1
|
Bilal M, Li D, Xie C, Yang R, Gu Z, Jiang D, Xu X, Wang P. Recent advances of wheat bran arabinoxylan exploitation as the functional dough additive. Food Chem 2025; 463:141146. [PMID: 39255698 DOI: 10.1016/j.foodchem.2024.141146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Wheat bran is a significant byproduct of wheat flour milling and is enriched with dietary fiber. Arabinoxylan (AX), the major constituent of dietary fiber, plays a crucial role in the nutrition and processing of cereal food. This review comprehensively focuses on AX as a functional additive, specifically addressing its fractionation methods, structural characteristics, techno-functionality, and interactions with dough components. Structural features such as molecular weight (Mw), branching degree, and ferulic acid (FA) content significantly influence the functionality of AX, affecting gluten protein and starch characteristics during cereal food processing. Specifically, studies have shown that AX with optimum Mw and FA levels improved dough rheology and gas retention during bread-making. Furthermore, the solubility of AX varies across wheat bran fractions, with soluble AX fractions demonstrating notable dough-improving properties. By integrating structural complexity with functional properties, this review highlights the promising applications of wheat bran AX as a sustainable, functional dough additive.
Collapse
Affiliation(s)
- Muhammad Bilal
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
| | - Zhenxin Gu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
| | - Xueming Xu
- Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China.
| |
Collapse
|
2
|
Kim J, Kweon M. Quality and noodle-making performance of wheat flour with varied gluten strengths altered by addition of various arabinoxylans. J Food Sci 2024. [PMID: 39366775 DOI: 10.1111/1750-3841.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
This study examined the effects of adding different types of arabinoxylans (AXs) to wheat flour with varying gluten strengths on flour quality and noodle-making performance, with the aim of utilizing AXs as health-enhanced ingredients. Three flours (Goso, Hojoong, and Joongmo) with low, medium, and high gluten strengths were used, along with two water-extractable AXs (E1 and E2) and one water-unextractable AX (U) with diverse molecular weights and viscosities. The addition of 2% AXs increased the water and sucrose solvent retention capacity values and decreased the gluten performance index values for all flours, with a notable effect on Goso flour by U. The dough development time was prolonged in all flours, necessitating more water for development. The sodium dodecyl sulfate sedimentation volume increased with the addition of AXs, especially with E2 and U. Pasting properties remained unaffected, suggesting a minimal impact on starch-related properties. However, noodles made with E2 and U showed deteriorated quality in terms of fresh noodle texture, weight gain, cooking water turbidity, and cooked noodle texture, in contrast to noodles made with E1 alone. Additionally, adjusting the water amount when adding U altered the textural properties, approaching that of noodles without added AXs. Overall, the impact of AXs on flour and noodle quality varied depending on their molecular weights, viscosities, and the gluten strength of the flour. Additionally, AXs could be successfully utilized by adjusting the water amount for the production of health-enhancing noodles. PRACTICAL APPLICATION: Arabinoxylans, as health-promoting ingredients, can be utilized in noodle production by optimizing the water amount and mixing time.
Collapse
Affiliation(s)
- Jeongeon Kim
- Department of Food Science and Nutrition, Pusan National University, Busan, South Korea
| | - Meera Kweon
- Department of Food Science and Nutrition, Pusan National University, Busan, South Korea
- Kimchi Research Institute, Pusan National University, Busan, South Korea
| |
Collapse
|
3
|
Ayala FM, Hernández-Sánchez IE, Chodasiewicz M, Wulff BBH, Svačina R. Engineering a One Health Super Wheat. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:193-215. [PMID: 38857542 DOI: 10.1146/annurev-phyto-121423-042128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Wheat is the predominant crop worldwide, contributing approximately 20% of protein and calories to the human diet. However, the yield potential of wheat faces limitations due to pests, diseases, and abiotic stresses. Although conventional breeding has improved desirable traits, the use of modern transgenesis technologies has been limited in wheat in comparison to other crops such as maize and soybean. Recent advances in wheat gene cloning and transformation technology now enable the development of a super wheat consistent with the One Health goals of sustainability, food security, and environmental stewardship. This variety combines traits to enhance pest and disease resistance, elevate grain nutritional value, and improve resilience to climate change. In this review, we explore ways to leverage current technologies to combine and transform useful traits into wheat. We also address the requirements of breeders and legal considerations such as patents and regulatory issues.
Collapse
Affiliation(s)
- Francisco M Ayala
- Bioceres Crop Solutions, Rosario, Santa Fe, Argentina
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Itzell Eurídice Hernández-Sánchez
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Monika Chodasiewicz
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Radim Svačina
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| |
Collapse
|
4
|
Huang M, Bai J, Buccato DG, Zhang J, He Y, Zhu Y, Yang Z, Xiao X, Daglia M. Cereal-Derived Water-Unextractable Arabinoxylans: Structure Feature, Effects on Baking Products and Human Health. Foods 2024; 13:2369. [PMID: 39123560 PMCID: PMC11311280 DOI: 10.3390/foods13152369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Arabinoxylans (AXs) are non-starch polysaccharides with complex structures naturally occurring in grains (i.e., barley, corn, and others), providing many health benefits, especially as prebiotics. AXs can be classified as water-extractable (WEAX) and water-unextractable (WUAX) based on their solubility, with properties influenced by grain sources and extraction methods. Numerous studies show that AXs exert an important health impact, including glucose and lipid metabolism regulation and immune system enhancement, which is induced by the interactions between AXs and the gut microbiota. Recent research underscores the dependence of AX physiological effects on structure, advocating for a deeper understanding of structure-activity relationships. While systematic studies on WEAX are prevalent, knowledge gaps persist regarding WUAX, despite its higher grain abundance. Thus, this review reports recent data on WUAX structural properties (chemical structure, branching, and MW) in cereals under different treatments. It discusses WUAX applications in baking and the benefits deriving from gut fermentation.
Collapse
Affiliation(s)
- Manchun Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Zihan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Nishitsuji Y, Whitney K, Hayakawa K, Simsek S. Dynamic changes in ferulic acid and diferulic acids in wheat flour doughs during the breadmaking process. Food Chem 2024; 443:138524. [PMID: 38295571 DOI: 10.1016/j.foodchem.2024.138524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Ferulic acid (FA), a phytochemical concentrated in wheat bran, influences structural characteristics of arabinoxylan (AX) and rheological properties of wheat dough. This study investigates the dynamic changes in FA and diferulic acids, closely associated with AX molecular weight, during the breadmaking process. FA predominantly exists in a tightly bound state within the arabinoxylan matrix, with a substantial increase in free FA content observed during the initial fermentation phase. Furthermore, this research identified four specific wheat-derived diferulic acids: 8-5'-DFA, 5-5'-DFA, 8-O-4'-DFA, and 8-5'-DFA (benzofuran form), tracking their variations throughout breadmaking. The notable upsurge in diferulic acid levels in the early fermentation stages suggests that the cleavage of ferulic acid moieties may not be the primary factor contributing to the reduction in AX molecular weight. Future investigations into the effects of FA and diferulic acids on arabinoxylan and wheat dough properties promise to enhance understanding of the intricacies of the breadmaking process.
Collapse
Affiliation(s)
- Yasuyuki Nishitsuji
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan.
| | - Kristin Whitney
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| | - Katsuyuki Hayakawa
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Senay Simsek
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
6
|
García-Curiel L, Pérez-Flores JG, Contreras-López E, Pérez-Escalante E, Paz-Samaniego R. Evaluating the application of an arabinoxylan-rich fraction from brewers' spent grain as a release modifier of drugs. Nat Prod Res 2024; 38:1759-1765. [PMID: 37203313 DOI: 10.1080/14786419.2023.2214841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
This study evaluated the possible use of a fraction of brewers' spent grain rich in arabinoxylans (BSG-AX) as an excipient that modifies the release of class III drugs (Biopharmaceutics Classification System), by determining the release profile of metformin hydrochloride (MH), in a water medium. The cumulative percentage of MH release showed the best linear fit when modeled with the cumulative distribution function (CDF) of the Weibull distribution (R2 = 0.993 ± 0.001). According to the Korsmeyer-Peppas model, the first stage of MH release is regulated by a super case-II transport mechanism controlled by the expansion and relaxation of BSG-AX. Finally, with the Hixson-Crowell model, a release rate (k HC ) of 0.350 ± 0.026 h - 1 3 was obtained (R2 = 0.996 ± 0.007). BSG-AX constitutes a suitable material for producing prolonged drug release vehicles; however, additional research is required to provide a better encapsulation of the active ingredients to ensure their optimal applicability and performance.
Collapse
Affiliation(s)
- Laura García-Curiel
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, San Agustín Tlaxiaca, Mexico
| | - Jesús Guadalupe Pérez-Flores
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, San Agustín Tlaxiaca, Mexico
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Mexico
| | - Elizabeth Contreras-López
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Mexico
| | - Emmanuel Pérez-Escalante
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Mexico
| | - Rita Paz-Samaniego
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, México
| |
Collapse
|
7
|
Hernández-Espinosa N, Posadas-Romano G, Dreisigacker S, Crossa J, Crespo L, Ibba MI. Efficient arabinoxylan assay for wheat: Exploring variability and molecular marker associations in Wholemeal and refined flour. J Cereal Sci 2024; 117:103897. [PMID: 38883418 PMCID: PMC11177631 DOI: 10.1016/j.jcs.2024.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 06/18/2024]
Abstract
In this study, we present a modified high throughput phloroglucinol colorimetric assay for the quantification of arabinoxylans (AX) in wheat named PentoQuant. The method was downscaled from a 10 ml glass tube to 2 ml microcentrifuge tube format, resulting in a fivefold increase in throughput while concurrently reducing the overall cost and manual labor required for the analysis. Comparison with established colorimetric assays and gas chromatography validates the modified protocol, demonstrating its superior repeatability, rapidity, and simplicity. The effectiveness of the protocol was tested on 606 unique whole meal (WM) and refined flour (RF) bread wheat samples which revealed the presence of more than a twofold variation in both the soluble (WE-AX) and total (TOT-AX) AX fractions in WM (TOT-AX = 31.9-76.1 mg/g; WE-AX = 4.4-12.6 mg/g) and RF (TOT-AX = 7.7-22.4 mg/g; WE-AX = 3.9-11.4 mg/g). Results obtained from the AX quantification were used to test the effectiveness of four molecular markers associated with AX variation and targeting two major genomic regions on the 1BL and 6BS chromosomes. These markers appeared to be particularly relevant for the WE-AX fraction, providing insights to enable marker-assisted breeding.
Collapse
Affiliation(s)
- Nayelli Hernández-Espinosa
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Gabriel Posadas-Romano
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Susanne Dreisigacker
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Jose Crossa
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Leonardo Crespo
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Maria Itria Ibba
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| |
Collapse
|
8
|
Javaid T, Bhattarai M, Venkataraghavan A, Held M, Faik A. Specific protein interactions between rice members of the GT43 and GT47 families form various central cores of putative xylan synthase complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:856-878. [PMID: 38261531 DOI: 10.1111/tpj.16640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Members of the glycosyltransferase (GT)43 and GT47 families have been associated with heteroxylan synthesis in both dicots and monocots and are thought to assemble into central cores of putative xylan synthase complexes (XSCs). Currently, it is unknown whether protein-protein interactions within these central cores are specific, how many such complexes exist, and whether these complexes are functionally redundant. Here, we used gene association network and co-expression approaches in rice to identify four OsGT43s and four OsGT47s that assemble into different GT43/GT47 complexes. Using two independent methods, we showed that (i) these GTs assemble into at least six unique complexes through specific protein-protein interactions and (ii) the proteins interact directly in vitro. Confocal microscopy showed that, when alone, all OsGT43s were retained in the endoplasmic reticulum (ER), while all OsGT47s were localized in the Golgi. co-expression of OsGT43s and OsGT47s displayed complexes that form in the ER but accumulate in Golgi. ER-to-Golgi trafficking appears to require interactions between OsGT43s and OsGT47s. Comparison of the central cores of the three putative rice OsXSCs to wheat, asparagus, and Arabidopsis XSCs, showed great variation in GT43/GT47 combinations, which makes the identification of orthologous central cores between grasses and dicots challenging. However, the emerging picture is that all central cores from these species seem to have at least one member of the IRX10/IRX10-L clade in the GT47 family in common, suggesting greater functional importance for this family in xylan synthesis. Our findings provide a new framework for future investigation of heteroxylan biosynthesis and function in monocots.
Collapse
Affiliation(s)
- Tasleem Javaid
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | - Matrika Bhattarai
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| | | | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, 45701, USA
| | - Ahmed Faik
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, 45701, USA
| |
Collapse
|
9
|
Chen Z, Mense AL, Brewer LR, Shi YC. Wheat bran arabinoxylans: Chemical structure, extraction, properties, health benefits, and uses in foods. Compr Rev Food Sci Food Saf 2024; 23:e13366. [PMID: 38775125 DOI: 10.1111/1541-4337.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
Wheat bran (WB) is a well-known and valuable source of dietary fiber. Arabinoxylan (AX) is the primary hemicellulose in WB and can be isolated and used as a functional component in various food products. Typically, AX is extracted from the whole WB using different processes after mechanical treatments. However, WB is composed of different layers, namely, the aleurone layer, pericarp, testa, and hyaline layer. The distribution, structure, and extractability of AX vary within these layers. Modern fractionation technologies, such as debranning and electrostatic separation, can separate the different layers of WB, making it possible to extract AX from each layer separately. Therefore, AX in WB shows potential for broader applications if it can be extracted from the different layers separately. In this review, the distribution and chemical structures of AX in WB layers are first discussed followed by extraction, physicochemical properties, and health benefits of isolated AX from WB. Additionally, the utilization of AX isolated from WB in foods, including cereal foods, packaging film, and the delivery of food ingredients, is reviewed. Future perspectives on challenges and opportunities in the research field of AX isolated from WB are highlighted.
Collapse
Affiliation(s)
- Zhongwei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, P. R. China
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Andrew L Mense
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
- Wheat Marketing Center, Portland, Oregon, USA
| | - Lauren R Brewer
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
10
|
Xiao M, Jia X, Kang J, Liu Y, Zhang J, Jiang Y, Liu G, Cui SW, Guo Q. Unveiling the breadmaking transformation: Structural and functional insights into Arabinoxylan. Carbohydr Polym 2024; 330:121845. [PMID: 38368117 DOI: 10.1016/j.carbpol.2024.121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
To understand the changes in arabinoxylan (AX) during breadmaking, multi-step enzyme digestion was conducted to re-extract arabinoxylan (AX-B) from AX-fortified bread. Their structural changes were compared using HPSEC, HPAEC, FT-IR, methylation analysis, and 1H NMR analysis; their properties changes in terms of enzymatic inhibition activities and in vitro fermentability against gut microbiota were also compared. Results showed that AX-B contained a higher portion of covalently linked protein while the molecular weight was reduced significantly after breadmaking process (from 677.1 kDa to 15.6 kDa); the structural complexity of AX-B in terms of the degree of branching was increased; the inhibition activity against α-amylase (76.81 % vs 73.89 % at 4 mg/mL) and α-glucosidase (64.43 % vs 58.08 % at 4 mg/mL) was improved; the AX-B group produced a higher short-chain fatty acids concentration than AX (54.68 ± 7.86 mmol/L vs 44.03 ± 4.10 mmol/L). This study provides novel knowledge regarding the structural and properties changes of arabinoxylan throughout breadmaking, which help to predict the health benefits of fibre-fortified bread and achieve precision nutrition.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666, Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China.
| | - Jixiang Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yueru Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guorong Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Steve W Cui
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
11
|
Rudjito RC, Matute AC, Jiménez-Quero A, Olsson L, Stringer MA, Krogh KBRM, Eklöf J, Vilaplana F. Integration of subcritical water extraction and treatment with xylanases and feruloyl esterases maximises release of feruloylated arabinoxylans from wheat bran. BIORESOURCE TECHNOLOGY 2024; 395:130387. [PMID: 38295956 DOI: 10.1016/j.biortech.2024.130387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Wheat bran is an abundant and low valued agricultural feedstock rich in valuable biomolecules as arabinoxylans (AX) and ferulic acid with important functional and biological properties. An integrated bioprocess combining subcritical water extraction (SWE) and enzymatic treatments has been developed for maximised recovery of feruloylated arabinoxylans and oligosaccharides from wheat bran. A minimal enzymatic cocktail was developed combining one xylanase from different glycosyl hydrolase families and a feruloyl esterase. The incorporation of xylanolytic enzymes in the integrated SWE bioprocess increased the AX yields up to 75%, higher than traditional alkaline extraction, and SWE or enzymatic treatment alone. The process isolated AX with tailored molecular structures in terms of substitution, molar mass, and ferulic acid, which can be used for structural biomedical applications, food ingredients and prebiotics. This study demonstrates the use of hydrothermal and enzyme technologies for upcycling agricultural side streams into functional bioproducts, contributing to a circular food system.
Collapse
Affiliation(s)
- Reskandi C Rudjito
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Alvaro C Matute
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Amparo Jiménez-Quero
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| | | | | | - Jens Eklöf
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden; Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
12
|
Bieniek A, Buksa K. The Influence of Arabinoxylans on the Properties of Wheat Bread Baked Using the Postponed Baking Method. Molecules 2024; 29:904. [PMID: 38398654 PMCID: PMC10893419 DOI: 10.3390/molecules29040904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Bread is a basic element of the human diet. To counteract the process of its going stale, semi-finished bakery products are subjected to cooling or freezing. This process is called postponed baking. The aim of this work was to investigate the effect of the molar mass of rye arabinoxylans (AXs) on the properties of wheat breads baked using the postponed baking method. Breads were produced using the postponed baking method from wheat flour without and with 1 or 2% share of rye AXs clearly differing in molar masses-non-modified or modified AXs by means of partial hydrolysis and cross-linking. The molar mass of non-modified AXs was 413,800 g/mol, that of AXs after partial hydrolysis was 192,320 g/mol, and that of AXs after cross-linking was 535,630 g/mol. The findings showed that the addition of all AX preparations significantly increased the water absorption of the baking mixture, and the increase was proportional to the molar mass of AXs used as well as the share of AX preparation. Moreover, for the first time, it was shown that 1% share of partly hydrolyzed AXs, of a low molar mass, in the baking mixture had the highest effect on increasing the volume of bread and reducing the hardness of the bread crumb of bread baked using postponed baking method. It was also shown that the AXs had a low and inconclusive effect on the baking loss and moisture content of the bread crumb.
Collapse
Affiliation(s)
| | - Krzysztof Buksa
- Department of Carbohydrate Technology and Cereal Processing, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
| |
Collapse
|
13
|
Yılmaz B, Sırbu A, Altıntaş Başar HB, Goksen G, Chabı IB, Kumagaı H, Ozogul F. Potential roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes: A review of the current knowledge. Crit Rev Food Sci Nutr 2023:1-18. [PMID: 38148641 DOI: 10.1080/10408398.2023.2292790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Diabetes is one of the most common non-communicable diseases in both developed and underdeveloped countries with a 9.3% prevalence. Unhealthy diets and sedentary lifestyles are among the most common reasons for type 2 diabetes mellitus (T2DM). Diet plays a crucial role in both the etiology and treatment of T2DM. There are several recommendations regarding the carbohydrate intake of patients with T2DM. One of them is about reducing the total carbohydrate intake and/or changing the type of carbohydrate to reduce the glycaemic index. Cereals are good sources of carbohydrates in the diet with a significant amount of soluble and non-soluble fiber content. Apart from fiber, it has been shown that the bioactive compounds present in cereals such as proteins, phenolic compounds, carotenoids, and tocols have beneficial impacts in the prevention and treatment of T2DM. Moreover, cereal by-products especially the by-products of milling processes, which are bran and germ, have been reported to have anti-diabetic activities mainly because of their fiber and polyphenols content. Considering the potential functions of cereals in patients with T2DM, this review focuses on the roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Birsen Yılmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad, India
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Adana, Türkiye
| | - Alexandrina Sırbu
- FMMAE Ramnicu Valcea, Constantin Brancoveanu University of Pitesti, Valcea, Romania
| | | | - Gülden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Ifagbémi Bienvenue Chabı
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Jericho Cotonou, Benin
| | - Hitomi Kumagaı
- Nihon University College of Bioresource Sciences Graduate School of Bioresource Sciences, Fujisawa, Japan
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkiye
| |
Collapse
|
14
|
Moerings BG, Abbring S, Tomassen MM, Schols HA, Witkamp RF, van Norren K, Govers C, van Bergenhenegouwen J, Mes JJ. Rice-derived arabinoxylan fibers are particle size-dependent inducers of trained immunity in a human macrophage-intestinal epithelial cell co-culture model. Curr Res Food Sci 2023; 8:100666. [PMID: 38179220 PMCID: PMC10765302 DOI: 10.1016/j.crfs.2023.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024] Open
Abstract
Arabinoxylans have been identified for a wide range of purported health-promoting applications, primarily attributed to its immunomodulatory effects. Previously, we have reported the ability of arabinoxylans to induce non-specific memory in innate immune cells, commonly referred to as "trained innate immunity". In the present study, we investigated the effect of particle size on innate immune training and resilience in primary human macrophages as well as in a more physiologically relevant macrophage-intestinal epithelial cell co-culture model. We demonstrated that smaller (>45 & < 90 μm) compared to larger (>90 μm) particle size fractions of rice bran-derived arabinoxylan preparations have a higher enhancing effect on training and resilience in both models. Smaller particle size fractions elevated TNF-α production in primary macrophages and enhanced Dectin-1 receptor activation in reporter cell lines compared to larger particles. Responses were arabinoxylan source specific as only the rice-derived arabinoxylans showed these immune-supportive effects. This particle size-dependent induction of trained immunity was confirmed in the established co-culture model. These findings demonstrate the influence of particle size on the immunomodulatory potential of arabinoxylans, provide further insight into the structure-activity relationship, and offer new opportunities to optimize the immune-enhancing effects of these dietary fibers.
Collapse
Affiliation(s)
- Bart G.J. Moerings
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Suzanne Abbring
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Monic M.M. Tomassen
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Henk A. Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Renger F. Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Klaske van Norren
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Coen Govers
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Jurriaan J. Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
15
|
Rudjito RC, Jiménez-Quero A, Muñoz MDCC, Kuil T, Olsson L, Stringer MA, Krogh KBRM, Eklöf J, Vilaplana F. Arabinoxylan source and xylanase specificity influence the production of oligosaccharides with prebiotic potential. Carbohydr Polym 2023; 320:121233. [PMID: 37659797 DOI: 10.1016/j.carbpol.2023.121233] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 07/22/2023] [Indexed: 09/04/2023]
Abstract
Cereal arabinoxylans (AXs) are complex polysaccharides in terms of their pattern of arabinose and ferulic acid substitutions, which influence their properties in structural and nutritional applications. We have evaluated the influence of the molecular structure of three AXs from wheat and rye with distinct substitutions on the activity of β-xylanases from different glycosyl hydrolase families (GH 5_34, 8, 10 and 11). The arabinose and ferulic acid substitutions influence the accessibility of the xylanases, resulting in specific profiles of arabinoxylan-oligosaccharides (AXOS). The GH10 xylanase from Aspergillus aculeatus (AcXyn10A) and GH11 from Thermomyces lanuginosus (TlXyn11) showed the highest activity, producing larger amounts of small oligosaccharides in shorter time. The GH8 xylanase from Bacillus sp. (BXyn8) produced linear xylooligosaccharides and was most restricted by arabinose substitution, whereas GH5_34 from Gonapodya prolifera (GpXyn5_34) required arabinose substitution and produced longer (A)XOS substituted on the reducing end. The complementary substrate specificity of BXyn8 and GpXyn5_34 revealed how arabinoses were distributed along the xylan backbones. This study demonstrates that AX source and xylanase specificity influence the production of oligosaccharides with specific structures, which in turn impacts the growth of specific bacteria (Bacteroides ovatus and Bifidobacterium adolescentis) and the production of beneficial metabolites (short-chain fatty acids).
Collapse
Affiliation(s)
- Reskandi C Rudjito
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden.
| | - Amparo Jiménez-Quero
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden.
| | - Maria Del Carmen Casado Muñoz
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden.
| | - Teun Kuil
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden.
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden.
| | | | | | - Jens Eklöf
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark.
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden; Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
16
|
Prins A, Kosik O. Genetic Approaches to Increase Arabinoxylan and β-Glucan Content in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3216. [PMID: 37765380 PMCID: PMC10534680 DOI: 10.3390/plants12183216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Wheat is one of the three staple crops feeding the world. The demand for wheat is ever increasing as a relatively good source of protein, energy, nutrients, and dietary fiber (DF) when consumed as wholemeal. Arabinoxylan and β-glucan are the major hemicelluloses in the cell walls and dietary fiber in wheat grains. The amount and structure of DF varies between grain tissues. Reducing post-prandial glycemic response as well as intestinal transit time and contribution to increased fecal bulk are only a few benefits of DF consumption. Dietary fiber is fermented in the colon and stimulates growth of beneficial bacteria producing SCFA, considered responsible for a wide range of health benefits, including reducing the risk of heart disease and colon cancer. The recommended daily intake of 25-30 g is met by only few individuals. Cereals cover nearly 40% of fiber in the Western diet. Therefore, wheat is a good target for improving dietary fiber content, as it would increase the fiber intake and simultaneously impact the health of many people. This review reflects the current status of the research on genetics of the two major dietary fiber components, as well as breeding approaches used to improve their quantity and quality in wheat grain.
Collapse
Affiliation(s)
- Anneke Prins
- Department of Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK;
| | - Ondrej Kosik
- Department of Plant Sciences for the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
17
|
Lee GI, Nielsen TS, Lærke HN, Bach Knudsen KE. The ileal and total tract digestibility fibre and nutrients in pigs fed high-fibre cereal-based diets provided without and with a carbohydrase complex. Animal 2023; 17:100872. [PMID: 37422931 DOI: 10.1016/j.animal.2023.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
The effect of carbohydrase can be variable according to the complexity of cereal grains and co-products. Studies on the effect of carbohydrase on cereal diets varying in complexity are scarce. This study was conducted to investigate the apparent ileal (AID) and total tract digestibility (ATTD) of energy, fibre and nutrients in pigs fed diets based on cereal grains and co-products without and with supplementation with a carbohydrase complex in the form of xylanase, arabinofuranosidase and β-glucanase. The experiment was carried out as an 8 × 4 Youden Square design (eight diets and four periods by two blocks) using 16 growing pigs (33.3 ± 0.8 kg) surgically fitted with a T-cannula in the terminal ileum. The pigs were fed eight experimental diets based on either - maize, wheat, rye, or a wheat and rye mix that were provided with or without enzyme supplementation. The AID and ATTD of DM, organic matter, energy, CP, fat, starch, and soluble and insoluble non-starch polysaccharides (NSPs) were studied using titanium dioxide as an indigestible marker. There was a cereal type effect (P < 0.05) of the AID of most of the nutrients investigated but ash and NSP and some of its constituents but with no interactions between cereal types and carbohydrase supplementation (P > 0.05). The ATTD of nutrients in the large intestine was mainly influenced by the fibre composition and was significantly lower (P < 0.001) for NSP, protein and energy for the Maize than the other diets. Supplementation of the cereal diets with the carbohydrase complex partially degrades arabinoxylan (AX) and β-glucan giving rise to a generally higher AID of high-molecular weight arabinoxylan (P = 0.044), starch (P = 0.042), a tendency (P < 0.10) of higher AID of non-cellulosic polysaccharide glucose residue (β-glucan) and soluble arabinoxylan (AX) whereas none of the other components were affected (P > 0.05). Collectively, the results indicate that the carbohydrase complex degrades AX in the stomach and small intestine, leading to a higher AID but with no influence on the ATTD of fibres, nutrients, and energy.
Collapse
Affiliation(s)
- G I Lee
- Department of Animal and Veterinary Sciences, Aarhus University, AU-Viborg, Research Centre Foulum, DK-8830 Tjele, Denmark; Department of Animal Science, Chonnam National University, 77 YongBong-Ro, Buk-gu, Gwangju, Republic of Korea(1)
| | - T S Nielsen
- Department of Animal and Veterinary Sciences, Aarhus University, AU-Viborg, Research Centre Foulum, DK-8830 Tjele, Denmark
| | - H N Lærke
- Department of Animal and Veterinary Sciences, Aarhus University, AU-Viborg, Research Centre Foulum, DK-8830 Tjele, Denmark
| | - K E Bach Knudsen
- Department of Animal and Veterinary Sciences, Aarhus University, AU-Viborg, Research Centre Foulum, DK-8830 Tjele, Denmark.
| |
Collapse
|
18
|
Zeng S, Ying R, Gao X, Huang M. Characteristics of the composite film of arabinoxylan and starch granules in simulated wheat endosperm. Int J Biol Macromol 2023; 233:123416. [PMID: 36709817 DOI: 10.1016/j.ijbiomac.2023.123416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
We found that cell wall components of wheat grains differed significantly across different grain-filling stages; specifically, we observed significant differences in water content and water migration rate (p < 0.05). A composite film of arabinoxylan and starch granules was prepared to simulate wheat endosperm structure. Scanning electron microscopy (SEM), X-ray diffractometer (XRD), and thermogravimetric analysis (TGA) showed that the crystallinity and structural stability of the film increased with increasing starch content. Water diffusion experiments of the films revealed that the water diffusion rate gradually decreased with increasing starch content. Therefore, the water mobility of the starch endosperm was lower than that of the aleurone layer. These findings provide a basis for further studies in the context of wheat grain water regulation.
Collapse
Affiliation(s)
- Shiqi Zeng
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaoquan Gao
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meigui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
19
|
Piro MC, Muylle H, Haesaert G. Exploiting Rye in Wheat Quality Breeding: The Case of Arabinoxylan Content. PLANTS (BASEL, SWITZERLAND) 2023; 12:737. [PMID: 36840085 PMCID: PMC9965444 DOI: 10.3390/plants12040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Rye (Secale cereale subsp. cereale L.) has long been exploited as a valuable alternative genetic resource in wheat (Triticum aestivum L.) breeding. Indeed, the introgression of rye genetic material led to significant breakthroughs in the improvement of disease and pest resistance of wheat, as well as a few agronomic traits. While such traits remain a high priority in cereal breeding, nutritional aspects of grain crops are coming under the spotlight as consumers become more conscious about their dietary choices and the food industry strives to offer food options that meet their demands. To address this new challenge, wheat breeding can once again turn to rye to look for additional genetic variation. A nutritional aspect that can potentially greatly benefit from the introgression of rye genetic material is the dietary fibre content of flour. In fact, rye is richer in dietary fibre than wheat, especially in terms of arabinoxylan content. Arabinoxylan is a major dietary fibre component in wheat and rye endosperm flours, and it is associated with a variety of health benefits, including normalisation of glycaemic levels and promotion of the gut microbiota. Thus, it is a valuable addition to the human diet, and it can represent a novel target for wheat-rye introgression breeding.
Collapse
Affiliation(s)
- Maria Chiara Piro
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090 Melle, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090 Melle, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
20
|
Kouzounis D, van Erven G, Soares N, Kabel MA, Schols HA. The fate of insoluble arabinoxylan and lignin in broilers: Influence of cereal type and dietary enzymes. Int J Biol Macromol 2023; 225:1096-1106. [PMID: 36427614 DOI: 10.1016/j.ijbiomac.2022.11.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Insoluble fiber degradation by supplemented enzymes was previously shown to improve fermentation in poultry, and has been further postulated to disrupt the cereal cell wall matrix, thus improving nutrient digestion. Here, we characterized insoluble feed-derived polysaccharides and lignin in digesta from broilers fed wheat-soybean and maize-soybean diets without or with xylanase/glucanase supplementation. Enzyme supplementation in wheat-soybean diet increased the yield of water-extractable arabinoxylan (AX) in the ileum. Still, most AX (> 73 %) remained insoluble across wheat-soybean and maize-soybean diets. Analysis of so-far largely ignored lignin demonstrated that a lignin-rich fiber fraction accumulated in the gizzard, while both insoluble AX and lignin reaching the ileum appeared to be excreted unfermented. More than 20 % of water-insoluble AX was extracted by 1 M NaOH and 11-20 % was sequentially extracted by 4 M NaOH, alongside other hemicelluloses, from ileal digesta and excreta across all diets. These findings showed that enzyme-supplementation did not impact AX extractability by alkali, under the current experimental conditions. It is, therefore, suggested that the degradation of insoluble AX by dietary xylanase in vivo mainly results in arabinoxylo-oligosaccharide release, which is not accompanied by a more loose cell wall architecture.
Collapse
Affiliation(s)
- Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Wageningen Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | | | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
21
|
Lee MH, Park J, Kim KH, Kim KM, Kang CS, Lee GE, Choi JY, Shon J, Ko JM, Choi C. Genome-Wide Association Study of Arabinoxylan Content from a 562 Hexaploid Wheat Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:184. [PMID: 36616313 PMCID: PMC9823421 DOI: 10.3390/plants12010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The selection of wheat varieties with high arabinoxylan (AX) levels could effectively improve the daily consumption of dietary fiber. However, studies on the selection of markers for AX levels are scarce. This study analyzed AX levels in 562 wheat genotypes collected from 46 countries using a GWAS with the BLINK model in the GAPIT3. Wheat genotypes were classified into eight subpopulations that exhibited high genetic differentiation based on 31,926 SNP loci. Eight candidate genes were identified, among which those encoding F-box domain-containing proteins, disease resistance protein RPM1, and bZIP transcription factor 29 highly correlated with AX levels. The AX level was higher in the adenine allele than in the guanine alleles of these genes in the wheat collection. In addition, the AX level was approximately 10% higher in 3 adenine combinations than 2 guanine, 1 adenine, and 3 guanine combinations in genotypes of three genes (F-box domain-containing proteins, RPM1, and bZIP transcription factor 29). The adenine allele, present in 97.46% of AX-95086356 SNP, exhibited a high correlation with AX levels following classification by country. Notably, the East Asian wheat genotypes contain high adenine alleles in three genes. These results highlight the potential of these three SNPs to serve as selectable markers for high AX content.
Collapse
|
22
|
Bautil A, Bedford MR, Buyse J, Courtin CM. Reduced-particle size wheat bran and endoxylanase supplementation in broiler feed affect arabinoxylan hydrolysis and fermentation with broiler age differently. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:308-320. [PMID: 36733780 PMCID: PMC9874015 DOI: 10.1016/j.aninu.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/12/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
Since the caecal microbiota of young broilers are not yet able to ferment the dietary fibre (DF) fraction of the feed to a large extent, increasing the accessibility of DF substrates along the gastrointestinal tract is crucial to benefit from the health stimulating metabolic end-products (e.g. butyric acid) generated upon microbial DF fermentation. Therefore, the present study aimed to evaluate the potential of reduced-particle size wheat bran (RPS-WB) and endoxylanases as feed additives to stimulate arabinoxylan (AX) hydrolysis and fermentation along the hindgut of young broilers. To this end, RPS-WB and endoxylanase supplementation were evaluated in a 2 × 2 factorial design using a total of 256 male 1-d-old chicks (Ross 308). Broilers were assigned to 4 dietary treatments: a basal wheat-based diet with (1) no feed additives (control, CTRL), (2) an endoxylanase (XYL; Econase XT 25 at 0.10 g/kg diet), (3) 1% wheat bran with an average reduced particle size of 297 μm (RPS-WB) and (4) an endoxylanase and 1% RPS-WB (RPS-WB + XYL). Each dietary treatment was replicated 8 times and on d 10 and 28, respectively, 24 and 16 broilers per treatment group were euthanised to analyse AX degradation, short-chain fatty acid production and digesta viscosity in the ileum and caecum. Broilers receiving XYL in their diet showed increased AX solubilisation and fermentation at both d 10 and 28 compared to the CTRL group (P < 0.05). Adding RPS-WB to the diet stimulated wheat AX utilisation by the primary AX degraders in the caecum at 10 d of age compared to the CTRL group, as observed by the high AX digestibility coefficient for the RPS-WB supplemented group at this young age (P < 0.05). At 28 d, RPS-WB supplementation lowered body-weight gains but increased butyric acid concentrations compared to the XYL and CTRL group (P < 0.05). Although no synergistic effect for RPS-WB + XYL broilers was observed for AX hydrolysis and fermentation, these findings suggest that both additives can raise a dual benefit to the broiler as a butyrogenic effect and improved AX fermentation along the ileum and caecum were observed throughout the broiler's life.
Collapse
Affiliation(s)
- An Bautil
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, 3001, Belgium,Corresponding author.
| | | | - Johan Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Leuven, 3001, Belgium
| | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, 3001, Belgium
| |
Collapse
|
23
|
The Wheat Aleurone Layer: Optimisation of Its Benefits and Application to Bakery Products. Foods 2022; 11:foods11223552. [PMID: 36429143 PMCID: PMC9689362 DOI: 10.3390/foods11223552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The wheat aleurone layer is, according to millers, the main bran fraction. It is a source of nutritionally valuable compounds, such as dietary fibres, proteins, minerals and vitamins, that may exhibit health benefits. Despite these advantages, the aleurone layer is scarce on the market, probably due to issues related to its extraction. Many processes exist with some patents, but a choice must be made between the quality and quantity of the resulting product. Nonetheless, its potential has been studied mainly in bread and pasta. While the nutritional benefits of aleurone-rich flour addition to bread agree, opposite results have been obtained concerning its effects on end-product characteristics (namely loaf volume and sensory characteristics), thus ensuing different acceptability responses from consumers. However, the observed negative effects of aleurone-rich flour on bread dough could be reduced by subjecting it to pre- or post-extracting treatments meant to either reduce the particle size of the aleurone's fibres or to change the conformation of its components.
Collapse
|
24
|
Selga L, Andersson AA, Moldin A, Andersson R. Determining levels of water-extractable and water-unextractable arabinoxylan in commercial Swedish wheat flours by a high-throughput method. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
25
|
Doğan Cömert E, Gökmen V. Optimization of reaction conditions for the design of cereal-based dietary fibers with high antioxidant capacity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6502-6510. [PMID: 35567535 DOI: 10.1002/jsfa.12017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/16/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Bound antioxidants are distinguished by their strong potential to defend the body against oxidative stress. Cereal bran fractions contain antioxidant compounds bound to dietary fiber, but this only occurs to a limited extent. Increasing the quantity of bound antioxidant compounds using soluble phenolic compounds is thought to be a possible method for designing cereal-based dietary fibers with high antioxidant potential. Certain cereal bran samples (wheat, oat, rye, and rice) were reacted with different concentrations of beverages (green tea infusion, black tea infusion, espresso, and red wine), rich in various soluble phenolic compounds. The interactive effects of parameters (time, temperature, and pH) and the optimum conditions for the reaction were determined using response surface methodology. RESULTS Green tea infusion (30 g·L-1 ) was found to be the most effective beverage. The pH rather than the time and temperature had significant (O p < 0.0001) effects on the reaction. Neutral or slightly alkaline conditions (pH 7.0-7.9) and mild temperatures (at about 50 °C) were found to be optimum to increase the antioxidant capacity of cereal bran samples. The total antioxidant capacity of oat bran treated with green tea infusion under optimum conditions (53.3 °C, pH 7.4, 60.0 min) reached 226.42 ± 0.88 mmol Trolox equivalent·kg-1 . The free amino groups in cereal bran were also found to decrease (32-95%) after treatment. CONCLUSION It is possible to design functional cereal-based dietary fibers, rich in bound antioxidant compounds through treatment with green tea infusion under optimum conditions. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ezgi Doğan Cömert
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
26
|
Kouzounis D, Jonathan MC, Soares N, Kabel MA, Schols HA. In vivo formation of arabinoxylo-oligosaccharides by dietary endo-xylanase alters arabinoxylan utilization in broilers. Carbohydr Polym 2022; 291:119527. [DOI: 10.1016/j.carbpol.2022.119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
|
27
|
De Man WL, Chandran CV, Wouters AGB, Radhakrishnan S, Martens JA, Breynaert E, Delcour JA. Hydration of Wheat Flour Water-Unextractable Cell Wall Material Enables Structural Analysis of Its Arabinoxylan by High-Resolution Solid-State 13C MAS NMR Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10604-10610. [PMID: 35977412 DOI: 10.1021/acs.jafc.2c04087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To enable its structural characterization by nuclear magnetic resonance (NMR) spectroscopy, the native structure of cereal water-unextractable arabinoxylan (WU-AX) is typically disrupted by alkali or enzymatic treatments. Here, WU-AX in the wheat flour unextractable cell wall material (UCWM) containing 40.9% ± 1.5 arabinoxylan with an arabinose-to-xylose ratio of 0.62 ± 0.04 was characterized by high-resolution solid-state NMR without disrupting its native structure. Hydration of the UCWM (1.7 mg H2O/mg UCWM) in combination with specific optimizations in the NMR methodology enabled analysis by solid-state 13C NMR with magic angle spinning and 1H high-power decoupling (13C HPDEC MAS NMR) which provided sufficiently high resolution to allow for carbon atom assignments. Spectral resonances of C-1 from arabinose and xylose residues of WU-AX were here assigned to the solid state. The proportions of un-, mono-, and di-substituted xyloses were 59.2, 19.5, and 21.2%, respectively. 13C HPDEC MAS NMR showed the presence of solid-state fractions with different mobilities in the UCWM. This study presents the first solid-state NMR spectrum of wheat WU-AX with sufficient resolution to enable assignment without prior WU-AX solubilization.
Collapse
Affiliation(s)
- Wannes L De Man
- Laboratory of Food Chemistry and Biochemistry (LFCB) and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 23, B-3001Heverlee, Belgium
| | - C Vinod Chandran
- Centre for Surface Chemistry and Catalysis (COK-KAT), KU Leuven, Celestijnenlaan 200F─box 2461, B-3001Heverlee, Belgium
- X-ray/NMR Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F─box 2461, B-3001Heverlee, Belgium
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry (LFCB) and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 23, B-3001Heverlee, Belgium
| | - Sambhu Radhakrishnan
- Centre for Surface Chemistry and Catalysis (COK-KAT), KU Leuven, Celestijnenlaan 200F─box 2461, B-3001Heverlee, Belgium
- X-ray/NMR Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F─box 2461, B-3001Heverlee, Belgium
| | - Johan A Martens
- Centre for Surface Chemistry and Catalysis (COK-KAT), KU Leuven, Celestijnenlaan 200F─box 2461, B-3001Heverlee, Belgium
- X-ray/NMR Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F─box 2461, B-3001Heverlee, Belgium
| | - Eric Breynaert
- Centre for Surface Chemistry and Catalysis (COK-KAT), KU Leuven, Celestijnenlaan 200F─box 2461, B-3001Heverlee, Belgium
- X-ray/NMR Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F─box 2461, B-3001Heverlee, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry (LFCB) and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 23, B-3001Heverlee, Belgium
| |
Collapse
|
28
|
Nishitsuji Y, Whitney K, Nakamura K, Hayakawa K, Simsek S. Analysis of molecular weight and structural changes in water-extractable arabinoxylans during the breadmaking process. Food Chem 2022; 386:132772. [PMID: 35344729 DOI: 10.1016/j.foodchem.2022.132772] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
Arabinoxylans are important for dough and breadmaking properties. It is not clear how arabinoxylans of different molecular weights behave during the breadmaking process as well as the changes in individual structures. We investigated changes in the molecular weight and structure of water-extractable arabinoxylans. It was revealed that molecules larger than high molecular weight arabinoxylans were formed during the mixing and 1st fermentation (105 min before 1st punch). High molecular weight arabinoxylan continued to be degraded from mixing to the proofing stage. The arabinose to xylose ratio increased at mixing and the 1st fermentation due to solubilization of highly substituted arabinoxylan. Low molecular weight arabinoxylan did not show degradation and structural changes during the fermentation process, whereas the weight average molecular weight of low molecular weight arabinoxylan significantly decreased (P < 0.05) at mixing. Water extractable arabinoxylan shows different behaviors for molecular weight and structural changes during the breadmaking process.
Collapse
Affiliation(s)
- Yasuyuki Nishitsuji
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc, 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan.
| | - Kristin Whitney
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Kenji Nakamura
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc, 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Katsuyuki Hayakawa
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc, 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Senay Simsek
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
29
|
Kouzounis D, Sun P, Bakx EJ, Schols HA, Kabel MA. Strategy to identify reduced arabinoxylo-oligosaccharides by HILIC-MSn. Carbohydr Polym 2022; 289:119415. [DOI: 10.1016/j.carbpol.2022.119415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
|
30
|
Garrido MM, Piccinni FE, Landoni M, Peña MJ, Topalian J, Couto A, Wirth SA, Urbanowicz BR, Campos E. Insights into the xylan degradation system of Cellulomonas sp. B6: biochemical characterization of rCsXyn10A and rCsAbf62A. Appl Microbiol Biotechnol 2022; 106:5035-5049. [PMID: 35799069 DOI: 10.1007/s00253-022-12061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
Valorization of the hemicellulose fraction of plant biomass is crucial for the sustainability of lignocellulosic biorefineries. The Cellulomonas genus comprises Gram-positive Actinobacteria that degrade cellulose and other polysaccharides by secreting a complex array of enzymes. In this work, we studied the specificity and synergy of two enzymes, CsXyn10A and CsAbf62A, which were identified as highly abundant in the extracellular proteome of Cellulomonas sp. B6 when grown on wheat bran. To explore their potential for bioprocessing, the recombinant enzymes were expressed and their activities were thoroughly characterized. rCsXyn10A is a GH10 endo-xylanase (EC 3.2.1.8), active across a broad pH range (5 to 9), at temperatures up to 55 °C. rCsAbf62A is an α-L-arabinofuranosidase (ABF) (EC 3.2.1.55) that specifically removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides (AXOS), xylan, and arabinan backbones, but it cannot act on double-substituted residues. It also has activity on pNPA. No differences were observed regarding activity when CsAbf62A was expressed with its appended CBM13 module or only the catalytic domain. The amount of xylobiose released from either wheat arabinoxylan or arabino-xylo-oligosaccharides increased significantly when rCsXyn10A was supplemented with rCsAbf62A, indicating that the removal of arabinosyl residues by rCsAbf62A improved rCsXyn10A accessibility to β-1,4-xylose linkages, but no synergism was observed in the deconstruction of wheat bran. These results contribute to designing tailor-made, substrate-specific, enzymatic cocktails for xylan valorization. KEY POINTS: • rCsAbf62A removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides, xylan, and arabinan backbones. • The appended CBM13 of rCsAbf62A did not affect the specific activity of the enzyme. • Supplementation of rCsXyn10A with rCsAbf62A improves the degradation of AXOS and xylan.
Collapse
Affiliation(s)
- Mercedes María Garrido
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)- CONICET, Los Reseros y Nicolás Repetto S/N (1686), Hurlingham, Buenos Aires, Argentina.,Laboratorio de Agrobiotecnología, DFBMC- FCEN and Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - Florencia Elizabeth Piccinni
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)- CONICET, Los Reseros y Nicolás Repetto S/N (1686), Hurlingham, Buenos Aires, Argentina.,Laboratorio de Agrobiotecnología, DFBMC- FCEN and Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - Malena Landoni
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR)- CONICET, Departamento de Química Orgánica, FCEN- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - María Jesús Peña
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Juliana Topalian
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)- CONICET, Los Reseros y Nicolás Repetto S/N (1686), Hurlingham, Buenos Aires, Argentina
| | - Alicia Couto
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR)- CONICET, Departamento de Química Orgánica, FCEN- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - Sonia Alejandra Wirth
- Laboratorio de Agrobiotecnología, DFBMC- FCEN and Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina
| | - Breeanna Rae Urbanowicz
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)- CONICET, Los Reseros y Nicolás Repetto S/N (1686), Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Spatial correlation of water distribution and fine structure of arabinoxylans in the developing wheat grain. Carbohydr Polym 2022; 294:119738. [DOI: 10.1016/j.carbpol.2022.119738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022]
|
32
|
Xie H, Ying R, Huang M. Effect of arabinoxylans with different molecular weights on the gelling properties of wheat starch. Int J Biol Macromol 2022; 209:1676-1684. [PMID: 35487381 DOI: 10.1016/j.ijbiomac.2022.04.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
The addition of arabinoxylans (AXs) is important for improving the structure of wheat starch-AX gels, which further influences the functionality of starch-based products. The properties of wheat starch-AX gels (including rheology, texture, water distribution, microstructure, and degree of crystallinity) were studied. AX with high molecular weight (Mw) significantly decreased the swelling and leached amylose, while increasing the solubility of amylose. The AX with high Mw also clearly reduced the apparent viscosity, elasticity, and viscosity of wheat starch-AX gels. The Mw of AX was positively correlated to the hardness of the gels and negatively correlated to adhesiveness to a certain extent. The spin-spin relaxation time of the gels increased with an increase in Mw, which resulted in more free water. Scanning electron microscopy showed that AX with high Mw clearly reduced the degree of starch gelatinization while forming a fragile gel structure. In summary, AX with high Mw from natural wheat grains can effectively affect wheat starch gelling properties. These results may be useful for the application of natural AXs in wheat starch-based functional foods.
Collapse
Affiliation(s)
- Hui Xie
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Meigui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
33
|
Zhang Z, Yang P, Zhao J. Ferulic acid mediates prebiotic responses of cereal-derived arabinoxylans on host health. ANIMAL NUTRITION 2022; 9:31-38. [PMID: 35949987 PMCID: PMC9344318 DOI: 10.1016/j.aninu.2021.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 10/25/2022]
|
34
|
Liu Z, Wen S, Wu G, Wu H. Heterologous expression and characterization of Anaeromyces robustus xylanase and its use in bread making. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Dectin-1b activation by arabinoxylans induces trained immunity in human monocyte-derived macrophages. Int J Biol Macromol 2022; 209:942-950. [PMID: 35447262 DOI: 10.1016/j.ijbiomac.2022.04.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 01/21/2023]
Abstract
Arabinoxylans of various structures and sources have shown to possess the ability to induce a range of immune responses in different cell types in vitro and in vivo. Although the underlying mechanisms remain to be fully established, several studies point towards the involvement of activation of pattern recognition receptors (PRRs). Activation of specific PRRs (i.e., Dectin-1 and CR3) has also been shown to play a key role in the induction of a non-specific memory response in innate immune cells, termed 'trained innate immunity'. In the current study, we assessed whether arabinoxylans are also able to induce trained innate immunity. To this end, a range of arabinoxylan preparations from different sources were tested for their physicochemical properties and their capacity to induce innate immune training and resilience. In human macrophages, rice and wheat-derived arabinoxylan preparations induced training and/or resilience effects, the extent depending on fiber particle size and solubility. Using a Dectin-1 antagonist or a CR3 antibody, it was demonstrated that arabinoxylan-induced trained immunity in macrophages is mainly dependent on Dectin-1b. These findings build on previous observations showing the immunomodulatory potential of arabinoxylans as biological response modifiers and open up promising avenues for their use as health promoting ingredients.
Collapse
|
36
|
Zannini E, Bravo Núñez Á, Sahin AW, Arendt EK. Arabinoxylans as Functional Food Ingredients: A Review. Foods 2022; 11:1026. [PMID: 35407113 PMCID: PMC8997659 DOI: 10.3390/foods11071026] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The health benefits of fibre consumption are sound, but a more compressive understanding of the individual effects of different fibres is still needed. Arabinoxylan is a complex fibre that provides a wide range of health benefits strongly regulated by its chemical structure. Arabinoxylans can be found in various grains, such as wheat, barley, or corn. This review addresses the influence of the source of origin and extraction process on arabinoxylan structure. The health benefits related to short-chain fatty acid production, microbiota regulation, antioxidant capacity, and blood glucose response control are discussed and correlated to the arabinoxylan's structure. However, most studies do not investigate the effect of AX as a pure ingredient on food systems, but as fibres containing AXs (such as bran). Therefore, AX's benefit for human health deserves further investigation. The relationship between arabinoxylan structure and its physicochemical influence on cereal products (pasta, cookies, cakes, bread, and beer) is also discussed. A strong correlation between arabinoxylan's structural properties (degree of branching, solubility, and molecular mass) and its functionalities in food systems can be observed. There is a need for further studies that address the health implications behind the consumption of arabinoxylan-rich products. Indeed, the food matrix may influence the effects of arabinoxylans in the gastrointestinal tract and determine which specific arabinoxylans can be included in cereal and non-cereal-based food products without being detrimental for product quality.
Collapse
Affiliation(s)
- Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Ángela Bravo Núñez
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
37
|
Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis. Int J Mol Sci 2022; 23:ijms23073821. [PMID: 35409181 PMCID: PMC8999039 DOI: 10.3390/ijms23073821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high β-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain β-glucan, pentosan, and protein content in a collection of Ae. biuncialis. A large variation in grain protein and edible fiber content was revealed, reflecting the origin of Ae. biuncialis accessions from different eco-geographical habitats. Association analysis using DArTseq-derived SNPs identified 34 QTLs associated with β-glucan, pentosan, water-extractable pentosan, and protein content. Mapping the markers to draft chromosome assemblies of diploid progenitors of Ae. biuncialis underlined the role of genes on chromosomes 1Mb, 4Mb, and 5Mb in the formation of grain β-glucan content, while other QTLs on chromosome groups 3, 6, and 1 identified genes responsible for total- and water-extractable pentosan content. Functional annotation of the associated marker sequences identified fourteen genes, nine of which were identified in other monocots. The QTLs and genes identified in the present work are attractive targets for chromosome-mediated gene transfer to improve the health-promoting properties of wheat-derived foods.
Collapse
|
38
|
Kulathunga J, Simsek S. Dietary fiber variation in ancient and modern wheat species: Einkorn, emmer, spelt and hard red spring wheat. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Solomou K, Alyassin M, Angelis-Dimakis A, Campbell GM. Arabinoxylans: A new class of food ingredients arising from synergies with biorefining, and illustrating the nature of biorefinery engineering. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Halahlah A, Piironen V, Mikkonen KS, Ho TM. Polysaccharides as wall materials in spray-dried microencapsulation of bioactive compounds: Physicochemical properties and characterization. Crit Rev Food Sci Nutr 2022; 63:6983-7015. [PMID: 35213281 DOI: 10.1080/10408398.2022.2038080] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural bioactive compounds (BCs) are types of chemicals found in plants and certain foods that promote good health, however they are sensitive to processing and environmental conditions. Microencapsulation by spray drying is a widely used and cost-effective approach to create a coating layer to surround and protect BCs and control their release, enabling the production of high functional products/ingredients with extended shelf life. In this process, wall materials determine protection efficiency, and physical properties, bioavailability, and storage stability of microencapsulated products. Therefore, an understanding of physicochemical properties of wall materials is essential for the successful and effective spray-dried microencapsulation process. Typically, polysaccharide-based wall materials are generated from more sustainable sources and have a wider range of physicochemical properties and applications compared to their protein-based counterparts. In this review, we highlight the essential physicochemical properties of polysaccharide-based wall materials for spray-dried microencapsulation of BCs including solubility, thermal stability, and emulsifying properties, rheological and film forming properties. We provide further insight into possibilities for the chemical structure modification of native wall materials and their controlled release behaviors. Finally, we summarize the most recent studies involving polysaccharide biopolymers as wall materials and/or emulsifiers in spray-dried microencapsulation of BCs.
Collapse
Affiliation(s)
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | - Thao M Ho
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| |
Collapse
|
41
|
Wang P, Li D, Hou C, Yang T, Yang R, Gu Z, Jiang D. Tailormade Wheat Arabinoxylan Reveals the Role of Substitution in Regulating Gelatinization and Retrogradation Behavior of Wheat Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1659-1669. [PMID: 35099184 DOI: 10.1021/acs.jafc.1c07722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To elucidate the role of substitution of arabinoxylan (AX) in the characteristics of wheat starch, this study prepared AX with a well-defined structure by targeted enzymatic hydrolysis and comparatively investigated the effects of AX with different degrees of substitution on gelatinization and retrogradation behavior of starch. Removal of major arabinofuranosyl (Araf) of mono- or disubstituted xylopyranosyl (Xylp) of both low-molecular-weight (Mw: 62.5 kDa, Araf/Xylp: 0.61) and high-molecular-weight AX (Mw: 401.2 kDa, Araf/Xylp: 0.61) reversed the decreased gelatinization viscosity and recrystallization of amylose induced by AX to a similar extent. Upon retrogradation for 30 days, the Araf of mono- and disubstituted Xylp contributed to the water distribution and the effect depended on the molecular chain length. The C3-linked Araf of disubstituted Xylp was more involved in prohibiting the retardation of recrystallization of amylopectin, while the presence of Araf of monosubstituted Xylp might hinder the interactions between AX and amylopectin.
Collapse
Affiliation(s)
- Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Cuidan Hou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Tao Yang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
42
|
Jaichakan P, Thongsook T, Nakphaichit M, Wattanasiritham LS, Phongthai S, Pattarapisitorn A, Utama‐ang N, Laokuldilok T, Klangpetch W. Xylobiose and Xylotriose Production from Alkali Soluble Defatted Rice Bran Arabinoxylan Using Endoxylanase from
Neocallimastix partriciarum. STARCH-STARKE 2022. [DOI: 10.1002/star.202100177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pannapapol Jaichakan
- Department of Agro‐Industry Faculty of Agriculture Natural Resources and Environment Naresuan University Phitsanulok 65000 Thailand
| | - Tipawan Thongsook
- Department of Agro‐Industry Faculty of Agriculture Natural Resources and Environment Naresuan University Phitsanulok 65000 Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology Faculty of Agro‐Industry Kasetsart University Bangkok 10900 Thailand
| | | | - Suphat Phongthai
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Research Center for Development of Local Lanna Rice and Rice Products Chiang Mai University Chiang Mai 50200 Thailand
| | | | - Niramon Utama‐ang
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of High Value Products from Thai rice and Plants for Health Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of Innovative Food and Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Thunnop Laokuldilok
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of High Value Products from Thai rice and Plants for Health Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of Innovative Food and Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Wannaporn Klangpetch
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of High Value Products from Thai rice and Plants for Health Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of Innovative Food and Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| |
Collapse
|
43
|
Arzami AN, Ho TM, Mikkonen KS. Valorization of cereal by-product hemicelluloses: Fractionation and purity considerations. Food Res Int 2022; 151:110818. [PMID: 34980370 DOI: 10.1016/j.foodres.2021.110818] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
The biomass from cereal side streams is rich in valuable components, such as hemicelluloses. Among the hemicelluloses, arabinoxylans and β-glucans are the most acknowledged for potential health benefits. Numerous publications discuss the potential to use purified forms of these hemicelluloses for various applications. However, as the purification of hemicelluloses may not be economically feasible to upscale, sustainable and cost-effective methods are needed to make their valorization more realistic for industrial applications. Co-components present in hemicellulose-rich fractions may also provide added functionality, such as flavonoid content and antioxidant capacity. This review provides an overview on the feasibility of sustainably upscaling hemicellulose extraction processes, focusing on by-products from different cereal streams. We describe the hemicelluloses' physicochemical properties and provide various possible applications of pure and impure fractions from small scale to pilot and industrial scale. Furthermore, real case examples on the industrial utilization of cereal side streams are enclosed. This review provides pathways for future research for developing the hemicellulose extraction methods to obtain fractions with optimized purity, and offers suggestions to valorize them.
Collapse
Affiliation(s)
- Anis N Arzami
- Department of Food and Nutrition, P.O. Box 66, 00014, University of Helsinki, Finland.
| | - Thao M Ho
- Department of Food and Nutrition, P.O. Box 66, 00014, University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, 00014, University of Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, P.O. Box 66, 00014, University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, 00014, University of Helsinki, Finland
| |
Collapse
|
44
|
He HJ, Qiao J, Liu Y, Guo Q, Ou X, Wang X. Isolation, Structural, Functional, and Bioactive Properties of Cereal Arabinoxylan─A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15437-15457. [PMID: 34842436 DOI: 10.1021/acs.jafc.1c04506] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arabinoxylans (AXs) are widely distributed in various cereal grains, such as wheat, corn, rye, barley, rice, and oat. The AX molecule contains a linear (1,4)-β-D-xylp backbone substituted by α-L-araf units and occasionally t-xylp and t-glcpA through α-(1,2) and/or α-(1,3) glycosidic linkages. Arabinoxylan shows diversified functional and bioactive properties, influenced by their molecular mass, branching degree, ferulic acid (FA) content, and the substitution position and chain length of the side chains. This Review summarizes the extraction methods for various cereal sources, compares their structural features and functional/bioactive properties, and highlights the established structure-function/bioactivity relationships, intending to explore the potential functions of AXs and their industrial applications.
Collapse
Affiliation(s)
- Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jinli Qiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xingqi Ou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaochan Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
45
|
Pazo-Cepeda M, Aspromonte S, Alonso E. Extraction of ferulic acid and feruloylated arabinoxylo-oligosaccharides from wheat bran using pressurized hot water. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Tian B, Zhou C, Li D, Pei J, Guo A, Liu S, Li H. Monitoring the Effects of Hemicellulase on the Different Proofing Stages of Wheat Aleurone-Rich Bread Dough and Bread Quality. Foods 2021; 10:2427. [PMID: 34681483 PMCID: PMC8535788 DOI: 10.3390/foods10102427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/31/2022] Open
Abstract
This study investigated the effects of a hemicellulase dosage (20, 40, and 60 mg kg-1 of flour) on the bread quality and rheological properties of wheat aleurone-rich flour. The results showed that hemicellulase could soften dough and improve extensibility. At the optimum hemicellulase dosage (40 mg kg-1 of flour), the bread specific volume increased by 40.91% and firmness of breadcrumb decreased by 104.57% compared to those of the control. Intermolecular forces indicated that the gluten network during the proofing was mainly strengthened via disulfide bonds, hydrophobic interactions, and hydrogen bonds but not through ionic bonds after hemicellulase addition. Fourier infrared spectroscopy indicated that the hydrolytic activity of hemicellulase catalyzed the transition from α-helix to β-sheet, which verified that viscoelasticity of gluten was enhanced at a dosage of 40 mg kg-1 of flour. These results suggested that hydrolyzation of hemicellulase contributed to the structural of gluten changes, thereby improving the quality of wheat aleurone-rich bread.
Collapse
Affiliation(s)
- Boyu Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (B.T.); (C.Z.); (J.P.); (A.G.); (S.L.)
| | - Chenxia Zhou
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (B.T.); (C.Z.); (J.P.); (A.G.); (S.L.)
| | - Dongxiao Li
- Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China;
| | - Jiawei Pei
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (B.T.); (C.Z.); (J.P.); (A.G.); (S.L.)
| | - Ailiang Guo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (B.T.); (C.Z.); (J.P.); (A.G.); (S.L.)
| | - Shuang Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (B.T.); (C.Z.); (J.P.); (A.G.); (S.L.)
| | - Huijing Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (B.T.); (C.Z.); (J.P.); (A.G.); (S.L.)
| |
Collapse
|
47
|
Schupfer E, Pak SC, Wang S, Micalos PS, Jeffries T, Ooi SL, Golombick T, Harris G, El-Omar E. The effects and benefits of arabinoxylans on human gut microbiota – A narrative review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
The Effect of Arabinoxylan and Wheat Bran Incorporation on Dough Rheology and Thermal Processing of Rotary-Moulded Biscuits. Foods 2021; 10:foods10102335. [PMID: 34681384 PMCID: PMC8535077 DOI: 10.3390/foods10102335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
Wheat bran incorporation into biscuits may increase their nutritional value, however, it may affect dough rheology and baking performance, due to the effect of bran particles on dough structure and an increase in water absorption. This study analyzed the enrichment effect of wheat bran and arabinoxylans, the most important non-starch polysaccharides found in whole wheat flour, on dough rheology and thermal behaviour during processing of rotary-moulded biscuits. The objective was to understand the contribution of arabinoxylans during biscuit-making and their impact when incorporated as wheat bran. Refined flour was replaced at 25, 50, 75, or 100% by whole flour with different bran particle sizes (fine: 4% > 500 μm; coarse: 72% > 500 μm). The isolated effect of arabinoxylans was examined by preparing model flours, where refined flour was enriched with water-extractable and water-unextractable arabinoxylans. Wheat bran had the greatest impact on dough firmness and arabinoxylans had the greatest impact on the elastic response. The degree of starch gelatinization increased from 24 to 36% in biscuits enriched with arabinoxylans or whole flour and coarse bran. The microstructural analysis (SEM, micro-CT) suggested that fibre micropores may retain water inside their capillaries which can be released in a controlled manner during baking.
Collapse
|
49
|
Abdi R, Joye IJ. Prebiotic Potential of Cereal Components. Foods 2021; 10:foods10102338. [PMID: 34681385 PMCID: PMC8535731 DOI: 10.3390/foods10102338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023] Open
Abstract
One type of functional food that has been receiving much attention is food rich in prebiotics. The old but still valid definition of prebiotics defines them as non-digestible food components that selectively stimulate the growth and/or activity of the beneficial bacteria in the colon and, as a result, improve the host health. Cereals, as one of the main components in the human diet, contain substantial levels of dietary fiber with probable prebiotic potential. In addition, dietary fiber, particularly soluble dietary fiber, has recently emerged as a promising natural highly functional food ingredient in food production. This review focuses on the prebiotic potential of cereal dietary fiber types and covers the achievements and developments regarding its isolation. First, the probiotic and prebiotic concepts will be discussed. Next, different components of dietary fiber and their effect on the host bacteria through in vitro and/or in vivo studies will be reviewed. In a last part, this paper also discusses means of boosting the prebiotic properties of cereal components and innovative strategies for the extraction of cereal dietary fiber. The review focuses on wheat as a leading cereal crop that is widely and intensely used throughout the world in food production.
Collapse
Affiliation(s)
| | - Iris J. Joye
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 52470)
| |
Collapse
|
50
|
Botticella E, Savatin DV, Sestili F. The Triple Jags of Dietary Fibers in Cereals: How Biotechnology Is Longing for High Fiber Grains. FRONTIERS IN PLANT SCIENCE 2021; 12:745579. [PMID: 34594354 PMCID: PMC8477015 DOI: 10.3389/fpls.2021.745579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/18/2021] [Indexed: 05/03/2023]
Abstract
Cereals represent an important source of beneficial compounds for human health, such as macro- and micronutrients, vitamins, and bioactive molecules. Generally, the consumption of whole-grain products is associated with significant health benefits, due to the elevated amount of dietary fiber (DF). However, the consumption of whole-grain foods is still modest compared to more refined products. In this sense, it is worth focusing on the increase of DF fractions inside the inner compartment of the seed, the endosperm, which represents the main part of the derived flour. The main components of the grain fiber are arabinoxylan (AX), β-glucan (βG), and resistant starch (RS). These three components are differently distributed in grains, however, all of them are represented in the endosperm. AX and βG, classified as non-starch polysaccharides (NSP), are in cell walls, whereas, RS is in the endosperm, being a starch fraction. As the chemical structure of DFs influences their digestibility, the identification of key actors involved in their metabolism can pave the way to improve their function in human health. Here, we reviewed the main achievements of plant biotechnologies in DFs manipulation in cereals, highlighting new genetic targets to be exploited, and main issues to face to increase the potential of cereals in fighting malnutrition.
Collapse
Affiliation(s)
- Ermelinda Botticella
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
| | | | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|