1
|
Huang Q, Mu Z, Xu H, Bilawal A, Jiang Z, Han L. Comparison in structure, physicochemical and emulsifying properties of alpha lactoglobulin and beta lactalbumin exposed to prior γ-oryzanol by the multi-spectroscopic and silico methods. Int J Biol Macromol 2024; 282:136771. [PMID: 39442849 DOI: 10.1016/j.ijbiomac.2024.136771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
In this work, effects of γ-oryzanol (GO) on structure, physicochemical and emulsifying properties of α-lactalbumin (α-La) and β-lactoglobulin (β-Lg) were compared by using multi-spectroscopic analysis and computer simulation. Specifically, the intrinsic fluorescence of both whey proteins was quenched by GO, with GO being a stronger quenching for β-Lg than for α-La. The addition of GO caused the backbone of α-La to become denser, whereas for β-Lg, its spatial structure shifted from ordered to disordered after the addition of GO. Additionally, the surface hydrophobicity, emulsifying properties, and DPPH free radical scavenging capacity of β-Lg were higher than α-La after the addition of GO. Molecular docking indicated that the primary driving force in the whey protein-GO system was hydrophobic force. The hydrophobic pocket at the cleft between two structural domains in β-Lg and α-La was the binding area for GO, and GO had greater binding affinity for β-Lg than α-La. Furthermore, molecular dynamics simulations demonstrated that β-Lg-GO system was more stabilized than α-La-GO system. This research contributed to a deeper understanding of the mechanisms by which α-La and β-Lg interact with GO, offering the potential to develop whey protein-GO complexes as novel emulsifiers.
Collapse
Affiliation(s)
- Qiang Huang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhishen Mu
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Heyang Xu
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Akhunzada Bilawal
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liying Han
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Vocational College for Nationalities, Harbin 150066, China.
| |
Collapse
|
2
|
Zhao X, Chai Z, Wang J, Hou D, Li B, Zhang L, Huang W. Assessment on malvidin-3-glucoside interaction with TLR4 via multi-spectroscopic analysis and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124460. [PMID: 38761477 DOI: 10.1016/j.saa.2024.124460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/31/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
As one innate immune pattern recognition receptor, Toll-like receptor 4 (TLR4) recently has been considered as a critical player in glucolipid metabolism. Blueberries contain high level of anthocyanins, especially malvidin-3-glucoside (Mv-3-glc), which contribute the anti-inflammatory, hypoglycemic, and hypolipidemic effects. It is speculated that Mv-3-glc is able to possess these functions by binding to TLR4. Here, the noncovalent interactions of Mv-3-glc and TLR4 was explored through multi-techniques including fluorescence and ultraviolet-visible (UV-Vis) absorption spectroscopy, as well as molecular docking. The results demonstrated that Mv-3-glc was able to quench TLR4 intrinsic fluorescence effectively. A stable complex was formed spontaneously and the reaction was exothermic. The degree of binding of Mv-3-glc to TLR4 showed a strong dependence on the chemical concentration, temperature, and pH values. The negative signs for enthalpy (ΔH = -69.1 ± 10.8 kJ/mol) and entropy (ΔS = -105.0 ± 12.3 J/mol/K) from the interaction of the Mv-3-glc and TLR4 shows that the major driving forces are the hydrogen bonding and van der Waals' force, which is consistent with the molecular docking results. In addition, molecular docking predicted that the active center with specific amino acid residues, Phe126, Ser127, Leu54, Ile153, and Tyr131 was responsible for the site of Mv-3-glc binding to TLR4/myeloid differentiation protein-2 (MD-2). These findings confirmed that Mv-3-glc could bind to TLR4, which would be beneficial to understand the target therapeutic effects of blueberry anthocyanins on TLR4 in regulating glucolipid metabolism.
Collapse
Affiliation(s)
- Xingyu Zhao
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zhi Chai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Jing Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Dongjie Hou
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Liaoning 110866, PR China.
| | - Lixia Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
3
|
Wang Y, Huang Y, Sun Y, Zhao M, Liu Z, Shi H, Zhang X, Zhao Y, Xia G, Shen X. Effect of non-covalent binding of tannins to sodium caseinate on the stability of high-internal-phase fish oil emulsions. Int J Biol Macromol 2024; 277:134171. [PMID: 39067727 DOI: 10.1016/j.ijbiomac.2024.134171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
In this study, we designed the noncovalent binding of sodium caseinate (SC) to tannic acid (TA) to stabilize high internal phase emulsions (HIPEs) used as fish oil delivery systems. Hydrogen bonding was the dominant binding force, followed by weak hydrophobic interaction and weak van der Waals forces, as demonstrated by FTIR, fluorescence spectroscopy, and molecular docking experiments, with a binding constant of 3.25 × 106, a binding site of 1.2, and a static quenching of the binding. Increasing SC:TA from SC to 2:1 decreased the particle size from 107.37 ± 10.66 to 76.07 ± 2.77 nm and the zeta potential from -6.99 ± 2.71 to -22 ± 2.42 mV. TA increased the interfacial tension of SC, decreased the surface hydrophobicity from 1.3 × 104 to 1.6 × 103 and improved the oxidation resistance of SC. The particle size of high internal phase emulsions stabilized by complexes with different mass ratios (SC:TA from 1:0 to 2:1) increased from 4.9 ± 0.02 to 12.9 μm, the potential increased from -32.37 ± 2.7 to -35.07 ± 2.58 mV, and the instability index decreased from 0.75 to 0.02. Thicker interfacial layers could be observed by laser confocal microscopy, and an increase in the storage modulus indicated a formation of a stronger gel network. SC:TA of 1:0 showed emulsion breakage after 14 d of storage at room temperature. SC:TA of 2:1 showed the lowest degree of oil-water separation after freeze-thaw treatment. Especially, the most stable high endo-phase emulsion (at SC:TA of 2:1) prepared at each mass ratio was selected for further stability exploration. The emulsion particle size increased only from 15.63 ± 0.06 to 22.27 ± 0.35 μm at salt ion concentrations of 50-200 mM and to 249.33 ± 31.79 μm at 300 mM. The instability index and storage modulus of the high endo-phase emulsions increased gradually with increasing salt ion concentrations. At different heating temperatures (55-85 °C), the instability index of the high internal phase emulsion gradually decreased and the storage modulus gradually increased. Meanwhile, at 50 °C for 15 d of accelerated oxidation, the content of hydroperoxide decreased from 53.32 ± 0.18 to 37.48 ± 0.77 nmol/g, about 29.7 %, and the thiobarbituric acid value decreased from 1.06 × 103 to 0.8 × 103, about 24.5 %, in the high endo-phase emulsions prepared by 2:1 SC:TA compared to the fish oils, and the SC-stabilized high endo-phase only emulsion broke at the sixth day of oxidation. From the above findings, it was concluded that the high internal phase emulsion prepared with SC:TA of 2:1 can be used as a good delivery system for fish oil.
Collapse
Affiliation(s)
- Yanchen Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yikai Huang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Ying Sun
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mantong Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yongqiang Zhao
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
4
|
Kieserling H, de Bruijn WJC, Keppler J, Yang J, Sagu ST, Güterbock D, Rawel H, Schwarz K, Vincken JP, Schieber A, Rohn S. Protein-phenolic interactions and reactions: Discrepancies, challenges, and opportunities. Compr Rev Food Sci Food Saf 2024; 23:e70015. [PMID: 39245912 DOI: 10.1111/1541-4337.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024]
Abstract
Although noncovalent interactions and covalent reactions between phenolic compounds and proteins have been investigated across diverse scientific disciplines, a comprehensive understanding and identification of their products remain elusive. This review will initially outline the chemical framework and, subsequently, delve into unresolved or debated chemical and functional food-related implications, as well as forthcoming challenges in this topic. The primary objective is to elucidate the multiple aspects of protein-phenolic interactions and reactions, along with the underlying overwhelming dynamics and possibilities of follow-up reactions and potential crosslinking between proteins and phenolic compounds. The resulting products are challenging to identify and characterize analytically, as interactions and reactions occur concurrently, mutually influencing each other. Moreover, they are being modulated by various conditions such as the reaction parameters and, obviously, the chemical structure. Additionally, this review delineates the resulting discrepancies and challenges of properties and attributes such as color, taste, foaming, emulsion and gel formation, as well as effects on protein digestibility and allergenicity. Ultimately, this review is an opinion paper of a group of experts, dealing with these challenges for quite a while and aiming at equipping researchers with a critical and systematic approach to address current research gaps concerning protein-phenolic interactions and reactions.
Collapse
Affiliation(s)
- Helena Kieserling
- Institute of Food Technology and Food Chemistry, Department of Food Chemistry and Analysis, Technische Universität Berlin, Berlin, Germany
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Julia Keppler
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands
| | - Jack Yang
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, The Netherlands
| | | | - Daniel Güterbock
- Institute of Food Technology and Food Chemistry, Department of Food Chemistry and Analysis, Technische Universität Berlin, Berlin, Germany
| | - Harshadrai Rawel
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Division of Food Technology, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Andreas Schieber
- Agricultural Faculty, Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Bonn, Germany
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Department of Food Chemistry and Analysis, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Ma Z, Zhao J, Zou Y, Mao X. The enhanced affinity of moderately hydrolyzed whey protein to EGCG promotes the isoelectric separation and unlocks the protective effects on polyphenols. Food Chem 2024; 450:138833. [PMID: 38653053 DOI: 10.1016/j.foodchem.2024.138833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/25/2024]
Abstract
The instability and discoloration of (-)-epigallocatechin-3-gallate (EGCG) constrain its application in functional dairy products. Concurrently, challenges persist in the separation and utilization of whey in the dairy industry. By harnessing the interactions between polyphenols and whey proteins or their hydrolysates, this study proposed a method that involved limited enzymatic hydrolysis followed by the addition of EGCG and pH adjustment around the isoelectric point to obtain whey protein hydrolysates (WPH)-EGCG. Over 92 % of protein-EGCG complexes recovered from whey while ensuring the preservation of α-lactalbumin. The combination between EGCG and WPH depended on hydrogen bonding and hydrophobic interactions, significantly enhanced the thermal stability and storage stability of EGCG. Besides, the intestinal phase retention rate of EGCG in WPH-EGCG complex was significantly increased by 23.67 % compared to free EGCG. This work represents an exploratory endeavor in the improvement of EGCG stability and expanding the utilization approaches of whey.
Collapse
Affiliation(s)
- Zhiyuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Jiale Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Yang Zou
- Tianjin Haihe Dairy Co., LTD, China
| | - Xueying Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China.
| |
Collapse
|
6
|
He L, Yan Y, Zhang G, Zhao Y, Zhao F, Ding Z, Wang Z. Non-Covalent Interaction of Folic Acid and 5-Methyltetrahydrofolate with Caseinates Improves the Folates Stability Studied by Multi-Spectroscopic Analysis and Molecular Docking. Foods 2024; 13:2756. [PMID: 39272522 PMCID: PMC11394995 DOI: 10.3390/foods13172756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Folates, a crucial B-group vitamin, serve as a significant functional food supplement. Nevertheless, considerable obstacles persist in improving folates stability in liquid products. In this study, folic acid (FA) and 5-methyltetrahydrofolate (MTFA), two approved sources of folates, were encapsulated with sodium caseinate (NaCas) to enhance their stability. The protective effect of NaCas on folate molecules was investigated using experimental and computational methods. Meanwhile, the influence of divalent calcium ion (Ca2+) on the properties of the NaCas-MTFA complex was examined to evaluate the potential application of calcium 5-methyltetrahydrofolate (CaMTFA). Fluorescence tests showed both folates had static quenching behavior and bound to NaCas with a binding constant of 104-105 M-1. Hydrophobic interactions were crucial in NaCas-FA complex formation, while hydrogen bonding drove NaCas-MTFA binding. The encapsulation of caseinate notably slowed down the degradation of folates under both light and dark conditions. Moreover, the addition of a low concentration of Ca2+ did not adversely impact the binding mechanism of the NaCas-MTFA complex or the degradation curve of MTFA. The results of this study could serve as a valuable resource for the utilization of caseinates in incorporating folates, specifically MTFA, in the creation of natural liquid dietary supplements.
Collapse
Affiliation(s)
- Linlin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yuqian Yan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Gang Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Fa Zhao
- Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
7
|
Yue W, Huang S, Ye L, Fan Y, Chen J, Li L, Wu X. Reducing the Allergenicity of β-Lactoglobulin by Covalent Modification with Different Contents of Epigallocatechin Gallate (EGCG): In Vitro and In Vivo Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17549-17558. [PMID: 39054671 DOI: 10.1021/acs.jafc.4c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
β-Lactoglobulin (βLG) is a major allergen in bovine milk protein. This study was designed to investigate changes in βLG structure, digestibility, and allergenicity induced by covalent binding modification with different contents of (-)-epigallocatechin 3-gallate (EGCG). The reaction of EGCG conjugation with βLG reached saturation at a molar ratio of 1:60 βLG:EGCG. Conjugation with EGCG altered the βLG structure, decreased IgE-binding capacity, and increased digestibility in a dose-dependent manner. In vivo studies showed that covalent conjugation with EGCG can reduce βLG-induced allergic symptoms with reducing levels of IgE, histamine, and mast cell protease-1 (mMCP-1) and the percentage of sensitized mast cells. Allergenicity was reduced more effectively in saturated βLG-EGCG conjugates compared to semisaturated conjugates. Observed changes in IFN-γ, IL-4, IL-5, IL-10, and TGF-β levels suggested that βLG-EGCG conjugates were able to promote Th1/Th2 immune balance. These findings further our understanding of the relationship between the degree of polyphenol conjugation and the allergenicity of food allergens.
Collapse
Affiliation(s)
- Wenqi Yue
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Songyuan Huang
- Medical School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Liying Ye
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Yuting Fan
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Jiamin Chen
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Liuying Li
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| |
Collapse
|
8
|
Liu Y, Wang S, Liu Y. Ultrasound-mediated host-guest self-assembly between different dietary fatty acids and sodium caseinate and their complexes improving the water dispersibility, stability, and bioaccessibility of quercetin. Food Chem 2024; 448:139054. [PMID: 38552465 DOI: 10.1016/j.foodchem.2024.139054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/24/2024]
Abstract
Quercetin (QUE) sufferred from poor processing adaptability and absorbability, hindering its application as a dietary supplement in the food industry. In this study, fatty acids (FAs)-sodium caseinate (NaCas) ligand complexes carriers were fabricated to improve the aqueous dispersibility, storage/thermal stability, and bioaccessibility of QUE using an ultrasound method. The results indicated that all six selected common dietary FAs formed stable hydrophilic complexes with NaCas and the FAs-NaCas complexes achieved an encapsulation efficiency greater than 90 % for QUE. Furthermore, the introduction of FAs enhanced the binding affinity between NaCas and QUE, but did not change the binding mode (static bursting) and types of intermolecular forces (mainly hydrogen bonding). In addition, a distinct improvement was discovered in the storage stability (>2.37-fold), thermal processing stability (>32.54 %), and bioaccessibility (>2.37-fold) of QUE. Therefore, the FAs-NaCas ligand complexes could effectively protect QUE to minimize degradation as fat-soluble polyphenol delivery vehicles.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Shengnan Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China.
| |
Collapse
|
9
|
Yin X, Wusigale, Cheng H, Van der Meeren P, Liang L. The mechanism of resveratrol stabilization and degradation by synergistic interactions between constituent proteins of whey protein. Food Res Int 2024; 188:114485. [PMID: 38823871 DOI: 10.1016/j.foodres.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Whey protein isolate (WPI) is mainly composed of β-lactoglobulin (β-LG), α-lactalbumin (α-LA) and bovine serum albumin (BSA). The aim of this study was to compare and analyze the influence of WPI and its three main constituent proteins, as well as proportionally reconstituted WPI (R-WPI) on resveratrol. It was found that the storage stability of resveratrol was protected by WPI, not affected by R-WPI, but reduced by individual whey proteins at 45°C for 30 days. The rank of accelerated degradation of resveratrol by individual whey proteins was BSA > α-LA > β-LG. The antioxidant activity, localization of resveratrol and oxidation of carrier proteins were determined by ABTS, H2O2 assay, synchronous fluorescence, carbonyl and circular dichroism. The non-covalent interactions and disulfide bonds between constituent proteins improved the antioxidant activity of the R-WPI-resveratrol complex, the oxidation stability of the carrier and the solvent shielding effect on resveratrol, which synergistically inhibited the degradation of resveratrol in R-WPI system. The results gave insight into elucidating the interaction mechanism of resveratrol with protein carriers.
Collapse
Affiliation(s)
- Xin Yin
- State Key Lab of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Wusigale
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Cheng
- State Key Lab of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Li Liang
- State Key Lab of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
10
|
Al-Shabib NA, Khan JM, Malik A, AlAmri A, Rehman MT, AlAjmi MF, Husain FM. Integrated spectroscopic and computational analyses unravel the molecular interaction of pesticide azinphos-methyl with bovine beta-lactoglobulin. J Mol Recognit 2024; 37:e3086. [PMID: 38686702 DOI: 10.1002/jmr.3086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Organophosphorus are typically hazardous chemicals used in the pharmaceutical, agricultural, and other industries. They pose a serious risk to human life and can be fatal upon direct exposure. Hence, studying the interaction between such compounds with proteins is crucial for environmental, health, and food safety. In this study, we investigated the interaction mechanism between azinphos-methyl (AZM) and β-lactoglobulin (BLG) at pH 7.4 using a combination of biophysical techniques. Intrinsic fluorescence investigations revealed that BLG fluorescence was quenched in the presence of increasing AZM concentrations. The quenching mechanism was identified as static, as evidenced by a decrease in the fluorescence quenching constant (1.25 × 104, 1.18 × 104, and 0.86 × 104 M-1) with an increase in temperatures. Thermodynamic calculations (ΔH > 0; ΔS > 0) affirmed the formation of a complex between AZM and BLG through hydrophobic interactions. The BLG's secondary structure was found to be increased due to AZM interaction. Ultraviolet -visible spectroscopy data showed alterations in BLG conformation in the presence of AZM. Molecular docking highlighted the significant role of hydrophobic interactions involving residues such as Val43, Ile56, Ile71, Val92, Phe105, and Met107 in the binding between BLG and AZM. A docking energy of -6.9 kcal mol-1, and binding affinity of 1.15 × 105 M-1 suggest spontaneous interaction between AZM and BLG with moderate to high affinity. These findings underscore the potential health risks associated with the entry of AZM into the food chain, emphasizing the need for further consideration of its impact on human health.
Collapse
Affiliation(s)
- Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz AlAmri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Lan T, Dong Y, Jiang L, Zhang Y, Sui X. Analytical approaches for assessing protein structure in protein-rich food: A comprehensive review. Food Chem X 2024; 22:101365. [PMID: 38623506 PMCID: PMC11016869 DOI: 10.1016/j.fochx.2024.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
This review focuses on changes in nutrition and functional properties of protein-rich foods, primarily attributed to alterations in protein structures. We provide a comprehensive overview and comparison of commonly used laboratory methods for protein structure identification, aiming to offer readers a convenient understanding of these techniques. The review covers a range of detection technologies employed in food protein analysis and conducts an extensive comparison to identify the most suitable method for various proteins. While these techniques offer distinct advantages for protein structure determination, the inherent complexity of food matrices presents ongoing challenges. Further research is necessary to develop and enhance more robust detection methods to improve accuracy in protein conformation and structure analysis.
Collapse
Affiliation(s)
- Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Guo Y, Fang R, Zhen Y, Qiao D, Zhao S, Zhang B. Ion presence during thermal processing modulates the performance of rice albumin/anthocyanin binary system. Food Res Int 2024; 184:114274. [PMID: 38609251 DOI: 10.1016/j.foodres.2024.114274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Thermal processing with salt ions is widely used for the production of food products (such as whole grain food) containing protein and anthocyanin. To date, it is largely unexplored how salt ion presence during thermal processing regulates the practical performance of protein/anthocyanin binary system. Here, rice albumin (RA) and black rice anthocyanins (BRA) were used to prepare RA/BRA composite systems as a function of temperature (60-100 °C) and NaCl concentration (10-40 mM) or CaCl2 concentration (20 mM). It was revealed that the spontaneous complexing reaction between RA and BRA was driven by hydrophobic interactions and hydrogen bonds and becomes easier and more favorable at a higher temperature (≤90 °C), excessive temperature (100 °C), however, may result in the degradation of BRA. Moreover, the salt ion presence during thermal processing may bind with RA and BRA, respectively, which could restrict the interaction between BRA and RA. Additionally, the inclusion of Na+ or Ca2+ at 20 mM endowed the binary system with strengthened DPPH radical scavenging capacity (0.95 for Na+ and 0.99 for Ca2+). Notably, Ca2+ performed a greater impact on the stability of the system than Na+.
Collapse
Affiliation(s)
- Yabin Guo
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Ruolan Fang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiyuan Zhen
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Zhao J, Yuan H, Chen Y, Fang X, Li Y, Yao H, Li W. Soy protein isolate-catechin complexes conjugated by pre-heating treatment for enhancing emulsifying properties: Molecular structures and binding mechanisms. Int J Biol Macromol 2024; 267:131157. [PMID: 38552684 DOI: 10.1016/j.ijbiomac.2024.131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
This study aimed to investigate the impact of different pre-heating temperatures (ranging from 40 °C to 80 °C) on the interactions between soy protein isolate (SPI) and catechin to effectively control catechin encapsulation efficiency and optimize the emulsifying properties of soy protein isolate. Results showed that optimal heat treatment at 70 °C improved catechin encapsulation efficiency up to 93.71 ± 0.14 %, along with the highest solubility, enhanced emulsification activity index and improved thermal stability of the protein. Multiple spectroscopic techniques revealed that increasing pretreatment temperature (from 40 °C to 70 °C) altered the secondary structures of SPI, resulting in a more stable unfolded structure for the composite system with a significant increase in α-helical structures and a decrease in random coil and β-sheet structures. Moreover, optimal heat treatment also leads to an augmentation of free sulfhydryl groups within complex as well as exposure of more internal chromophore amino acids on molecular surface. Size-exclusion high-performance liquid chromatography and SDS-PAGE analysis indicated that the band intensity of newly formed high-molecular-weight soluble macromolecules (>180 kDa) increased as the pre-heating temperature rose. Furthermore, fluorescence spectroscopy and molecular docking analysis suggest that hydrophobic and covalent interactions were involved in complex formation, which intensified with increasing temperature.
Collapse
Affiliation(s)
- Juyang Zhao
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China; College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China.
| | - Huiping Yuan
- School of Food Science and Engineering, Zhengzhou University of Science and Technology, Zhengzhou, Henan 450064, China
| | - Yiyu Chen
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xuwei Fang
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Yuqi Li
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Hengzhe Yao
- Culinary Arts Department, Qingdao Vocational and Technical College of Hotel Management, Qingdao, Shandong 266100, China
| | - Wenlan Li
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China.
| |
Collapse
|
14
|
Kuang X, Deng Z, Feng B, He R, Chen L, Liang G. The mechanism of epigallocatechin-3-gallate inhibiting the antigenicity of β-lactoglobulin under pH 6.2, 7.4 and 8.2: Multi-spectroscopy and molecular simulation methods. Int J Biol Macromol 2024; 268:131773. [PMID: 38657930 DOI: 10.1016/j.ijbiomac.2024.131773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The antigenicity of β-lactoglobulin (β-LG) can be influenced by pH values and reduced by epigallocatechin-3-gallate (EGCG). However, a detailed mechanism concerning EGCG decreasing the antigenicity of β-LG at different pH levels lacks clarity. Here, we explore the inhibition mechanism of EGCG on the antigenicity of β-LG at pH 6.2, 7.4 and 8.2 using enzyme-linked immunosorbent assay, multi-spectroscopy, mass spectrometry and molecular simulations. The results of Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) elucidate that the noncovalent binding of EGCG with β-LG induces variations in the secondary structure and conformations of β-LG. Moreover, EGCG inhibits the antigenicity of β-LG the most at pH 7.4 (98.30 %), followed by pH 6.2 (73.18 %) and pH 8.2 (36.24 %). The inhibitory difference is attributed to the disparity in the number of epitopes involved in the interacting regions of EGCG and β-LG. Our findings suggest that manipulating pH conditions may enhance the effectiveness of antigenic inhibitors, with the potential for further application in the food industry.
Collapse
Affiliation(s)
- Xiaoyu Kuang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Zhifen Deng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Bowen Feng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Ran He
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Lang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
15
|
Wu Y, Li Y, Liu H, Li P, Du B, Xie XA, Li L. Covalent conjugation of Inca peanut albumin and polyphenols with different phenolic hydroxyl numbers through laccase catalysis to improve functional properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4028-4038. [PMID: 38252689 DOI: 10.1002/jsfa.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Enzymatic crosslinking is a method that can be used to modify Inca peanut albumin (IPA) using polyphenols, and provides desirable functionalities; however, the effect of polyphenol structures on conjugate properties is unclear. In this study, we selected four polyphenols with different numbers of phenolic hydroxyl groups [para-hydroxybenzoic acid (HBA), protocatechuic acid (PCA), gallic acid (GA), and epigallocatechin gallate (EGCG)] for covalent modification of IPA by enzymatic crosslinking, and explored the structure-function changes of the IPA-polyphenol conjugates. RESULTS Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis showed that laccase successfully promoted covalent crosslinking of IPA with polyphenols, with the order of degree of conjugation as EGCG > GA > PCA > HBA, the IPA-EGCG conjugate showed the highest polyphenol binding equivalents (98.35 g kg-1 protein), and a significant reduction in the content of free amino, sulfhydryl, and tyrosine group. The oxidation of polyphenols by laccase forms quinone or semiquinone radicals that are covalently crosslinked to the reactive groups of IPA, leading to significant changes in the secondary and tertiary structures of IPA, with spherical structures transforming into dense lamellar structures. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability and emulsification stability of IPA-EGCG conjugates improved by almost 6-fold and 2.7-fold, respectively, compared with those of unmodified IPA. CONCLUSION These data suggest that the higher the number of polyphenol hydroxyl groups, the higher the degree of IPA-polyphenol conjugation; additionally, enzymatic crosslinking can significantly improve the functional properties of IPA. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongqing Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yanxin Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Honglang Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xin-An Xie
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Khalifa I, Li Z, Zou X, Nawaz A, Walayat N, Manoharadas S, Sobhy R. RuBisCo can conjugate and stabilize peonidin-3-O-p-coumaroylrutinoside-5-O-glucoside in isotonic sport models: Mechanisms from kinetics, multispectral, and libDock assays. Food Chem 2024; 438:138006. [PMID: 37989023 DOI: 10.1016/j.foodchem.2023.138006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
The co-pigmentation behaviour of RuBisCo proteins (with different concentrations) on peonidin-3-O-p-coumaroylrutinoside-5-O-glucoside (P3C5G, extracted from Rosetta potato's peels) conjugates in isotonic sport drinks (ISD) was examined using multispectral, thermal stability kinetics, and libDock-based molecular docking approaches. The colorant effects of RuBisCo on P3C5G were also studied in spray-dried microencapsulated ISD-models. RuBisCo, especially at a concentration of 10 mg/mL in ISD, showed a co-pigmentation effect on the color of P3C5G, mostly owing to its superior hyperchromicity, pKH-levels, and thermal stability. Results from multispectral approaches also revealed that RuBisCo could noncovalently interact with P3C5G as confirmed by libDock findings, where P3C5G strongly bound with RuBisCo via H-bonding and π-π forces, thereby altering its secondary structure. RuBisCo also preserved color of P3C5G in ISD-powdered models. These detailed results imply that RuBisCo could be utilized in ISD-liquid and powder models that might industrially be applied as potential food colorants in products under different conditions.
Collapse
Affiliation(s)
- Ibrahim Khalifa
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China; Food Technology Department, Faculty of Agriculture, Benha University, 13736 Moshtohor, Egypt
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China.
| | - Asad Nawaz
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, Hunan, China
| | - Noman Walayat
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Remah Sobhy
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China; Department of Biochemistry, Faculty of Agriculture, Benha University, 13736 Moshtohor, Egypt
| |
Collapse
|
17
|
SureshKumar H, Appadurai R, Srivastava A. Glycans modulate lipid binding in Lili-Mip lipocalin protein: insights from molecular simulations and protein network analyses. Glycobiology 2024; 34:cwad094. [PMID: 38015986 DOI: 10.1093/glycob/cwad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023] Open
Abstract
The unique viviparous Pacific Beetle cockroaches provide nutrition to their embryo by secreting milk proteins Lili-Mip, a lipid-binding glycoprotein that crystallises in-vivo. The resolved in-vivo crystal structure of variably glycosylated Lili-Mip shows a classical Lipocalin fold with an eight-stranded antiparallel beta-barrel enclosing a fatty acid. The availability of physiologically unaltered glycoprotein structure makes Lili-Mip a very attractive model system to investigate the role of glycans on protein structure, dynamics, and function. Towards that end, we have employed all-atom molecular dynamics simulations on various glycosylated stages of a bound and free Lili-Mip protein and characterised the impact of glycans and the bound lipid on the dynamics of this glycoconjugate. Our work provides important molecular-level mechanistic insights into the role of glycans in the nutrient storage function of the Lili-Mip protein. Our analyses show that the glycans stabilise spatially proximal residues and regulate the low amplitude opening motions of the residues at the entrance of the binding pocket. Glycans also preserve the native orientation and conformational flexibility of the ligand. However, we find that either deglycosylation or glycosylation with high-mannose and paucimannose on the core glycans, which better mimic the natural insect glycosylation state, significantly affects the conformation and dynamics. A simple but effective distance- and correlation-based network analysis of the protein also reveals the key residues regulating the barrel's architecture and ligand binding characteristics in response to glycosylation.
Collapse
Affiliation(s)
- Harini SureshKumar
- Molecular Biophysics Unit, Indian Institute of Science, C. V. Raman Road, Bangalore, KA 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, C. V. Raman Road, Bangalore, KA 560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, C. V. Raman Road, Bangalore, KA 560012, India
| |
Collapse
|
18
|
Xu T, Li X, Wu C, Fan G, Li T, Zhou D, Zhu J, Wu Z, Hua X. Improved encapsulation effect and structural properties of whey protein isolate by dielectric barrier discharge cold plasma. Int J Biol Macromol 2024; 257:128556. [PMID: 38061529 DOI: 10.1016/j.ijbiomac.2023.128556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
The whey protein isolate (WPI) was modified by dielectric barrier discharge cold plasma (DBD) in order to improve its encapsulation efficiency of rutin. In this work, the effect of DBD treatment on structure and physicochemical properties of WPI and the interaction between DBD-treated WPI and rutin were investigated. The results showed that the structural change of WPI leaded to the exposure of internal hydrophobic groups, increasing the interaction site with rutin. The encapsulation efficiency of DBD-treated WPI (30 kV, 30 s) on rutin was improved by 12.42 % compared with control group. The results of multispectral analysis showed that static quenching occurred in the process of interaction between DBD-treated and rutin, hydrogen bond and van der Waals force were the main forces between them. Therefore, DBD treatment can be used as a method to improve the encapsulation efficiency of WPI on hydrophobic active substances.
Collapse
Affiliation(s)
- Ting Xu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jinpeng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhihao Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaowen Hua
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201 Ningbo, China
| |
Collapse
|
19
|
Fu M, Gao J, Mao K, Sun J, Ahmed Sadiq F, Sang Y. Interaction mechanism between surface layer protein and yeast mannan: Insights from multi-spectroscopic and molecular dynamics simulation analyses. Food Chem 2024; 433:137352. [PMID: 37678123 DOI: 10.1016/j.foodchem.2023.137352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Tibet kefir grain (TKG) formation is mainly dependent on the aggregation of lactobacillus and yeasts. The interaction of surface layer protein (SLP) and yeast mannan plays an important role in mediating the co-aggregation of Lactobacillus kefiri with Saccharomyces cerevisiae. The interaction mechanism of the two was researched through multispectral spectroscopy, morphology observation and silico approaches. Fluorescence spectra data revealed that mannan was bound to SLP through a spontaneous binding process. The particle size of the binding complex increased as the mannan concentration increased. Synchronous fluorescence spectroscopy and circular dichroism (CD) spectra showed the conformational and microenvironment alteration of SLP treated with mannan. Molecular docking results indicated that hydrophobic interactions played major roles in the formation of SLP-mannan complexes. These findings provide a deeper insight into the interactions of protein and polysaccharide, and this knowledge is valuable in the application of SLP and mannan in co-fermentation systems.
Collapse
Affiliation(s)
- Mengqi Fu
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jie Gao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Kemin Mao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jilu Sun
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | | | - Yaxin Sang
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
20
|
Zhou HB, Feng LJ, Weng XH, Wang T, Lu H, Bian YB, Huang ZY, Zhang JL. Inhibition mechanism of cordycepin and ergosterol from Cordyceps militaris Link. against xanthine oxidase and cyclooxygenase-2. Int J Biol Macromol 2024; 258:128898. [PMID: 38141695 DOI: 10.1016/j.ijbiomac.2023.128898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Cordyceps militaris Link. (C. militaris) is an entomopathogenic fungus that parasitizes the pupa or cocoon of lepidopteran insect larvae, with various bioactive compounds. Cordycepin and ergosterol are the two active components in C. militaris. This study aimed to evaluate the inhibitory activity of cordycepin and ergosterol against xanthine oxidase (XO) and cyclooxygenase-2 (COX-2), as well as investigate the inhibition mechanism. Cordycepin could better inhibit XO (IC50 = 0.014 mg/mL) and COX-2 (IC50 = 0.055 mg/mL) than ergosterol. Additionally, surface hydrophobicity and circular dichroism (CD) spectra results confirmed the conformational changes in enzymes induced by cordycepin and ergosterol. Finally, cordycepin and ergosterol significantly decreased uric acid (UA) and inflammatory factors to normal level in mice with gouty nephropathy (GN). This study could provide theoretical evidence for utilization of C. militaris in hyperuricemia-management functional foods.
Collapse
Affiliation(s)
- H B Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - L J Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - X H Weng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - T Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - H Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Y B Bian
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan HUAYU XINMEI Mushroom industry Company Limited, Wuhan 430070, China
| | - Z Y Huang
- Wuhan HUAYU XINMEI Mushroom industry Company Limited, Wuhan 430070, China
| | - J L Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China.
| |
Collapse
|
21
|
Zang Z, Tian J, Chou S, Lang Y, Tang S, Yang S, Yang Y, Jin Z, Chen W, Liu X, Huang W, Li B. Investigation on the interaction mechanisms for stability of preheated whey protein isolate with anthocyanins from blueberry. Int J Biol Macromol 2024; 255:127880. [PMID: 37944731 DOI: 10.1016/j.ijbiomac.2023.127880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Proteins and anthocyanins coexist in complex food systems. This research mainly studied the steady-state protective design and mechanism of the preheated protein against anthocyanins. Multispectral and molecular dynamics are utilized to illustrate the interaction mechanism between preheated whey protein isolate (pre-WPI) and anthocyanins. The pre-WPI could effectively protect the stability of anthocyanins, and the effect was better than that of the natural whey protein isolate (NW). Among them, NW after preheating treatment at 55 °C showed better protection against anthocyanin stability. Fluorescence studies indicated that pre-WPI there existed a solid binding affinity and static quenching for malvidin-3-galactoside (M3G). Multispectral data showed a significant variation in the secondary structure of pre-WPI. Furthermore, molecular dynamics simulation selects AMBER18 as the protein force field, and the results showed that hydrogen bonding participated as an applied force. Compared with NW, pre-WPI could better wrap anthocyanins and avoid damage to the external environment due to tightening of the pockets. Protein protects anthocyanins from degradation, and this protective effect is influenced by the preheating temperature of protein and the structure of protein. On the basis of the above results, it is possible to pinpoint the interaction mechanism between preheated proteins and anthocyanins.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuxi Lang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Siyi Tang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Zhufeng Jin
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Wei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Liu
- Jiangsu Academy of Agricultural Sciences, Institution of Argo-product Processing, Nanjing 210014, China
| | - Wuyang Huang
- Jiangsu Academy of Agricultural Sciences, Institution of Argo-product Processing, Nanjing 210014, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
22
|
Qing J, Peng C, Chen H, Li H, Liu X. Small molecule linoleic acid inhibiting whey syneresis via interact with milk proteins in the fermentation of set yogurt fortified with c9,t11-conjugated linoleic acid. Food Chem 2023; 429:136849. [PMID: 37481983 DOI: 10.1016/j.foodchem.2023.136849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023]
Abstract
The study aimed to investigate the impact of fermentation conditions on c9,t11-conjugated linoleic acid (CLA) synthesis by Lactobacillus casei, as well as its effects on whey syneresis, water holding capacity (WHC), and texture characteristics of set yogurt. The amount of whey syneresis decreased about 30% with the adding of 0.1% linoleic acid (LA). The interaction between LA and casein (CS), β-lactoglobulin (β-Lg) and bovine serum albumin (BSA) was observed by UV-Vis absorption spectroscopy, 3D fluorescence spectroscopy and CD spectroscopy. It found that LA changed the microenvironment and polarity around amino acids, as well as the conformation of the three milk proteins. Scanning electron microscope (SEM) analysis revealed that the addition of LA resulted in a more uniform and compact microstructure of the set yogurt. It indicates that LA can promote the crosslink of milk proteins, which may be the reason for the reduction of whey syneresis in set yogurt.
Collapse
Affiliation(s)
- Junjun Qing
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Cheng Peng
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China; International Institute of Food Innovation, Nanchang University, Nanchang, China
| | - Haixing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China; International Institute of Food Innovation, Nanchang University, Nanchang, China
| | - Xiaohua Liu
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China; International Institute of Food Innovation, Nanchang University, Nanchang, China.
| |
Collapse
|
23
|
Meng Y, Wei Z, Xue C. Deciphering the interaction mechanism and binding mode between chickpea protein isolate and flavonoids based on experimental studies and molecular simulation. Food Chem 2023; 429:136848. [PMID: 37454615 DOI: 10.1016/j.foodchem.2023.136848] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Chickpea protein isolate (CPI) is a promising novel plant protein, and protein-flavonoid system has also been applied in various food products. However, the interaction mechanism between CPI and flavonoids remains to be elucidated. In this paper, the affinity behavior between flavonoids and CPI was explained by constructing the three-dimensional quantitative structure-activity relationship (R2 = 0.988, Q2 = 0.777). Subsequently, four representative flavonoids were selected for further study. Multi-spectroscopy analysis showed that the sequence of affinity for CPI was puerarin > apigenin > naringenin > epigallocatechin gallate. Meanwhile, flavonoids altered the secondary structure and spatial conformation of CPI, leading to the static quenching of CPI. Additionally, thermodynamic analysis indicated that hydrogen bonding and van der Waals forces were the main driving forces for complex binding. Molecular docking and molecular dynamics simulations further explored the binding sites and conformations of complexes. This study provides theoretical guidance for in-depth research on the interaction patterns between biomacromolecules and small molecules in food matrices.
Collapse
Affiliation(s)
- Yuan Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
24
|
Wang XJ, Zhou Q, Wu YR, Li J, Wang W, Yu ZY, Zheng MM, Zhou YB, Liu K. Regulation Mechanism of Phenolic Hydroxyl Number on Self-Assembly and Interaction between Edible Dock Protein and Hydrophobic Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18510-18523. [PMID: 37971491 DOI: 10.1021/acs.jafc.3c05713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In this study, galangin (Gal), kaempferol (Kae), quercetin (Que), and myricetin (Myr) were chosen as the representative flavonoids with different phenolic hydroxyl numbers in the B-ring. The edible dock protein (EDP) was chosen as the new plant protein. Based on this, the regulation mechanism of the phenolic hydroxyl number on the self-assembly behavior and molecular interaction between EDP and flavonoid components were investigated. Results indicated that the loading capacity order of flavonoids within the EDP nanomicelles was Myr (10.92%) > Que (9.56%) > Kae (6.63%) > Gal (5.55%). Moreover, this order was consistent with the order of the hydroxyl number in the flavonoid's B ring: Myr (3) > Que (2) > Kae (1) > Gal (0). The micro morphology exhibited that four flavonoid-EDP nanomicelles had a core-shell structure. In the meantime, the EDP encapsulation remarkably improved the flavonoids' water solubility, storage stability, and sustained release characteristics. During the interaction of EDP and flavonoids, the noncovalent interactions including van der Waals forces, hydrophobic interaction, and hydrogen bonding were the main binding forces. All of the results demonstrated that the hydroxyl number of bioactive compounds is a critical factor for developing a delivery system with high loading ability and stability.
Collapse
Affiliation(s)
- Xiao-Jie Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qian Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu-Ru Wu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jing Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wei Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhen-Yu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ming-Ming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yi-Bin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kang Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-Products Processing, Food Processing Research Institute, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
25
|
Dong L, Zhang Y, Li Y, Liu Y, Chen Q, Liu L, Farag M, Liu L. The binding mechanism of oat phenolic acid to whey protein and its inhibition mechanism against AGEs as revealed using spectroscopy, chromatography and molecular docking. Food Funct 2023; 14:10221-10231. [PMID: 37916290 DOI: 10.1039/d3fo02474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Heat sterilization of dairy products can promote the formation of advanced glycation end products (AGEs), protein oxidation products (POPs) and α-dicarbonyl compounds, which have a significant influence on health due to the close association of these products with diabetes complications. In this study, eight oat phenolic acids were first analyzed for their inhibitory effect against AGEs formation. Due to their strong inhibitory effects and structural differences, caffeic acid (CA) and gallic acid (GA) were further selected to assess their anti-glycosylation mechanisms using spectroscopy, chromatography and molecular docking. CA/GA reduced the production of total AGEs and POPs in various bovine milk simulation models and protected whey proteins from structural modifications, oxidation, and cross-linking. Comparative analyses showed a structure-effect relationship between CA/GA and AGEs inhibition. Oat phenolic acids against AGEs and POPs might be related to the unique bonding of key amino acid residues in whey proteins, the inhibitory role of early fructosamine and the trapping of reactive α-dicarbonyl groups to form adducts. In conclusion, oat phenolic acids might present a promising dietary strategy to alleviate AGEs production and glycation of proteins in dairy products upon storage.
Collapse
Affiliation(s)
- Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yunzhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, 68588, NE, USA
| | - Mohamed Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
26
|
Wang X, Lin S, Wang R, Chu J, Dong L, Zhang S. Enhancing gel behavior of yellow croaker surimi by fruit extracts: Physicochemical properties and molecular mechanism. J Texture Stud 2023. [PMID: 37921240 DOI: 10.1111/jtxs.12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
The aim of this study was to investigate the effects of grape seed extract (GSE), acerola cherry extract (ACE), and blueberry extract (BBE) on the physicochemical properties and structure of the yellow croaker surimi gel. In addition, molecular docking and molecular dynamics (MD) simulation were utilized to study the binding mechanism of yellow croaker's fibrillin and fruit extracts. Surimi gel with 1.5% GSE, ACE, and BBE had the highest water holding capacity, hardness, chewability, cohesion, breaking force, breaking distance, gel strength, and densest 3D network structure, according to the experiment's findings. Nevertheless, the cross-linking of proteins in surimi was blocked with the further increase of fruit extract (1.5%-2.0%), and the existing network of surimi was weakened or even destroyed. Three fruit extracts had little effect on the secondary structure of the surimi gel. Besides, hydrophobic and disulfide bonds are the main chemical bonds of croaker surimi. Molecular docking showed that B-type procyanidine (BP) interacted with ASN-183, SER-571, ASP-525, ARG-350, LYS-188, GLU-349, CYS-353, and other active amino acids in croaker protein. Moreover, it can form strong hydrogen bond interaction with ASN-183, SER-571, ASP-525, and ARG-350 at the active sites of protein. The BP-Larimichthys crocea protein system's MD simulation was carried out, and calculations for the simulation's root mean square deviation, root mean square fluctuation, radius of gyration, solvent accessible surface area, and hydrogen bonds were made. It was found that these indices can demonstrate that the BP binding contributes to the stability of the yellow croaker structure.
Collapse
Affiliation(s)
- Xinyan Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Ruichun Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Junbo Chu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Liu Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian, People's Republic of China
| |
Collapse
|
27
|
Zhou S, Meng L, Lin Y, Dong X, Dong M. Exploring the Interactions of Soybean 7S Globulin with Gallic Acid, Chlorogenic Acid and (-)-Epigallocatechin Gallate. Foods 2023; 12:4013. [PMID: 37959132 PMCID: PMC10649178 DOI: 10.3390/foods12214013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, the noncovalent interaction mechanisms between soybean 7S globulin and three polyphenols (gallic acid (GA), chlorogenic acid (CA) and (-)-epigallocatechin gallate (EGCG)) were explored and compared using various techniques. Fluorescence experiments showed that GA and EGCG had strong static quenching effects on 7S fluorescence, and that of CA was the result of multiple mechanisms. The interactions caused changes to the secondary and tertiary structure of 7S, and the surface hydrophobicity was decreased. Thermodynamic experiments showed that the combinations of polyphenols with 7S were exothermic processes. Hydrogen bonds and van der Waals forces were the primary driving forces promoting the binding of EGCG and CA to 7S. The combination of GA was mainly affected by electrostatic interaction. The results showed that the structure and molecular weight of polyphenols play an important role in their interactions. This work is helpful for developing products containing polyphenols and soybean protein.
Collapse
Affiliation(s)
- Siduo Zhou
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China;
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan 250117, China
| | - Yanfei Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueqian Dong
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China;
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
28
|
Zhang Y, Tian X, Teng A, Li Y, Jiao Y, Zhao K, Wang Y, Li R, Yang N, Wang W. Polyphenols and polyphenols-based biopolymer materials: Regulating iron absorption and availability from spontaneous to controllable. Crit Rev Food Sci Nutr 2023; 63:12341-12359. [PMID: 35852177 DOI: 10.1080/10408398.2022.2101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Iron is an important trace element in the body, and it will seriously affect the body's normal operation if it is taken too much or too little. A large number of patients around the world are suffering from iron disorders. However, there are many problems using drugs to treat iron overload and causing prolonged and unbearable suffering for patients. Controlling iron absorption and utilization through diet is becoming the acceptable, safe and healthy method. At present, many literatures have reported that polyphenols can interact with iron ions and can be expected to chelate iron ions, depending on their types and structures. Besides, polyphenols often interact with other macromolecules in the diet, which may complicate this phenols-Fe behavior and give rise to the necessity of building phenolic based biopolymer materials. The biopolymer materials, constructed by self-assembly (non-covalent) or chemical modification (covalent), show excellent properties such as good permeability, targeting, biocompatibility, and high chelation ability. It is believed that this review can greatly facilitate the development of polyphenols-based biopolymer materials construction for regulating iron and improving the well-being of patients.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Anguo Teng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuzhen Jiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Kaixuan Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ruonan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
29
|
Yin HH, Han YL, Yan X, Guan YX. Hematoxylin modulates tau-RD protein fibrillization and ameliorates Alzheimer's disease-like symptoms in a yeast model. Int J Biol Macromol 2023; 250:126140. [PMID: 37543268 DOI: 10.1016/j.ijbiomac.2023.126140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Alzheimer's disease (AD) is one of the most serious neurodegenerative diseases with no effective treatment options available. The formation of insoluble amyloid fibrils of the hyperphosphorylated tau protein is intimately associated with AD, hence the tau protein has been a key target for AD drug development. In this work, hematoxylin was discovered as a dual functional compound, that is, acting in the inhibition of repeat domain of tau (tau-RD) protein fibrillogenesis and remodeling of pre-formed tau-RD fibrils in vitro. Meanwhile, hematoxylin was able to reduce the accumulation of tau-RD aggregates in Saccharomyces cerevisiae. Experimental and computational studies indicated that hematoxylin directly interacts with tau-RD protein through hydrophobic forces, hydrogen bonds, π-cation interactions, and π-π stackings. In addition, cellular viability assays showed that hematoxylin greatly reduced cytotoxicity induced by tau-RD aggregates. In summary, hematoxylin might be a promising candidate for further development as a potential therapeutic drug for AD patients.
Collapse
Affiliation(s)
- Huan-Huan Yin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yin-Lei Han
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiao Yan
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Yi-Xin Guan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Llopart EE, Verdini RA, Delorenzi NJ, Busti PA. Characterization of polyphenols compounds extracted from stressed apple peel and their interaction with β-lactoglobulin. Heliyon 2023; 9:e20010. [PMID: 37809818 PMCID: PMC10559732 DOI: 10.1016/j.heliyon.2023.e20010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
This paper proposes to apply a postharvest environmental stress to red apples, Malus domestica, variety Red Delicious in order to increase the polyphenols compounds (PP) content in their peels. The possibility of enhancing extractable PP provides a useful alternative for the use of discarded crops in the food industry. A great increase in PP was observed in response to light damage produced by the environmental stress applied in this work. Flavonols > anthocyanins > flavanols > dihydrochalcones > phenolic acids is the order in PP content. The interaction of the extracted PP from unstressed and stressed apple peels with beta-lactoglobulin (β-LG) was characterized. A PP/β-LG complex which was formed with one single binding site in the protein was determined. The interaction was spontaneous and enthalpy driven. PP extracted from unstressed samples had greater affinity for the protein than PP extracted from stressed samples, possibly due to the polar characteristic of anthocyanins. The results of this last study could provide a better understanding of the interaction between PP and β-LG to incorporate them into functional foods.
Collapse
Affiliation(s)
- Emilce E. Llopart
- Área Alimentos y Sociedad, Departamento de Ciencias de los Alimentos y del Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
- Instituto de Química Rosario (IQUIR, UNR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Roxana A. Verdini
- Instituto de Química Rosario (IQUIR, UNR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
- Área Bromatología y Nutrición, Departamento de Ciencias de los Alimentos y del Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Néstor J. Delorenzi
- Área Tecnología de los Alimentos, Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Pablo A. Busti
- Área Tecnología de los Alimentos, Departamento de Tecnología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
31
|
Sharma S, Majumdar RK, Mehta NK. Valorisation of pineapple peel waste as natural surimi gel enhancer and its optimization in Nile tilapia (Oreochromis niloticus) surimi gels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29527-0. [PMID: 37639097 DOI: 10.1007/s11356-023-29527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
This investigation explored the preparation of surimi gel enhancer from pineapple peel waste, hugely generated by industries and spreading serious environment pollutions. The peel extracted with 100% ethanol had higher bioactive and antioxidant attributes, which was subsequently fortified in tilapia surimi at levels of 0.20%-1.20%, w/w to improve its physiochemical, textural, protein structural and sensorial properties. Our finding demonstrated that surimi gels enriched with 0.80% ethanolic pineapple peel extract (PAPE) exhibited significant (p<0.05) improvement in water holding capacity, breaking force, gel strength, and other textural properties and sensory attributes. Furthermore, the surimi gels fortified with 0.80% PAPE exhibited the elevated levels of hydrogen and hydrophobic interactions, while sulfhydryl and free amino acid contents demonstrated a contrasting trend. The FTIR spectra displayed that the incorporation of PAPE influenced the secondary structure of the protein, as evidenced by shifts in the α-helix to β-sheet peaks. In addition, 0.80% PAPE added gels displayed a compact, uniform, and organized microstructure, featuring small cavities. In summary, the fortification of tilapia surimi gels with 0.80% PAPE could improve gelling and other technological properties with higher sensory scores. This study offers an effective approach to utilize the pineapple peel as a gel enhancer additive for the development of functional surimi and surimi-based products enriched with bioactive compounds.
Collapse
Affiliation(s)
- Sanjeev Sharma
- Department of Fish Processing Technology and Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Ranendra Kumar Majumdar
- Department of Fish Processing Technology and Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Naresh Kumar Mehta
- Department of Fish Processing Technology and Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India.
| |
Collapse
|
32
|
Zhang L, Zhou QM, Xu L, Xie X, Wang PX, Xie ZH, Li JL, Tu ZC. Extraction optimization and identification of four advanced glycation-end products inhibitors from lotus leaves and interaction mechanism analysis. Food Chem 2023; 414:135712. [PMID: 36808023 DOI: 10.1016/j.foodchem.2023.135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/15/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Previous research indicated lotus leaves extract could effectively inhibit advanced glycation end-products (AGEs) formation, but the optimal extraction condition, bio-active compounds and interaction mechanism remain unclear. The current study was designed to optimize the extraction parameters of AGEs inhibitors from lotus leaves by bio-activity-guided approach. The bio-active compounds were enriched and identified, the interaction mechanisms of inhibitors with ovalbumin (OVA) were investigated by fluorescence spectroscopy and molecular docking. The optimum extraction parameters were solid-liquid ratio of 1:30, ethanol concentration of 70 %, ultrasonic time of 40 min, temperature of 50 °C, and power of 400 W. Isoquercitrin, hyperoside, astragalin, and trifolin were identified from the 80 % ethanol fraction of lotus leaves (80HY). Hyperoside and isoquercitrin were dominant AGEs inhibitors and accounted for 55.97 % of 80HY. Isoquercitrin, hyperoside, trifolin interacted with OVA via the same mechanism, hyperoside exhibited the strongest affinity, trifolin caused the most conformational changes.
Collapse
Affiliation(s)
- Lu Zhang
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China; Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi 331208, China.
| | - Qi-Ming Zhou
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Liang Xu
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Xing Xie
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Pei-Xin Wang
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Zuo-Hua Xie
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi 331208, China
| | - Jin-Lin Li
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China.
| | - Zong-Cai Tu
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi, College of Life Science, Jiangxi Normal University, Nanchang, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
33
|
Dai YH, Wei JR, Chen XQ. Interactions between tea polyphenols and nutrients in food. Compr Rev Food Sci Food Saf 2023; 22:3130-3150. [PMID: 37195216 DOI: 10.1111/1541-4337.13178] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/08/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Tea polyphenols (TPs) are important secondary metabolites in tea and are active in the food and drug industry because of their rich biological activities. In diet and food production, TPs are often in contact with other food nutrients, affecting their respective physicochemical properties and functional activity. Therefore, the interaction between TPs and food nutrients is a very important topic. In this review, we describe the interactions between TPs and food nutrients such as proteins, polysaccharides, and lipids, highlight the forms of their interactions, and discuss the changes in structure, function, and activity resulting from their interactions.
Collapse
Affiliation(s)
- Yi-Hui Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Jia-Ru Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Xiao-Qiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| |
Collapse
|
34
|
Gui H, Jiang Q, Tian J, Zhihuan Z, Yang S, Yang Y, Xin M, Zhao M, Dai J, Li B. Interaction and binding mechanism of cyanidin-3-O-glucoside to lysozyme in varying pH conditions: Multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Chem 2023; 425:136509. [PMID: 37295211 DOI: 10.1016/j.foodchem.2023.136509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Due to pH sensitivity, the interaction between lysozyme and cyanidin-3-O-glucoside was investigated at pH 3.0 and 7.4 via multi-spectroscopic approaches, with additional molecular docking and molecular dynamics simulation (MD). Binding with cyanidin-3-O-glucoside, the enhanced UV spectra and the reduced the α-helicity of lysozyme were both more significant at pH 7.4 than that at pH 3.0 (p < 0.05), corresponding to Fourier transform infrared spectroscopy (FTIR) study. Fluorescence quenching indicated the static mode was major at pH 3.0 with a part dynamic mode at pH 7.4 with a significantly high of Ks at 310 K (p < 0.05), corresponding to their MD. An instantaneous conformation of lysozyme was observed during C3G addition at pH 7.4 in fluorescence phase diagram. Cyanidin-3-O-glucoside derivatives bind with lysozyme at a common site via hydrogen-bond and π-π interactions in molecular docking and tryptophan played a potential role in the interaction based on the MD.
Collapse
Affiliation(s)
- Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zang Zhihuan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., No. 20 Xinyangguang Road, Jiyang Street, Zhuji City, Zhejiang Province 311800, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., No. 20 Xinyangguang Road, Jiyang Street, Zhuji City, Zhejiang Province 311800, China
| | - Meili Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Min Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jian Dai
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
35
|
Ma Y, Zhang S, Feng Y, Wang H, Liu Y, Wang C. Modification of the Structural and Functional Characteristics of Mung Bean Globin Polyphenol Complexes: Exploration under Heat Treatment Conditions. Foods 2023; 12:foods12112091. [PMID: 37297336 DOI: 10.3390/foods12112091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
During the storage and processing of mung beans, proteins and polyphenols are highly susceptible to interactions with each other. Using globulin extracted from mung beans as the raw material, the study combined it with ferulic acid (FA; phenolic acid) and vitexin (flavonoid). Physical and chemical indicators were combined with spectroscopy and kinetic methods, relying on SPSS and peak fit data to statistically analyze the conformational and antioxidant activity changes of mung bean globulin and two polyphenol complexes before and after heat treatment and clarify the differences and the interaction mechanism between globulin and the two polyphenols. The results showed that, with the increase in polyphenol concentration, the antioxidant activity of the two compounds increased significantly. In addition, the antioxidant activity of the mung bean globulin-FA complex was stronger. However, after heat treatment, the antioxidant activity of the two compounds decreased significantly. The interaction mechanism of the mung bean globulin-FA/vitexin complex was static quenching, and heat treatment accelerated the occurrence of the quenching phenomenon. Mung bean globulin and two polyphenols were combined through a hydrophobic interaction. However, after heat treatment, the binding mode with vitexin changed to an electrostatic interaction. The infrared characteristic absorption peaks of the two compounds shifted to different degrees, and new peaks appeared in the areas of 827 cm-1, 1332 cm-1, and 812 cm-1. Following the interaction between mung bean globulin and FA/vitexin, the particle size decreased, the absolute value of zeta potential increased, and the surface hydrophobicity decreased. After heat treatment, the particle size and zeta potential of the two composites decreased significantly, and the surface hydrophobicity and stability increased significantly. The antioxidation and thermal stability of the mung bean globulin-FA were better than those of the mung bean globulin-vitexin complex. This study aimed to provide a theoretical reference for the protein-polyphenol interaction mechanism and a theoretical basis for the research and development of mung bean functional foods.
Collapse
Affiliation(s)
- Yantao Ma
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
- National Coarse Cereals Engineering Research Centre, Daqing 163319, China
| | - Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Haoyu Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Yuhang Liu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China
- National Coarse Cereals Engineering Research Centre, Daqing 163319, China
- Heilongjiang Food and Biotechnology Innovation and Research Center (International Cooperation), Daqing 163319, China
| |
Collapse
|
36
|
Taniguchi M, LaRocca CA, Bernat JD, Lindsey JS. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. JOURNAL OF NATURAL PRODUCTS 2023; 86:1087-1119. [PMID: 36848595 DOI: 10.1021/acs.jnatprod.2c00720] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavonoids play diverse roles in plants, comprise a non-negligible fraction of net primary photosynthetic production, and impart beneficial effects in human health from a plant-based diet. Absorption spectroscopy is an essential tool for quantitation of flavonoids isolated from complex plant extracts. The absorption spectra of flavonoids typically consist of two major bands, band I (300-380 nm) and band II (240-295 nm), where the former engenders a yellow color; in some flavonoids the absorption tails to 400-450 nm. The absorption spectra of 177 flavonoids and analogues of natural or synthetic origin have been assembled, including molar absorption coefficients (109 from the literature, 68 measured here). The spectral data are in digital form and can be viewed and accessed at http://www.photochemcad.com. The database enables comparison of the absorption spectral features of 12 distinct types of flavonoids including flavan-3-ols (e.g., catechin, epigallocatechin), flavanones (e.g., hesperidin, naringin), 3-hydroxyflavanones (e.g., taxifolin, silybin), isoflavones (e.g., daidzein, genistein), flavones (e.g., diosmin, luteolin), and flavonols (e.g., fisetin, myricetin). The structural features that give rise to shifts in wavelength and intensity are delineated. The availability of digital absorption spectra for diverse flavonoids facilitates analysis and quantitation of these valuable plant secondary metabolites. Four examples are provided of calculations─multicomponent analysis, solar ultraviolet photoprotection, sun protection factor (SPF), and Förster resonance energy transfer (FRET)─for which the spectra and accompanying molar absorption coefficients are sine qua non.
Collapse
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Connor A LaRocca
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jake D Bernat
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
37
|
Deng Y, Zhao G, Cheng K, Shi C, Xiao G. Effect of Apple Polyphenols on the Antioxidant Activity and Structure of Three-Dimensional Printed Processed Cheese. Foods 2023; 12:foods12081731. [PMID: 37107526 PMCID: PMC10137760 DOI: 10.3390/foods12081731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Additives can influence the processability and quality of three-dimensional (3D)-printed foods. Herein, the effects of apple polyphenols on the antioxidant activity and structure of 3D-printed processed cheese were investigated. The antioxidant activities of processed cheese samples with different contents of apple polyphenols (0%, 0.4%, 0.8%, 1.2%, or 1.6%) were evaluated using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) assays. In addition, the rheological properties and structural characteristics of the processed cheeses were investigated using rheometry, Fourier transform infrared spectroscopy, and fluorescence spectroscopy. Then, the final printed products were analyzed for comparative molding effects and dimensional characteristics. it was found that apple polyphenols can significantly improve the antioxidant activity of processed cheese. When the amount of apple polyphenols added was 0.8%, the 3D shaping effect was optimal with a porosity rate of 4.1%. Apple polyphenols can be used as a good antioxidant additive, and the moderate addition of apple polyphenols can effectively improve the antioxidant and structural stability of 3D-printed processed cheese.
Collapse
Affiliation(s)
- Yiqiu Deng
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Guangsheng Zhao
- Hangzhou New Hope Shuangfeng Dairy Products Co., Ltd., Hangzhou 311100, China
| | - Kewei Cheng
- Hangzhou Institute for Food and Drug Control, Hangzhou 310017, China
| | | | - Gongnian Xiao
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
38
|
Yu Y, Kleuter M, Taghian Dinani S, Trindade LM, van der Goot AJ. The role of plant age and leaf position on protein extraction and phenolic compounds removal from tomato (Solanum lycopersicum) leaves using food-grade solvents. Food Chem 2023; 406:135072. [PMID: 36470086 DOI: 10.1016/j.foodchem.2022.135072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
The large availability and considerable amount of proteins (approx. 30 % on dry matter) make tomato leaves attractive as a potential new protein source. In this study, the feasibility of extracting proteins and removing phenolic compounds from tomato leaves using food-grade solvents as function of plant age and leaf position was investigated. Water and 50-50 % ethanol-water were used. We found that most proteins (>70 mg/g leaf protein) remained in the pellet after extraction. The protein purity of the dry matter present in the supernatant did not exceed the original leaf protein content. Additionally, leaf position had stronger effect than plant age on the leaf protein content and extraction yield. Ethanol-water was more efficient in removing phenolic compounds than water. The most phenolic compounds was removed from the top leaves. For future processing, the diversity of leaves has to be considered when striving for full utilization of tomato plants (fruits and leaves).
Collapse
Affiliation(s)
- Yafei Yu
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Marietheres Kleuter
- Laboratory of Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Somayeh Taghian Dinani
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Luisa M Trindade
- Laboratory of Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Atze Jan van der Goot
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
39
|
Geng Q, McClements DJ, Wu Z, Li T, He X, Shuai X, Liu C, Dai T. Investigation of bovine β-lactoglobulin-procyanidin complexes interactions and its utilization in O/W emulsion. Int J Biol Macromol 2023; 240:124457. [PMID: 37068535 DOI: 10.1016/j.ijbiomac.2023.124457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Procyanidins are bioactive polyphenols that have a strong affinity to proteins. Beta-lactoglobulin (BLG) is widely used as an emulsifier in the food and other industries. This study evaluated the interaction between BLG and A-type procyanidin dimer (PA2) using the spectroscopic, thermodynamic, and molecular simulation. PA2 decreased the transmissivity and quenched the intrinsic fluorescence of BLG, suggesting that the two molecules formed a complex. The binding of PA2 reduced the surface hydrophobicity and altered the conformation of BLG with increasing the random coil regions. Thermodynamic and isothermal titration calorimetry analyses suggested that the main driving force of PA2-BLG interaction was hydrophobic attraction. Molecular docking simulations were used to identify the main interaction sites and forces in the BLG-PA2 complexes, which again indicated that hydrophobic interactions dominated. In addition, the influence of PA2 on the ability of BLG to form and stabilize O/W emulsions was analyzed. Emulsions formulated using BLG-PA2 complexes contained relatively small droplets (D4,3 ≈ 0.7 μm) and high surface potentials (absolute value >50 mV). Compared to BLG alone, BLG-PA2 complexes improved the storage stability of the emulsions. This study provides valuable new insights into the formation, properties, and application of protein-polyphenol complexes as functional ingredients in foods.
Collapse
Affiliation(s)
- Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | | | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xuemei He
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, Guangxi 530007, China
| | - Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, Guangxi 530007, China.
| |
Collapse
|
40
|
Xu J, Huang Y, Wei Y, Weng X, Wei X. Study on the Interaction Mechanism of Theaflavin with Whey Protein: Multi-Spectroscopy Analysis and Molecular Docking. Foods 2023; 12:1637. [PMID: 37107433 PMCID: PMC10137913 DOI: 10.3390/foods12081637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The interaction mechanism of whey proteins with theaflavin (TF1) in black tea was analyzed using multi-spectroscopy analysis and molecular docking simulations. The influence of TF1 on the structure of bovine serum albumin (BSA), β-lactoglobulin (β-Lg), and α-lactoalbumin (α-La) was examined in this work using the interaction of TF1 with these proteins. Fluorescence and ultraviolet-visible (UV-vis) absorption spectroscopy revealed that TF1 could interact with BSA, β-Lg and α-La through a static quenching mechanism. Furthermore, circular dichroism (CD) experiments revealed that TF1 altered the secondary structure of BSA, β-Lg and α-La. Molecular docking demonstrated that the interaction of TF1 with BSA/β-Lg/α-La was dominated by hydrogen bonding and hydrophobic interaction. The binding energies were -10.1 kcal mol-1, -8.4 kcal mol-1 and -10.4 kcal mol-1, respectively. The results provide a theoretical basis for investigating the mechanism of interaction between tea pigments and protein. Moreover, the findings offered technical support for the future development of functional foods that combine tea active ingredients with milk protein. Future research will focus on the effects of food processing methods and different food systems on the interaction between TF1 and whey protein, as well as the physicochemical stability, functional characteristics, and bioavailability of the complexes in vitro or in vivo.
Collapse
Affiliation(s)
- Jia Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinchu Weng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Chen Y, Li M, Kong J, Liu J, Zhang Q. Molecular Interaction Mechanism and Preservative Effect of Lactone Sophorolipid and Lactoferrin/ β-Lactoglobulin Systems. Foods 2023; 12:foods12081561. [PMID: 37107357 PMCID: PMC10137667 DOI: 10.3390/foods12081561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Multispectral and molecular docking methods were used to study the interaction mode and mechanism of two important components of whey proteins, lactoferrin (LF) and β-lactoglobulin (β-LG), and of a lactone sophorolipid (LSL) mixed system. The preservation effect of the mixed system on milk was also studied and compared. The results showed that the quenching mechanism of LSL on both β-LG and LF was static, but that the non-covalent complexes formed were the result of the different interacting forces: hydrogen bonds and the van der Waals force for the LSL-β-LG system, and electrostatic force for the LSL-LF system. The binding constants of LSL-β-LG and LSL-LF were all relatively small, and the interaction of LSL with β-LG was stronger than its interaction with LF. After adding β-LG, LF, or the mixed system with LSL to the milk, the stability of milk emulsion was effectively improved in all cases, while the preservative ability was effectively enhanced only by the addition of LF or LSL-LF. These results provide supportive data and a theoretical basis for enhancing the production of dairy products and other byproducts.
Collapse
Affiliation(s)
- Yanrong Chen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Mingyuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jing Kong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
42
|
Lian Z, Han J, Cao Y, Yao W, Niu X, Xu M, Xu J, Zhu Q. Epicatechin Inhibited Lipid Oxidation and Protein Lipoxidation in a Fish Oil-Fortified Dairy Mimicking System. Foods 2023; 12:foods12071559. [PMID: 37048380 PMCID: PMC10094342 DOI: 10.3390/foods12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
In this study, a typical tea polyphenol epicatechin (EC) was investigated for its impact on the oxidative stability of whey protein isolate (WPI) in a fish oil-fortified emulsion. The oil-in-water emulsion system consisted of fish oil (1%, w/w), WPI (6 mg/mL), and EC (0.1, 1, and 2 mM), and the oxidation reaction was catalyzed by Fenton's reagent at 25 °C for 24 h. The results showed EC exhibited a dose-dependent activity in the reduction of lipid oxidation (TBARS) and protein carbonylation. A Western blot analysis demonstrated that protein lipoxidation was inhibited by EC via interrupting the covalent binding of lipid secondary oxidation products, MDA, onto proteins. In addition, protein lipoxidation induced a loss of tryptophan fluorescence, and protein hydrolysis was partially recovered by EC. The findings of this study provide an in-depth understanding of the performance of phenolic antioxidants in relieving lipid oxidation and subsequent protein lipoxidation in oil-containing dairy products.
Collapse
Affiliation(s)
- Zhenghao Lian
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiahui Han
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Cao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenhua Yao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Niu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingfeng Xu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- Jiaxing Key Laboratory of Preparation and Application of Advanced Materials for Energy Conservation and Emission Reduction, School of Advanced Materials & Engineering, Jiaxing Nanhu University, 572 South Yuexiu Road, Jiaxing 314001, China
| | - Qin Zhu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
43
|
Liu M, Shan S, Gao X, Shi Y, Lu W. The effect of sweet tea polysaccharide on the physicochemical and structural properties of whey protein isolate gels. Int J Biol Macromol 2023; 240:124344. [PMID: 37028627 DOI: 10.1016/j.ijbiomac.2023.124344] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
In this study, we investigated the effect of sweet tea polysaccharide (STP) on the physicochemical and structural properties of heat-induced whey protein isolate (WPI) gels, and explored the potential mechanism. The results indicated that STP promoted the unfolding and cross-linking of WPI to form a stable three-dimensional network structure, and significantly improved the strength, water-holding capacity and viscoelasticity of WPI gels. However, the addition of STP was limited to 2 %, too much STP would loosen the gel network and affect the gel properties. The results of FTIR and fluorescence spectroscopy suggested that STP affected the secondary and tertiary structures of WPI, promoted the movement of aromatic amino acids to the protein surface and the conversion of α-helix to β-sheet. In addition, STP reduced the surface hydrophobicity of the gel, increased the free sulfhydryl content, and enhanced the hydrogen bonding, disulfide bonding, and hydrophobic interactions between protein molecules. These findings can provide a reference for the application of STP as a gel modifier in the food industry.
Collapse
Affiliation(s)
- Mengyao Liu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Shan Shan
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Xin Gao
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Yudong Shi
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China; Inner Mongolia Mengniu Dairy Co., Ltd., Inner Mongolia, China
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China; School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
44
|
Liu J, Song G, Zhou L, Wang D, Yuan T, Li L, He G, Xiao G, Gong J. Comparison of non-covalent binding interactions of six caffeoylquinic acids with β-lactoglobulin: Spectroscopic analysis, molecular docking and embedding of curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Li T, Li J, Huang Y, Qayum A, Jiang Z, Liu Z. Comparison of interaction, structure, and cell proliferation of α-lactalbumin-safflower yellow complex induced by microwave heating or conventional heating. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1846-1855. [PMID: 36347624 DOI: 10.1002/jsfa.12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The protein-polyphenol interaction mechanism has always been a research hotspot, but their interaction is affected by heat treatment, which is widely applied in food processing. Moreover, the effects of microwave or water-bath heating on the protein-polyphenol interaction mechanism have been not clarified. The pasteurization condition (65 °C, 30 min) was selected to compare the effects of microwave or water bath on binding behavior, structure, and cell proliferation between α-lactalbumin (α-LA) and safflower yellow (SY), thus providing a guide for the selection of functional dairy processing conditions. RESULTS Microwave heat treatment of α-LA-SY resulted in stronger fluorescence quenching than that of conventional heat treatment. Moreover, the binding constant Ka of all α-LA-SY samples was augmented significantly after microwave or water bath treatment, and microwave-heated α-LA-SY showed the maximum Ka . Fourier transform infrared spectroscopy showed that microwave heating resulted in more ordered structures of α-LA into its disordered structures than water bath heating. However, the ferric reducing antioxidant power and chroma value of α-LA-SY were more reduced by microwave heating than by water bath heating. Moreover, microwave heating facilitated the cell proliferation of α-LA-SY compared with water bath treatment. CONCLUSION It was demonstrated that microwave heating promoted interaction between α-LA and SY more than water bath heating did. Microwave heat treatment was a safe and effective way to enhance the binding affinity of α-LA to SY, being a potential application in food industry. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianqi Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, China
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Jinzhe Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Yuxuan Huang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Abdul Qayum
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Zhanmei Jiang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, China
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Harbin, People's Republic of China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai, China
| |
Collapse
|
46
|
He Y, Yeo IKX, Guo C, Kai Y, Lu Y, Yang H. Elucidating the inhibitory mechanism on polyphenol oxidase from mushroom and melanosis formation by slightly acid electrolysed water. Food Chem 2023; 404:134580. [DOI: 10.1016/j.foodchem.2022.134580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/13/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
|
47
|
Hydrophobic interaction at the O/W interface: Impacts on the interfacial stability, encapsulation and bioaccessibility of polyphenols. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
48
|
How do the hydroxyl group number and position of polyphenols affect the foaming properties of ovalbumin? Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
49
|
Ding H, Yan H, Yu Z, Liu L. Spectroscopic analysis of the effect of glycation on casein structure and aggregation and its dependence on lactose concentration. Food Chem 2023; 404:134679. [DOI: 10.1016/j.foodchem.2022.134679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 11/30/2022]
|
50
|
Saricaoglu B, Yılmaz H, Subaşı BG, Capanoglu E. Effect of de-phenolization on protein-phenolic interactions of sunflower protein isolate. Food Res Int 2023; 164:112345. [PMID: 36737937 DOI: 10.1016/j.foodres.2022.112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Proteins and phenolic compounds are significant components of foods that can interact, and this interaction can impact the functional properties of proteins and the bioactivity of phenolic compounds. Sunflower meal, which has a high potential to be an important alternative protein source, contains phenolic compounds mostly bonded with proteins. In this study, the interaction between proteins and phenolic compounds which naturally exist in sunflower and prone to oxidation during alkaline treatment (for protein isolation) was investigated. There was a significant decrease up to 96.21% in the content of total phenolics by methanol washing. Chlorogenic acid, cryptochlorogenic acid and caffeic acid were detected in the phenolic extract obtained from sunflower protein isolate, and they exhibited different levels of reduction after methanol washing. For the total antioxidant capacity analysis, a decrease by 50% was observed after 4hwashing with methanol solution, and there was no significant decrease afterwards. In addition, the fluorescence intensity of sunflower protein was diminished with reduced washing time, which was mostly attributed to the protein-phenolic interaction. According to hydrodynamic parameters, the main force of the sunflower protein-phenolic complex formation was assumed to be hydrophobic attraction. The Stern-Volmer plot indicated that the main quenching mechanism was only static at all temperature conditions.
Collapse
Affiliation(s)
- Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Hilal Yılmaz
- Department of Biotechnology, Faculty of Science, Bartın University, Kutlubey Campus, Bartın 74100, Turkey
| | - Büşra Gültekin Subaşı
- Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|