1
|
Boucly A, Bertoletti L, Fauvel C, Dewavrin MG, Gerges C, Grynblat J, Guignabert C, Hascoet S, Jaïs X, Jutant EM, Lamblin N, Meyrignac O, Riou M, Savale L, Tromeur C, Turquier S, Valentin S, Simonneau G, Humbert M, Sitbon O, Montani D. Evidence and unresolved questions in pulmonary hypertension: Insights from the 5th French Pulmonary Hypertension Network Meeting. Respir Med Res 2024; 86:101123. [PMID: 38972109 DOI: 10.1016/j.resmer.2024.101123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
Pulmonary hypertension (PH) continues to present significant challenges to the medical community, both in terms of diagnosis and treatment. The advent of the updated 2022 European Society of Cardiology (ESC) and European Respiratory Society (ERS) guidelines has introduced pivotal changes that reflect the rapidly advancing understanding of this complex disease. These changes include a revised definition of PH, updates to the classification system, and treatment algorithm. While these guidelines offer a critical framework for the management of PH, they have also sparked new discussions and questions. The 5th French Pulmonary Hypertension Network Meeting (Le Kremlin-Bicêtre, France, 2023), addressed these emergent questions and fostering a deeper understanding of the disease's multifaceted nature. These discussions were not limited to theoretical advancements but extended into the practical realms of patient management, highlighting the challenges and opportunities in applying the latest guidelines to clinical practice.
Collapse
Affiliation(s)
- Athénaïs Boucly
- University of Paris-Saclay, School of Medicine, le Kremlin-Bicêtre, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, France
| | - Laurent Bertoletti
- Département of Médecine Vasculaire et Thérapeutique, Université Jean Monnet Saint-Étienne, CHU Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, CIC 1408, Saint-Étienne, France
| | - Charles Fauvel
- Normandie Univ, UNIROUEN, U1096, CHU Rouen, Department of Cardiology, F-76000 Rouen, France
| | | | - Christian Gerges
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Julien Grynblat
- University of Paris-Saclay, School of Medicine, le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- University of Paris-Saclay, School of Medicine, le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, France
| | - Sébastien Hascoet
- University of Paris-Saclay, School of Medicine, le Kremlin-Bicêtre, France; Hôpital Marie Lannelongue, Faculté de Médecine, Paris-Saclay, Université Paris-Saclay, Le Plessis Robinson, France
| | - Xavier Jaïs
- University of Paris-Saclay, School of Medicine, le Kremlin-Bicêtre, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, France
| | - Etienne-Marie Jutant
- Respiratory Department, CHU de Poitiers, INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
| | - Nicolas Lamblin
- Urgences et Soins Intensifs de Cardiologie, CHU Lille, University of Lille, Inserm U1167, Lille, France
| | - Olivier Meyrignac
- Assistance Publique - Hôpitaux de Paris (AP-HP) - Biomaps - Laboratoire d'Imagerie Multimodale - CEA - INSERM - CNRS, DMU 14 Smart Imaging - Department of Radiology, Bicetre Hospital, Le Kremlin-Bicêtre, France
| | - Marianne Riou
- Department of Physiology and Functional Exploration, Nouvel Hôpital Civil, University Hospital of Strasbourg, Strasbourg, France
| | - Laurent Savale
- University of Paris-Saclay, School of Medicine, le Kremlin-Bicêtre, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, France
| | - Cécile Tromeur
- Department of Internal Medicine and Pulmonology, CHU Brest, France. INSERM 1304 GETBO (groupe d'étude de thrombose et de bretagne occidentale), Brest, France
| | - Ségolène Turquier
- Department of Physiology and Functional Exploration, Hôpital Louis Pradel, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Simon Valentin
- Université de Lorraine, CHRU-Nancy, Pôle des Spécialités Médicales/Département de Pneumologie- IADI, INSERM U1254, Nancy, France
| | - Gérald Simonneau
- University of Paris-Saclay, School of Medicine, le Kremlin-Bicêtre, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, France
| | - Marc Humbert
- University of Paris-Saclay, School of Medicine, le Kremlin-Bicêtre, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, France
| | - Olivier Sitbon
- University of Paris-Saclay, School of Medicine, le Kremlin-Bicêtre, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, France
| | - David Montani
- University of Paris-Saclay, School of Medicine, le Kremlin-Bicêtre, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Marie Lannelongue Hospital and Bicêtre Hospital, France.
| |
Collapse
|
2
|
Garg P, Grafton-Clarke C, Matthews G, Swoboda P, Zhong L, Aung N, Thomson R, Alabed S, Demirkiran A, Vassiliou VS, Swift AJ. Sex-specific cardiac magnetic resonance pulmonary capillary wedge pressure. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae038. [PMID: 38751456 PMCID: PMC11095051 DOI: 10.1093/ehjopen/oeae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Aims Heart failure (HF) with preserved ejection fraction disproportionately affects women. There are no validated sex-specific tools for HF diagnosis despite widely reported differences in cardiac structure. This study investigates whether sex, as assigned at birth, influences cardiac magnetic resonance (CMR) assessment of left ventricular filling pressure (LVFP), a hallmark of HF agnostic to ejection fraction. Methods and results A derivation cohort of patients with suspected pulmonary hypertension and HF from the Sheffield centre underwent invasive right heart catheterization and CMR within 24 h of each other. A sex-specific CMR model to estimate LVFP, measured as pulmonary capillary wedge pressure (PCWP), was developed using multivariable regression. A validation cohort of patients with confirmed HF from the Leeds centre was used to evaluate for the primary endpoints of HF hospitalization and major adverse cardiovascular events (MACEs). Comparison between generic and sex-specific CMR-derived PCWP was undertaken. A total of 835 (60% female) and 454 (36% female) patients were recruited into the derivation and validation cohorts respectively. A sex-specific model incorporating left atrial volume and left ventricular mass was created. The generic CMR PCWP showed significant differences between males and females (14.7 ± 4 vs. 13 ± 3.0 mmHg, P > 0.001), not present with the sex-specific CMR PCWP (14.1 ± 3 vs. 13.8 mmHg, P = 0.3). The sex-specific, but not the generic, CMR PCWP was associated with HF hospitalization (hazard ratio 3.9, P = 0.0002) and MACE (hazard ratio 2.5, P = 0.001) over a mean follow-up period of 2.4 ± 1.2 years. Conclusion Accounting for sex improves precision and prognostic performance of CMR biomarkers for HF.
Collapse
Affiliation(s)
- Pankaj Garg
- Norwich Medical School, University of East Anglia, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Department of Cardiology, Norfolk and Norwich University NHS Foundation Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Ciaran Grafton-Clarke
- Norwich Medical School, University of East Anglia, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Department of Cardiology, Norfolk and Norwich University NHS Foundation Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Gareth Matthews
- Norwich Medical School, University of East Anglia, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Department of Cardiology, Norfolk and Norwich University NHS Foundation Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Peter Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Signature Programme of Cardiovascular Metabolic and Disorders, Duke-NUS Medical School, 8 College Road, Singapore
| | - Nay Aung
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Ross Thomson
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Samer Alabed
- National Institute for Health and Care Research, Sheffield Biomedical Research Centre, Sheffield, UK
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ahmet Demirkiran
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Cardiology, Kocaeli City Hospital, Kocaeli, Turkey
| | - Vassilios S Vassiliou
- Norwich Medical School, University of East Anglia, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Department of Cardiology, Norfolk and Norwich University NHS Foundation Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Andrew J Swift
- National Institute for Health and Care Research, Sheffield Biomedical Research Centre, Sheffield, UK
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Wang Y, Zhao S, Lu M. State-of-the Art Cardiac Magnetic Resonance in Pulmonary Hypertension - An Update on Diagnosis, Risk Stratification and Treatment. Trends Cardiovasc Med 2024; 34:161-171. [PMID: 36574866 DOI: 10.1016/j.tcm.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Pulmonary hypertension (PH) is a globally under-recognized but life-shortening disease with a poor prognosis if untreated, delayed or inappropriately treated. One of the most important issues for PH is to improve patient quality of life and survival through timely and accurate diagnosis, precise risk stratification and prognosis prediction. Cardiac magnetic resonance (CMR), a non-radioactive, non-invasive image-based examination with excellent tissue characterization, provides a comprehensive assessment of not only the disease severity but also secondary changes in cardiac structure, function and tissue characteristics. The purpose of this review is to illustrate an updated status of CMR for PH assessment, focusing on the application of both conventional and emerging technologies as well as the latest clinical trials.
Collapse
Affiliation(s)
- Yining Wang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China; Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Cain MT, Schäfer M, Park S, Barker AJ, Vargas D, Stenmark KR, Yu YRA, Bull TM, Ivy DD, Hoffman JRH. Characterization of pulmonary arterial stiffness using cardiac MRI. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:425-439. [PMID: 37902921 DOI: 10.1007/s10554-023-02989-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Pulmonary arterial stiffness (PAS) is a pathologic hallmark of all types of pulmonary hypertension (PH). Cardiac MRI (CMR), a gold-standard imaging modality for the evaluation of pulmonary flow, biventricular morphology and function has been historically reserved for the longitudinal clinical follow-up, PH phenotyping purposes, right ventricular evaluation, and research purposes. Over the last two decades, numerous indices combining invasive catheterization and non-invasive CMR have been utilized to phenotype the character and severity of PAS in different types of PH and to assess its clinically prognostic potential with encouraging results. Many recent studies have demonstrated a strong role of CMR derived PAS markers in predicting long-term clinical outcomes and improving currently gold standard risk assessment provided by the REVEAL calculator. With the utilization of a machine learning strategies, strong diagnostic and prognostic performance of CMR reported in multicenter studies, and ability to detect PH at early stages, the non-invasive assessment of PAS is on verge of routine clinical utilization. In this review, we focus on appraising important CMR studies interrogating PAS over the last 20 years, describing the benefits and limitations of different PAS indices, and their pathophysiologic relevance to pulmonary vascular remodeling. We also discuss the role of CMR and PAS in clinical surveillance and phenotyping of PH, and the long-term future goal to utilize PAS as a biomarker to aid with more targeted therapeutic management.
Collapse
Affiliation(s)
- Michael T Cain
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado - Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Michal Schäfer
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado - Denver | Anschutz Medical Campus, Aurora, CO, USA.
- Heart Institute, Children's Hospital Colorado, University of Colorado, Denver, USA.
| | - Sarah Park
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado - Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Alex J Barker
- Department of Radiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Vargas
- Department of Radiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Kurt R Stenmark
- Division of Pediatric Critical Care and Pulmonary Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Yen-Rei A Yu
- Division of Pediatric Critical Care and Pulmonary Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Todd M Bull
- Department of Critical Care and Pulmonary Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - D Dunbar Ivy
- Heart Institute, Children's Hospital Colorado, University of Colorado, Denver, USA
| | - Jordan R H Hoffman
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado - Denver | Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Averjanovaitė V, Gumbienė L, Zeleckienė I, Šileikienė V. Unmasking a Silent Threat: Improving Pulmonary Hypertension Screening Methods for Interstitial Lung Disease Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:58. [PMID: 38256318 PMCID: PMC10820938 DOI: 10.3390/medicina60010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
This article provides a comprehensive overview of the latest literature on the diagnostics and treatment of pulmonary hypertension (PH) associated with interstitial lung disease (ILD). Heightened suspicion for PH arises when the advancement of dyspnoea in ILD patients diverges from the expected pattern of decline in pulmonary function parameters. The complexity of PH associated with ILD (PH-ILD) diagnostics is emphasized by the limitations of transthoracic echocardiography in the ILD population, necessitating the exploration of alternative diagnostic approaches. Cardiac magnetic resonance imaging (MRI) emerges as a promising tool, offering insights into hemodynamic parameters and providing valuable prognostic information. The potential of biomarkers, alongside pulmonary function and cardiopulmonary exercise tests, is explored for enhanced diagnostic and prognostic precision. While specific treatments for PH-ILD remain limited, recent studies on inhaled treprostinil provide new hope for improved patient outcomes.
Collapse
Affiliation(s)
| | - Lina Gumbienė
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
| | | | - Virginija Šileikienė
- Clinic of Chest Diseases, Immunology and Allergology, Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
| |
Collapse
|
6
|
Cave DG, Bautista MJ, Mustafa K, Bentham JR. Cardiac output monitoring in children: a review. Arch Dis Child 2023; 108:949-955. [PMID: 36927620 DOI: 10.1136/archdischild-2022-325030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Cardiac output monitoring enables physiology-directed management of critically ill children and aids in the early detection of clinical deterioration. Multiple invasive techniques have been developed and have demonstrated ability to improve clinical outcomes. However, all require invasive arterial or venous catheters, with associated risks of infection, thrombosis and vascular injury. Non-invasive monitoring of cardiac output and fluid responsiveness in infants and children is an active area of interest and several proven techniques are available. Novel non-invasive cardiac output monitors offer a promising alternative to echocardiography and have proven their ability to influence clinical practice. Assessment of perfusion remains a challenge; however, technologies such as near-infrared spectroscopy and photoplethysmography may prove valuable clinical adjuncts in the future.
Collapse
Affiliation(s)
- Daniel Gw Cave
- Leeds Congenital Heart Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, West Yorkshire, UK
| | - Melissa J Bautista
- General Surgery, St James's University Hospital, Leeds, West Yorkshire, UK
- General Surgery, University of Leeds, Leeds, West Yorkshire, UK
| | - Khurram Mustafa
- Paediatric Intensive Care, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - James R Bentham
- Leeds Congenital Heart Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
7
|
Alkhanfar D, Dwivedi K, Alandejani F, Shahin Y, Alabed S, Johns C, Garg P, Thompson AAR, Rothman AMK, Hameed A, Charalampopoulos A, Wild JM, Condliffe R, Kiely DG, Swift AJ. Non-invasive detection of severe PH in lung disease using magnetic resonance imaging. Front Cardiovasc Med 2023; 10:1016994. [PMID: 37139140 PMCID: PMC10149807 DOI: 10.3389/fcvm.2023.1016994] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Severe pulmonary hypertension (mean pulmonary artery pressure ≥35 mmHg) in chronic lung disease (PH-CLD) is associated with high mortality and morbidity. Data suggesting potential response to vasodilator therapy in patients with PH-CLD is emerging. The current diagnostic strategy utilises transthoracic Echocardiography (TTE), which can be technically challenging in some patients with advanced CLD. The aim of this study was to evaluate the diagnostic role of MRI models to diagnose severe PH in CLD. Methods 167 patients with CLD referred for suspected PH who underwent baseline cardiac MRI, pulmonary function tests and right heart catheterisation were identified. In a derivation cohort (n = 67) a bi-logistic regression model was developed to identify severe PH and compared to a previously published multiparameter model (Whitfield model), which is based on interventricular septal angle, ventricular mass index and diastolic pulmonary artery area. The model was evaluated in a test cohort. Results The CLD-PH MRI model [= (-13.104) + (13.059 * VMI)-(0.237 * PA RAC) + (0.083 * Systolic Septal Angle)], had high accuracy in the test cohort (area under the ROC curve (0.91) (p < 0.0001), sensitivity 92.3%, specificity 70.2%, PPV 77.4%, and NPV 89.2%. The Whitfield model also had high accuracy in the test cohort (area under the ROC curve (0.92) (p < 0.0001), sensitivity 80.8%, specificity 87.2%, PPV 87.5%, and NPV 80.4%. Conclusion The CLD-PH MRI model and Whitfield model have high accuracy to detect severe PH in CLD, and have strong prognostic value.
Collapse
Affiliation(s)
- Dheyaa Alkhanfar
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO, Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Krit Dwivedi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Faisal Alandejani
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Yousef Shahin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Chris Johns
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Pankaj Garg
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - A. A. Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Alexander M. K. Rothman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Abdul Hameed
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Athanasios Charalampopoulos
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Jim M. Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO, Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - David G. Kiely
- INSIGNEO, Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Andrew J. Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO, Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Bartnik A, Pepke-Zaba J, Hoole SP, White P, Garbi M, Coghlan JG, Taghavi F, Tsui S, Weir-McCall J. Right ventricular-pulmonary artery coupling in chronic thromboembolic pulmonary hypertension. Heart 2022; 109:898-904. [PMID: 36549680 DOI: 10.1136/heartjnl-2022-321770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension occurs in a proportion of patients with prior acute pulmonary embolism and is characterised by breathlessness, persistently raised pulmonary pressures and right heart failure. Surgical pulmonary endarterectomy (PEA) offers significant prognostic and symptomatic benefits for patients with proximal disease distribution. For those with inoperable disease, management options include balloon pulmonary angioplasty (BPA) and medical therapy. Current clinical practice relies on the evaluation of pulmonary haemodynamics to assess disease severity, timing of and response to treatment. However, pulmonary haemodynamics correlate poorly with patient symptoms, which are influenced by right ventricular tolerance of the increased afterload. How best to manage symptomatic patients with chronic thromboembolic pulmonary disease (CTEPD) in the absence of pulmonary hypertension is not resolved.Right ventricular-pulmonary artery coupling (RV-PAC) describes the energy transfer within the whole cardiopulmonary unit. Thus, it can identify the earliest signs of decompensation even before pulmonary hypertension is overt. Invasive measurement of coupling using pressure volume loop technology is well established in research settings. The development of efficient and less invasive measurement methods has revived interest in coupling as a viable clinical tool. Significant improvement in RV-PAC has been demonstrated after both PEA and BPA. Further studies are required to understand its clinical utility and prognostic value, in particular, its potential to guide management in patients with CTEPD. Finally, given the reported differences in coupling between sexes in pulmonary arterial hypertension, further work is required to understand the applicability of proposed thresholds for decoupling in therapeutic decision making.
Collapse
Affiliation(s)
- Aleksandra Bartnik
- Radiology, Royal Papworth Hospital, Cambridge, UK .,University of Cambridge, Cambridge, UK.,Surgery, Royal Papworth Hospital, Cambridge, UK
| | - Joanna Pepke-Zaba
- Pulmonary Vascular Disease Unit, Royal Papworth Hospital, Cambridge, UK
| | | | - Paul White
- Medical Physics and Clinical Engineering, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,Medical Technology Research Centre, Anglia Ruskin University, Cambridge, UK
| | | | | | | | - Steven Tsui
- Surgery, Royal Papworth Hospital, Cambridge, UK
| | - Jonathan Weir-McCall
- Radiology, Royal Papworth Hospital, Cambridge, UK.,University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Vos JL, Leiner T, van Dijk APJ, Pedrizzetti G, Alenezi F, Rodwell L, van der Wegen CTPM, Post MC, Driessen MMP, Nijveldt R. Cardiovascular magnetic resonance-derived left ventricular intraventricular pressure gradients among patients with precapillary pulmonary hypertension. Eur Heart J Cardiovasc Imaging 2022; 24:78-87. [PMID: 34993533 DOI: 10.1093/ehjci/jeab294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
AIMS Precapillary pulmonary hypertension (pPH) affects left ventricular (LV) function by ventricular interdependence. Since LV ejection fraction (EF) is commonly preserved, LV dysfunction should be assessed with more sensitive techniques. Left atrial (LA) strain and estimation of LV intraventricular pressure gradients (IVPG) may be valuable in detecting subtle changes in LV mechanics; however, the value of these techniques in pPH is unknown. Therefore, the aim of our study is to evaluate LA strain and LV-IVPGs from cardiovascular magnetic resonance (CMR) cines in pPH patients. METHODS AND RESULTS In this cross-sectional study, 31 pPH patients and 22 healthy volunteers underwent CMR imaging. Feature-tracking LA strain was measured on four- and two-chamber cines. LV-IVPGs (from apex-base) are computed from a formulation using the myocardial movement and velocity of the reconstructed 3D-LV (derived from long-axis cines using feature-tracking). Systolic function, both LV EF and systolic ejection IVPG, was preserved in pPH patients. Compared to healthy volunteers, diastolic function was impaired in pPH patients, depicted by (i) lower LA reservoir (36 ± 7% vs. 26 ± 9%, P < 0.001) and conduit strain (26 ± 6% vs. 15 ± 8%, P < 0.001) and (ii) impaired diastolic suction (-9.1 ± 3.0 vs. ‒6.4 ± 4.4, P = 0.02) and E-wave decelerative IVPG (8.9 ± 2.6 vs. 5.7 ± 3.1, P < 0.001). Additionally, 11 pPH patients (35%) showed reversal of IVPG at systolic-diastolic transition compared to none of the healthy volunteers (P = 0.002). CONCLUSIONS pPH impacts LV function by altering diastolic function, demonstrated by an impairment of LA phasic function and LV-IVPG analysis. These parameters could therefore potentially be used as early markers for LV functional decline in pPH patients.
Collapse
Affiliation(s)
- Jacqueline L Vos
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Tim Leiner
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arie P J van Dijk
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Fawaz Alenezi
- Department of Cardiology, Duke Heart Center, Durham, NC, USA
| | - Laura Rodwell
- Department of Health Sciences, section Biostatistics, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
| | | | - Marco C Post
- Department of Cardiology, St. Antonius, Nieuwegein, The Netherlands
| | - Mieke M P Driessen
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands.,Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
10
|
Zeng Y, Yu Q, Maimaitiaili N, Li B, Liu P, Hou Y, Mima, Cirenguojie, Sumit G, Dejizhuoga, Liu Y, Peng W. Clinical and Predictive Value of Computed Tomography Angiography in High-Altitude Pulmonary Hypertension. JACC. ASIA 2022; 2:803-815. [PMID: 36713752 PMCID: PMC9877215 DOI: 10.1016/j.jacasi.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
Background High-altitude pulmonary hypertension (HAPH), as the group 3 pulmonary hypertension, has been less studied so far. The limited medical conditions in the high-altitude plateau are responsible for the delay of the clinical management of HAPH. Objectives This study aims to identify the imaging characteristics of HAPH and explore noninvasive assessment of mean pulmonary arterial pressure (mPAP) based on computed tomography angiography (CTA). Methods Twenty-five patients with suspected HAPH were enrolled. Right heart catheterization (RHC) and pulmonary angiography were performed. Echocardiography and CTA image data were collected for analysis. A multivariable linear regression model was fit to estimate mPAP (mPAPpredicted). A Bland-Altman plot and pathological analysis were performed to assess the diagnostic accuracy of this model. Results Patients with HAPH showed slow blood flow and coral signs in lower lobe pulmonary artery in pulmonary arteriography, and presented trend for dilated pulmonary vessels, enlarged right atrium, and compressed left atrium in CTA (P for trend <0.05). The left lower pulmonary artery-bronchus ratio (odds ratio: 1.13) and the ratio of right to left atrial diameter (odds ratio: 1.09) were significantly associated with HAPH, and showed strong correlation with mPAPRHC, respectively (r = 0.821 and r = 0.649, respectively; all P < 0.0001). The mPAPpredicted model using left lower artery-bronchus ratio and ratio of right to left atrial diameter as covariates showed high correlation with mPAPRHC (r = 0.907; P < 0.0001). Patients with predicted HAPH also had the typical pathological changes of pulmonary hypertension. Conclusions Noninvasive mPAP estimation model based on CTA image data can accurately fit mPAPRHC and is beneficial for the early diagnosis of HAPH.
Collapse
Key Words
- ABR, pulmonary artery-bronchus ratio
- HAPH, high-altitude pulmonary hypertension
- LVEF, left ventricle ejection fraction
- PASP, pulmonary arterial systolic pressure
- PH, pulmonary hypertension
- RHC, right heart catheterization
- TRPG, tricuspid regurgitation pressure gradient
- computed tomography
- mPAP, mean pulmonary arterial pressure
- plateau
- pulmonary arterial pressure
- pulmonary artery-bronchus ratio
- rPA, the ratio of main pulmonary artery to aorta diameter
- rRLA, the ratio of right to left atrial diameter
Collapse
Affiliation(s)
- Yanxi Zeng
- Department of Cardiology, Shigatse People’s Hospital, Tibet, China,Department of Cardiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nuerbiyemu Maimaitiaili
- Department of Cardiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingyu Li
- Department of Cardiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Panjin Liu
- Department of Cardiology, Shigatse People’s Hospital, Tibet, China
| | - Yongzhi Hou
- Department of Ultrasound, Shigatse People’s Hospital, Tibet, China
| | - Mima
- Department of Cardiology, Shigatse People’s Hospital, Tibet, China
| | - Cirenguojie
- Department of Radiology, Shigatse People’s Hospital, Tibet, China
| | - Gupta Sumit
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dejizhuoga
- Department of Cardiology, Shigatse People’s Hospital, Tibet, China,Department of Cardiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yong Liu
- Department of Radiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Dr. Yong Liu, Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Wenhui Peng
- Department of Cardiology, Shigatse People’s Hospital, Tibet, China,Department of Cardiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Address for correspondence: Dr Wenhui Peng, Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
11
|
Mawad W, Fadnes S, Løvstakken L, Henry M, Mertens L, Nyrnes SA. Pulmonary Hypertension in Children is Associated With Abnormal Flow Patterns in the Main Pulmonary Artery as Demonstrated by Blood Speckle Tracking. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2022; 1:213-218. [PMID: 37969432 PMCID: PMC10642129 DOI: 10.1016/j.cjcpc.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2023]
Abstract
Background Paediatric pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance resulting in increased pulmonary artery (PA) and right ventricular pressure (RV). This is associated with disturbed flow dynamics in the PA and RV that are not well characterized. We aimed to compare flow dynamics in children with PAH compared with healthy controls using blood speckle tracking echocardiography. Methods Patients <10 years of age with PAH and healthy controls were included. We examined flow dynamics in the main PA (MPA) and right ventricle based on acquisition blood speckle tracking images obtained from the RV and PA. Qualitative and quantitative analyses were performed. Results Eighteen subjects were included in each group. A diastolic vortex in the MPA was identified in 16 of the patients with PAH, but not in controls. Significantly higher MPA systolic (4.84 vs 2.42 mW/m; P = 0.01) and diastolic (0.69 vs 0.14 mW/m; P = 0.01) energy loss, as well as increased vector complexity (systole: 0.21 vs 0.04, P = 0.003; diastole: 0.13 vs 0.05, P = 0.04) and diastolic vorticity (15.2 vs 4.4 Hz; P = 0.001), were noted in PAH compared with controls. Conclusion This study demonstrates the presence of abnormal flow patterns in the MPA with diastolic vortex formation in most patients with PAH. This diastolic vortex likely results from reflected waves from the distal pulmonary bed. Our data indicate that the diastolic vortex could potentially be used in the diagnosis of PAH. The clinical significance of the energy loss findings warrants further investigation in a larger cohort of patients with PAH.
Collapse
Affiliation(s)
- Wadi Mawad
- Division of Cardiology, Department of Paediatric, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Paediatrics, Montreal Children’s Hospital, McGill University Health Centre, Montréal, Québec, Canada
| | - Solveig Fadnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Moere & Romsdal Hospital Trust, Division of Aalesund Hospital, Department of Pediatrics, Aalesund, Norway
| | - Lasse Løvstakken
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Matthew Henry
- Division of Cardiology, Department of Paediatric, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Luc Mertens
- Division of Cardiology, Department of Paediatric, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Siri Ann Nyrnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Children’s Clinic, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
12
|
Muacevic A, Adler JR. Comprehensive Review of Pulmonary Hypertension and Treatment Options in the Paediatric Population. Cureus 2022; 14:e30622. [PMID: 36426339 PMCID: PMC9681719 DOI: 10.7759/cureus.30622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/23/2022] [Indexed: 01/25/2023] Open
Abstract
Pulmonary hypertension (PH) is a complex condition that can occur as a result of a wide range of disorders, including left heart disease, lung disease, and chronic pulmonary thromboembolism. Multiple improvements have been made in the diagnosis and treatment of pulmonary arterial hypertension (PAH) including a greater understanding of the involvement of extrapulmonary vascular organ systems, validated point of care, clinical assessment tools, and a focus on the initial exposure of numerous pharmacotherapeutics in the appropriate level of care. To achieve a minimal symptom burden, improve the patient's biochemical, hemodynamic, and functional profile, and reduce adverse impact, early diagnosis of PAH is a key objective today. The preferred method of management for thromboembolic PH, which is chronic, is pulmonary endarterectomy since the majority of affected patients are operable. The timing of pulmonary endarterectomy should never be delayed for medical reasons, and risk stratification can enable us to select patients who have a high chance of success. Patients who are not qualified for endarterectomy should be referred for drug trials. Even though there are more effective ways to guarantee a sufficient, long-lasting septostomy, atrial septostomy is promising but undervalued. The procedure's indications remain the same and need to be taken into account more frequently. Class III or IV patients who are not improving need to be consulted at a transplant centre as soon as possible as they may be candidates for potential recipients of bilateral sequential lung or heart-lung transplants, which is a significant choice for some people. PH is rarely linked to other conditions like connective tissue or thromboembolic disease. It is either idiopathic or linked to congenital heart disease. Infants and children with PH are more frequently recognised in conjunction with a congenital diaphragmatic hernia and developmental lung diseases like bronchopulmonary dysplasia. Although the underlying disease has not yet been treated and advanced structural changes have not yet been reversed, the value of natural life and survival have suggestively increased. Children's haemodynamic and functional outcomes have improved as a result of endothelin receptor antagonists, prostacyclin analogues, and phosphodiesterase type 5 inhibitors, which are examples of targeted pulmonary vasodilator therapies. The health maintenance of paediatric PH is still difficult because treatment decisions are largely based on the findings of adult studies that have been supported by evidence and the clinical expertise of paediatric specialists.
Collapse
|
13
|
Reiter G, Kovacs G, Reiter C, Schmidt A, Fuchsjäger M, Olschewski H, Reiter U. Left atrial acceleration factor as a magnetic resonance 4D flow measure of mean pulmonary artery wedge pressure in pulmonary hypertension. Front Cardiovasc Med 2022; 9:972142. [PMID: 35990987 PMCID: PMC9381926 DOI: 10.3389/fcvm.2022.972142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background Mean pulmonary artery wedge pressure (PAWP) represents a right heart catheter (RHC) surrogate measure for mean left atrial (LA) pressure and is crucial for the clinical classification of pulmonary hypertension (PH). Hypothesizing that PAWP is related to acceleration of blood throughout the LA, we investigated whether an adequately introduced LA acceleration factor derived from magnetic resonance (MR) four-dimensional (4D) flow imaging could provide an estimate of PAWP in patients with known or suspected PH. Methods LA 4D flow data of 62 patients with known or suspected PH who underwent RHC and near-term 1.5 T cardiac MR (ClinicalTrials.gov identifier: NCT00575692) were retrospectively analyzed. Early diastolic LA peak outflow velocity (vE) as well as systolic (vS) and early diastolic (vD) LA peak inflow velocities were determined with prototype software to calculate the LA acceleration factor (α) defined as α = vE/[(vS + vD)/2]. Correlation, regression and Bland-Altman analysis were employed to investigate the relationship between α and PAWP, α-based diagnosis of elevated PAWP (>15 mmHg) was analyzed by receiver operating characteristic curve analysis. Results α correlated very strongly with PAWP (r = 0.94). Standard deviation of differences between RHC-derived PAWP and PAWP estimated from linear regression model (α = 0.61 + 0.10·PAWP) was 2.0 mmHg. Employing the linear-regression-derived cut-off α = 2.10, the α-based diagnosis of elevated PAWP revealed the area under the curve 0.97 with sensitivity/specificity 93%/92%. Conclusions The very close relationship between the LA acceleration factor α and RHC-derived PAWP suggests α as potential non-invasive parameter for the estimation of PAWP and the distinction between pre- and post-capillary PH.
Collapse
Affiliation(s)
- Gert Reiter
- Research & Development, Siemens Healthcare Diagnostics GmbH, Graz, Austria
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Gabor Kovacs
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Austria
| | - Clemens Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Austria
| | - Ursula Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Austria
- *Correspondence: Ursula Reiter
| |
Collapse
|
14
|
Garg P, Gosling R, Swoboda P, Jones R, Rothman A, Wild JM, Kiely DG, Condliffe R, Alabed S, Swift AJ. Cardiac magnetic resonance identifies raised left ventricular filling pressure: prognostic implications. Eur Heart J 2022; 43:2511-2522. [PMID: 35512290 PMCID: PMC9259376 DOI: 10.1093/eurheartj/ehac207] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 03/13/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022] Open
Abstract
AIMS Non-invasive imaging is routinely used to estimate left ventricular (LV) filling pressure (LVFP) in heart failure (HF). Cardiovascular magnetic resonance (CMR) is emerging as an important imaging tool for sub-phenotyping HF. However, currently, LVFP cannot be estimated from CMR. This study sought to investigate (i) if CMR can estimate LVFP in patients with suspected HF and (ii) if CMR-modelled LVFP has prognostic power. METHODS AND RESULTS Suspected HF patients underwent right heart catheterization (RHC), CMR and transthoracic echocardiography (TTE) (validation cohort only) within 24 h of each other. Right heart catheterization measured pulmonary capillary wedge pressure (PCWP) was used as a reference for LVFP. At follow-up, death was considered as the primary endpoint. We enrolled 835 patients (mean age: 65 ± 13 years, 40% male). In the derivation cohort (n = 708, 85%), two CMR metrics were associated with RHC PCWP:LV mass and left atrial volume. When applied to the validation cohort (n = 127, 15%), the correlation coefficient between RHC PCWP and CMR-modelled PCWP was 0.55 (95% confidence interval: 0.41-0.66, P < 0.0001). Cardiovascular magnetic resonance-modelled PCWP was superior to TTE in classifying patients as normal or raised filling pressures (76 vs. 25%). Cardiovascular magnetic resonance-modelled PCWP was associated with an increased risk of death (hazard ratio: 1.77, P < 0.001). At Kaplan-Meier analysis, CMR-modelled PCWP was comparable to RHC PCWP (≥15 mmHg) to predict survival at 7-year follow-up (35 vs. 37%, χ2 = 0.41, P = 0.52). CONCLUSION A physiological CMR model can estimate LVFP in patients with suspected HF. In addition, CMR-modelled LVFP has a prognostic role.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Rebecca Gosling
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Peter Swoboda
- The Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Rachel Jones
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Alexander Rothman
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Jim M Wild
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| |
Collapse
|
15
|
Non-Invasive Cardiac Output Determination Using Magnetic Resonance Imaging and Thermodilution in Pulmonary Hypertension. J Clin Med 2022; 11:jcm11102717. [PMID: 35628843 PMCID: PMC9143884 DOI: 10.3390/jcm11102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
Magnetic resonance imaging (MRI) can be used to measure cardiac output (CO) non-invasively, which is a paramount parameter in pulmonary hypertension (PH) patients. We retrospectively compared stroke volume (SV) obtained with MRI (SVMRI) in six localisations against SV measured with thermodilution (TD) (SVTD) and against each other in 24 patients evaluated in our PH centre using Bland and Altman (BA) agreement analyses, linear correlation, and intraclass correlation (ICC). None of the six tested localisations for SVMRI reached the predetermined criteria for interchangeability with SVTD, with two standard deviations (2SD) of bias between 24.1 mL/beat and 31.1 mL/beat. The SVMRI methods yielded better agreement when compared against each other than the comparison between SVMRI and SVTD, with the best 2SD of bias being 13.8 mL/beat. The inter-observer and intra-observer ICCs for COMRI were excellent (inter-observer ICC between 0.889 and 0.983 and intra-observer ICC between 0.991 and 0.999). We could not confirm the interchangeability of SVMRI with SVTD based on the predetermined interchangeability criteria. The lack of agreement between MRI and TD might be explained because TD is less precise than previously thought. We evaluated a new method to estimate CO through the pulmonary circulation (COp) in PH patients that may be more precise than the previously tested methods.
Collapse
|
16
|
Borges RR, Morato TN, Bezerra ASDA, Dias BA, Reinaux JCDF, Monte GU, Farage L. Avaliação de diferentes tempos de trânsito do meio de contraste intravascular em exames de tomografia computadorizada coronariana. Radiol Bras 2022; 55:161-166. [PMID: 35795606 PMCID: PMC9254703 DOI: 10.1590/0100-3984.2021.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
Objective To measure the transit times (TTs) of contrast agents among the injection
site (antecubital vein), superior vena cava, pulmonary trunk, and ascending
aorta, in coronary computed tomography angiography (CTA) examinations of
outpatients with no history of cardiovascular or lung disease, thus defining
reference values for those TTs. Materials and Methods The contrast TTs from the injection site (antecubital vein) to the superior
vena cava, from the superior vena cava to the pulmonary trunk, and from the
pulmonary trunk to the ascending aorta were measured by monitoring contrast
enhancement in real time (bolus tracking). Cardiac output was measured by
the geometric method during the CTA examination and was correlated with the
contrast TT. Results Forty-three individuals were analyzed. The mean contrast TT was 13.1 s
overall (from the antecubital vein to the ascending aorta), 3.0 s from the
superior vena cava to the pulmonary trunk, and 7.2 s from the pulmonary
trunk to the ascending aorta. There was a tendency toward a correlation
between contrast TT and cardiac output (p = 0.055). Conclusion The reference values established here for contrast TTs among the superior
vena cava, pulmonary trunk, and ascending aorta will serve as a basis for
clinical evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luciano Farage
- Radiolinea Centro de Imagens, Brasil; Universidade de Brasília (UnB), Brasil; Instituto de Cardiologia do Distrito Federal (ICDF), Brasil; Centro Universitário Euroamericano (Unieuro), Brasil
| |
Collapse
|
17
|
Ota H, Kamada H, Higuchi S, Takase K. Clinical Application of 4D Flow MR Imaging to Pulmonary Hypertension. Magn Reson Med Sci 2022; 21:309-318. [PMID: 35185084 PMCID: PMC9680544 DOI: 10.2463/mrms.rev.2021-0111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/19/2021] [Indexed: 10/14/2023] Open
Abstract
Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure (PAP). Although right-heart catheterization is the gold standard method for the diagnosis of PH by definition, various less-invasive imaging tests have been used for screening, detection of underlying diseases-causing PH, and monitoring of diseases. Among them, 4D flow MRI is an emerging and unique imaging test that allows for comprehensive visualization of blood flow in the right heart and proximal pulmonary arteries. The characteristic blood flow pattern observed in patients with PH is vortical flow formation in the main pulmonary artery. Recent studies have proposed the use of these findings to determine not only the presence of PH but also estimate the mean PAP. Other applications of 4D flow MRI for PH include measurement of wall shear stress, helicity, and 3D flow balance in the pulmonary arteries. It is worth noting that 4D flow has also the potential for longitudinal follow-ups. In this review, the clinical definition of PH, summary of conventional imaging tests, characteristics of pulmonary arterial flow as shown by 4D flow MRI, and clinical application of 4D flow MRI in the management of patients with PH will be discussed.
Collapse
Affiliation(s)
- Hideki Ota
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
- Department of Advanced MRI Collaboration Research, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroki Kamada
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Satoshi Higuchi
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
- Department of Advanced MRI Collaboration Research, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
18
|
Latus H, Meierhofer C. Role of cardiovascular magnetic resonance in pediatric pulmonary hypertension-novel concepts and imaging biomarkers. Cardiovasc Diagn Ther 2021; 11:1057-1069. [PMID: 34527532 DOI: 10.21037/cdt-20-270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/15/2020] [Indexed: 11/06/2022]
Abstract
Pulmonary hypertension (PH) in children is a heterogenous disease of the small pulmonary arteries characterized by a progressive increase in pulmonary vascular resistance. Despite adequate medical therapy, long-term pressure overload is frequently associated with a progressive course leading to right ventricular failure and ultimately death. Invasive hemodynamic assessment by cardiac catheterization is crucial for initial diagnosis, risk stratification and therapeutic strategy. Although echocardiography remains the most important imaging modality for the assessment of right ventricular function and pulmonary hemodynamics, cardiovascular magnetic resonance (CMR) has emerged as a valuable non-invasive imaging technique that enables comprehensive evaluation of biventricular performance, blood flow, morphology and the myocardial tissue. In this review, we summarize the principles and applications of CMR in the evaluation of pediatric PH patients and present an update about novel CMR based concepts and imaging biomarkers that may provide further diagnostic, therapeutic and prognostic information.
Collapse
Affiliation(s)
- Heiner Latus
- Clinic for Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Munich, Germany
| | - Christian Meierhofer
- Clinic for Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Munich, Germany
| |
Collapse
|
19
|
Correlation of Pulse Wave Transit Time with Pulmonary Artery Pressure in a Porcine Model of Pulmonary Hypertension. Biomedicines 2021; 9:biomedicines9091212. [PMID: 34572397 PMCID: PMC8467418 DOI: 10.3390/biomedicines9091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
For the non-invasive assessment of pulmonary artery pressure (PAP), surrogates like pulse wave transit time (PWTT) have been proposed. The aim of this study was to invasively validate for which kind of PAP (systolic, mean, or diastolic) PWTT is the best surrogate parameter. To assess both PWTT and PAP in six healthy pigs, two pulmonary artery Mikro-Tip™ catheters were inserted into the pulmonary vasculature at a fixed distance: one in the pulmonary artery trunk, and a second one in a distal segment of the pulmonary artery. PAP was raised using the thromboxane A2 analogue U46619 (TXA) and by hypoxic vasoconstriction. There was a negative linear correlation between PWTT and systolic PAP (r = 0.742), mean PAP (r = 0.712) and diastolic PAP (r = 0.609) under TXA. During hypoxic vasoconstriction, the correlation coefficients for systolic, mean, and diastolic PAP were consistently higher than for TXA-induced pulmonary hypertension (r = 0.809, 0.778 and 0.734, respectively). Estimation of sPAP, mPAP, and dPAP using PWTT is feasible, nevertheless slightly better correlation coefficients were detected for sPAP compared to dPAP. In this study we establish the physiological basis for future methods to obtain PAP by non-invasively measured PWTT.
Collapse
|
20
|
Inaccuracy of a non-invasive estimation of pulmonary vascular resistance assessed by cardiovascular magnetic resonance in heart failure patients. Sci Rep 2021; 11:16597. [PMID: 34400680 PMCID: PMC8368081 DOI: 10.1038/s41598-021-95897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/26/2021] [Indexed: 11/15/2022] Open
Abstract
Pulmonary vascular resistance (PVR) is a marker of pulmonary vascular remodeling. A non-invasive model assessed by cardiovascular magnetic resonance (CMR) has been proposed to estimate PVR. However, its accuracy has not yet been evaluated in patients with heart failure. We prospectively included 108 patients admitted with acute heart failure (AHF), in whom a right heart catheterization (RHC) and CMR were performed at the same day. PVR was estimated by CMR applying the model: PVR = 19.38 − [4.62 × Ln pulmonary artery average velocity (in cm/s)] − [0.08 × right ventricle ejection fraction (in %)], and by RHC using standard formulae. The median age of the cohort was 67 years (interquartile range 58–73), and 34% were females. The median of PVR assessed by RHC and CMR were 2.2 WU (1.5–4) and 5 WU (3.4–7), respectively. We found a weak correlation between invasive PVR and PVR assessed by CMR (Spearman r = 0.21, p = 0.02). The area under the ROC curve for PVR assessed by CMR to detect PVR ≥ 3 WU was 0.57, 95% confidence interval (CI): 0.47–0.68. In patients with AHF, the non-invasive estimation of PVR using CMR shows poor accuracy, as well as a limited capacity to discriminate increased PVR values.
Collapse
|
21
|
Cardiovascular magnetic resonance predicts all-cause mortality in pulmonary hypertension associated with heart failure with preserved ejection fraction. Int J Cardiovasc Imaging 2021; 37:3019-3025. [PMID: 33978936 PMCID: PMC8494694 DOI: 10.1007/s10554-021-02279-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/04/2021] [Indexed: 01/30/2023]
Abstract
This study aimed to determine the prognostic value of cardiovascular magnetic resonance (CMR) in patients with heart failure with preserved ejection fraction and associated pulmonary hypertension (pulmonary hypertension-HFpEF). Patients with pulmonary hypertension-HFpEF were recruited from the ASPIRE registry and underwent right heart catheterisation (RHC) and CMR. On RHC, the inclusion criteria was a mean pulmonary artery pressure (MPAP) ≥ 25 mmHg and pulmonary arterial wedge pressure > 15 mmHg and, on CMR, a left atrial volume > 41 ml/m2 with left ventricular ejection fraction > 50%. Cox regression was performed to evaluate CMR against all-cause mortality. In this study, 116 patients with pulmonary hypertension-HFpEF were identified. Over a mean follow-up period of 3 ± 2 years, 61 patients with pulmonary hypertension-HFpEF died (53%). In univariate regression, 11 variables demonstrated association to mortality: indexed right ventricular (RV) volumes and stroke volume, right ventricular ejection fraction (RVEF), indexed RV mass, septal angle, pulmonary artery systolic/diastolic area and its relative area change. In multivariate regression, only three variables were independently associated with mortality: RVEF (HR 0.64, P < 0.001), indexed RV mass (HR 1.46, P < 0.001) and IV septal angle (HR 1.48, P < 0.001). Our CMR model had 0.76 area under the curve (P < 0.001) to predict mortality. This study confirms that pulmonary hypertension in patients with HFpEF is associated with a poor prognosis and we observe that CMR can risk stratify these patients and predict all-cause mortality. When patients with HFpEF develop pulmonary hypertension, CMR measures that reflect right ventricular afterload and function predict all-cause mortality.
Collapse
|
22
|
Abstract
Purpose of Review Pulmonary arterial hypertension (PAH) is a progressive disease with high mortality. A greater understanding of the physiology and function of the cardiovascular system in PAH will help improve survival. This review covers the latest advances within cardiovascular magnetic resonance imaging (CMR) regarding diagnosis, evaluation of treatment, and prognostication of patients with PAH. Recent Findings New CMR measures that have been proven relevant in PAH include measures of ventricular and atrial volumes and function, tissue characterization, pulmonary artery velocities, and arterio-ventricular coupling. Summary CMR markers carry prognostic information relevant for clinical care such as treatment response and thereby can affect survival. Future research should investigate if CMR, as a non-invasive method, can improve existing measures or even provide new and better measures in the diagnosis, evaluation of treatment, and determination of prognosis of PAH.
Collapse
|
23
|
Zambrano BA, McLean N, Zhao X, Tan JL, Zhong L, Figueroa CA, Lee LC, Baek S. Patient-Specific Computational Analysis of Hemodynamics and Wall Mechanics and Their Interactions in Pulmonary Arterial Hypertension. Front Bioeng Biotechnol 2021; 8:611149. [PMID: 33634080 PMCID: PMC7901991 DOI: 10.3389/fbioe.2020.611149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Vascular wall stiffness and hemodynamic parameters are potential biomechanical markers for detecting pulmonary arterial hypertension (PAH). Previous computational analyses, however, have not considered the interaction between blood flow and wall deformation. Here, we applied an established computational framework that utilizes patient-specific measurements of hemodynamics and wall deformation to analyze the coupled fluid-vessel wall interaction in the proximal pulmonary arteries (PA) of six PAH patients and five control subjects. Specifically, we quantified the linearized stiffness (E), relative area change (RAC), diastolic diameter (D), regurgitant flow, and time-averaged wall shear stress (TAWSS) of the proximal PA, as well as the total arterial resistance (R t ) and compliance (C t ) at the distal pulmonary vasculature. Results found that the average proximal PA was stiffer [median: 297 kPa, interquartile range (IQR): 202 kPa vs. median: 75 kPa, IQR: 5 kPa; P = 0.007] with a larger diameter (median: 32 mm, IQR: 5.25 mm vs. median: 25 mm, IQR: 2 mm; P = 0.015) and a reduced RAC (median: 0.22, IQR: 0.10 vs. median: 0.42, IQR: 0.04; P = 0.004) in PAH compared to our control group. Also, higher total resistance (R t ; median: 6.89 mmHg × min/l, IQR: 2.16 mmHg × min/l vs. median: 3.99 mmHg × min/l, IQR: 1.15 mmHg × min/l; P = 0.002) and lower total compliance (C t ; median: 0.13 ml/mmHg, IQR: 0.15 ml/mmHg vs. median: 0.85 ml/mmHg, IQR: 0.51 ml/mmHg; P = 0.041) were observed in the PAH group. Furthermore, lower TAWSS values were seen at the main PA arteries (MPAs) of PAH patients (median: 0.81 Pa, IQR: 0.47 Pa vs. median: 1.56 Pa, IQR: 0.89 Pa; P = 0.026) compared to controls. Correlation analysis within the PAH group found that E was directly correlated to the PA regurgitant flow (r = 0.84, P = 0.018) and inversely related to TAWSS (r = -0.72, P = 0.051). Results suggest that the estimated elastic modulus E may be closely related to PAH hemodynamic changes in pulmonary arteries.
Collapse
Affiliation(s)
- Byron A. Zambrano
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Nathan McLean
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Xiaodan Zhao
- National Heart Centre Singapore, Singapore, Singapore
| | - Ju-Le Tan
- National Heart Centre Singapore, Singapore, Singapore
| | - Liang Zhong
- National Heart Centre Singapore, Singapore, Singapore
- Duke-National University of Singapore, Singapore, Singapore
| | - C. Alberto Figueroa
- Departments of Biomedical Engineering and Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
24
|
Swift AJ, Lu H, Uthoff J, Garg P, Cogliano M, Taylor J, Metherall P, Zhou S, Johns CS, Alabed S, Condliffe RA, Lawrie A, Wild JM, Kiely DG. A machine learning cardiac magnetic resonance approach to extract disease features and automate pulmonary arterial hypertension diagnosis. Eur Heart J Cardiovasc Imaging 2021; 22:236-245. [PMID: 31998956 PMCID: PMC7822638 DOI: 10.1093/ehjci/jeaa001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/06/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) is a progressive condition with high mortality. Quantitative cardiovascular magnetic resonance (CMR) imaging metrics in PAH target individual cardiac structures and have diagnostic and prognostic utility but are challenging to acquire. The primary aim of this study was to develop and test a tensor-based machine learning approach to holistically identify diagnostic features in PAH using CMR, and secondarily, visualize and interpret key discriminative features associated with PAH. METHODS AND RESULTS Consecutive treatment naive patients with PAH or no evidence of pulmonary hypertension (PH), undergoing CMR and right heart catheterization within 48 h, were identified from the ASPIRE registry. A tensor-based machine learning approach, multilinear subspace learning, was developed and the diagnostic accuracy of this approach was compared with standard CMR measurements. Two hundred and twenty patients were identified: 150 with PAH and 70 with no PH. The diagnostic accuracy of the approach was high as assessed by area under the curve at receiver operating characteristic analysis (P < 0.001): 0.92 for PAH, slightly higher than standard CMR metrics. Moreover, establishing the diagnosis using the approach was less time-consuming, being achieved within 10 s. Learnt features were visualized in feature maps with correspondence to cardiac phases, confirming known and also identifying potentially new diagnostic features in PAH. CONCLUSION A tensor-based machine learning approach has been developed and applied to CMR. High diagnostic accuracy has been shown for PAH diagnosis and new learnt features were visualized with diagnostic potential.
Collapse
Affiliation(s)
- Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- INSIGNEO, Institute for In Silico Medicine, The University of Sheffield, The Pam Liversidge Building, Sir Frederick Mappin Building, F Floor, Mappin Street, Sheffield, S1 3JD, UK
| | - Haiping Lu
- INSIGNEO, Institute for In Silico Medicine, The University of Sheffield, The Pam Liversidge Building, Sir Frederick Mappin Building, F Floor, Mappin Street, Sheffield, S1 3JD, UK
- Department of Computer Science, The University of Sheffield, 211 Portobello, Sheffield, S1 4DP, UK
| | - Johanna Uthoff
- Department of Computer Science, The University of Sheffield, 211 Portobello, Sheffield, S1 4DP, UK
| | - Pankaj Garg
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Marcella Cogliano
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jonathan Taylor
- Radiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Rd, Sheffield S10 2JF, UK
| | - Peter Metherall
- Radiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Rd, Sheffield S10 2JF, UK
| | - Shuo Zhou
- Department of Computer Science, The University of Sheffield, 211 Portobello, Sheffield, S1 4DP, UK
| | - Christopher S Johns
- Radiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Rd, Sheffield S10 2JF, UK
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Radiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Rd, Sheffield S10 2JF, UK
| | - Robin A Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Rd, Sheffield S10 2JF, UK
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jim M Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Rd, Sheffield S10 2JF, UK
| |
Collapse
|
25
|
Harder EM, Vanderpool R, Rahaghi FN. Advanced Imaging in Pulmonary Vascular Disease. Clin Chest Med 2021; 42:101-112. [PMID: 33541604 DOI: 10.1016/j.ccm.2020.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the diagnosis of pulmonary hypertension requires invasive testing, imaging serves an important role in the screening, classification, and monitoring of patients with pulmonary vascular disease (PVD). The development of advanced imaging techniques has led to improvements in the understanding of disease pathophysiology, noninvasive assessment of hemodynamics, and stratification of patient risk. This article discusses the current role of advanced imaging and the emerging novel techniques for visualizing the lung parenchyma, mediastinum, and heart in PVD.
Collapse
Affiliation(s)
- Eileen M Harder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 15 Francis Street, Boston, MA 02115, USA.
| | - Rebecca Vanderpool
- Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona, 1656 East Mabel Street, Tucson, AZ 85721, USA. https://twitter.com/rrvdpool
| | - Farbod N Rahaghi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 15 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
26
|
Remy-Jardin M, Ryerson CJ, Schiebler ML, Leung ANC, Wild JM, Hoeper MM, Alderson PO, Goodman LR, Mayo J, Haramati LB, Ohno Y, Thistlethwaite P, van Beek EJR, Knight SL, Lynch DA, Rubin GD, Humbert M. Imaging of pulmonary hypertension in adults: a position paper from the Fleischner Society. Eur Respir J 2021; 57:57/1/2004455. [PMID: 33402372 DOI: 10.1183/13993003.04455-2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Pulmonary hypertension (PH) is defined by a mean pulmonary artery pressure greater than 20 mmHg and classified into five different groups sharing similar pathophysiologic mechanisms, haemodynamic characteristics, and therapeutic management. Radiologists play a key role in the multidisciplinary assessment and management of PH. A working group was formed from within the Fleischner Society based on expertise in the imaging and/or management of patients with PH, as well as experience with methodologies of systematic reviews. The working group identified key questions focusing on the utility of CT, MRI, and nuclear medicine in the evaluation of PH: a) Is noninvasive imaging capable of identifying PH? b) What is the role of imaging in establishing the cause of PH? c) How does imaging determine the severity and complications of PH? d) How should imaging be used to assess chronic thromboembolic PH before treatment? e) Should imaging be performed after treatment of PH? This systematic review and position paper highlights the key role of imaging in the recognition, work-up, treatment planning, and follow-up of PH.
Collapse
Affiliation(s)
- Martine Remy-Jardin
- Dept of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, Lille, France.,Chair of the Fleischner Society writing committee of the position paper for imaging of pulmonary hypertension
| | - Christopher J Ryerson
- Dept of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Mark L Schiebler
- Dept of Radiology, UW-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ann N C Leung
- Dept of Radiology, Stanford University Medical Center, Stanford, CA, USA
| | - James M Wild
- Division of Imaging, Dept of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Marius M Hoeper
- Dept of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany
| | - Philip O Alderson
- Dept of Radiology, Saint Louis University School of Medicine, St Louis, MO, USA
| | | | - John Mayo
- Dept of Radiology, Vancouver General Hospital, Vancouver, BC, Canada
| | - Linda B Haramati
- Dept of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yoshiharu Ohno
- Dept of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | | | - Edwin J R van Beek
- Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Shandra Lee Knight
- Dept of Library and Knowledge Services, National Jewish Health, Denver, CO, USA
| | - David A Lynch
- Dept of Radiology, National Jewish Health, Denver, CO, USA
| | - Geoffrey D Rubin
- Dept of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Marc Humbert
- Université Paris Saclay, Inserm UMR S999, Dept of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France.,Co-Chair of the Fleischner Society writing committee of the position paper for imaging of pulmonary hypertension
| |
Collapse
|
27
|
Remy-Jardin M, Ryerson CJ, Schiebler ML, Leung ANC, Wild JM, Hoeper MM, Alderson PO, Goodman LR, Mayo J, Haramati LB, Ohno Y, Thistlethwaite P, van Beek EJR, Knight SL, Lynch DA, Rubin GD, Humbert M. Imaging of Pulmonary Hypertension in Adults: A Position Paper from the Fleischner Society. Radiology 2021; 298:531-549. [PMID: 33399507 DOI: 10.1148/radiol.2020203108] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pulmonary hypertension (PH) is defined by a mean pulmonary artery pressure greater than 20 mm Hg and classified into five different groups sharing similar pathophysiologic mechanisms, hemodynamic characteristics, and therapeutic management. Radiologists play a key role in the multidisciplinary assessment and management of PH. A working group was formed from within the Fleischner Society based on expertise in the imaging and/or management of patients with PH, as well as experience with methodologies of systematic reviews. The working group identified key questions focusing on the utility of CT, MRI, and nuclear medicine in the evaluation of PH: (a) Is noninvasive imaging capable of identifying PH? (b) What is the role of imaging in establishing the cause of PH? (c) How does imaging determine the severity and complications of PH? (d) How should imaging be used to assess chronic thromboembolic PH before treatment? (e) Should imaging be performed after treatment of PH? This systematic review and position paper highlights the key role of imaging in the recognition, work-up, treatment planning, and follow-up of PH. This article is a simultaneous joint publication in Radiology and European Respiratory Journal. The articles are identical except for stylistic changes in keeping with each journal's style. Either version may be used in citing this article. © 2021 RSNA and the European Respiratory Society. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Martine Remy-Jardin
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Christopher J Ryerson
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Mark L Schiebler
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Ann N C Leung
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - James M Wild
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Marius M Hoeper
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Philip O Alderson
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Lawrence R Goodman
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - John Mayo
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Linda B Haramati
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Yoshiharu Ohno
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Patricia Thistlethwaite
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Edwin J R van Beek
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Shandra Lee Knight
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - David A Lynch
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Geoffrey D Rubin
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Marc Humbert
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| |
Collapse
|
28
|
Bucciarelli-Ducci C, Ostenfeld E, Baldassarre LA, Ferreira VM, Frank L, Kallianos K, Raman SV, Srichai MB, McAlindon E, Mavrogeni S, Ntusi NAB, Schulz-Menger J, Valente AM, Ordovas KG. Cardiovascular disease in women: insights from magnetic resonance imaging. J Cardiovasc Magn Reson 2020; 22:71. [PMID: 32981527 PMCID: PMC7520984 DOI: 10.1186/s12968-020-00666-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The presentation and identification of cardiovascular disease in women pose unique diagnostic challenges compared to men, and underrecognized conditions in this patient population may lead to clinical mismanagement.This article reviews the sex differences in cardiovascular disease, explores the diagnostic and prognostic role of cardiovascular magnetic resonance (CMR) in the spectrum of cardiovascular disorders in women, and proposes the added value of CMR compared to other imaging modalities. In addition, this article specifically reviews the role of CMR in cardiovascular diseases occurring more frequently or exclusively in female patients, including Takotsubo cardiomyopathy, connective tissue disorders, primary pulmonary arterial hypertension and peripartum cardiomyopathy. Gaps in knowledge and opportunities for further investigation of sex-specific cardiovascular differences by CMR are also highlighted.
Collapse
Affiliation(s)
- Chiara Bucciarelli-Ducci
- Bristol Heart Institute, Bristol National Institute of Health Research (NIHR) Biomedical Research Centre, University Hospitals Bristol and University of Bristol, Bristol, UK
| | - Ellen Ostenfeld
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital Lund, Lund University, Getingevägen 5, SE-22185 Lund, Sweden
| | | | - Vanessa M. Ferreira
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Luba Frank
- University of Texas Medical Branch, Galveston, TX USA
| | | | | | | | - Elisa McAlindon
- Heart and Lung Centre, New Cross Hospital, Wolverhampton, UK
| | | | | | | | | | | |
Collapse
|
29
|
MR 4D flow-based mean pulmonary arterial pressure tracking in pulmonary hypertension. Eur Radiol 2020; 31:1883-1893. [PMID: 32974687 PMCID: PMC7979582 DOI: 10.1007/s00330-020-07287-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/26/2020] [Accepted: 09/11/2020] [Indexed: 11/08/2022]
Abstract
Objectives Longitudinal hemodynamic follow-up is important in the management of pulmonary hypertension (PH). This study aimed to evaluate the potential of MR 4-dimensional (4D) flow imaging to predict changes in the mean pulmonary arterial pressure (mPAP) during serial investigations. Methods Forty-four adult patients with PH or at risk of developing PH repeatedly underwent routine right heart catheterization (RHC) and near-term MR 4D flow imaging of the main pulmonary artery. The duration of vortical blood flow along the main pulmonary artery was evaluated from MR 4D velocity fields using prototype software and converted to an MR 4D flow imaging-based mPAP estimate (mPAPMR) by a previously established model. The relationship of differences between RHC-derived baseline and follow-up mPAP values (ΔmPAP) to corresponding differences in mPAPMR (ΔmPAPMR) was analyzed by means of regression and Bland-Altman analysis; the diagnostic performance of ΔmPAPMR in predicting mPAP increases or decreases was investigated by ROC analysis. Results Areas under the curve for the prediction of mPAP increases and decreases were 0.92 and 0.93, respectively. With the natural cutoff ΔmPAPMR = 0 mmHg, mPAP increases (decreases) were predicted with an accuracy, sensitivity, and specificity of 91% (91%), 85% (89%), and 94% (92%), respectively. For patients in whom 4D flow allowed a point estimate of mPAP (mPAP > 16 mmHg), ΔmPAPMR correlated strongly with ΔmPAP (r = 0.91) and estimated ΔmPAP bias-free with a standard deviation of 5.1 mmHg. Conclusions MR 4D flow imaging allows accurate non-invasive prediction and quantification of mPAP changes in adult patients with PH or at risk of developing PH. Trial registration ClinicalTrials.gov identifier: NCT00575692 and NCT01725763 Key Points • MR 4D flow imaging allows accurate non-invasive prediction of mean pulmonary arterial pressure increases and decreases in adult patients with or at risk of developing pulmonary hypertension. • In adult patients with mean pulmonary arterial pressure > 16 mmHg, MR 4D flow imaging allows estimation of longitudinal mean pulmonary arterial pressure changes without bias with a standard deviation of 5.1 mmHg.
Collapse
|
30
|
Aryal SR, Sharifov OF, Lloyd SG. Emerging role of cardiovascular magnetic resonance imaging in the management of pulmonary hypertension. Eur Respir Rev 2020; 29:29/156/190138. [PMID: 32620585 DOI: 10.1183/16000617.0138-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a clinical condition characterised by elevation of pulmonary arterial pressure (PAP) above normal range due to various aetiologies. While cardiac right-heart catheterisation (RHC) remains the gold standard and mandatory for establishing the diagnosis of PH, noninvasive imaging of the heart plays a central role in the diagnosis and management of all forms of PH. Although Doppler echocardiography (ECHO) can measure a range of haemodynamic and anatomical variables, it has limited utility for visualisation of the pulmonary artery and, oftentimes, the right ventricle. Cardiovascular magnetic resonance (CMR) provides comprehensive information about the anatomical and functional aspects of the pulmonary artery and right ventricle that are of prognostic significance for assessment of long-term outcomes in disease progression. CMR is suited for serial follow-up of patients with PH due to its noninvasive nature, high sensitivity to changes in anatomical and functional parameters, and high reproducibility. In recent years, there has been growing interest in the use of CMR derived parameters as surrogate endpoints for early-phase PH clinical trials. This review will discuss the role of CMR in the diagnosis and management of PH, including current applications and future developments, in comparison to other existing major imaging modalities.
Collapse
Affiliation(s)
- Sudeep R Aryal
- Dept of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Oleg F Sharifov
- Dept of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Steven G Lloyd
- Dept of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA .,Birmingham VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
31
|
Hirani N, Brunner NW, Kapasi A, Chandy G, Rudski L, Paterson I, Langleben D, Mehta S, Mielniczuk L. Canadian Cardiovascular Society/Canadian Thoracic Society Position Statement on Pulmonary Hypertension. Can J Cardiol 2020; 36:977-992. [DOI: 10.1016/j.cjca.2019.11.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/15/2022] Open
|
32
|
Wessels JN, de Man FS, Vonk Noordegraaf A. The use of magnetic resonance imaging in pulmonary hypertension: why are we still waiting? Eur Respir Rev 2020; 29:29/156/200139. [PMID: 32620588 DOI: 10.1183/16000617.0139-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/07/2020] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jeroen N Wessels
- Dept of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frances S de Man
- Dept of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Anton Vonk Noordegraaf
- Dept of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Po JR, Tong M, Meeran T, Potluri A, Raina A, Doyle M, Biederman R. Quantification of Cardiac Output with Phase Contrast Magnetic Resonance Imaging in Patients with Pulmonary Hypertension. J Clin Imaging Sci 2020; 10:26. [PMID: 32363088 PMCID: PMC7193209 DOI: 10.25259/jcis_36_2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 11/04/2022] Open
Abstract
Objective The purpose of the study is to compare phase contrast (PC) imaging with invasive measurements of cardiac output (CO) in patients with pulmonary hypertension (PH). Materials and Methods We analyzed 81 cases with PH who underwent cardiac magnetic resonance imaging and right heart catheterization (RHC). Measurement of CO and stroke volume (SV) by cardiac magnetic resonance (CMR) was performed by PC imaging of the proximal aorta (Ao) and pulmonary artery (Pa) and by RHC using the Fick and thermodilution (TD) methods. Results There was good correlation in CO measurements between PC and RHC; however, there was better correlation with SV measurements; Fick-TD (r=0.85), PC-TD (Ao r=0.77, Pa r=0.79), and PC-Fick (Ao r = 0.73, Pa r = 0.78). Bland-Altman analysis of SV showed that Pa PC had slightly lower standard deviation than Ao PC; PC-Fick (Pa SD = 15.11 vs. Ao SD = 16.4 ml) and PC-TD (Pa SD = 16.99 ml vs. Ao SD = 17.4 ml) while Fick-TD had the lowest (SD = 14.4 ml). Compared to Fick, measurement of SV with Ao PC (‒4.12 ml) and Pa PC (0.22 ml) both had lower mean difference than TD (‒11.1 ml). Conclusion Non-invasive measurement of CO and SV using PC-CMR correlates well with invasive measurement using RHC. Our study showed that PC-CMR had high accuracy and precision when compared to Fick. Among all the modalities, PC-CMR contributed the least amount of variation in measurements.
Collapse
Affiliation(s)
- Jose Ricardo Po
- Borgess Heart Institute, Ascension Borgess Hospital, 1722 Shaffer St., Kalamazoo, Michigan, United States
| | - Matthew Tong
- Department of Cardiovascular Medicine, Wexner Medical Center, 410 W 10th Ave, Columbus, Ohio, United States
| | - Talha Meeran
- Department of Cardiology, Fortis Hospital Mulund, Mumbai, Maharashtra, India
| | - Alekhya Potluri
- Department of Cardiology, Einstein Medical Center, 5401 Old York Road, Philadelphia, United States
| | - Amresh Raina
- Cardiovascular Institute, Allegheny General Hospital, 320 E North Ave., Pittsburgh, Pennsylvania, United States
| | - Mark Doyle
- Cardiovascular Institute, Allegheny General Hospital, 320 E North Ave., Pittsburgh, Pennsylvania, United States
| | - Robert Biederman
- Cardiovascular Institute, Allegheny General Hospital, 320 E North Ave., Pittsburgh, Pennsylvania, United States
| |
Collapse
|
34
|
Swift AJ, Dwivedi K, Johns C, Garg P, Chin M, Currie BJ, Rothman AM, Capener D, Shahin Y, Elliot CA, Charalampopolous T, Sabroe I, Rajaram S, Hill C, Wild JM, Condliffe R, Kiely DG. Diagnostic accuracy of CT pulmonary angiography in suspected pulmonary hypertension. Eur Radiol 2020; 30:4918-4929. [PMID: 32342182 PMCID: PMC7431437 DOI: 10.1007/s00330-020-06846-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/23/2019] [Accepted: 03/30/2020] [Indexed: 01/29/2023]
Abstract
Objectives Computed tomography (CT) pulmonary angiography is widely used in patients with suspected pulmonary hypertension (PH). However, the diagnostic and prognostic significance remains unclear. The aim of this study was to (a) build a diagnostic CT model and (b) test its prognostic significance. Methods Consecutive patients with suspected PH undergoing routine CT pulmonary angiography and right heart catheterisation (RHC) were identified. Axial and reconstructed images were used to derive CT metrics. Multivariate regression analysis was performed in the derivation cohort to identify a diagnostic CT model to predict mPAP ≥ 25 mmHg (the existing ESC guideline definition of PH) and > 20 mmHg (the new threshold proposed at the 6th World Symposium on PH). In the validation cohort, sensitivity, specificity and compromise CT thresholds were identified with receiver operating characteristic (ROC) analysis. The prognostic value of the CT model was assessed using Kaplan-Meier analysis. Results Between 2012 and 2016, 491 patients were identified. In the derivation cohort (n = 247), a CT model was identified including pulmonary artery diameter, right ventricular outflow tract thickness, septal angle and left ventricular area. In the validation cohort (n = 244), the model was diagnostic, with an area under the ROC curve of 0.94/0.91 for mPAP ≥ 25/> 20 mmHg respectively. In the validation cohort, 93 patients died; mean follow-up was 42 months. The diagnostic thresholds for the CT model were prognostic, log rank, all p < 0.01. Discussion In suspected PH, a diagnostic CT model had diagnostic and prognostic utility. Key Points • Diagnostic CT models have high diagnostic accuracy in a tertiary referral population of with suspected PH. • Diagnostic CT models stratify patients by mortality in suspected PH. Electronic supplementary material The online version of this article (10.1007/s00330-020-06846-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK. .,INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK. .,Academic Unit of Radiology, University of Sheffield, C Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK.
| | - Krit Dwivedi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Chris Johns
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Pankaj Garg
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Matthew Chin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ben J Currie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alex Mk Rothman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Dave Capener
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Yousef Shahin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Charlie A Elliot
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thanos Charalampopolous
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ian Sabroe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Smitha Rajaram
- Radiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Catherine Hill
- Radiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jim M Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - David G Kiely
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
35
|
Wang L, Chen X, Wan K, Gong C, Li W, Xu Y, Wang J, He J, Wen B, Han Y, Zeng R, Chen Y. Diagnostic and prognostic value of right ventricular eccentricity index in pulmonary artery hypertension. Pulm Circ 2020; 10:2045894019899778. [PMID: 32313641 DOI: 10.1177/2045894019899778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/18/2019] [Indexed: 02/05/2023] Open
Abstract
The right ventricle experiences dynamic changes under pressure overload in pulmonary artery hypertension. This study aimed to evaluate the diagnostic and prognostic value of right ventricular eccentricity index (RVEI) in pulmonary artery hypertension. A total of 100 pulmonary artery hypertension patients (mean age, 36.85 (SD, 13.60) years; males, 30.0%) confirmed by right heart catheterization and 147 healthy volunteers (mean age 45.58 (SD, 17.58) years; males, 42.50%) were enrolled in this prospective study. All participants underwent cardiac magnetic resonance imaging (MRI) examination, and balanced steady-state free precession (bSSFP) cine sequences were acquired. RVEI was measured on short-axis cine images at the mid-ventricular level of the right ventricle in end systole. The study found that RVEI was significantly lower in pulmonary artery hypertension patients than in healthy volunteers (1.84 (SD, 0.40) vs. 2.46 (SD, 0.40); p < 0.001). In pulmonary artery hypertension patients, RVEI was correlated with log(NT-proBNP) (r = -0.388; p < 0.001), right ventricular end-diastolic volume index (r = -0.452; p < 0.001), right ventricular end-systolic volume index (r = -0.518; p < 0.001), and right ventricular ejection fraction (r = 0.552; p < 0.001). RVEI could discriminate pulmonary artery hypertension patients from healthy volunteers with 91.8% sensitivity and 68.0% specificity. Over median follow-up of 14.8 months (interquartile range: 6.7-26.9 months), RVEI was demonstrated to be an independent predictor for adverse outcome (HR = 0.076; 95% CI, 0.013-0.458; p = 0.005). In conclusion, MRI-derived RVEI appears to be a useful diagnostic and prognostic value in pulmonary artery hypertension, and it provides incremental value to risk stratification strategy.
Collapse
Affiliation(s)
- Lili Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xiaoling Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Ke Wan
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chao Gong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Weihao Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Jie Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Juan He
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Bi Wen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yuchi Han
- Department of Medicine (Cardiovascular Division), University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Zeng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
36
|
Gupta A, Sharifov OF, Lloyd SG, Tallaj JA, Aban I, Dell'italia LJ, Denney TS, Gupta H. Novel Noninvasive Assessment of Pulmonary Arterial Stiffness Using Velocity Transfer Function. J Am Heart Assoc 2019; 7:e009459. [PMID: 30371198 PMCID: PMC6222968 DOI: 10.1161/jaha.118.009459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Pulmonary artery (PA) stiffness is associated with increased pulmonary vascular resistance (PVR). PA stiffness is accurately described by invasive PA impedance because it considers pulsatile blood flow through elastic PAs. We hypothesized that PA stiffness and impedance could be evaluated noninvasively by PA velocity transfer function (VTF), calculated as a ratio of the frequency spectra of output/input mean velocity profiles in PAs. Methods and Results In 20 participants (55±19 years, 14 women) undergoing clinically indicated right‐sided heart catheterization, comprehensive phase‐contrast and cine‐cardiac magnetic resonance imaging was performed to calculate PA VTF, along with right ventricular mass and function. PA impedance was measured as a ratio of frequency spectra of invasive PA pressure and echocardiographically derived PA flow waveforms. Mean PA pressure was 29.5±13.6 mm Hg, and PVR was 3.5±2.8 Wood units. A mixed‐effects model showed VTF was significantly associated with PA impedance independent of elevation in pulmonary capillary wedge pressure (P=0.005). The mean of higher frequency moduli of VTF correlated with PVR (ρ=0.63; P=0.003) and discriminated subjects with low (n=10) versus elevated PVR (≥2.5 Wood units, n=10), with an area under the curve of 0.95, similar to discrimination by impedance (area under the curve=0.93). VTF had a strong inverse association with right ventricular ejection fraction (ρ=−0.73; P<0.001) and a significant positive correlation with right ventricular mass index (ρ=0.51; P=0.02). Conclusions VTF, a novel right ventricular–PA axis coupling parameter, is a surrogate for PA impedance with the potential to assess PA stiffness and elevation in PVR noninvasively and reliably using cardiac magnetic resonance imaging.
Collapse
Affiliation(s)
- Ankur Gupta
- 1 Division of Cardiovascular Disease Department of Medicine University of Alabama at Birmingham AL.,3 Division of Cardiovascular Medicine and Department of Radiology Brigham and Women's Hospital Heart and Vascular Center Harvard Medical School Boston MA
| | - Oleg F Sharifov
- 1 Division of Cardiovascular Disease Department of Medicine University of Alabama at Birmingham AL
| | - Steven G Lloyd
- 1 Division of Cardiovascular Disease Department of Medicine University of Alabama at Birmingham AL.,4 Veterans Affairs Medical Center Birmingham AL
| | - Jose A Tallaj
- 1 Division of Cardiovascular Disease Department of Medicine University of Alabama at Birmingham AL.,4 Veterans Affairs Medical Center Birmingham AL
| | - Inmaculada Aban
- 2 Department of Biostatistics University of Alabama at Birmingham AL
| | - Louis J Dell'italia
- 1 Division of Cardiovascular Disease Department of Medicine University of Alabama at Birmingham AL.,4 Veterans Affairs Medical Center Birmingham AL
| | - Thomas S Denney
- 5 Department of Electrical and Computer Engineering Auburn University Auburn AL
| | - Himanshu Gupta
- 1 Division of Cardiovascular Disease Department of Medicine University of Alabama at Birmingham AL.,4 Veterans Affairs Medical Center Birmingham AL.,6 Valley Medical Group Ridgewood NJ
| |
Collapse
|
37
|
Junqueira FP, Sasdeli Neto R. Cardiac magnetic resonance imaging and clinical prognosis in pulmonary arterial hypertension. Radiol Bras 2019; 52:V-VI. [PMID: 32047341 PMCID: PMC7007055 DOI: 10.1590/0100-3984.2019.52.6e1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Flávia Pegado Junqueira
- Department of Radiology, Delboni Auriemo - DASA, and Center for Diagnostic Imaging, Hospital Moriah, São Paulo, SP, Brazil.
| | - Roberto Sasdeli Neto
- Center for Diagnostic Imaging, Hospital Moriah, and Department of Imaging, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| |
Collapse
|
38
|
Sieren MM, Berlin C, Oechtering TH, Hunold P, Drömann D, Barkhausen J, Frydrychowicz A. Comparison of 4D Flow MRI to 2D Flow MRI in the pulmonary arteries in healthy volunteers and patients with pulmonary hypertension. PLoS One 2019; 14:e0224121. [PMID: 31648286 PMCID: PMC6812822 DOI: 10.1371/journal.pone.0224121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/06/2019] [Indexed: 01/23/2023] Open
Abstract
Purpose 4D and 2D phase-contrast MRI (2D Flow MRI, 4D Flow MRI, respectively) are increasingly being used to noninvasively assess pulmonary hypertension (PH). The goals of this study were i) to evaluate whether established quantitative parameters in 2D Flow MRI associated with pulmonary hypertension can be assessed using 4D Flow MRI; ii) to compare results from 4D Flow MRI on a digital broadband 3T MR system with data from clinically established MRI-techniques as well as conservation of mass analysis and phantom correction and iii) to elaborate on the added value of secondary flow patterns in detecting PH. Methods 11 patients with PH (4f, 63 ± 16y), 15 age-matched healthy volunteers (9f, 56 ± 11y), and 20 young healthy volunteers (13f, 23 ± 2y) were scanned on a 3T MR scanner (Philips Ingenia). Subjects were examined with a 4D Flow, a 2D Flow and a bSSFP sequence. For extrinsic comparison, quantitative parameters measured with 4D Flow MRI were compared to i) a static phantom, ii) 2D Flow acquisitions and iii) stroke volume derived from a bSSFP sequence. For intrinsic comparison conservation of mass-analysis was employed. Dedicated software was used to extract various flow, velocity, and anatomical parameters. Visualization of blood flow was performed to detect secondary flow patterns. Results Overall, there was good agreement between all techniques, 4D Flow results revealed a considerable spread. Data improved after phantom correction. Both 4D and 2D Flow MRI revealed concordant results to differentiate patients from healthy individuals, especially based on values derived from anatomical parameters. The visualization of a vortex, indicating the presence of PH was achieved in 9 /11 patients and 2/35 volunteers. Discussion This study confirms that quantitative parameters used for characterizing pulmonary hypertension can be gathered using 4D Flow MRI within clinically reasonable limits of agreement. Despite its unfavorable spatial and lesser temporal resolution and a non-neglible spread of results, the identification of diseased study participants was possible.
Collapse
Affiliation(s)
- Malte Maria Sieren
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
- * E-mail:
| | - Clara Berlin
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Thekla Helene Oechtering
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Peter Hunold
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Daniel Drömann
- Department of Pneumology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jörg Barkhausen
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Alex Frydrychowicz
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Pulmonary hypertension is a life-shortening condition, which may be idiopathic but is more frequently seen in association with other conditions. Current guidelines recommend cardiac catheterization to confirm the diagnosis of pulmonary hypertension. Evidence suggests an increasing role for noninvasive imaging modalities in the initial diagnostic and prognostic assessment and evaluation of treatment response. RECENT FINDINGS In this review we examine the evidence for current noninvasive imaging methodologies: echocardiography computed tomography and MRI in the diagnostic and prognostic assessment of suspected pulmonary hypertension and explore the potential utility of modeling and machine-learning approaches. SUMMARY Noninvasive imaging allows a comprehensive assessment of patients with suspected pulmonary hypertension. It plays a key part in the initial diagnostic and prognostic assessment and machine-learning approaches show promise in the diagnosis of pulmonary hypertension.
Collapse
|
40
|
Coste F, Benlala I, Dournes G, Girodet PO, Laurent F, Berger P. Assessing pulmonary hypertension in COPD. Is there a role for computed tomography? Int J Chron Obstruct Pulmon Dis 2019; 14:2065-2079. [PMID: 31564854 PMCID: PMC6732516 DOI: 10.2147/copd.s207363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022] Open
Abstract
Pulmonary hypertension (PH) is a common complication of chronic obstructive pulmonary disease (COPD) and is associated with increased morbidity and mortality. Reference standard method to diagnose PH is right heart catheterization. Several non-invasive imaging techniques have been employed in the detection of PH. Among them, computed tomography (CT) is the most commonly used for phenotyping and detecting complications of COPD. Several CT findings have also been described in patients with severe PH. Nevertheless, CT analysis is currently based on visual findings which can lead to reproducibility failure. Therefore, there is a need for quantification in order to assess objective criteria. In this review, progresses in automated analyses of CT parameters and their values in predicting PH and COPD outcomes are presented.
Collapse
Affiliation(s)
- Florence Coste
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000 France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC1401, Bordeaux, F-33000 France
| | - Ilyes Benlala
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000 France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC1401, Bordeaux, F-33000 France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, Pessac, F-33600 France
| | - Gaël Dournes
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000 France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC1401, Bordeaux, F-33000 France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, Pessac, F-33600 France
| | - Pierre-Olivier Girodet
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000 France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC1401, Bordeaux, F-33000 France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, Pessac, F-33600 France
| | - François Laurent
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000 France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC1401, Bordeaux, F-33000 France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, Pessac, F-33600 France
| | - Patrick Berger
- University Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000 France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC1401, Bordeaux, F-33000 France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, CIC1401, Service d'Explorations Fonctionnelles Respiratoires, Pessac, F-33600 France
| |
Collapse
|
41
|
Ramani G, Chen W, Patel S, Judy J, Ton VK. Noninvasive Assessment of Right Ventricular Function in Patients with Pulmonary Arterial Hypertension and Left Ventricular Assist Device. Curr Cardiol Rep 2019; 21:82. [PMID: 31278558 DOI: 10.1007/s11886-019-1156-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Right ventricular (RV) failure in patients with pulmonary arterial hypertension (PAH) and left ventricular assist device (LVAD) is associated with increased hospitalizations, worsening functional class, and poor survival. Accurate RV function assessment is essential in diagnosing RV failure, guiding therapies, and determining prognosis. Noninvasive imaging techniques provide fast and reliable quantification of RV morphology and function. RECENT FINDINGS We review echocardiography, nuclear medicine, and cardiac magnetic resonance imaging (MRI) uses for RV function assessment in patients with PAH and LVAD. We identify current knowledge gaps in utilizing noninvasive tests to assess RV function. Echocardiography is most widely used to quantify RV function in patients with PAH and LVAD, followed by cardiac MRI for RV morphology and function measurement in PAH patients. The first-pass radionuclide angiography with radiolabeled RBC is the gold standard for calculating RV function. Gated blood pool SPECT can be an alternative as it separates the cardiac chambers well and provides accurate assessment of the RV function with high reproducibility, which is particularly useful for monitoring treatment. More research is needed to compare and validate these modalities in evaluating RV function.
Collapse
Affiliation(s)
- Gautam Ramani
- Department of Medicine, Division of Cardiology, University of Maryland School of Medicine, 110 S. Paca St., Baltimore, MD, 21201, USA
| | - Wengen Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sonika Patel
- Department of Medicine, Division of Cardiology, University of Maryland School of Medicine, 110 S. Paca St., Baltimore, MD, 21201, USA
| | - Jean Judy
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Van-Khue Ton
- Department of Medicine, Division of Cardiology, University of Maryland School of Medicine, 110 S. Paca St., Baltimore, MD, 21201, USA.
| |
Collapse
|
42
|
Wang HH, Tseng WYI, Yu HY, Chang MC, Peng HH. Phase-contrast magnetic resonance imaging for analyzing hemodynamic parameters and wall shear stress of pulmonary arteries in patients with pulmonary arterial hypertension. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:617-627. [PMID: 31270715 DOI: 10.1007/s10334-019-00767-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate flow-related parameters in pulmonary arteries of patients with pulmonary arterial hypertension (PAH). MATERIALS AND METHODS Eleven PAH patients and twelve control participants were recruited. PAH and controls had similar age and gender distribution. 2D phase-contrast MRI (PC-MRI) was performed in the main, right, and left pulmonary artery (MPA, RPA, and LPA). The flow velocity, wall shear stress (WSS), and oscillatory shear index (OSI) were measured. RESULTS PAH patients displayed prolonged acceleration time (Tacce) and increased ratio of flow change to acceleration volume in pulmonary arteries (both P < 0.001). The temporally averaged WSS values of MPA, RPA, and LPA in PAH patients were significantly lower than those of control participants (P < 0.001). The OSI in the pulmonary arteries was higher in PAH patients than control participants (P < 0.05). The ROC analysis indicated the ratio of maximum flow change to acceleration volume, WSS, and Tacce exhibited sufficient sensitivity and specificity to detect patients with PAH. The WSS demonstrated strong correlations with Tacce and the ratio value in the two groups (R2 = 0.78-0.96). CONCLUSIONS We used a clinically feasible 2D PC-MRI sequence with a reasonable scanning time to compute aforementioned indices. The quantitative parameters provided sufficient information to differentiate PAH patients from control participants.
Collapse
Affiliation(s)
- Hung-Hsuan Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, BMES Building, R415, Hsinchu, 30013, Taiwan
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsi-Yu Yu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Chu Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, BMES Building, R415, Hsinchu, 30013, Taiwan
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, BMES Building, R415, Hsinchu, 30013, Taiwan.
| |
Collapse
|
43
|
Friesen RM, Schäfer M, Ivy DD, Abman SH, Stenmark K, Browne LP, Barker AJ, Hunter KS, Truong U. Proximal pulmonary vascular stiffness as a prognostic factor in children with pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging 2019; 20:209-217. [PMID: 29788051 DOI: 10.1093/ehjci/jey069] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 04/23/2018] [Indexed: 11/12/2022] Open
Abstract
Aims Main pulmonary artery (MPA) stiffness and abnormal flow haemodynamics in pulmonary arterial hypertension (PAH) are strongly associated with elevated right ventricular (RV) afterload and associated with disease severity and poor clinical outcomes in adults with PAH. However, the long-term effects of MPA stiffness on RV function in children with PAH remain poorly understood. This study is the first comprehensive evaluation of MPA stiffness in children with PAH, delineating the mechanistic relationship between flow haemodynamics and MPA stiffness as well as the prognostic ability of these measures regarding clinical outcomes. Methods and results Fifty-six children diagnosed with PAH underwent baseline cardiac magnetic resonance (CMR) acquisition and were compared with 23 control subjects. MPA stiffness and wall shear stress (WSS) were evaluated using phase contrast CMR and were evaluated for prognostic potential along with standard RV volumetric and functional indices. Pulse wave velocity (PWV) was significantly increased (2.8 m/s vs. 1.4 m/s, P < 0.0001) and relative area change (RAC) was decreased (25% vs. 37%, P < 0.0001) in the PAH group, correlating with metrics of RV performance. Decreased WSS was associated with a decrease in RAC over time (r = 0.679, P < 0.001). For each unit increase in PWV, there was approximately a 3.2-fold increase in having a moderate clinical event. Conclusion MPA stiffness assessed by non-invasive CMR was increased in children with PAH and correlated with RV performance, suggesting that MPA stiffness is a major contribution to RV dysfunction. PWV is predictive of moderate clinical outcomes, and may be a useful prognostic marker of disease activity in children with PAH.
Collapse
Affiliation(s)
- Richard M Friesen
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, 13123 E 16th Avenue, Aurora, CO, USA.,Department of Critical Care, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way NE, Seattle, WA, USA
| | - Michal Schäfer
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, 13123 E 16th Avenue, Aurora, CO, USA.,Department of Bioengineering, College of Engineering and Applied Sciences, University of Colorado Denver, Anschutz Medical Campus, 12705 E. Montview Ave, Aurora, CO, USA
| | - D Dunbar Ivy
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, 13123 E 16th Avenue, Aurora, CO, USA
| | - Steven H Abman
- Division of Pulmonology, Breathing Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, 13123 E 16th Avenue, Aurora, CO, USA
| | - Kurt Stenmark
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, 12700 E 19th Ave, Box B131. Aurora, CO, USA
| | - Lorna P Browne
- Department of Radiology, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, 13123 E 16th Avenue, Aurora, CO, USA
| | - Alex J Barker
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL, USA
| | - Kendall S Hunter
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, 13123 E 16th Avenue, Aurora, CO, USA.,Department of Bioengineering, College of Engineering and Applied Sciences, University of Colorado Denver, Anschutz Medical Campus, 12705 E. Montview Ave, Aurora, CO, USA
| | - Uyen Truong
- Division of Cardiology, Heart Institute, Children's Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, 13123 E 16th Avenue, Aurora, CO, USA
| |
Collapse
|
44
|
Melzig C, Wörz S, Egenlauf B, Partovi S, Rohr K, Grünig E, Kauczor HU, Heussel CP, Rengier F. Combined automated 3D volumetry by pulmonary CT angiography and echocardiography for detection of pulmonary hypertension. Eur Radiol 2019; 29:6059-6068. [PMID: 30963276 DOI: 10.1007/s00330-019-06188-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/13/2019] [Accepted: 03/20/2019] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To assess the diagnostic accuracy of automated 3D volumetry of central pulmonary arteries using computed tomography pulmonary angiography (CTPA) for suspected pulmonary hypertension alone and in combination with echocardiography. METHODS This retrospective diagnostic accuracy study included 70 patients (mean age 66.7, 48 female) assessed for pulmonary hypertension by CTPA and transthoracic echocardiography with estimation of the pulmonary arterial systolic pressure (PASP). Gold standard right heart catheterisation with measurement of the invasive mean pulmonary arterial pressure (invasive mPAP) served as the reference. Volumes of the main, right and left pulmonary arteries (MPA, RPA and LPA) were computed using automated 3D segmentation. For comparison, axial dimensions were manually measured. A linear regression model was established for prediction of mPAP (predicted mPAP). RESULTS MPA, RPA and LPA volumes were significantly increased in patients with vs. without pulmonary hypertension (all p < 0.001). Of all measures, MPA volume demonstrated the strongest correlation with invasive mPAP (r = 0.76, p < 0.001). Predicted mPAP using MPA volume and echocardiographic PASP as covariates showed excellent correlation with invasive mPAP (r = 0.89, p < 0.001). Area under the curves for predicting pulmonary hypertension were 0.94 for predicted mPAP, compared to 0.90 for MPA volume and 0.92 for echocardiographic PASP alone. A predicted mPAP > 25.8 mmHg identified pulmonary hypertension with sensitivity, specificity, positive and negative predictive values of 86%, 93%, 95% and 81%, respectively. CONCLUSIONS Automated 3D volumetry of central pulmonary arteries based on CTPA may be used in conjunction with echocardiographic pressure estimates to noninvasively predict mPAP and pulmonary hypertension as confirmed by gold standard right heart catheterisation with higher diagnostic accuracy than either test alone. KEY POINTS • This diagnostic accuracy study derived a regression model for noninvasive prediction of invasively measured mean pulmonary arterial pressure as assessed by gold standard right heart catheterisation. • This regression model using automated 3D volumetry of the central pulmonary arteries based on CT pulmonary angiography in conjunction with the echocardiographic pressure estimate predicted pulmonary arterial pressure and the presence of pulmonary hypertension with good diagnostic accuracy. • The combination of automated 3D volumetry and echocardiographic pressure estimate in the regression model provided superior diagnostic accuracy compared to each parameter alone.
Collapse
Affiliation(s)
- Claudius Melzig
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Stefan Wörz
- Biomedical Computer Vision Group, BIOQUANT, IPMB and German Cancer Research Center (DKFZ), University of Heidelberg, Heidelberg, Germany
| | - Benjamin Egenlauf
- Centre for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Sasan Partovi
- Department of Radiology, Section of Interventional Radiology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Karl Rohr
- Biomedical Computer Vision Group, BIOQUANT, IPMB and German Cancer Research Center (DKFZ), University of Heidelberg, Heidelberg, Germany
| | - Ekkehard Grünig
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Centre for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Claus Peter Heussel
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Radiology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Fabian Rengier
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany. .,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany. .,Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
45
|
Chen H, Xiang B, Zeng J, Luo H, Yang Q. The feasibility in estimating pulmonary vascular resistance by cardiovascular magnetic resonance in pulmonary hypertension: A systematic review and meta-analysis. Eur J Radiol 2019; 114:137-145. [PMID: 31005164 DOI: 10.1016/j.ejrad.2019.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Cardiac magnetic resonance (CMR) is a substitute technique for noninvasively assessing pulmonary hemodynamics. Some preliminary studies have shown that CMR has the potential to quantify pulmonary vascular resistance (PVR). However, the evaluative value has not been well established. The purpose of the systematic review is to assess the feasibility of CMR in the measurement of PVR in patients with pulmonary hypertension (PH). METHODS Studies were retrieved from multiple databases. Methodological evaluation of CMR and right heart catheterization (RHC) in estimating PVR were obtained from included studies. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to assess the quality of studies. The results of comparisons of continuous variables are reported as weighted mean difference (WMD), together with the corresponding 95% confidence intervals (CIs). Summary correlation coefficient (r) values were extracted from each study, and 95% CIs were calculated after Fisher's z transformation. Sensitivity analysis was conducted to investigate potential heterogeneity. RESULTS A total of 15 studies were included in the systematic review, and 6 of these studies were included in the meta-analysis. The pooled WMD with fixed-effects analysis revealed no statistical significance between PVR-CMR and PVR-RHC in patients with PH (WMD = 0.278 WU; 95% CI: -0.415 to 0.972; p = 0.431). The pooled r value for all studies was 0.85 (95% CI: 0.81, 0.89), and notable heterogeneity was evident. The pooled r value after the exclusion of one heterogeneous article was 0.81 (95% CI: 0.74, 0.87) and was not significantly heterogeneous. CONCLUSIONS CMR and RHC have good consistency in the testing of PVR in the meta-analysis. The systematic review shows that completely noninvasive evaluation of PVR with CMR in patients with pH is feasible.
Collapse
Affiliation(s)
- Hang Chen
- Department of Radiology, The Yongchuan Affiliated Hospital, Chongqing Medical University, Yongchuan District, Chongqing, PR China
| | - Bo Xiang
- Department of Radiology, The Yongchuan Affiliated Hospital, Chongqing Medical University, Yongchuan District, Chongqing, PR China
| | - Jian Zeng
- Department of Radiology, The Yongchuan Affiliated Hospital, Chongqing Medical University, Yongchuan District, Chongqing, PR China
| | - Hechuan Luo
- Department of Radiology, The Yongchuan Affiliated Hospital, Chongqing Medical University, Yongchuan District, Chongqing, PR China
| | - Quan Yang
- Department of Radiology, The Yongchuan Affiliated Hospital, Chongqing Medical University, Yongchuan District, Chongqing, PR China.
| |
Collapse
|
46
|
Kiely DG, Levin DL, Hassoun PM, Ivy D, Jone PN, Bwika J, Kawut SM, Lordan J, Lungu A, Mazurek JA, Moledina S, Olschewski H, Peacock AJ, Puri G, Rahaghi FN, Schafer M, Schiebler M, Screaton N, Tawhai M, van Beek EJ, Vonk-Noordegraaf A, Vandepool R, Wort SJ, Zhao L, Wild JM, Vogel-Claussen J, Swift AJ. EXPRESS: Statement on imaging and pulmonary hypertension from the Pulmonary Vascular Research Institute (PVRI). Pulm Circ 2019; 9:2045894019841990. [PMID: 30880632 PMCID: PMC6732869 DOI: 10.1177/2045894019841990] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023] Open
Abstract
Pulmonary hypertension (PH) is highly heterogeneous and despite treatment advances it remains a life-shortening condition. There have been significant advances in imaging technologies, but despite evidence of their potential clinical utility, practice remains variable, dependent in part on imaging availability and expertise. This statement summarizes current and emerging imaging modalities and their potential role in the diagnosis and assessment of suspected PH. It also includes a review of commonly encountered clinical and radiological scenarios, and imaging and modeling-based biomarkers. An expert panel was formed including clinicians, radiologists, imaging scientists, and computational modelers. Section editors generated a series of summary statements based on a review of the literature and professional experience and, following consensus review, a diagnostic algorithm and 55 statements were agreed. The diagnostic algorithm and summary statements emphasize the key role and added value of imaging in the diagnosis and assessment of PH and highlight areas requiring further research.
Collapse
Affiliation(s)
- David G. Kiely
- Sheffield Pulmonary Vascular Disease
Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
| | - David L. Levin
- Department of Radiology, Mayo Clinic,
Rochester, MN, USA
| | - Paul M. Hassoun
- Department of Medicine John Hopkins
University, Baltimore, MD, USA
| | - Dunbar Ivy
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | - Pei-Ni Jone
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | | | - Steven M. Kawut
- Department of Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jim Lordan
- Freeman Hospital, Newcastle Upon Tyne,
Newcastle, UK
| | - Angela Lungu
- Technical University of Cluj-Napoca,
Cluj-Napoca, Romania
| | - Jeremy A. Mazurek
- Division of Cardiovascular Medicine,
Hospital
of the University of Pennsylvania,
Philadelphia, PA, USA
| | | | - Horst Olschewski
- Division of Pulmonology, Ludwig
Boltzmann Institute Lung Vascular Research, Graz, Austria
| | - Andrew J. Peacock
- Scottish Pulmonary Vascular Disease,
Unit, University of Glasgow, Glasgow, UK
| | - G.D. Puri
- Department of Anaesthesiology and
Intensive Care, Post Graduate Institute of Medical Education and Research,
Chandigarh, India
| | - Farbod N. Rahaghi
- Brigham and Women’s Hospital, Harvard
Medical School, Boston, MA, USA
| | - Michal Schafer
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | - Mark Schiebler
- Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Merryn Tawhai
- Auckland Bioengineering Institute,
Auckland, New Zealand
| | - Edwin J.R. van Beek
- Edinburgh Imaging, Queens Medical
Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Rebecca Vandepool
- University of Arizona, Division of
Translational and Regenerative Medicine, Tucson, AZ, USA
| | - Stephen J. Wort
- Royal Brompton Hospital, London,
UK
- Imperial College, London, UK
| | | | - Jim M. Wild
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
- Academic Department of Radiology,
University of Sheffield, Sheffield, UK
| | - Jens Vogel-Claussen
- Institute of diagnostic and
Interventional Radiology, Medical Hospital Hannover, Hannover, Germany
| | - Andrew J. Swift
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
- Academic Department of Radiology,
University of Sheffield, Sheffield, UK
| |
Collapse
|
47
|
Nochioka K, Shah AM. Right Ventricular-Pulmonary Artery Coupling-Let's Not Lose the Forest for the Trees-Reply. JAMA Cardiol 2019; 4:188-189. [PMID: 30624554 DOI: 10.1001/jamacardio.2018.4485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Kotaro Nochioka
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Japan
| | - Amil M Shah
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
48
|
Johns CS, Wild JM, Rajaram S, Swift AJ, Kiely DG. Current and emerging imaging techniques in the diagnosis and assessment of pulmonary hypertension. Expert Rev Respir Med 2019; 12:145-160. [PMID: 29261337 DOI: 10.1080/17476348.2018.1420478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Pulmonary hypertension (PH) is a challenging condition to diagnose and treat. Over the last two decades, there have been significant advances in therapeutic approaches and imaging technologies. Current guidelines emphasize the importance of cardiac catheterization; however, the increasing availability of non-invasive imaging has the potential to improve diagnostic rates, whilst providing additional information on patient phenotypes. Areas covered: This review discusses the role of imaging in the diagnosis, prognostic assessment and follow-up of patients with PH. Imaging methods, ranging from established investigations (chest radiography, echocardiography, nuclear medicine and computerized tomography (CT)), to emerging modalities (dual energy CT, magnetic resonance imaging (MRI), optical coherence tomography and positron emission tomography (PET)) are reviewed. The value and limitations of the clinical utility of these imaging modalities and their potential clinical application are reviewed. Expert commentary: Imaging plays a key role in the diagnosis and classification of pulmonary hypertension. It also provides valuable prognostic information and emerging evidence supports a role for serial assessments. The authors anticipate an increasing role for imaging in the pulmonary hypertension clinic. This will reduce the need for invasive investigations, whilst providing valuable insights that will improve our understanding of disease facilitate a more targeted approach to treatment.
Collapse
Affiliation(s)
| | - Jim M Wild
- a Academic Radiology , The University of Sheffield , Sheffield , UK
| | - Smitha Rajaram
- b Sheffield Pulmonary Vascular Disease Unit , Sheffield Teaching Hospitals , Sheffield , UK
| | - Andy J Swift
- a Academic Radiology , The University of Sheffield , Sheffield , UK
| | - David G Kiely
- b Sheffield Pulmonary Vascular Disease Unit , Sheffield Teaching Hospitals , Sheffield , UK
| |
Collapse
|
49
|
Johns CS, Kiely DG, Rajaram S, Hill C, Thomas S, Karunasaagarar K, Garg P, Hamilton N, Solanki R, Capener DA, Elliot C, Sabroe I, Charalamopopoulos A, Condliffe R, Wild JM, Swift AJ. Diagnosis of Pulmonary Hypertension with Cardiac MRI: Derivation and Validation of Regression Models. Radiology 2019; 290:61-68. [PMID: 30351254 PMCID: PMC6314564 DOI: 10.1148/radiol.2018180603] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 01/04/2023]
Abstract
Purpose To derive and test multiparametric cardiac MRI models for the diagnosis of pulmonary hypertension (PH). Materials and Methods Images and patient data from consecutive patients suspected of having PH who underwent cardiac MRI and right-sided heart catheterization (RHC) between 2012 and 2016 were retrospectively reviewed. Of 2437 MR images identified, 603 fit the inclusion criteria. The mean patient age was 61 years (range, 18-88 years; mean age of women, 60 years [range, 18-84 years]; mean age of men, 62 years [range, 22-88 years]). In the first 300 patients (derivation cohort), cardiac MRI metrics that showed correlation with mean pulmonary arterial pressure (mPAP) were used to create a regression algorithm. The performance of the model was assessed in the 303-patient validation cohort by using receiver operating characteristic (ROC) and χ2 analysis. Results In the derivation cohort, cardiac MRI mPAP model 1 (right ventricle and black blood) was defined as follows: -179 + loge interventricular septal angle × 42.7 + log10 ventricular mass index (right ventricular mass/left ventricular mass) × 7.57 + black blood slow flow score × 3.39. In the validation cohort, cardiac MRI mPAP model 1 had strong agreement with RHC-measured mPAP, an intraclass coefficient of 0.78, and high diagnostic accuracy (area under the ROC curve = 0.95; 95% confidence interval [CI]: 0.93, 0.98). The threshold of at least 25 mm Hg had a sensitivity of 93% (95% CI: 89%, 96%), specificity of 79% (95% CI: 65%, 89%), positive predictive value of 96% (95% CI: 93%, 98%), and negative predictive value of 67% (95% CI: 53%, 78%) in the validation cohort. A second model, cardiac MRI mPAP model 2 (right ventricle pulmonary artery), which excludes the black blood flow score, had equivalent diagnostic accuracy (ROC difference: P = .24). Conclusion Multiparametric cardiac MRI models have high diagnostic accuracy in patients suspected of having pulmonary hypertension. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Colletti in this issue.
Collapse
Affiliation(s)
- Christopher S. Johns
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - David G. Kiely
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - Smitha Rajaram
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - Catherine Hill
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - Steven Thomas
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - Kavitasagary Karunasaagarar
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - Pankaj Garg
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - Neil Hamilton
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - Roshni Solanki
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - David A. Capener
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - Charles Elliot
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - Ian Sabroe
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - Athanasios Charalamopopoulos
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - Robin Condliffe
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - James M. Wild
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| | - Andrew J. Swift
- From the Academic Department of Radiology, University of Sheffield,
Floor C, Royal Hallamshire Hospital, Glossop Rd, Sheffield S10 2JF, England
(C.S.J., P.G., R.S., D.A.C., J.M.W., A.J.S.); and Sheffield Pulmonary Vascular
Disease Unit (D.G.K., S.R., N.H., C.E., I.S., A.C., R.C.) and Department of
Radiology (C.S.J., C.H., S.T., K.K., A.J.S.), Sheffield Teaching Hospitals,
Sheffield, England
| |
Collapse
|
50
|
Seo HS, Lee H. Assessment of Right Ventricular Function in Pulmonary Hypertension with Multimodality Imaging. J Cardiovasc Imaging 2018; 26:189-200. [PMID: 30607386 PMCID: PMC6310752 DOI: 10.4250/jcvi.2018.26.e28] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/29/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is defined as resting mean pulmonary artery pressure ≥ 25 mmHg and is caused by multiple etiologies including heart, lung or other systemic diseases. Evaluation of right ventricular (RV) function in PH is very important to plan treatment and determine prognosis. However, quantification of volume and function of the RV remains difficult due to complicated RV geometry. A number of imaging tools has been utilized to diagnose PH and assess RV function. Each imaging technique including conventional echocardiography, three-dimensional echocardiography, strain echocardiography, computed tomography and cardiac magnetic resonance imaging has-advantages and limitations and can provide unique information. In this article, we provide a comprehensive review of the utility, advantages and shortcomings of the multimodality imaging used to evaluate patients with PH.
Collapse
Affiliation(s)
- Hye Sun Seo
- Department of Cardiology, Soonchunhyang University Hospital, Bucheon, Korea
| | - Heon Lee
- Department of Radiology, Soonchunhyang University Hospital, Bucheon, Korea
| |
Collapse
|