan S, Dar SA, Sisodiya S, Abiha U, Kumar R, Mishra BN, Haque S. Role of epigenetics in carcinogenesis: Recent advancements in anticancer therapy. Semin Cancer Biol 2022; 83:441-451. [PMID: 34182144 DOI: 10.1016/j.semcancer.2021.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023]
Abstract
The role of epigenetics in the etiology of cancer progression is being emphasized for the past two decades to check the impact of chromatin modifiers and remodelers. Histone modifications, DNA methylation, chromatin remodeling, nucleosome positioning, regulation by non-coding RNAs and precisely microRNAs are influential epigenetic marks in the field of progressive cancer sub-types. Furthermore, constant epigenetic changes due to hyper or hypomethylation could efficiently serve as effective biomarkers of cancer diagnosis and therapeutic development. Ongoing research in the field of epigenetics has resulted in the resolutory role of various epigenetic markers and their inhibition using specific inhibitors to arrest their key cellular functions in in-vitro and pre-clinical studies. Although, the mechanism of epigenetics in cancer largely remains unexplored. Nevertheless, various advancements in the field of epigenetics have been made through transcriptome analysis and in-vitro genome targeting technologies to unravel the applicability of epigenetic markers for future cancer therapeutics and management. Therefore, this review emphasizes on recent advances in epigenetic landscapes that could be targeted/explored using novel approaches as personalized treatment modalities for cancer containment.
Collapse
Affiliation(s)
- Showket Hussain
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Sonam Tulsyan
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sandeep Sisodiya
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Noida, India; Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Umme Abiha
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rakesh Kumar
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Lucknow, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer, Bursa, Turkey.
| |
Collapse
|
37
|
N1-Methyladenosine-Related lncRNAs Are Potential Biomarkers for Predicting Prognosis and Immune Response in Uterine Corpus Endometrial Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2754836. [PMID: 35965688 PMCID: PMC9372539 DOI: 10.1155/2022/2754836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 12/26/2022]
Abstract
Uterine corpus endometrial carcinoma (UCEC) is a malignant disease that, at present, has no well-characterised prognostic biomarker. In this study, two clusters were identified based on 28 N1-methyladenosine- (m1A-) related long noncoding RNAs (lncRNAs), of which cluster 1 was related to immune pathways according to the results of an enrichment analysis. We further observed better prognosis in patients with higher levels of immune cell infiltration, tumor mutation burden, microsatellite instability, and immune checkpoint gene expression. In addition, through Cox regression analysis and least absolute shrinkage and selection operator regression analysis, 10 m1A-related lncRNAs (mRLs) were employed to build a prognosis model. We found that people in higher risk categories had a poorer survival probability than those in lower risk. Low-risk samples were enriched with immune-related pathways, while the high-risk group was similar to the definition of the “immune desert” phenotype, which was associated with decreased immune infiltration, T cell failure, and decreased tumor mutation burden, while also being insensitive to immunotherapy and chemotherapy. This mRL-based model has the ability to accurately predict the prognosis of UCEC patients, and the mRLs could become promising therapeutic targets in enhancing the response of immunotherapy.
Collapse
|
38
|
lncRNA MEG3 Inhibits the Proliferation and Growth of Glioma Cells by Downregulating Bcl-xL in the PI3K/Akt/NF-κB Signal Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3729069. [PMID: 35860793 PMCID: PMC9293524 DOI: 10.1155/2022/3729069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022]
Abstract
This study was conducted to investigate the impact and mechanisms of lncRNA MEG3 on glioma cells. lncRNA MEG3 was lowly expressed in glioma cells as compared to noncancer cells. Overexpression of MEG3 significantly downregulated the expression of Bcl-xL, slightly upregulated the expression of NF-κB p65 and IκBα, and reduced the proliferation of glioma cells with increased apoptosis and the migration and invasion ability. Subsequently, glioma cells overexpressing MEG3 had less tumorgenicity in xenograft mouse models. It is likely that MEG3 induces apoptosis in glioma cells via downregulating the Bcl-xL gene in the PI3K/Akt/NF-κB signal pathway to reduce the development of glioma.
Collapse
|
39
|
Restoring the epigenetically silenced lncRNA COL18A1-AS1 represses ccRCC progression by lipid browning via miR-1286/KLF12 axis. Cell Death Dis 2022; 13:578. [PMID: 35787628 PMCID: PMC9253045 DOI: 10.1038/s41419-022-04996-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 01/21/2023]
Abstract
Abnormal accumulation of lipids has been highlighted in the progression of clear cell renal cell carcinoma (ccRCC). However, the underlying mechanism remains unclear. Emerging evidence suggests long noncoding RNAs (lncRNAs) participate in the regulation of lipid metabolism. In this study, we found lncRNA COL18A1-AS1 was downregulated in ccRCC and that higher COL18A1-AS1 expression indicated better prognosis. Decreased COL18A1-AS1 expression was caused by DNA methylation at the CpG islands within its promoter. Restoring the epigenetically silenced COL18A1-AS1 repressed tumor progression, promoted lipid browning and consumption in vitro and in vivo. Mechanistically, COL18A1-AS1 could competitively bind miR-1286 to increase the expression of Krüppel-like factor 12 (KLF12). Downregulation of COL18A1-AS1 in ccRCC resulted in the low expression of KLF12. COL18A1-AS1/KLF12 positively regulated uncoupling protein 1 (UCP1)-mediated lipid browning, which promotes tumor cell "slimming" and inhibits tumor progression. When tumor cell "slimming" occurred, lipid droplets turned into tiny pieces, and lipids were consumed without producing ATP energy. Taken together, our findings on COL18A1-AS1-miR-1286/KLF12 axis revealed a potential mechanism of abnormal accumulation of lipids in ccRCC and could be a promising therapeutic target for ccRCC patients.
Collapse
|
40
|
Tang L, Li W, Xu H, Zheng X, Qiu S, He W, Wei Q, Ai J, Yang L, Liu J. Mutator-Derived lncRNA Landscape: A Novel Insight Into the Genomic Instability of Prostate Cancer. Front Oncol 2022; 12:876531. [PMID: 35860569 PMCID: PMC9291324 DOI: 10.3389/fonc.2022.876531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Increasing evidence has emerged to reveal the correlation between genomic instability and long non-coding RNAs (lncRNAs). The genomic instability-derived lncRNA landscape of prostate cancer (PCa) and its critical clinical implications remain to be understood. Methods Patients diagnosed with PCa were recruited from The Cancer Genome Atlas (TCGA) program. Genomic instability-associated lncRNAs were identified by a mutator hypothesis-originated calculative approach. A signature (GILncSig) was derived from genomic instability-associated lncRNAs to classify PCa patients into high-risk and low-risk groups. The biochemical recurrence (BCR) model of a genomic instability-derived lncRNA signature (GILncSig) was established by Cox regression and stratified analysis in the train set. Then its prognostic value and association with clinical features were verified by Kaplan–Meier (K-M) analysis and receiver operating characteristic (ROC) curve in the test set and the total patient set. The regulatory network of transcription factors (TFs) and lncRNAs was established to evaluate TF–lncRNA interactions. Results A total of 95 genomic instability-associated lncRNAs of PCa were identified. We constructed the GILncSig based on 10 lncRNAs with independent prognostic value. GILncSig separated patients into the high-risk (n = 121) group and the low-risk (n = 121) group in the train set. Patients with high GILncSig score suffered from more frequent BCR than those with low GILncSig score. The results were further validated in the test set, the whole TCGA cohort, and different subgroups stratified by age and Gleason score (GS). A high GILncSig risk score was significantly associated with a high mutation burden and a low critical gene expression (PTEN and CDK12) in PCa. The predictive performance of our BCR model based on GILncSig outperformed other existing BCR models of PCa based on lncRNAs. The GILncSig also showed a remarkable ability to predict BCR in the subgroup of patients with TP53 mutation or wild type. Transcription factors, such as FOXA1, JUND, and SRF, were found to participate in the regulation of lncRNAs with prognostic value. Conclusion In summary, we developed a prognostic signature of BCR based on genomic instability-associated lncRNAs for PCa, which may provide new insights into the epigenetic mechanism of BCR.
Collapse
Affiliation(s)
- Liansha Tang
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China Medical School of Sichuan University, Chengdu, China
| | - Wanjiang Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- Institute of System Genetics, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- Institute of System Genetics, West China Hospital of Sichuan University, Chengdu, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenbo He
- West China Medical School of Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lu Yang, ; Jiyan Liu,
| | - Jiyan Liu
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lu Yang, ; Jiyan Liu,
| |
Collapse
|
41
|
Zhao F, Li S, Liu J, Wang J, Yang B. Long non-coding RNA TRIM52-AS1 sponges microRNA-577 to facilitate diffuse large B cell lymphoma progression via increasing TRIM52 expression. Hum Cell 2022; 35:1234-1247. [PMID: 35676608 DOI: 10.1007/s13577-022-00725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/13/2022] [Indexed: 11/04/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL) globally, featuring heterogeneous clinical phenotypes and altered molecular manifestations. The long non-coding ribose nucleic acids (lncRNAs) play crucial roles in the diagnosis, treatment, and prognosis of DLBCL, requiring the exploration of complex functions and mechanisms. In this study, the expression of lncRNA TRIM52-AS1 in DLBCL tissues from the Cancer Genome Atlas (TCGA) database was initially analyzed and correlated to the data from collected clinical samples. Then, the significance of TRIM52-AS1 on the diagnosis and prognosis of DLBCL patients was predicted with the receiver-operating characteristic (ROC) curve and Kaplan-Meier (KM) analysis. Further, cell counting kit (CCK)-8, EdU staining, and flow cytometry analyses were performed to assess the effect of TRIM52-AS1 on DLBCL cell proliferation, apoptosis, and cell cycle. Then, the mechanism of TRIM52-AS1 sponging miR-577 to increase TRIM52 expression was explored using a starBase prediction approach, dual-luciferase reporter, RNA immunoprecipitation assay (RIPA), quantitative reverse transcription-polymerase chain reaction (RT-qPCR), and Western blot analyses. The experimental results confirmed the overexpression of TRIM52-AS1 in the DLBCL cell lines. Further, the high expression of TRIM52-AS1 predicted the poor Ann Arbor stage and were correlated with the presence of B symptoms, high international prognostic index, and poor disease prognosis. TRIM52-AS1 knockdown inhibited the DLBCL cell proliferation, and induced apoptosis and G0/G1 cycle arrest. Interestingly, the overexpression of TRIM52-AS1 increased the mRNA stability of TRIM52 through binding IGFBP3 protein and upregulated the TRIM52 protein expression by sponging miR-577. Together, the overexpressed TRIM52-AS1 could promote the DLBCL progression through IGFBP3/miR-218-5p/TRIM52 axis, highlighting the clinical significance of TRIM52-AS1 in the DLBCL diagnosis.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Hematology, Cangzhou Central Hospital, 16 Middle Xinhua Road, Cangzhou, 061000, Hebei, China.
| | - Shucheng Li
- Department of Hematology, Cangzhou Central Hospital, 16 Middle Xinhua Road, Cangzhou, 061000, Hebei, China
| | - Jingjing Liu
- Department of Hematology, Cangzhou Central Hospital, 16 Middle Xinhua Road, Cangzhou, 061000, Hebei, China
| | - Juan Wang
- Department of Hematology, Cangzhou Central Hospital, 16 Middle Xinhua Road, Cangzhou, 061000, Hebei, China
| | - Bo Yang
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
42
|
Zheng Y, Yue X, Fang C, Jia Z, Chen Y, Xie H, Zhao J, Yang Z, Li L, Chen Z, Bian E, Zhao B. A Novel Defined Endoplasmic Reticulum Stress-Related lncRNA Signature for Prognosis Prediction and Immune Therapy in Glioma. Front Oncol 2022; 12:930923. [PMID: 35847925 PMCID: PMC9282894 DOI: 10.3389/fonc.2022.930923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are a group of the most aggressive primary central nervous system tumors with limited treatment options. The abnormal expression of long non-coding RNA (lncRNA) is related to the prognosis of glioma. However, the role of endoplasmic reticulum (ER) stress-associated lncRNAs in glioma prognosis has not been reported. In this paper, we obtained ER stress-related lncRNAs by co-expression analysis, and then a risk signature composed of 6 ER stress-related lncRNAs was constructed using Cox regression analysis. Glioma samples in The Cancer Genome Atlas (TCGA) were separated into high- and low-risk groups based on the median risk score. Compared with the low-risk group, patients in the high-risk group had shorter survival times. Additionally, we verified the predictive ability of these candidate lncRNAs in the testing set. Three glioma patient subgroups (cluster 1/2/3) were identified by consensus clustering. We further analysed the abundance of immune-infiltrating cells and the expression levels of immune checkpoint molecules in both three subgroups and two risk groups, respectively. Immunotherapy and anticancer drug response prediction showed that ER stress-related lncRNA risk signature positively correlates with responding to immune checkpoints and chemosensitivity. Functional analysis showed that these gene sets are enriched in the malignant process of tumors. Finally, LINC00519 was chosen for functional experiments. The silence of LINC00519 restrained the migration and invasion of glioma cells. Hence, those results indicated that ER stress-related lncRNA risk signature could be a potential treatment target and a prognosis biomarker for glioma patients.
Collapse
Affiliation(s)
- Yinfei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Cheng Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhuang Jia
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Yuxiang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Jiajia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Lianxin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhigang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
- *Correspondence: Erbao Bian, ; Bing Zhao,
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
- *Correspondence: Erbao Bian, ; Bing Zhao,
| |
Collapse
|
43
|
LINC00518 Promotes Cell Malignant Behaviors via Influencing EIF4A3-Mediated mRNA Stability of MITF in Melanoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3546795. [PMID: 35813236 PMCID: PMC9262545 DOI: 10.1155/2022/3546795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022]
Abstract
Melanoma has become the most severe sort of skin cancer, deriving from the pigment-producing melanocytes. Existing research has validated that long noncoding RNAs (lncRNAs) have critical function in the progression of cancers. LINC00518 has been studied in cutaneous melanoma; however, the molecular mechanism of LINC00518 in melanoma needs in-depth investigation. In our study, LINC00518 was revealed to be upregulated in melanoma tissues and cells, and melanoma patients in high LINC00518 expression group had poorer prognosis as depicted in GEPIA database. Functional assays revealed that LINC00518 depletion inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Furthermore, MITF was confirmed to be upregulated in melanoma tissues and cells, and melanoma patients in high MITF expression group had poorer prognosis as displayed in GEPIA database. MITF expression was positively connected to LINC00518 expression. Additionally, results of mechanism assays uncovered EIF4A3 could bind with LINC00518 and MITF, and LINC00518 recruited EIF4A3 to stabilize MITF mRNA. Finally, it was demonstrated that upregulation of MITF could partially abrogate the inhibitory impact of LINC00518 knockdown on melanoma cell malignant behaviors. To summarize, LINC00518 promotes the malignant processes of melanoma cells through targeting EIF4A3/MITF axis, which might provide novel potential biomarkers for melanoma prognosis.
Collapse
|
44
|
Zhao N, Guo M, Zhang C, Wang C, Wang K. Pan-Cancer Methylated Dysregulation of Long Non-coding RNAs Reveals Epigenetic Biomarkers. Front Cell Dev Biol 2022; 10:882698. [PMID: 35721492 PMCID: PMC9200062 DOI: 10.3389/fcell.2022.882698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Different cancer types not only have common characteristics but also have their own characteristics respectively. The mechanism of these specific and common characteristics is still unclear. Pan-cancer analysis can help understand the similarities and differences among cancer types by systematically describing different patterns in cancers and identifying cancer-specific and cancer-common molecular biomarkers. While long non-coding RNAs (lncRNAs) are key cancer modulators, there is still a lack of pan-cancer analysis for lncRNA methylation dysregulation. In this study, we integrated lncRNA methylation, lncRNA expression and mRNA expression data to illuminate specific and common lncRNA methylation patterns in 23 cancer types. Then, we screened aberrantly methylated lncRNAs that negatively regulated lncRNA expression and mapped them to the ceRNA relationship for further validation. 29 lncRNAs were identified as diagnostic biomarkers for their corresponding cancer types, with lncRNA AC027601 was identified as a new KIRC-associated biomarker, and lncRNA ACTA2-AS1 was regarded as a carcinogenic factor of KIRP. Two lncRNAs HOXA-AS2 and AC007228 were identified as pan-cancer biomarkers. In general, the cancer-specific and cancer-common lncRNA biomarkers identified in this study may aid in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ning Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Chunlong Zhang
- College of Information and Computer Engineering, Northeast Forest University, Harbin, China
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.,School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
45
|
Xiong Y, Pang M, Du Y, Yu X, Yuan J, Liu W, Wang L, Liu X. The LINC01929/miR-6875-5p/ADAMTS12 Axis in the ceRNA Network Regulates the Development of Advanced Bladder Cancer. Front Oncol 2022; 12:856560. [PMID: 35646642 PMCID: PMC9133480 DOI: 10.3389/fonc.2022.856560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Considering its speedy development and extremely low 5-year overall survival rate worldwide, bladder cancer (BCa) is one of the most common and highly malignant tumors. Increasing evidence suggests that protein-coding mRNAs and non-coding RNAs, including long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs), play an essential role in regulating the biological processes of cancer. To investigate the molecular regulation associated with poor prognosis during advanced BCa development, we constructed a competitive endogenous RNA (ceRNA) network. Using transcriptome profiles from The Cancer Genome Atlas and Gene Expression Omnibus databases, we performed differential expression (DE) analysis, weighted gene co-expression network analysis, functional enrichment analysis, survival analysis, prediction of miRNA targeting, and Pearson correlation analysis. Through layers of selection, 8 lncRNAs-28 mRNAs and 8 miRNAs-28 mRNAs pairs shared similar expression patterns, constituting a core ceRNA regulatory network related to the invasion, progression, and metastasis of advanced clinical stage (ACS) BCa. Subsequently, we conducted real time qPCR, western blotting, and immunohistochemistry to validate expression trend bioinformatics analysis on 3, 2, and 3 differentially expressed mRNAs, lncRNAs, and miRNAs, respectively. The most significantly differentially expressed LINC01929, miR-6875-5p and ADAMTS12 were selected for in vitro experiments to assess the functional role of the LINC01929/miR-6875-5p/ADAMTS12 axis. RNA pull-down, luciferase assays, and rescue assays were performed to examine the binding of LINC01929 and miR-6875-5p. Increasing trends in COL6A1, CDH11, ADAMTS12, LINC01705, and LINC01929 expression variation were verified as consistent with previous DE analysis results in ACS-BCa, compared with low clinical stage (LCS) BCa. Expression trends in parts of these RNAs, such as hsa-miR-6875-5p, hsa-miR-6784-5p, COL6A1, and CDH11, were measured in accordance with DE analysis in LCS-BCa, compared with normal bladder urothelium. Through experimental validation, the cancer-promoting molecule ADAMST12 was found to play a key role in the development of advanced BCa. Functionally, ADAMTS12 knockdown inhibited the progression of bladder cancer. Overexpression of LINC01929 promoted bladder cancer development, while overexpression of miR-6785-5p inhibited bladder cancer development. Mechanistically, LINC01929 acted as a sponge for miR-6785-5p and partially reversed the role of miR-6785-5p. Our findings provide an elucidation of the molecular mechanism by which advanced bladder cancer highly expressed LINC01929 upregulates ADAMTS12 expression through competitive adsorption of miR-6875-5p. It provides a new target for the prognosis and diagnosis of advanced bladder cancer.
Collapse
Affiliation(s)
- YuFeng Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - MingRui Pang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - JingPing Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wen Liu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - XiuHeng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Molecular Mechanism of Sevoflurane Preconditioning Based on Whole-transcriptome Sequencing of Lipopolysaccharide-induced Cardiac Dysfunction in Mice. J Cardiovasc Pharmacol 2022; 79:846-857. [PMID: 35266915 DOI: 10.1097/fjc.0000000000001259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/22/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Sevoflurane, a widely used inhalation anesthetic, has been shown to be cardioprotective in individuals with sepsis and myocardial dysfunction. However, the exact mechanism has not been completely explained. In this study, we performed whole-transcriptome profile analysis in the myocardium of lipopolysaccharide-induced septic mice after sevoflurane pretreatment. RNA transcriptome sequencing showed that 97 protein coding RNAs (mRNAs), 64 long noncoding RNAs (lncRNAs), and 27 microRNAs (miRNAs) were differentially expressed between the lipopolysaccharide and S_L groups. Functional enrichment analysis revealed that target genes for the differentially expressed mRNAs between the 2 groups participated in protein processing in the endoplasmic reticulum, antigen processing and presentation, and the mitogen-activated protein kinase signaling pathway. The bioinformatics study of differentially expressed mRNAs revealed that 13 key genes including Hsph1, Otud1, Manf, Gbp2b, Stip1, Gbp3, Hspa1b, Aff3, Med12, Kdm4a, Gatad1, Cdkn1a, and Ppp1r16b are related to the heart or inflammation. Furthermore, the competing endogenous RNA network revealed that 3 of the 13 key genes established the lncRNA-miRNA-mRNA network (ENSMUST00000192774 --- mmu-miR-7a-5p --- Hspa1b, TCONS_00188587 --- mmu-miR-204-3p --- Aff3 and ENSMUST00000138273 --- mmu-miR-1954 --- Ppp1r16b) may be associated with cardioprotection in septic mice. In general, the findings identified 11 potential essential genes (Hsph1, Otud1, Manf, Gbp2b, Stip1, Gbp3, Hspa1b, Aff3, Med12, Kdm4a, Gatad1, Cdkn1a, and Ppp1r16b) and mitogen-activated protein kinase signaling pathway involved in sevoflurane-induced cardioprotection in septic mice. In particular, sevoflurane may prevent myocardial injury by regulating the lncRNA-miRNA-mRNA network, including (ENSMUST00000192774-mmu-miR-7a-5p-Hspa1b, TCONS_00188587-mmu-miR-204-3p-Aff3, and ENSMUST00000138273-mmu-miR-1954-Ppp1r16b networks), which may be a novel mechanism of sevoflurane-induced cardioprotection.
Collapse
|
47
|
Anti-cancer effect of LINC00478 in bladder cancer correlates with KDM1A-dependent MMP9 demethylation. Cell Death Dis 2022; 8:242. [PMID: 35504875 PMCID: PMC9065159 DOI: 10.1038/s41420-022-00956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022]
Abstract
Accumulating evidence has highlighted the important roles of long intergenic non-coding RNAs (lincRNAs) during cancer progression. However, the involvement of LINC00478 in bladder cancer remains largely unclear. Accordingly, the current study sought to investigate the function of LINC00478 on malignant phenotypes of bladder cancer cells as well as the underlying mechanism. By integrating data from in silico analysis, we uncovered that LINC00478 was differentially expressed in bladder cancer. We further analyzed the expression of LINC00478 and matrix metalloprotein 9 (MMP9) in bladder cancer tissues and cell lines and observed a significant decline in LINC00478 expression and an elevation in MMP9 expression. In addition, chromatin immunoprecipitation, RNA-binding protein immunoprecipitation, and RNA pull-down assays predicted and validated that LINC00478 targeted lysine-specific demethylase-1 (KDM1A) and down-regulated the expression of MMP9 by decreasing the monomethylation on lysine 4 of histone H3 (H3K4me1) of MMP9 promoter. Treatment with KDM1A inhibitor tranylcypromine (TCP) also led to an increase in the enrichment of H3K4me1 in the MMP9 promoter region. Through gain- and loss-of-function approaches, we found that LINC00478 up-regulation diminished the malignant phenotype of bladder cancer cells in vitro, and further inhibited xenograft tumor growth and metastasis in vivo by repressing MMP9. Collectively, our findings unraveled a LINC00478-mediated inhibitory mechanism in bladder cancer via the recruitment of histone demethylation transferase KDM1A to the MMP9 promoter region, which can provide potential implications for novel therapeutic targets against bladder cancer.
Collapse
|
48
|
Yang S, Zou X, Yang H, Li J, Zhang A, Zhang L, Li C, Zhu L, Ma Z. Identification of Enhancer RNA CDK6-AS1 as a Potential Novel Prognostic Biomarker in Gastric Cancer. Front Genet 2022; 13:854211. [PMID: 35571043 PMCID: PMC9100412 DOI: 10.3389/fgene.2022.854211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background: This study aimed to confirm the role of enhancer RNAs (eRNAs) in gastric cancer and their clinical utility. Methods: We used Cox survival and relevance analysis to identify the candidate eRNAs in gastric cancer and performed Gene Ontology and Reactome pathway enrichment to determine the potential functions of eRNAs. Correlation between eRNA, tumor-infiltrating immune cells, and drug sensitivity was then analyzed. Results:CDK6-AS1, a long non-coding RNA cyclin-dependent kinase 6, may serve as a poor potential prognostic biomarker candidate in gastric cancer with a positive correlation with its target gene CDK6. The low CDK6-AS1 expression group showed more frequent mutated driver genes than the high expression group. Moreover, CDK6-AS1 is involved in a key oncogenic pathway of the cell cycle and RNA transcription. CDK6-AS1 also shows dysregulations and associations with prognosis at the pan-cancer level. This eRNA may also be associated with immune cell infiltration and drug sensitivity. Conclusion:CDK6-AS1 may be a potential prognostic biomarker and chemotherapeutic drug sensitivity predictor in gastric cancer.
Collapse
|
49
|
Wang J, Han X, Yuan Y, Gu H, Liao X, Jiang M. The Value of Dysregulated LncRNAs on Clinicopathology and Survival in Non-Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Front Genet 2022; 13:821675. [PMID: 35450214 PMCID: PMC9016135 DOI: 10.3389/fgene.2022.821675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: There is growing evidence that a number of lncRNAs are involved in the pathogenesis of non-small-cell lung cancer (NSCLC). However, studies on lncRNA expression in NSCLC patients are far from conclusive. Therefore, we performed a systematic review of such studies to collect and examine the evidence on the potential role of lncRNAs in the development of NSCLC. Methods: We systematically searched seven literature databases to identify all published studies that evaluated the expression of one or more lncRNAs in human samples with NSCLC (cases) and without NSCLC (controls) from January 1, 1995 to May 24, 2021. Quality assessment of studies was conducted by using the “Quality in Prognosis Studies” (QUIPS) tool, and the heterogeneity across studies was analyzed with the I-squared statistic and chi-square-based Q-tests. Either fixed or random-effect meta-analysis was performed to summarize effect size to investigate the association between lncRNA expression and overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and clinicopathological features. The R statistical software program was used to conduct standard meta-analysis. Results: We finally obtained 48 studies with 5,211 patients included in this review after screening. Among the 48 lncRNAs, 38 lncRNAs were consistently upregulated, and 10 were deregulated in patients with NSCLC compared with the control groups. The upregulated lncRNAs were positively associated with histological type: study number (n) = 18, odds ratio (OR) = 0.78, 95% CI: 0.65–0.95 and OR = 1.30, 95% CI: 1.08–1.57, p < 0.01; TNM stages: n = 20, OR = 0.41, 95% CI: 0.29–0.57 and OR = 2.44, 95% CI: 1.73–3.44, p < 0.01; lymph node metastasis: n = 29, OR = 0.49, 95% CI: 0.34–0.71 and OR = 2.04, 95% CI: 1.40–2.96, p < 0.01; differentiation grade: n = 6, OR = 0.61, 95% CI: 0.38–0.99 and OR = 1.63, 95% CI: 1.01–2.64, p < 0.01; distant metastasis: n = 9, OR = 0.37, 95% CI: 0.26–0.53 and OR = 2.72, 95% CI: 1.90–3.90, p < 0.01; tumor size: n = 16, OR = 0.52, 95% CI: 0.43–0.64 and OR = 1.92, 95% CI: 1.57–2.34, p < 0.01; and overall survival [n = 38, hazard ratio (HR) = 1.79, 95% CI = 1.59–2.02, p < 0.01]. Especially, five upregulated lncRNAs (linc01234, ZEB1-AS1, linc00152, PVT1, and BANCR) were closely associated with TNM Ⅲa stage (n = 5, OR = 4.07, 95% CI: 2.63–6.28, p < 0.01). However, 10 deregulated lncRNAs were not significantly associated with the pathogenesis and overall survival in NSCLC in the meta-analysis (p ≥ 0.05). Conclusion: This systematic review suggests that the upregulated lncRNAs could serve as biomarkers for predicting promising prognosis of NSCLC. The prognostic value of downregulated lncRNA in NSCLC needs to be further explored. Systematic Review Registration: (http://www.crd.york.ac.uk/PROSPERO).identifier CRD42021240635.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Yuan
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Liao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Tan Y, Jiang C, Jia Q, Wang J, Huang G, Tang F. A novel oncogenic seRNA promotes nasopharyngeal carcinoma metastasis. Cell Death Dis 2022; 13:401. [PMID: 35461306 PMCID: PMC9035166 DOI: 10.1038/s41419-022-04846-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant cancer in southern China that has highly invasive and metastatic features and causes high mortality, but the underlying mechanisms of this malignancy remain unclear. In this study, we utilized ChIP-Seq to identify metastasis-specific super enhancers (SEs) and found that the SE of LOC100506178 existed only in metastatic NPC cells and powerfully aggravated NPC metastasis. This metastatic SE transcribed into lncRNA LOC100506178, and it was verified as a seRNA through GRO-Seq. Furthermore, SE-derived seRNA LOC100506178 was found to be highly expressed in metastatic NPC cells and NPC lymph node metastatic tissues. Knockdown of seRNA LOC100506178 arrested the invasion and metastasis of NPC cells in vitro and in vivo, demonstrating that seRNA LOC100506178 accelerates the acquisition of NPC malignant phenotype. Mechanistic studies revealed that seRNA LOC100506178 specifically interacted with the transcription factor hnRNPK and modulated the expression of hnRNPK. Further, hnRNPK in combination with the promoter region of MICAL2 increased Mical2 transcription. Knockdown of seRNA LOC100506178 or hnRNPK markedly repressed MICAL2, Vimentin and Snail expression and upregulated E-cadherin expression. Overexpression of seRNA LOC100506178 or hnRNPK markedly increased MICAL2, Vimentin and Snail expression and decreased E-cadherin expression. Therefore, seRNA LOC100506178 may promote MICAL2 expression by upregulating hnRNPK, subsequently enhancing EMT process and accelerating the invasion and metastasis of NPC cells. seRNA LOC100506178 has the potential to serve as a novel prognostic biomarker and therapeutic target in NPC patients.
Collapse
Affiliation(s)
- Yuan Tan
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Chonghua Jiang
- Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Qunying Jia
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China
| | - Jing Wang
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China
| | - Ge Huang
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China
| | - Faqing Tang
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China.
| |
Collapse
|