1
|
Werlen G, Hernandez T, Jacinto E. Food for thought: Nutrient metabolism controlling early T cell development. Bioessays 2024:e2400179. [PMID: 39504233 DOI: 10.1002/bies.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
T cells develop in the thymus by expressing a diverse repertoire of either αβ- or γδ-T cell receptors (TCR). While many studies have elucidated how TCR signaling and gene expression control T cell ontogeny, the role of nutrient metabolism is just emerging. Here, we discuss how metabolic reprogramming and nutrient availability impact the fate of developing thymic T cells. We focus on how the PI3K/mTOR signaling mediates various extracellular inputs and how this signaling pathway controls metabolic rewiring during highly proliferative and anabolic developmental stages. We highlight the role of the hexosamine biosynthetic pathway that generates metabolites that are utilized for N- and O-linked glycosylation of proteins and how it impacts TCR expression during T cell ontogeny. We consider the dichotomy in metabolic needs during αβ- versus γδ-T cell lineage commitment as well as how metabolism is also coupled to molecular signaling that controls cell fate.
Collapse
Affiliation(s)
- Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Tatiana Hernandez
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
2
|
Jing R, Falchetti M, Han T, Najia M, Hensch LT, Meader E, Lummertz da Rocha E, Kononov M, Wang S, Bingham T, Li Z, Zhao Y, Frenis K, Kubaczka C, Yang S, Jha D, Rodrigues-Luiz GF, Rowe RG, Schlaeger TM, Maus MV, North TE, Zon LI, Daley GQ. Maturation and persistence of CAR T cells derived from human pluripotent stem cells via chemical inhibition of G9a/GLP. Cell Stem Cell 2024:S1934-5909(24)00366-7. [PMID: 39504968 DOI: 10.1016/j.stem.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Elucidating mechanisms of T cell development can guide in vitro T cell differentiation from induced pluripotent stem cells (iPSCs) and facilitate off-the-shelf T cell-based immunotherapies. Using a stroma-free human iPSC-T cell differentiation platform, we screened for epigenetic modulators that influence T cell specification and identified the H3K9-directed histone methyltransferases G9a/GLP as repressors of T cell fate. We show that G9a/GLP inhibition during specific time windows of differentiation of hematopoietic stem and progenitor cells (HSPCs) skews cell fates toward lymphoid lineages. Inhibition of G9a/GLP promotes the production of lymphoid cells during zebrafish embryonic hematopoiesis, demonstrating the evolutionary conservation of G9a/GLP function. Importantly, chemical inhibition of G9a/GLP facilitates the generation of mature iPSC-T cells that bear transcriptional similarity to peripheral blood αβ T cells. When engineered to express chimeric antigen receptors, the epigenetically engineered iPSC-T cells exhibit enhanced effector functions in vitro and durable, persistent antitumor activity in a xenograft tumor-rechallenge model.
Collapse
Affiliation(s)
- Ran Jing
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcelo Falchetti
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tianxiao Han
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mohamad Najia
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Luca T Hensch
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Eleanor Meader
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Martin Kononov
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Stephanie Wang
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Trevor Bingham
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Zhiheng Li
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yunliang Zhao
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Katie Frenis
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Caroline Kubaczka
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Song Yang
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Deepak Jha
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Gabriela F Rodrigues-Luiz
- Graduate Program of Pharmacology, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - R Grant Rowe
- Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E North
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I Zon
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - George Q Daley
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Mistri SK, Hilton BM, Horrigan KJ, Andretta ES, Savard R, Dienz O, Hampel KJ, Gerrard DL, Rose JT, Sidiropoulos N, Majumdar D, Boyson JE. SLAM/SAP signaling regulates discrete γδ T cell developmental checkpoints and shapes the innate-like γδ TCR repertoire. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575073. [PMID: 38260519 PMCID: PMC10802474 DOI: 10.1101/2024.01.10.575073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
During thymic development, most γδ T cells acquire innate-like characteristics that are critical for their function in tumor surveillance, infectious disease, and tissue repair. The mechanisms, however, that regulate γδ T cell developmental programming remain unclear. Recently, we demonstrated that the SLAM-SAP signaling pathway regulates the development and function of multiple innate-like γδ T cell subsets. Here, we used a single-cell proteogenomics approach to identify SAP-dependent developmental checkpoints and to define the SAP-dependent γδ TCR repertoire. SAP deficiency resulted in both a significant loss of an immature Gzma + Blk + Etv5 + Tox2 + γδT17 precursor population, and a significant increase in Cd4 + Cd8+ Rorc + Ptcra + Rag1 + thymic γδ T cells. SAP-dependent diversion of embryonic day 17 thymic γδ T cell clonotypes into the αβ T cell developmental pathway was associated with a decreased frequency of mature clonotypes in neonatal thymus, and an altered γδ TCR repertoire in the periphery. Finally, we identify TRGV4/TRAV13-4(DV7)-expressing T cells as a novel, SAP-dependent Vγ4 γδT1 subset. Together, the data suggest that SAP-dependent γδ/αβ T cell lineage commitment regulates γδ T cell developmental programming and shapes the γδ TCR repertoire.
Collapse
Affiliation(s)
- Somen K Mistri
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Brianna M. Hilton
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Katherine J. Horrigan
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Emma S. Andretta
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Remi Savard
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Oliver Dienz
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Kenneth J Hampel
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont 05405, USA
| | - Diana L. Gerrard
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont 05405, USA
| | - Joshua T. Rose
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont 05405, USA
| | - Nikoletta Sidiropoulos
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont 05405, USA
| | - Devdoot Majumdar
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Jonathan E. Boyson
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
4
|
Mihai A, Lee SY, Shinton S, Parker MI, Contreras AV, Zhang B, Rhodes M, Dunbrack RL, Zúñiga-Pflücker JC, Ciofani M, Zhuang Y, Wiest DL. E proteins control the development of NKγδT cells through their invariant T cell receptor. Nat Commun 2024; 15:5078. [PMID: 38871720 PMCID: PMC11176164 DOI: 10.1038/s41467-024-49496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
T cell receptor (TCR) signaling regulates important developmental transitions, partly through induction of the E protein antagonist, Id3. Although normal γδ T cell development depends on Id3, Id3 deficiency produces different phenotypes in distinct γδ T cell subsets. Here, we show that Id3 deficiency impairs development of the Vγ3+ subset, while markedly enhancing development of NKγδT cells expressing the invariant Vγ1Vδ6.3 TCR. These effects result from Id3 regulating both the generation of the Vγ1Vδ6.3 TCR and its capacity to support development. Indeed, the Trav15 segment, which encodes the Vδ6.3 TCR subunit, is directly bound by E proteins that control its expression. Once expressed, the Vγ1Vδ6.3 TCR specifies the innate-like NKγδT cell fate, even in progenitors beyond the normally permissive perinatal window, and this is enhanced by Id3-deficiency. These data indicate that the paradoxical behavior of NKγδT cells in Id3-deficient mice is determined by its stereotypic Vγ1Vδ6.3 TCR complex.
Collapse
Affiliation(s)
- Ariana Mihai
- Immunology Department, Duke University, Durham, NC, USA
| | - Sang-Yun Lee
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Susan Shinton
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Mitchell I Parker
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Baojun Zhang
- Immunology Department, Duke University, Durham, NC, USA
| | - Michele Rhodes
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Roland L Dunbrack
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Maria Ciofani
- Immunology Department, Duke University, Durham, NC, USA
| | - Yuan Zhuang
- Immunology Department, Duke University, Durham, NC, USA
| | - David L Wiest
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Rao A, Agrawal A, Borthakur G, Battula VL, Maiti A. Gamma delta T cells in acute myeloid leukemia: biology and emerging therapeutic strategies. J Immunother Cancer 2024; 12:e007981. [PMID: 38417915 PMCID: PMC10900322 DOI: 10.1136/jitc-2023-007981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 03/01/2024] Open
Abstract
γδ T cells play an important role in disease control in acute myeloid leukemia (AML) and have become an emerging area of therapeutic interest. These cells represent a minor population of T lymphocytes with intrinsic abilities to recognize antigens in a major histocompatibility complex-independent manner and functionally straddle the innate and adaptive immunity interface. AML shows high expression of phosphoantigens and UL-16 binding proteins that activate the Vδ2 and Vδ1 subtypes of γδ T cells, respectively, leading to γδ T cell-mediated cytotoxicity. Insights from murine models and clinical data in humans show improved overall survival, leukemia-free survival, reduced risk of relapse, enhanced graft-versus-leukemia effect, and decreased graft-versus-host disease in patients with AML who have higher reconstitution of γδ T cells following allogeneic hematopoietic stem cell transplantation. Clinical trials leveraging γδ T cell biology have used unmodified and modified allogeneic cells as well as bispecific engagers and monoclonal antibodies. In this review, we discuss γδ T cells' biology, roles in cancer and AML, and mechanisms of immune escape and antileukemia effect; we also discuss recent clinical advances related to γδ T cells in the field of AML therapeutics.
Collapse
Affiliation(s)
- Adishwar Rao
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Akriti Agrawal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Venkata Lokesh Battula
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
7
|
Smid AI, Garforth SJ, Obaid MS, Bollons HR, James JR. Pre-T cell receptor localization and trafficking are independent of its signaling. J Cell Biol 2023; 222:e202212106. [PMID: 37516909 PMCID: PMC10373305 DOI: 10.1083/jcb.202212106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023] Open
Abstract
Expression of the pre-T cell receptor (preTCR) is an important checkpoint during the development of T cells, an essential cell type of our adaptive immune system. The preTCR complex is only transiently expressed and rapidly internalized in developing T cells and is thought to signal in a ligand-independent manner. However, identifying a mechanistic basis for these unique features of the preTCR compared with the final TCR complex has been confounded by the concomitant signaling that is normally present. Thus, we have reconstituted preTCR expression in non-immune cells to uncouple receptor trafficking dynamics from its associated signaling. We find that all the defining features of the preTCR are intrinsic properties of the receptor itself, driven by exposure of an extracellular hydrophobic region, and are not the consequence of receptor activation. Finally, we show that transitory preTCR cell surface expression can sustain tonic signaling in the absence of ligand binding, suggesting how the preTCR can nonetheless drive αβTCR lineage commitment.
Collapse
Affiliation(s)
- Andrei I. Smid
- Molecular Immunity Unit, Department of Medicine, Medical Research Council–Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Sam J. Garforth
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Maryam S. Obaid
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Hannah R. Bollons
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - John R. James
- Molecular Immunity Unit, Department of Medicine, Medical Research Council–Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
8
|
Zhao J, Ding C, Li HB. N 6 - Methyladenosine defines a new checkpoint in γδ T cell development. Bioessays 2023; 45:e2300002. [PMID: 36942692 DOI: 10.1002/bies.202300002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
T cells, which are derived from hematopoietic stem cells (HSCs), are the most important components of adaptive immune system. Based on the expression of αβ and γδ receptors, T cells are mainly divided into αβ and γδ T cells. In the thymus, they share common progenitor cells, while undergoing a series of well-characterized and different developmental processes. N6 -Methyladenosine (m6 A), one of the most abundant modifications in mRNAs, plays critical roles in cell development and maintenance of function. Recently, we have demonstrated that the depletion of m6 A demethylase ALKBH5 in lymphocytes specifically induces an expansion of γδ T cells through the regulation of Jag1/Notch2 signaling, but not αβ T cells, indicating a checkpoint role of ALKBH5 and m6 A modification in the early development of γδ T cells. Based on previous studies, many key pathway molecules, which exert dominant roles in γδ T cell fate determination, have been identified as the targets regulated by m6 A modification. In this review, we mainly summarize the potential regulation between m6 A modification and these key signaling molecules in the γδ T cell lineage commitment, to provide new perspectives in the checkpoint of γδ T cell development.
Collapse
Affiliation(s)
- Jiachen Zhao
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenbo Ding
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Giampaolo S, Chiarolla CM, Knöpper K, Vaeth M, Klein M, Muhammad A, Bopp T, Berberich-Siebelt F, Patra AK, Serfling E, Klein-Hessling S. NFATc1 induction by an intronic enhancer restricts NKT γδ cell formation. iScience 2023; 26:106234. [PMID: 36926655 PMCID: PMC10011748 DOI: 10.1016/j.isci.2023.106234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
In thymus, the ablation of T cell receptor (TCR)-activated transcription factor NFATc1 or its inducible isoforms during the double-negative (DN) stages of thymocyte development leads to a marked increase in γδ thymocytes whereas the development of αβ thymocytes remains mostly unaffected. These γδ thymocytes are characterized by the upregulation of the promyelocytic leukemia zinc-finger factor (PLZF), the "master regulator" of natural killer T (NKT) cell development, and the acquisition of an NKT γδ cell phenotype with higher cell survival rates. The suppressive function of NFATc1 in NKT γδ cell formation critically depends on the remote enhancer E2, which is essential for the inducible expression of NFATc1 directed by its distal promoter P1. Thus, the enhancer deciphers a strong γδ TCR signal into the expression of inducible NFATc1 isoforms resulting in high levels of NFATc1 protein that are essential to control the numbers of NKT γδ cells.
Collapse
Affiliation(s)
- Sabrina Giampaolo
- Institute of Pathology, Julius Maximilians University Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Cristina M Chiarolla
- Institute of Pathology, Julius Maximilians University Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Konrad Knöpper
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-University Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-University Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center, University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Azeem Muhammad
- Institute of Pathology, Julius Maximilians University Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, University of Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Friederike Berberich-Siebelt
- Institute of Pathology, Julius Maximilians University Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Amiya K Patra
- Institute of Pathology, Julius Maximilians University Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.,Peninsula Medical School, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK
| | - Edgar Serfling
- Institute of Pathology, Julius Maximilians University Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Stefan Klein-Hessling
- Institute of Pathology, Julius Maximilians University Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|
10
|
Contreras AV, Wiest DL. Development of γδ T Cells: Soldiers on the Front Lines of Immune Battles. Methods Mol Biol 2023; 2580:71-88. [PMID: 36374451 DOI: 10.1007/978-1-0716-2740-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While the functions of αβ T cells in host resistance to pathogen infection are understood in far more detail than those of γδ lineage T cells, γδ T cells perform critical, essential functions during immune responses that cannot be compensated for by αβ T cells. Accordingly, it is critical to understand how the development of γδ T cells is controlled so that their generation and function might be manipulated in future for therapeutic benefit. This introductory chapter will focus primarily on the basic processes that underlie γδ T cell development in the thymus, as well as the current understanding of how they are controlled.
Collapse
Affiliation(s)
- Alejandra V Contreras
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Werlen G, Li ML, Tottone L, da Silva-Diz V, Su X, Herranz D, Jacinto E. Dietary glucosamine overcomes the defects in αβ-T cell ontogeny caused by the loss of de novo hexosamine biosynthesis. Nat Commun 2022; 13:7404. [PMID: 36456551 PMCID: PMC9715696 DOI: 10.1038/s41467-022-35014-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
T cell development requires the coordinated rearrangement of T cell receptor (TCR) gene segments and the expression of either αβ or γδ TCR. However, whether and how de novo synthesis of nutrients contributes to thymocyte commitment to either lineage remains unclear. Here, we find that T cell-specific deficiency in glutamine:fructose-6-phosphate aminotransferase 1 (GFAT1), the rate-limiting enzyme of the de novo hexosamine biosynthesis pathway (dn-HBP), attenuates hexosamine levels, blunts N-glycosylation of TCRβ chains, reduces surface expression of key developmental receptors, thus impairing αβ-T cell ontogeny. GFAT1 deficiency triggers defects in N-glycans, increases the unfolded protein response, and elevates γδ-T cell numbers despite reducing γδ-TCR diversity. Enhancing TCR expression or PI3K/Akt signaling does not reverse developmental defects. Instead, dietary supplementation with the salvage metabolite, glucosamine, and an α-ketoglutarate analogue partially restores αβ-T cell development in GFAT1T-/- mice, while fully rescuing it in ex vivo fetal thymic organ cultures. Thus, dn-HBP fulfils, while salvage nutrients partially satisfy, the elevated demand for hexosamines during early T cell development.
Collapse
Affiliation(s)
- Guy Werlen
- grid.430387.b0000 0004 1936 8796Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State Univ. of New Jersey, Piscataway, NJ 08854 USA
| | - Mei-Ling Li
- grid.430387.b0000 0004 1936 8796Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State Univ. of New Jersey, Piscataway, NJ 08854 USA
| | - Luca Tottone
- grid.430387.b0000 0004 1936 8796Dept. of Pharmacology and Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers, The State Univ. of New Jersey, New Brunswick, NJ 08901 USA ,grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL Miami, 33136 USA
| | - Victoria da Silva-Diz
- grid.430387.b0000 0004 1936 8796Dept. of Pharmacology and Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers, The State Univ. of New Jersey, New Brunswick, NJ 08901 USA
| | - Xiaoyang Su
- grid.430387.b0000 0004 1936 8796Dept. of Medicine, Div. of Endocrinology, Child Health Inst. of New Jersey, Rutgers, The State Univ. of New Jersey, New Brunswick, NJ 08901 USA
| | - Daniel Herranz
- grid.430387.b0000 0004 1936 8796Dept. of Pharmacology and Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers, The State Univ. of New Jersey, New Brunswick, NJ 08901 USA
| | - Estela Jacinto
- grid.430387.b0000 0004 1936 8796Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State Univ. of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
12
|
van der Stegen SJC, Lindenbergh PL, Petrovic RM, Xie H, Diop MP, Alexeeva V, Shi Y, Mansilla-Soto J, Hamieh M, Eyquem J, Cabriolu A, Wang X, Abujarour R, Lee T, Clarke R, Valamehr B, Themeli M, Riviere I, Sadelain M. Generation of T-cell-receptor-negative CD8αβ-positive CAR T cells from T-cell-derived induced pluripotent stem cells. Nat Biomed Eng 2022; 6:1284-1297. [PMID: 35941192 PMCID: PMC9669107 DOI: 10.1038/s41551-022-00915-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/28/2022] [Indexed: 12/23/2022]
Abstract
The production of autologous T cells expressing a chimaeric antigen receptor (CAR) is time-consuming, costly and occasionally unsuccessful. T-cell-derived induced pluripotent stem cells (TiPS) are a promising source for the generation of 'off-the-shelf' CAR T cells, but the in vitro differentiation of TiPS often yields T cells with suboptimal features. Here we show that the premature expression of the T-cell receptor (TCR) or a constitutively expressed CAR in TiPS promotes the acquisition of an innate phenotype, which can be averted by disabling the TCR and relying on the CAR to drive differentiation. Delaying CAR expression and calibrating its signalling strength in TiPS enabled the generation of human TCR- CD8αβ+ CAR T cells that perform similarly to CD8αβ+ CAR T cells from peripheral blood, achieving effective tumour control on systemic administration in a mouse model of leukaemia and without causing graft-versus-host disease. Driving T-cell maturation in TiPS in the absence of a TCR by taking advantage of a CAR may facilitate the large-scale development of potent allogeneic CD8αβ+ T cells for a broad range of immunotherapies.
Collapse
Affiliation(s)
- Sjoukje J C van der Stegen
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pieter L Lindenbergh
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands
| | - Roseanna M Petrovic
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hongyao Xie
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mame P Diop
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vera Alexeeva
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuzhe Shi
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohamad Hamieh
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Eyquem
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gladstone-UCSF Institute of Genomic Immunology, Gladstone Institutes, San Francisco, CA, USA
| | - Annalisa Cabriolu
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiuyan Wang
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Tom Lee
- Fate Therapeutics Inc, San Diego, CA, USA
| | | | | | - Maria Themeli
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, the Netherlands
| | - Isabelle Riviere
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
13
|
Boehme L, Roels J, Taghon T. Development of γδ T cells in the thymus - A human perspective. Semin Immunol 2022; 61-64:101662. [PMID: 36374779 DOI: 10.1016/j.smim.2022.101662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
γδ T cells are increasingly emerging as crucial immune regulators that can take on innate and adaptive roles in the defence against pathogens. Although they arise within the thymus from the same hematopoietic precursors as conventional αβ T cells, the development of γδ T cells is less well understood. In this review, we focus on summarising the current state of knowledge about the cellular and molecular processes involved in the generation of γδ T cells in human.
Collapse
Affiliation(s)
- Lena Boehme
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
14
|
Anderson MK, da Rocha JDB. Direct regulation of TCR rearrangement and expression by E proteins during early T cell development. WIREs Mech Dis 2022; 14:e1578. [PMID: 35848146 PMCID: PMC9669112 DOI: 10.1002/wsbm.1578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/22/2022] [Accepted: 06/17/2022] [Indexed: 11/12/2022]
Abstract
γδ T cells are widely distributed throughout mucosal and epithelial cell-rich tissues and are an important early source of IL-17 in response to several pathogens. Like αβ T cells, γδ T cells undergo a stepwise process of development in the thymus that requires recombination of genome-encoded segments to assemble mature T cell receptor (TCR) genes. This process is tightly controlled on multiple levels to enable TCR segment assembly while preventing the genomic instability inherent in the double-stranded DNA breaks that occur during this process. Each TCR locus has unique aspects in its structure and requirements, with different types of regulation before and after the αβ/γδ T cell fate choice. It has been known that Runx and Myb are critical transcriptional regulators of TCRγ and TCRδ expression, but the roles of E proteins in TCRγ and TCRδ regulation have been less well explored. Multiple lines of evidence show that E proteins are involved in TCR expression at many different levels, including the regulation of Rag recombinase gene expression and protein stability, induction of germline V segment expression, chromatin remodeling, and restriction of the fetal and adult γδTCR repertoires. Importantly, E proteins interact directly with the cis-regulatory elements of the TCRγ and TCRδ loci, controlling the predisposition of a cell to become an αβ T cell or a γδ T cell, even before the lineage-dictating TCR signaling events. This article is categorized under: Immune System Diseases > Stem Cells and Development Immune System Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Michele K Anderson
- Department Immunology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
15
|
Rodríguez-Caparrós A, Tani-ichi S, Casal Á, López-Ros J, Suñé C, Ikuta K, Hernández-Munain C. Interleukin-7 receptor signaling is crucial for enhancer-dependent TCRδ germline transcription mediated through STAT5 recruitment. Front Immunol 2022; 13:943510. [PMID: 36059467 PMCID: PMC9437428 DOI: 10.3389/fimmu.2022.943510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
γδ T cells play important roles in immune responses by rapidly producing large quantities of cytokines. Recently, γδ T cells have been found to be involved in tissue homeostatic regulation, playing roles in thermogenesis, bone regeneration and synaptic plasticity. Nonetheless, the mechanisms involved in γδ T-cell development, especially the regulation of TCRδ gene transcription, have not yet been clarified. Previous studies have established that NOTCH1 signaling plays an important role in the Tcrg and Tcrd germline transcriptional regulation induced by enhancer activation, which is mediated through the recruitment of RUNX1 and MYB. In addition, interleukin-7 signaling has been shown to be required for Tcrg germline transcription, VγJγ rearrangement and γδ T-lymphocyte generation as well as for promoting T-cell survival. In this study, we discovered that interleukin-7 is required for the activation of enhancer-dependent Tcrd germline transcription during thymocyte development. These results indicate that the activation of both Tcrg and Tcrd enhancers during γδ T-cell development in the thymus depends on the same NOTCH1- and interleukin-7-mediated signaling pathways. Understanding the regulation of the Tcrd enhancer during thymocyte development might lead to a better understanding of the enhancer-dependent mechanisms involved in the genomic instability and chromosomal translocations that cause leukemia.
Collapse
Affiliation(s)
- Alonso Rodríguez-Caparrós
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
| | - Shizue Tani-ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Áurea Casal
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
| | - Jennifer López-Ros
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
| | - Carlos Suñé
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Cristina Hernández-Munain
- Institute of Parasitology and Biomedicine “López-Neyra”- Spanish Scientific Research Council (IPBLN-CSIC), Technological Park of Health Sciences (PTS), Granada, Spain
- *Correspondence: Cristina Hernández-Munain,
| |
Collapse
|
16
|
Pankow A, Sun XH. The divergence between T cell and innate lymphoid cell fates controlled by E and Id proteins. Front Immunol 2022; 13:960444. [PMID: 36032069 PMCID: PMC9399370 DOI: 10.3389/fimmu.2022.960444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
T cells develop in the thymus from lymphoid primed multipotent progenitors or common lymphoid progenitors into αβ and γδ subsets. The basic helix-loop-helix transcription factors, E proteins, play pivotal roles at multiple stages from T cell commitment to maturation. Inhibitors of E proteins, Id2 and Id3, also regulate T cell development while promoting ILC differentiation. Recent findings suggest that the thymus can also produce innate lymphoid cells (ILCs). In this review, we present current findings that suggest the balance between E and Id proteins is likely to be critical for controlling the bifurcation of T cell and ILC fates at early stages of T cell development.
Collapse
Affiliation(s)
- Aneta Pankow
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiao-Hong Sun
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Xiao-Hong Sun,
| |
Collapse
|
17
|
Anderson MK. Shifting gears: Id3 enables recruitment of E proteins to new targets during T cell development and differentiation. Front Immunol 2022; 13:956156. [PMID: 35983064 PMCID: PMC9378783 DOI: 10.3389/fimmu.2022.956156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Shifting levels of E proteins and Id factors are pivotal in T cell commitment and differentiation, both in the thymus and in the periphery. Id2 and Id3 are two different factors that prevent E proteins from binding to their target gene cis-regulatory sequences and inducing gene expression. Although they use the same mechanism to suppress E protein activity, Id2 and Id3 play very different roles in T cell development and CD4 T cell differentiation. Id2 imposes an irreversible choice in early T cell precursors between innate and adaptive lineages, which can be thought of as a railway switch that directs T cells down one path or another. By contrast, Id3 acts in a transient fashion downstream of extracellular signals such as T cell receptor (TCR) signaling. TCR-dependent Id3 upregulation results in the dislodging of E proteins from their target sites while chromatin remodeling occurs. After the cessation of Id3 expression, E proteins can reassemble in the context of a new genomic landscape and molecular context that allows induction of different E protein target genes. To describe this mode of action, we have developed the “Clutch” model of differentiation. In this model, Id3 upregulation in response to TCR signaling acts as a clutch that stops E protein activity (“clutch in”) long enough to allow shifting of the genomic landscape into a different “gear”, resulting in accessibility to different E protein target genes once Id3 decreases (“clutch out”) and E proteins can form new complexes on the DNA. While TCR signal strength and cytokine signaling play a role in both peripheral and thymic lineage decisions, the remodeling of chromatin and E protein target genes appears to be more heavily influenced by the cytokine milieu in the periphery, whereas the outcome of Id3 activity during T cell development in the thymus appears to depend more on the TCR signal strength. Thus, while the Clutch model applies to both CD4 T cell differentiation and T cell developmental transitions within the thymus, changes in chromatin accessibility are modulated by biased inputs in these different environments. New emerging technologies should enable a better understanding of the molecular events that happen during these transitions, and how they fit into the gene regulatory networks that drive T cell development and differentiation.
Collapse
Affiliation(s)
- Michele K. Anderson
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Michele K. Anderson,
| |
Collapse
|
18
|
Roels J, Van Hulle J, Lavaert M, Kuchmiy A, Strubbe S, Putteman T, Vandekerckhove B, Leclercq G, Van Nieuwerburgh F, Boehme L, Taghon T. Transcriptional dynamics and epigenetic regulation of E and ID protein encoding genes during human T cell development. Front Immunol 2022; 13:960918. [PMID: 35967340 PMCID: PMC9366357 DOI: 10.3389/fimmu.2022.960918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/05/2022] [Indexed: 12/05/2022] Open
Abstract
T cells are generated from hematopoietic stem cells through a highly organized developmental process, in which stage-specific molecular events drive maturation towards αβ and γδ T cells. Although many of the mechanisms that control αβ- and γδ-lineage differentiation are shared between human and mouse, important differences have also been observed. Here, we studied the regulatory dynamics of the E and ID protein encoding genes during pediatric human T cell development by evaluating changes in chromatin accessibility, histone modifications and bulk and single cell gene expression. We profiled patterns of ID/E protein activity and identified up- and downstream regulators and targets, respectively. In addition, we compared transcription of E and ID protein encoding genes in human versus mouse to predict both shared and unique activities in these species, and in prenatal versus pediatric human T cell differentiation to identify regulatory changes during development. This analysis showed a putative involvement of TCF3/E2A in the development of γδ T cells. In contrast, in αβ T cell precursors a pivotal pre-TCR-driven population with high ID gene expression and low predicted E protein activity was identified. Finally, in prenatal but not postnatal thymocytes, high HEB/TCF12 levels were found to counteract high ID levels to sustain thymic development. In summary, we uncovered novel insights in the regulation of E and ID proteins on a cross-species and cross-developmental level.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Child
- Epigenesis, Genetic
- Hematopoietic Stem Cells/metabolism
- Humans
- Mice
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Juliette Roels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jolien Van Hulle
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marieke Lavaert
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Anna Kuchmiy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Strubbe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Putteman
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Lena Boehme
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- *Correspondence: Lena Boehme, ; Tom Taghon,
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- *Correspondence: Lena Boehme, ; Tom Taghon,
| |
Collapse
|
19
|
Park JH, Kang I, Lee HK. γδ T Cells in Brain Homeostasis and Diseases. Front Immunol 2022; 13:886397. [PMID: 35693762 PMCID: PMC9181321 DOI: 10.3389/fimmu.2022.886397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
γδ T cells are a distinct subset of T cells expressing γδ T cell receptor (TCR) rather than αβTCR. Since their discovery, the critical roles of γδ T cells in multiple physiological systems and diseases have been investigated. γδ T cells are preferentially located at mucosal surfaces, such as the gut, although a small subset of γδ T cells can circulate the blood. Additionally, a subset of γδ T cells reside in the meninges in the central nervous system. Recent findings suggest γδ T cells in the meninges have critical roles in brain function and homeostasis. In addition, several lines of evidence have shown γδ T cells can infiltrate the brain parenchyma and regulate inflammatory responses in multiple diseases, including neurodegenerative diseases. Although the importance of γδ T cells in the brain is well established, their roles are still incompletely understood due to the complexity of their biology. Because γδ T cells rapidly respond to changes in brain status and regulate disease progression, understanding the role of γδ T cells in the brain will provide critical information that is essential for interpreting neuroimmune modulation. In this review, we summarize the complex role of γδ T cells in the brain and discuss future directions for research.
Collapse
|
20
|
Aubrey M, Warburg ZJ, Murre C. Helix-Loop-Helix Proteins in Adaptive Immune Development. Front Immunol 2022; 13:881656. [PMID: 35634342 PMCID: PMC9134016 DOI: 10.3389/fimmu.2022.881656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The E/ID protein axis is instrumental for defining the developmental progression and functions of hematopoietic cells. The E proteins are dimeric transcription factors that activate gene expression programs and coordinate changes in chromatin organization. Id proteins are antagonists of E protein activity. Relative levels of E/Id proteins are modulated throughout hematopoietic development to enable the progression of hematopoietic stem cells into multiple adaptive and innate immune lineages including natural killer cells, B cells and T cells. In early progenitors, the E proteins promote commitment to the T and B cell lineages by orchestrating lineage specific programs of gene expression and regulating VDJ recombination of antigen receptor loci. In mature B cells, the E/Id protein axis functions to promote class switch recombination and somatic hypermutation. E protein activity further regulates differentiation into distinct CD4+ and CD8+ T cells subsets and instructs mature T cell immune responses. In this review, we discuss how the E/Id proteins define the adaptive immune system lineages, focusing on their role in directing developmental gene programs.
Collapse
Affiliation(s)
| | | | - Cornelis Murre
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
21
|
Amanda S, Tan TK, Ong JZL, Theardy MS, Wong RWJ, Huang XZ, Ali MZ, Li Y, Gong Z, Inagaki H, Foo EY, Pang B, Tan SY, Iida S, Sanda T. IRF4 drives clonal evolution and lineage choice in a zebrafish model of T-cell lymphoma. Nat Commun 2022; 13:2420. [PMID: 35504924 PMCID: PMC9065160 DOI: 10.1038/s41467-022-30053-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
IRF4 is a master regulator of immunity and is also frequently overexpressed in mature lymphoid neoplasms. Here, we demonstrate the oncogenicity of IRF4 in vivo, its potential effects on T-cell development and clonal evolution using a zebrafish model. IRF4-transgenic zebrafish develop aggressive tumors with massive infiltration of abnormal lymphocytes that spread to distal organs. Many late-stage tumors are mono- or oligoclonal, and tumor cells can expand in recipient animals after transplantation, demonstrating their malignancy. Mutation of p53 accelerates tumor onset, increases penetrance, and results in tumor heterogeneity. Surprisingly, single-cell RNA-sequencing reveals that the majority of tumor cells are double-negative T-cells, many of which express tcr-γ that became dominant as the tumors progress, whereas double-positive T-cells are largely diminished. Gene expression and epigenetic profiling demonstrates that gata3, mycb, lrrn1, patl1 and psip1 are specifically activated in tumors, while genes responsible for T-cell differentiation including id3 are repressed. IRF4-driven tumors are sensitive to the BRD inhibitor.
Collapse
Affiliation(s)
- Stella Amanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Jolynn Zu Lin Ong
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | | | - Regina Wan Ju Wong
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Muhammad Zulfaqar Ali
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Yan Li
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Ee Yong Foo
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - Brendan Pang
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - Soo Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore.
| |
Collapse
|
22
|
Hu W, Shang R, Yang J, Chen C, Liu Z, Liang G, He W, Luo G. Skin γδ T Cells and Their Function in Wound Healing. Front Immunol 2022; 13:875076. [PMID: 35479079 PMCID: PMC9035842 DOI: 10.3389/fimmu.2022.875076] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
For the skin immune system, γδ T cells are important components, which help in defensing against damage and infection of skin. Compared to the conventional αβ T cells, γδ T cells have their own differentiation, development and activation characteristics. In adult mice, dendritic epidermal T cells (DETCs), Vγ4 and Vγ6 γδ T cells are the main subsets of skin, the coordination and interaction among them play a crucial role in wound repair. To get a clear overview of γδ T cells, this review synopsizes their derivation, development, colonization and activation, and focuses their function in acute and chronic wound healing, as well as the underlining mechanism. The aim of this paper is to provide cues for the study of human epidermal γδ T cells and the potential treatment for skin rehabilitation.
Collapse
Affiliation(s)
- Wengang Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Guangping Liang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
- *Correspondence: Guangping Liang, ; Weifeng He, ; Gaoxing Luo,
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
- *Correspondence: Guangping Liang, ; Weifeng He, ; Gaoxing Luo,
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
- *Correspondence: Guangping Liang, ; Weifeng He, ; Gaoxing Luo,
| |
Collapse
|
23
|
Tsiomita S, Liveri EM, Vardaka P, Vogiatzi A, Skiadaresis A, Saridis G, Tsigkas I, Michaelidis TM, Mavrothalassitis G, Thyphronitis G. ETS2 repressor factor (ERF) is involved in T lymphocyte maturation acting as regulator of thymocyte lineage commitment. J Leukoc Biol 2022; 112:641-657. [PMID: 35258130 DOI: 10.1002/jlb.1a0720-439r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
Thymocyte differentiation and lineage commitment is regulated by an extensive network of transcription factors and signaling molecules among which Erk plays a central role. However, Erk effectors as well as the molecular mechanisms underlying this network are not well understood. Erf is a ubiquitously expressed transcriptional repressor regulated by Erk-dependent phosphorylation. Here, we investigated the role of Erf in T cell maturation and lineage commitment, using a double-fluorescent Erf-floxed mouse to produce thymus-specific Erf knockouts. We observed significant accumulation of thymocytes in the CD4/CD8 DP stage, followed by a significant reduction in CD4SP cells, a trend for lower CD8SP cell frequency, and an elevated percentage of γδ expressing thymocytes in Erf-deficient mice. Also, an elevated number of CD69+ TCRβ+ cells indicates that thymocytes undergoing positive selection accumulate at this stage. The expression of transcription factors Gata3, ThPOK, and Socs1 that promote CD4+ cell commitment was significantly decreased in Erf-deficient mice. These findings suggest that Erf is involved in T cell maturation, acting as a positive regulator during CD4 and eventually CD8 lineage commitment, while negatively regulates the production of γδ T cells. In addition, Erf-deficient mice displayed decreased percentages of CD4+ and CD8+ splenocytes and elevated levels of IL-4 indicating that Erf may have an additional role in the homeostasis, differentiation, and immunologic response of helper and cytotoxic T cells in the periphery. Overall, our results show, for the first time, Erf's involvement in T cell biology suggesting that Erf acts as a potential regulator during thymocyte maturation and thymocyte lineage commitment, in γδ T cell generation, as well as in Th cell differentiation.
Collapse
Affiliation(s)
- Spyridoula Tsiomita
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Effrosyni Maria Liveri
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Panagiota Vardaka
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Angeliki Vogiatzi
- Department of Medicine, Medical School, University of Crete, Heraklion, Greece
| | - Argyris Skiadaresis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - George Saridis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Ioannis Tsigkas
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - Theologos M Michaelidis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - George Mavrothalassitis
- Department of Medicine, Medical School, University of Crete, Heraklion, Greece.,IMBB, FORTH, Heraklion, Crete, Greece
| | - George Thyphronitis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
24
|
Scaramuzzino S, Potier D, Ordioni R, Grenot P, Payet-Bornet D, Luche H, Malissen B. Single-cell transcriptomics uncovers an instructive T-cell receptor role in adult γδ T-cell lineage commitment. EMBO J 2022; 41:e110023. [PMID: 35128689 PMCID: PMC8886544 DOI: 10.15252/embj.2021110023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/18/2021] [Accepted: 01/03/2022] [Indexed: 01/05/2023] Open
Abstract
After entering the adult thymus, bipotent T‐cell progenitors give rise to αβ or γδ T cells. To determine whether the γδ T‐cell receptor (TCR) has an instructive role in γδ T‐cell lineage commitment or only “confirms” a pre‐established γδ Τ‐cell lineage state, we exploited mice lacking expression of LAT, an adaptor required for γδ TCR signaling. Although these mice showed a T‐cell development block at the CD4−CD8− double‐negative third (DN3) stage, 0.3% of their DN3 cells expressed intermediate levels of γδ TCR (further referred to as γδint) at their surface. Single‐cell transcriptomics of LAT‐deficient DN3 γδint cells demonstrated no sign of commitment to the γδ T‐cell lineage, apart from γδ TCR expression. Although the lack of LAT is thought to tightly block DN3 cell development, we unexpectedly found that 25% of LAT‐deficient DN3 γδint cells were actively proliferating and progressed up to the DN4 stage. However, even those cells failed to turn on the transcriptional program associated with the γδ T‐cell lineage. Therefore, the γδ TCR‐LAT signaling axis builds upon a γδ T‐cell uncommitted lineage state to fully instruct adult γδ T‐cell lineage specification.
Collapse
Affiliation(s)
- Sara Scaramuzzino
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS UMR, Marseille, France.,Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Delphine Potier
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Robin Ordioni
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Pierre Grenot
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Dominique Payet-Bornet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Hervé Luche
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS UMR, Marseille, France.,Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| |
Collapse
|
25
|
Zhang W, Pajulas A, Kaplan MH. γδ T Cells in Skin Inflammation. Crit Rev Immunol 2022; 42:43-56. [PMID: 37075018 PMCID: PMC10439530 DOI: 10.1615/critrevimmunol.2022047288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gamma delta (γδ) T cells are a subset of T lymphocytes that express T cell receptor γ and 5 chains and display structural and functional heterogeneity. γδ T cells are typically of low abundance in the body and account for 1-5% of the blood lymphocytes and peripheral lymphoid tissues. As a bridge between innate and adaptive immunity, γδ T cells are uniquely poised to rapidly respond to stimulation and can regulate immune responses in peripheral tissues. The dendritic epidermal T cells in the skin epidermis can secrete growth factors to regulate skin homeostasis and re-epithelization and release inflammatory factors to mediate wound healing during skin inflammatory responses. Dermal γδ T cells can regulate the inflammatory process by producing interleukin-17 and other cytokines or chemokines. Here, we offer a review of the immune functions of γδ T cells, intending to understand their role in regulating skin barrier integrity and skin wound healing, which may be crucial for the development of novel therapeutics in skin diseases like atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Abigail Pajulas
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| |
Collapse
|
26
|
Abstract
Epigenetic regulators are pivotal factors that influence and control T cell development. Recent findings continue to reveal additional elements of epigenetic modifications that play significant and crucial roles at different stages of T cell development. Through gaining a better understanding of the various epigenetic factors that influence the formation and survival of maturing T cells, new therapies can potentially be developed to combat diseases caused by dysregulated epigenetic chromatin modifications. In this review, we summarize the recent studies which shed light on the epigenetic regulation of T cell development especially at the critical stage of β-selection.
Collapse
Affiliation(s)
- Avik Dutta
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Harini Venkataganesh
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Zhang J, Wencker M, Marliac Q, Berton A, Hasan U, Schneider R, Laubreton D, Cherrier DE, Mathieu AL, Rey A, Jiang W, Caramel J, Genestier L, Marçais A, Marvel J, Ghavi-Helm Y, Walzer T. Zeb1 represses TCR signaling, promotes the proliferation of T cell progenitors and is essential for NK1.1 + T cell development. Cell Mol Immunol 2021; 18:2140-2152. [PMID: 32398809 PMCID: PMC8429412 DOI: 10.1038/s41423-020-0459-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/15/2023] Open
Abstract
T cell development proceeds under the influence of a network of transcription factors (TFs). The precise role of Zeb1, a member of this network, remains unclear. Here, we report that Zeb1 expression is induced early during T cell development in CD4-CD8- double-negative (DN) stage 2 (DN2). Zeb1 expression was further increased in the CD4+CD8+ double-positive (DP) stage before decreasing in more mature T cell subsets. We performed an exhaustive characterization of T cells in Cellophane mice that bear Zeb1 hypomorphic mutations. The Zeb1 mutation profoundly affected all thymic subsets, especially DN2 and DP cells. Zeb1 promoted the survival and proliferation of both cell populations in a cell-intrinsic manner. In the periphery of Cellophane mice, the number of conventional T cells was near normal, but invariant NKT cells, NK1.1+ γδ T cells and Ly49+ CD8 T cells were virtually absent. This suggested that Zeb1 regulates the development of unconventional T cell types from DP progenitors. A transcriptomic analysis of WT and Cellophane DP cells revealed that Zeb1 regulated the expression of multiple genes involved in the cell cycle and TCR signaling, which possibly occurred in cooperation with Tcf1 and Heb. Indeed, Cellophane DP cells displayed stronger signaling than WT DP cells upon TCR engagement in terms of the calcium response, phosphorylation events, and expression of early genes. Thus, Zeb1 is a key regulator of the cell cycle and TCR signaling during thymic T cell development. We propose that thymocyte selection is perturbed in Zeb1-mutated mice in a way that does not allow the survival of unconventional T cell subsets.
Collapse
Affiliation(s)
- Jiang Zhang
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mélanie Wencker
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Quentin Marliac
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Aurore Berton
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Uzma Hasan
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Raphaël Schneider
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364, Lyon, France
| | - Daphné Laubreton
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Dylan E Cherrier
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Anne-Laure Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Amaury Rey
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Julie Caramel
- CRCL, Centre de Recherche sur le Cancer de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurent Genestier
- CRCL, Centre de Recherche sur le Cancer de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Jacqueline Marvel
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| |
Collapse
|
28
|
Sumaria N, Martin S, Pennington DJ. Constrained TCRγδ-associated Syk activity engages PI3K to facilitate thymic development of IL-17A-secreting γδ T cells. Sci Signal 2021; 14:14/692/eabc5884. [PMID: 34285131 DOI: 10.1126/scisignal.abc5884] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Murine γδ17 cells, which are T cells that bear the γδ T cell receptor (TCRγδ) and secrete interleukin-17A (IL-17A), are generated in the thymus and are critical for various immune responses. Although strong TCRγδ signals are required for the development of interferon-γ (IFN-γ)-secreting γδ cells (γδIFN cells), the generation of γδ17 cells requires weaker TCRγδ signaling. Here, we demonstrated that constrained activation of the kinase Syk downstream of TCRγδ was required for the thymic development of γδ17 cells. Increasing or decreasing Syk activity by stimulating TCRγδ or inhibiting Syk, respectively, substantially reduced γδ17 cell numbers. This delimited Syk activity optimally engaged the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway, which maintained the expression of master regulators of the IL-17 program, RORγt and c-Maf. Inhibition of PI3K not only abrogated γδ17 cell development but also augmented the development of a distinct, previously undescribed subset of γδ T cells. These CD8+Ly6a+ γδ T cells had a type-I IFN gene expression signature and expanded in response to stimulation with IFN-β. Collectively, these studies elucidate how weaker TCRγδ signaling engages distinct signaling pathways to specify the γδ17 cell fate and identifies a role for type-I IFNs in γδ T cell development.
Collapse
Affiliation(s)
- Nital Sumaria
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Stefania Martin
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| |
Collapse
|
29
|
New insights into TCR β-selection. Trends Immunol 2021; 42:735-750. [PMID: 34261578 DOI: 10.1016/j.it.2021.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
T cell receptor (TCR) β-selection (herein referred to as β-selection) is a pivotal checkpoint in mammalian T cell development when immature CD4-CD8- T-cells (thymocytes) express pre-TCR following successful Tcrb gene rearrangement. At this stage, αβ T cell lineage commitment and allelic exclusion to restrict one β-chain per cell take place and thymocytes undergo a proliferative burst. β-selection is known to be crucially dependent upon synchronized Notch and pre-TCR signaling; however, other necessary inputs have been identified over the past decade, expanding our knowledge and understanding of the β-selection process. In this review, we discuss recent mechanistic findings that have enabled a more detailed decoding of the molecular dynamics of the β-selection checkpoint and have helped to elucidate its role in early T cell development.
Collapse
|
30
|
Aghaallaei N, Dick AM, Tsingos E, Inoue D, Hasel E, Thumberger T, Toyoda A, Leptin M, Wittbrodt J, Bajoghli B. αβ/γδ T cell lineage outcome is regulated by intrathymic cell localization and environmental signals. SCIENCE ADVANCES 2021; 7:7/29/eabg3613. [PMID: 34261656 PMCID: PMC8279519 DOI: 10.1126/sciadv.abg3613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/28/2021] [Indexed: 05/07/2023]
Abstract
αβ and γδ T cells are two distinct sublineages that develop in the vertebrate thymus. Thus far, their differentiation from a common progenitor is mostly understood to be regulated by intrinsic mechanisms. However, the proportion of αβ/γδ T cells varies in different vertebrate taxa. How this process is regulated in species that tend to produce a high frequency of γδ T cells is unstudied. Using an in vivo teleost model, the medaka, we report that progenitors first enter a thymic niche where their development into γδ T cells is favored. Translocation from this niche, mediated by chemokine receptor Ccr9b, is a prerequisite for their differentiation into αβ T cells. On the other hand, the thymic niche also generates opposing gradients of the cytokine interleukin-7 and chemokine Ccl25a, and, together, they influence the lineage outcome. We propose a previously unknown mechanism that determines the proportion of αβ/γδ lineages within species.
Collapse
Affiliation(s)
- Narges Aghaallaei
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Advaita M Dick
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Erika Tsingos
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Daigo Inoue
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Eva Hasel
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Maria Leptin
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- EMBO, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Baubak Bajoghli
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany.
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
31
|
Molecular design of the γδT cell receptor ectodomain encodes biologically fit ligand recognition in the absence of mechanosensing. Proc Natl Acad Sci U S A 2021; 118:2023050118. [PMID: 34172580 PMCID: PMC8256041 DOI: 10.1073/pnas.2023050118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TCR mechanosensing is thought necessary for digital sensitivity of αβT cell response to scant pMHC antigens. We use bioinformatic analysis, molecular dynamics, single-molecule optical tweezers techniques, cellular activation, and RNA-seq analysis to explore this paradigm in the γδT cell lineage. We find that, in keeping with its role in recognizing abundant cell-surface ligands, the γδTCR lacks force-dependent hallmarks of mechanosensing in αβT cells. High-acuity αβT cell receptor (TCR) recognition of peptides bound to major histocompatibility complex molecules (pMHCs) requires mechanosensing, a process whereby piconewton (pN) bioforces exert physical load on αβTCR–pMHC bonds to dynamically alter their lifetimes and foster digital sensitivity cellular signaling. While mechanotransduction is operative for both αβTCRs and pre-TCRs within the αβT lineage, its role in γδT cells is unknown. Here, we show that the human DP10.7 γδTCR specific for the sulfoglycolipid sulfatide bound to CD1d only sustains a significant load and undergoes force-induced structural transitions when the binding interface-distal γδ constant domain (C) module is replaced with that of αβ. The chimeric γδ–αβTCR also signals more robustly than does the wild-type (WT) γδTCR, as revealed by RNA-sequencing (RNA-seq) analysis of TCR-transduced Rag2−/− thymocytes, consistent with structural, single-molecule, and molecular dynamics studies reflective of γδTCRs as mediating recognition via a more canonical immunoglobulin-like receptor interaction. Absence of robust, force-related catch bonds, as well as γδTCR structural transitions, implies that γδT cells do not use mechanosensing for ligand recognition. This distinction is consonant with the fact that their innate-type ligands, including markers of cellular stress, are expressed at a high copy number relative to the sparse pMHC ligands of αβT cells arrayed on activating target cells. We posit that mechanosensing emerged over ∼200 million years of vertebrate evolution to fulfill indispensable adaptive immune recognition requirements for pMHC in the αβT cell lineage that are unnecessary for the γδT cell lineage mechanism of non-pMHC ligand detection.
Collapse
|
32
|
Chen ELY, Lee CR, Thompson PK, Wiest DL, Anderson MK, Zúñiga-Pflücker JC. Ontogenic timing, T cell receptor signal strength, and Notch signaling direct γδ T cell functional differentiation in vivo. Cell Rep 2021; 35:109227. [PMID: 34107257 PMCID: PMC8256923 DOI: 10.1016/j.celrep.2021.109227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/20/2021] [Accepted: 05/14/2021] [Indexed: 12/29/2022] Open
Abstract
γδ T cells form an integral arm of the immune system and are critical during protective and destructive immunity. However, how γδ T cells are functionally programmed in vivo remains unclear. Here, we employ RBPJ-inducible and KN6-transgenic mice to assess the roles of ontogenic timing, T cell receptor (TCR) signal strength, and Notch signaling. We find skewing of Vγ1+ cells toward the PLZF+Lin28b+ lineage at the fetal stage. Generation of interleukin-17 (IL-17)-producing γδ T cells is favored during, although not exclusive to, the fetal stage. Surprisingly, Notch signaling is dispensable for peripheral γδ T cell IL-17 production. Strong TCR signals, together with Notch, promote IL-4 differentiation. Conversely, less strong TCR signals promote Notch-independent IL-17 differentiation. Single-cell transcriptomic analysis reveals differential programming instilled by TCR signal strength and Notch for specific subsets. Thus, our results precisely define the roles of ontogenic timing, TCR signal strength, and Notch signaling in γδ T cell functional programming in vivo.
Collapse
Affiliation(s)
- Edward L Y Chen
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | - David L Wiest
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Michele K Anderson
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Abstract
In all human cells, human leukocyte antigen (HLA) class I glycoproteins assemble with a peptide and take it to the cell surface for surveillance by lymphocytes. These include natural killer (NK) cells and γδ T cells of innate immunity and αβ T cells of adaptive immunity. In healthy cells, the presented peptides derive from human proteins, to which lymphocytes are tolerant. In pathogen-infected cells, HLA class I expression is perturbed. Reduced HLA class I expression is detected by KIR and CD94:NKG2A receptors of NK cells. Almost any change in peptide presentation can be detected by αβ CD8+ T cells. In responding to extracellular pathogens, HLA class II glycoproteins, expressed by specialized antigen-presenting cells, present peptides to αβ CD4+ T cells. In comparison to the families of major histocompatibility complex (MHC) class I, MHC class II and αβ T cell receptors, the antigenic specificity of the γδ T cell receptors is incompletely understood.
Collapse
Affiliation(s)
- Zakia Djaoud
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| |
Collapse
|
34
|
Qi C, Wang Y, Li P, Zhao J. Gamma Delta T Cells and Their Pathogenic Role in Psoriasis. Front Immunol 2021; 12:627139. [PMID: 33732249 PMCID: PMC7959710 DOI: 10.3389/fimmu.2021.627139] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
γδT cells are an unconventional population of T lymphocytes that play an indispensable role in host defense, immune surveillance, and homeostasis of the immune system. They display unique developmental, distributional, and functional patterns and rapidly respond to various insults and contribute to diverse diseases. Although γδT cells make up only a small portion of the total T cell pool, emerging evidence suggest that aberrantly activated γδT cells may play a role in the pathogenesis of psoriasis. Dermal γδT cells are the major IL-17-producing cells in the skin that respond to IL-23 stimulation. Furthermore, γδT cells exhibit memory-cell-like characteristics that mediate repeated episodes of psoriatic inflammation. This review discusses the differentiation, development, distribution, and biological function of γδT cells and the mechanisms by which they contribute to psoriasis. Potential therapeutic approaches targeting these cells in psoriasis have also been detailed.
Collapse
Affiliation(s)
- Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
35
|
The E protein-TCF1 axis controls γδ T cell development and effector fate. Cell Rep 2021; 34:108716. [PMID: 33535043 PMCID: PMC7919611 DOI: 10.1016/j.celrep.2021.108716] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/27/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022] Open
Abstract
TCF1 plays a critical role in T lineage commitment and the development of αβ lineage T cells, but its role in γδ T cell development remains poorly understood. Here, we reveal a regulatory axis where T cell receptor (TCR) signaling controls TCF1 expression through an E-protein-bound regulatory element in the Tcf7 locus, and this axis regulates both γδ T lineage commitment and effector fate. Indeed, the level of TCF1 expression plays an important role in setting the threshold for γδ T lineage commitment and modulates the ability of TCR signaling to influence effector fate adoption by γδ T lineage progenitors. This finding provides mechanistic insight into how TCR-mediated repression of E proteins promotes the development of γδ T cells and their adoption of the interleukin (IL)-17-producing effector fate. IL-17-producing γδ T cells have been implicated in cancer progression and in the pathogenesis of psoriasis and multiple sclerosis.
Collapse
|
36
|
Fiala GJ, Gomes AQ, Silva‐Santos B. From thymus to periphery: Molecular basis of effector γδ-T cell differentiation. Immunol Rev 2020; 298:47-60. [PMID: 33191519 PMCID: PMC7756812 DOI: 10.1111/imr.12918] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Abstract
The contributions of γδ T cells to immune (patho)physiology in many pre-clinical mouse models have been associated with their rapid and abundant provision of two critical cytokines, interferon-γ (IFN-γ) and interleukin-17A (IL-17). These are typically produced by distinct effector γδ T cell subsets that can be segregated on the basis of surface expression levels of receptors such as CD27, CD44 or CD45RB, among others. Unlike conventional T cells that egress the thymus as naïve lymphocytes awaiting further differentiation upon activation, a large fraction of murine γδ T cells commits to either IFN-γ or IL-17 expression during thymic development. However, extrathymic signals can both regulate pre-programmed γδ T cells; and induce peripheral differentiation of naïve γδ T cells into effectors. Here we review the key cellular events of "developmental pre-programming" in the mouse thymus; and the molecular basis for effector function maintenance vs plasticity in the periphery. We highlight some of our contributions towards elucidating the role of T cell receptor, co-receptors (like CD27 and CD28) and cytokine signals (such as IL-1β and IL-23) in these processes, and the various levels of gene regulation involved, from the chromatin landscape to microRNA-based post-transcriptional control of γδ T cell functional plasticity.
Collapse
Affiliation(s)
- Gina J. Fiala
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Anita Q. Gomes
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- H&TRC Health & Technology Research CenterESTeSL—Escola Superior de Tecnologia da SaúdeInstituto Politécnico de LisboaLisbonPortugal
| | - Bruno Silva‐Santos
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| |
Collapse
|
37
|
Anderson MK, Selvaratnam JS. Interaction between γδTCR signaling and the E protein-Id axis in γδ T cell development. Immunol Rev 2020; 298:181-197. [PMID: 33058287 DOI: 10.1111/imr.12924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
γδ T cells acquire their functional properties in the thymus, enabling them to exert rapid innate-like responses. To understand how distinct γδ T cell subsets are generated, we have developed a Two-Stage model for γδ T cell development. This model is predicated on the finding that γδTCR signal strength impacts E protein activity through graded upregulation of Id3. Our model proposes that cells enter Stage 1 in response to a γδTCR signaling event in the cortex that activates a γδ T cell-specific gene network. Part of this program includes the upregulation of chemokine receptors that guide them to the medulla. In the medulla, Stage 1 cells receive distinct combinations of γδTCR, cytokine, and/co-stimulatory signals that induce their transit into Stage 2, either toward the γδT1 or the γδT17 lineage. The intersection between γδTCR and cytokine signals can tune Id3 expression, leading to different outcomes even in the presence of strong γδTCR signals. The thymic signaling niches required for γδT17 development are segregated in time and space, providing transient windows of opportunity during ontogeny. Understanding the regulatory context in which E proteins operate at different stages will be key in defining how their activity levels impose functional outcomes.
Collapse
Affiliation(s)
- Michele K Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Johanna S Selvaratnam
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Thelen F, Witherden DA. Get in Touch With Dendritic Epithelial T Cells! Front Immunol 2020; 11:1656. [PMID: 32849572 PMCID: PMC7403176 DOI: 10.3389/fimmu.2020.01656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Innate and adaptive immune systems continuously interchange information and orchestrate their immune responses to protect the host. γδT cells play crucial roles, as they incorporate both innate and adaptive immune characteristics. Dendritic epidermal T cells (DETC) are specialized γδT cells, which are uniquely positioned to rapidly respond to skin wounds and infections. Their elongated dendrite morphology allows them to be in continuous contact with multiple neighboring keratinocytes and Langerhans cells. Cellular interactions are fundamental to the formation, activation and maintenance of immune cell functions during steady state and pathology. Recent technological advances, especially in the field of cellular imaging, have contributed greatly to the characterization of complex cellular interactions in a spatiotemporally resolved manner. In this review, we will highlight the often-underappreciated function of DETC and other γδT cells during steady state and an ongoing immune response. More specifically, we discuss how DETC-precursors are shaped in the fetal thymus during embryogenesis as well as how direct cell-cell interactions of DETC with neighboring epidermal cells shape skin homeostasis and effector functions. Furthermore, we will discuss seminal work and recent discoveries made in the γδT cell field, which have highlighted the importance of γδT cells in the skin, both in humans and mice.
Collapse
Affiliation(s)
- Flavian Thelen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Deborah A Witherden
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
39
|
Roels J, Kuchmiy A, De Decker M, Strubbe S, Lavaert M, Liang KL, Leclercq G, Vandekerckhove B, Van Nieuwerburgh F, Van Vlierberghe P, Taghon T. Distinct and temporary-restricted epigenetic mechanisms regulate human αβ and γδ T cell development. Nat Immunol 2020; 21:1280-1292. [PMID: 32719521 DOI: 10.1038/s41590-020-0747-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
Abstract
The development of TCRαβ and TCRγδ T cells comprises a step-wise process in which regulatory events control differentiation and lineage outcome. To clarify these mechanisms, we employed RNA-sequencing, ATAC-sequencing and ChIPmentation on well-defined thymocyte subsets that represent the continuum of human T cell development. The chromatin accessibility dynamics show clear stage specificity and reveal that human T cell-lineage commitment is marked by GATA3- and BCL11B-dependent closing of PU.1 sites. A temporary increase in H3K27me3 without open chromatin modifications is unique for β-selection, whereas emerging γδ T cells, which originate from common precursors of β-selected cells, show large chromatin accessibility changes due to strong T cell receptor (TCR) signaling. Furthermore, we unravel distinct chromatin landscapes between CD4+ and CD8+ αβ-lineage cells that support their effector functions and reveal gene-specific mechanisms that define mature T cells. This resource provides a framework for studying gene regulatory mechanisms that drive normal and malignant human T cell development.
Collapse
Affiliation(s)
- Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Anna Kuchmiy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Steven Strubbe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marieke Lavaert
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Kai Ling Liang
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Cancer Research Institute Ghent, Ghent, Belgium.,Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
40
|
Collin R, Lombard-Vadnais F, Hillhouse EE, Lebel MÈ, Chabot-Roy G, Melichar HJ, Lesage S. MHC-Independent Thymic Selection of CD4 and CD8 Coreceptor Negative αβ T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:133-142. [PMID: 32434937 DOI: 10.4049/jimmunol.2000156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
It is becoming increasingly clear that unconventional T cell subsets, such as NKT, γδ T, mucosal-associated invariant T, and CD8αα T cells, each play distinct roles in the immune response. Subsets of these cell types can lack both CD4 and CD8 coreceptor expression. Beyond these known subsets, we identify CD4-CD8-TCRαβ+, double-negative (DN) T cells, in mouse secondary lymphoid organs. DN T cells are a unique unconventional thymic-derived T cell subset. In contrast to CD5high DN thymocytes that preferentially yield TCRαβ+ CD8αα intestinal lymphocytes, we find that mature CD5low DN thymocytes are precursors to peripheral DN T cells. Using reporter mouse strains, we show that DN T cells transit through the immature CD4+CD8+ (double-positive) thymocyte stage. Moreover, we provide evidence that DN T cells can differentiate in MHC-deficient mice. Our study demonstrates that MHC-independent thymic selection can yield DN T cells that are distinct from NKT, γδ T, mucosal-associated invariant T, and CD8αα T cells.
Collapse
Affiliation(s)
- Roxanne Collin
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 0G4, Canada; and
| | - Erin E Hillhouse
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Marie-Ève Lebel
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Geneviève Chabot-Roy
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Heather J Melichar
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
41
|
Dolens A, Durinck K, Lavaert M, Van der Meulen J, Velghe I, De Medts J, Weening K, Roels J, De Mulder K, Volders P, De Preter K, Kerre T, Vandekerckhove B, Leclercq G, Vandesompele J, Mestdagh P, Van Vlierberghe P, Speleman F, Taghon T. Distinct Notch1 and BCL11B requirements mediate human γδ/αβ T cell development. EMBO Rep 2020; 21:e49006. [PMID: 32255245 PMCID: PMC7202205 DOI: 10.15252/embr.201949006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
γδ and αβ T cells have unique roles in immunity and both originate in the thymus from T-lineage committed precursors through distinct but unclear mechanisms. Here, we show that Notch1 activation is more stringently required for human γδ development compared to αβ-lineage differentiation and performed paired mRNA and miRNA profiling across 11 discrete developmental stages of human T cell development in an effort to identify the potential Notch1 downstream mechanism. Our data suggest that the miR-17-92 cluster is a Notch1 target in immature thymocytes and that miR-17 can restrict BCL11B expression in these Notch-dependent T cell precursors. We show that enforced miR-17 expression promotes human γδ T cell development and, consistently, that BCL11B is absolutely required for αβ but less for γδ T cell development. This study suggests that human γδ T cell development is mediated by a stage-specific Notch-driven negative feedback loop through which miR-17 temporally restricts BCL11B expression and provides functional insights into the developmental role of the disease-associated genes BCL11B and the miR-17-92 cluster in a human context.
Collapse
Affiliation(s)
| | - Kaat Durinck
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Marieke Lavaert
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | | | - Imke Velghe
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Jelle De Medts
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Karin Weening
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Juliette Roels
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | | | | | | | - Tessa Kerre
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | | | | | - Jo Vandesompele
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Pieter Mestdagh
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | | | - Frank Speleman
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Tom Taghon
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| |
Collapse
|
42
|
Mookerjee‐Basu J, Hooper R, Gross S, Schultz B, Go CK, Samakai E, Ladner J, Nicolas E, Tian Y, Zhou B, Zaidi MR, Tourtellotte W, He S, Zhang Y, Kappes DJ, Soboloff J. Suppression of Ca 2+ signals by EGR4 controls Th1 differentiation and anti-cancer immunity in vivo. EMBO Rep 2020; 21:e48904. [PMID: 32212315 PMCID: PMC7202224 DOI: 10.15252/embr.201948904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
While the zinc finger transcription factors EGR1, EGR2, and EGR3 are recognized as critical for T-cell function, the role of EGR4 remains unstudied. Here, we show that EGR4 is rapidly upregulated upon TCR engagement, serving as a critical "brake" on T-cell activation. Hence, TCR engagement of EGR4-/- T cells leads to enhanced Ca2+ responses, driving sustained NFAT activation and hyperproliferation. This causes profound increases in IFNγ production under resting and diverse polarizing conditions that could be reversed by pharmacological attenuation of Ca2+ entry. Finally, an in vivo melanoma lung colonization assay reveals enhanced anti-tumor immunity in EGR4-/- mice, attributable to Th1 bias, Treg loss, and increased CTL generation in the tumor microenvironment. Overall, these observations reveal for the first time that EGR4 is a key regulator of T-cell differentiation and function.
Collapse
Affiliation(s)
| | - Robert Hooper
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Scott Gross
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Christina K Go
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Elsie Samakai
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | | | | | - Yuanyuan Tian
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | - Bo Zhou
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Warren Tourtellotte
- Department of Pathology and Laboratory MedicineCedars Sinai Medical CenterWest HollywoodCAUSA
| | - Shan He
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | | | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
43
|
Zhang Y, Chen Y, Ma R, Jiang Y, Liu J, Lin Y, Chen S, Xia M, Zou F, Zhang J, Pan T, Wang L, Wei L, Zhang H. UHRF1 Controls Thymocyte Fate Decisions through the Epigenetic Regulation of EGR1 Expression. THE JOURNAL OF IMMUNOLOGY 2020; 204:3248-3261. [DOI: 10.4049/jimmunol.1901471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
|
44
|
Abstract
γδ T cells are a subset of T cells with attributes of both the innate and adaptive arms of the immune system. These cells have long been an enigmatic and poorly understood component of the immune system and many have viewed them as having limited importance in host defense. This perspective persisted for some time both because of critical gaps in knowledge regarding how the development of γδ T cells is regulated and because of the lack of effective and sophisticated approaches through which the function of γδ T cells can be manipulated. Here, we discuss the recent advances in both of these areas, which have brought the importance of γδ T cells in both productive and pathologic immune function more sharply into focus.
Collapse
Affiliation(s)
- Alejandra V. Contreras
- Blood Cell Development and Function Program, Fox Chase Cancer Center, R364, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - David L. Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, R364, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| |
Collapse
|
45
|
Tani-Ichi S, Wagatsuma K, Hara T, Cui G, Abe S, Miyachi H, Kitano S, Ikuta K. Innate-like CD27 +CD45RB high γδ T Cells Require TCR Signaling for Homeostasis in Peripheral Lymphoid Organs. THE JOURNAL OF IMMUNOLOGY 2020; 204:2671-2684. [PMID: 32238459 DOI: 10.4049/jimmunol.1801243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/28/2020] [Indexed: 11/19/2022]
Abstract
TCR signaling is required for homeostasis of naive αβ T cells. However, whether such a signal is necessary for γδ T cell homeostasis in the periphery remains unknown. In this study, we present evidence that a portion of Vγ2+ γδ T cells, one of the major γδ T cell subsets in the secondary lymphoid organs, requires TCR signaling for homeostasis. To attenuate γδTCR signals, we generated mice lacking Eγ4 (Eγ4-/-), an enhancer located at the 3'-most end of the TCRγ locus. Overall, we found that in thymus, Eγ4 loss altered V-J rearrangement, chromatin accessibility, and transcription of the TCRγ locus in a distance-dependent manner. Vγ2+ γδ T cells in Eγ4-/- mice developed normally both fetal and adult mouse thymi but were relatively reduced in number in spleen and lymph nodes. Although Vγ2 TCR transcription decreased in all subpopulations of Eγ4-/- mice, the number of Vγ2+ γδ T cells decreased and TCR signaling was attenuated only in the innate-like CD27+CD45RBhigh subpopulation in peripheral lymphoid organs. Consistently, CD27+CD45RBhigh Vγ2+ γδ T cells from Eγ4-/- mice transferred into Rag2-deficient mice were not efficiently recovered, suggesting that continuous TCR signaling is required for their homeostasis. Finally, CD27+CD45RBhigh Vγ2+ γδ T cells from Eγ4-/- mice showed impaired TCR-induced activation and antitumor responses. These results suggest that normal homeostasis of innate-like CD27+CD45RBhigh Vγ2+ γδ T cells in peripheral lymphoid organs requires TCR signaling.
Collapse
Affiliation(s)
- Shizue Tani-Ichi
- Laboratory of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; .,Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Keisuke Wagatsuma
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; and
| | - Takahiro Hara
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
46
|
Hahn AM, Winkler TH. Resolving the mystery-How TCR transgenic mouse models shed light on the elusive case of gamma delta T cells. J Leukoc Biol 2020; 107:993-1007. [PMID: 32068302 DOI: 10.1002/jlb.1mr0120-237r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
Cutting-edge questions in αβ T cell biology were addressed by investigating a range of different genetically modified mouse models. In comparison, the γδ T cell field lacks behind on the availability of such models. Nevertheless, transgenic mouse models proved useful for the investigation of γδ T cell biology and their stepwise development in the thymus. In general, animal models and especially mouse models give access to a wide range of opportunities of modulating γδ T cells, which is unachievable in human beings. Because of their complex biology and specific tissue tropism, it is especially challenging to investigate γδ T cells in in vitro experiments since they might not reliably reflect their behavior and phenotype under physiologic conditions. This review aims to provide a comprehensive historical overview about how different transgenic mouse models contributed in regards of the understanding of γδ T cell biology, whereby a special focus is set on studies including the elusive role of the γδTCR. Furthermore, evolutionary and translational remarks are discussed under the aspect of future implications for the field. The ultimate full understanding of γδ T cells will pave the way for their usage as a powerful new tool in immunotherapy.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cell Movement
- Founder Effect
- Gene Expression
- Humans
- Immunotherapy/methods
- Mice
- Mice, Transgenic/genetics
- Mice, Transgenic/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- Species Specificity
- T-Lymphocytes/classification
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Anne M Hahn
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
47
|
Peters C, Kouakanou L, Kabelitz D. A comparative view on vitamin C effects on αβ- versus γδ T-cell activation and differentiation. J Leukoc Biol 2020; 107:1009-1022. [PMID: 32034803 DOI: 10.1002/jlb.1mr1219-245r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Vitamin C (VitC) is an essential vitamin that needs to be provided through exogenous sources. It is a potent anti-oxidant, and an essential cofactor for many enzymes including a group of enzymes that modulate epigenetic regulation of gene expression. Moreover, VitC has a significant influence on T-cell differentiation, and can directly interfere with T-cell signaling. Conventional CD4 and CD8 T cells express the αβ TCR and recognize peptide antigens in the context of MHC presentation. The numerically small population of γδ T cells recognizes antigens in an MHC-independent manner. γδ T cells kill a broad variety of malignant cells, and because of their unique features, are interesting candidates for cancer immunotherapy. In this review, we summarize what is known about the influence of VitC on T-cell activation and differentiation with a special focus on γδ T cells. The known mechanisms of action of VitC on αβ T cells are discussed and extrapolated to the effects observed on γδ T-cell activation and differentiation. Overall, VitC enhances proliferation and effector functions of γδ T cells and thus may help to increase the efficacy of γδ T cells applied as cancer immunotherapy in adoptive cell transfer.
Collapse
Affiliation(s)
- Christian Peters
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
48
|
Parker ME, Ciofani M. Regulation of γδ T Cell Effector Diversification in the Thymus. Front Immunol 2020; 11:42. [PMID: 32038664 PMCID: PMC6992645 DOI: 10.3389/fimmu.2020.00042] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022] Open
Abstract
γδ T cells are the first T cell lineage to develop in the thymus and take up residence in a wide variety of tissues where they can provide fast, innate-like sources of effector cytokines for barrier defense. In contrast to conventional αβ T cells that egress the thymus as naïve cells, γδ T cells can be programmed for effector function during development in the thymus. Understanding the molecular mechanisms that determine γδ T cell effector fate is of great interest due to the wide-spread tissue distribution of γδ T cells and their roles in pathogen clearance, immunosurveillance, cancer, and autoimmune diseases. In this review, we will integrate the current understanding of the role of the T cell receptor, environmental signals, and transcription factor networks in controlling mouse innate-like γδ T cell effector commitment.
Collapse
Affiliation(s)
| | - Maria Ciofani
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
49
|
Abstract
Advances in academic and clinical studies during the last several years have resulted in practical outcomes in adoptive immune therapy of cancer. Immune cells can be programmed with molecular modules that increase their therapeutic potency and specificity. It has become obvious that successful immunotherapy must take into account the full complexity of the immune system and, when possible, include the use of multifactor cell reprogramming that allows fast adjustment during the treatment. Today, practically all immune cells can be stably or transiently reprogrammed against cancer. Here, we review works related to T cell reprogramming, as the most developed field in immunotherapy. We discuss factors that determine the specific roles of αβ and γδ T cells in the immune system and the structure and function of T cell receptors in relation to other structures involved in T cell target recognition and immune response. We also discuss the aspects of T cell engineering, specifically the construction of synthetic T cell receptors (synTCRs) and chimeric antigen receptors (CARs) and the use of engineered T cells in integrative multifactor therapy of cancer.
Collapse
Affiliation(s)
- Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
50
|
Notch and the pre-TCR coordinate thymocyte proliferation by induction of the SCF subunits Fbxl1 and Fbxl12. Nat Immunol 2019; 20:1381-1392. [PMID: 31451788 PMCID: PMC6754294 DOI: 10.1038/s41590-019-0469-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/16/2019] [Indexed: 01/05/2023]
Abstract
Proliferation is tightly regulated during T cell development and is limited to immature CD4−CD8− thymocytes. The major proliferative event is initiated at the ‘β-selection’ stage following successful rearrangement of Tcrβ and is triggered by and dependent on concurrent signaling by Notch and the pre-TCR; however, it is unclear how these signals cooperate to promote cell proliferation. Here we found that β-selection-associated proliferation required the combined activity of two SCF ubiquitin ligase complexes that included as substrate recognition subunits the F-box proteins Fbxl1 or Fbxl12. Both SCF complexes targeted the cyclin-dependent kinase inhibitor Cdkn1b for ubiquitinylaton and degradation. We found that Notch signals induced the transcription of Fbxl1 whereas pre-TCR signals induced the transcription of Fbxl12. Thus, concurrent Notch and pre-TCR signaling induced the expression of two genes, Fbxl1 and Fbxl12, whose products functioned identically but additively to promote degradation of Cdkn1b, cell cycle progression, and proliferation of β-selected thymocytes.
Collapse
|