1
|
Ibrahim A, Jiang Z, Shirvani K, Dalili A, Abdel Hamid Z. A Novel Viscoelastic Deformation Mechanism Uncovered during Vickers Hardness Study of Bone. J Funct Biomater 2024; 15:87. [PMID: 38667544 PMCID: PMC11051036 DOI: 10.3390/jfb15040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigates the viscoelastic deformation mechanisms of bone as a response to Vickers hardness indentation. We utilized advanced high-resolution scanning electron microscopy (SEM) to investigate a distinct deformation pattern that originates from the indentation site within the bone matrix. The focus of our research was to analyze a unique deformation mechanism observed in bone tissue, which has been colloquially termed as "screw-like" due to its resemblance to a screw thread when viewed under an optical microscope. The primary goals of this research are to investigate the distinctive characteristics of the "screw-like" deformation pattern and to determine how the microstructure of bone influences the initiation and control of this mechanism. These patterns, emerging during the dwell period of indentation, underscore the viscoelastic nature of bone, indicating its propensity for energy dissipation and microstructural reconfiguration under load. This study uncovered a direct correlation between the length of the "screw-like" deformation and the duration of the indentation dwell time, providing quantifiable evidence of the bone's viscoelastic behavior. This finding is pivotal in understanding the mechanical properties of bone, including its fracture toughness, as it relates to the complex interplay of factors such as energy dissipation, microstructural reinforcement, and stress distribution. Furthermore, this study discusses the implications of viscoelastic properties on the bone's ability to resist mechanical challenges, underscoring the significance of viscoelasticity in bone research.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, NY 11735, USA; (K.S.); (A.D.)
| | - Zhenting Jiang
- The Department of Earth & Planetary Sciences, Yale University, New Haven, CT 06511, USA;
| | - Khosro Shirvani
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, NY 11735, USA; (K.S.); (A.D.)
| | - Alireza Dalili
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, NY 11735, USA; (K.S.); (A.D.)
| | - Z. Abdel Hamid
- Central Metallurgical Research and Development Institute, Helwan 11421, Egypt;
| |
Collapse
|
2
|
Wang L, Meloro C, Fagan MJ, Kissane RWP, Bates KT, Askew GN, Watson PJ. Regional variation of the cortical and trabecular bone material properties in the rabbit skull. PLoS One 2024; 19:e0298621. [PMID: 38412158 PMCID: PMC10898762 DOI: 10.1371/journal.pone.0298621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/27/2024] [Indexed: 02/29/2024] Open
Abstract
The material properties of some bones are known to vary with anatomical location, orientation and position within the bone (e.g., cortical and trabecular bone). Details of the heterogeneity and anisotropy of bone is an important consideration for biomechanical studies that apply techniques such as finite element analysis, as the outcomes will be influenced by the choice of material properties used. Datasets detailing the regional variation of material properties in the bones of the skull are sparse, leaving many finite element analyses of skulls no choice but to employ homogeneous, isotropic material properties, often using data from a different species to the one under investigation. Due to the growing significance of investigating the cranial biomechanics of the rabbit in basic science and clinical research, this study used nanoindentation to measure the elastic modulus of cortical and trabecular bone throughout the skull. The elastic moduli of cortical bone measured in the mediolateral and ventrodorsal direction were found to decrease posteriorly through the skull, while it was evenly distributed when measured in the anteroposterior direction. Furthermore, statistical tests showed that the variation of elastic moduli between separate regions (anterior, middle and posterior) of the skull were significantly different in cortical bone, but was not in trabecular bone. Elastic moduli measured in different orthotropic planes were also significantly different, with the moduli measured in the mediolateral direction consistently lower than that measured in either the anteroposterior or ventrodorsal direction. These findings demonstrate the significance of regional and directional variation in cortical bone elastic modulus, and therefore material properties in finite element models of the skull, particularly those of the rabbit, should consider the heterogeneous and orthotropic properties of skull bone when possible.
Collapse
Affiliation(s)
- Linje Wang
- Structural Biomechanics, Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
- School of Engineering, University of Hull, Hull, United Kingdom
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Michael J Fagan
- School of Engineering, University of Hull, Hull, United Kingdom
| | - Roger W P Kissane
- Department of Musculoskeletal & Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Peter J Watson
- School of Engineering, University of Hull, Hull, United Kingdom
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
3
|
Indermaur M, Casari D, Kochetkova T, Willie BM, Michler J, Schwiedrzik J, Zysset P. Does tissue fixation change the mechanical properties of dry ovine bone extracellular matrix? J Mech Behav Biomed Mater 2024; 150:106294. [PMID: 38128472 DOI: 10.1016/j.jmbbm.2023.106294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/01/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Tissue fixation is a prevalent method for bone conservation. Bone biopsies are typically fixed in formalin, dehydrated in ethanol, and infiltrated with polymethyl methacrylate (PMMA) Since some experiments can only be performed on fixed bone samples, it is essential to understand how fixation affects the measured material properties. The aim of this study was to quantify the influence of tissue fixation on the mechanical properties of cortical ovine bone at the extracellular matrix (ECM) level with state-of-the-art micromechanical techniques. A small section from the middle of the diaphysis of two ovine tibias (3.5 and 5.5 years old) was cut in the middle and polished on each side, resulting in a pair of mirrored surfaces. For each pair, one specimen underwent a fixation protocol involving immersion in formalin, dehydration with ethanol, and infiltration with PMMA. The other specimen (mirrored) was air-dried. Six osteons were selected in both pairs, which could be identified in both specimens. The influence of fixation on the mechanical properties was first analyzed using micropillar compression tests and nanoindentation in dry condition. Additionally, changes in the degree of mineralization were evaluated with Raman spectroscopy in both fixed and native bone ECM. Finally, micro tensile experiments were conducted in the 3.5-year fixed ovine bone ECM and compared to reported properties of unfixed dry ovine bone ECM. Interestingly, we found that tissue fixation does not alter the mechanical properties of ovine cortical bone ECM compared to experiments in dry state. However, animal age increases the degree of mineralization (p = 0.0159) and compressive yield stress (p = 0.041). Tissue fixation appears therefore as a valid conservation technique for investigating the mechanical properties of dehydrated bone ECM.
Collapse
Affiliation(s)
- Michael Indermaur
- ARTORG Center for Biomedical Engineering, University of Bern, Switzerland.
| | - Daniele Casari
- Swiss Federal Laboratories for Material Science and Technology, Empa, Thun, Switzerland
| | - Tatiana Kochetkova
- Swiss Federal Laboratories for Material Science and Technology, Empa, Thun, Switzerland
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Johann Michler
- Swiss Federal Laboratories for Material Science and Technology, Empa, Thun, Switzerland
| | - Jakob Schwiedrzik
- Swiss Federal Laboratories for Material Science and Technology, Empa, Thun, Switzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering, University of Bern, Switzerland.
| |
Collapse
|
4
|
Indermaur M, Casari D, Kochetkova T, Willie BM, Michler J, Schwiedrzik J, Zysset P. Tensile Mechanical Properties of Dry Cortical Bone Extracellular Matrix: A Comparison Among Two Osteogenesis Imperfecta and One Healthy Control Iliac Crest Biopsies. JBMR Plus 2023; 7:e10826. [PMID: 38130764 PMCID: PMC10731133 DOI: 10.1002/jbm4.10826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 12/23/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetic, collagen-related bone disease that increases the incidence of bone fractures. Still, the origin of this brittle mechanical behavior remains unclear. The extracellular matrix (ECM) of OI bone exhibits a higher degree of bone mineralization (DBM), whereas compressive mechanical properties at the ECM level do not appear to be inferior to healthy bone. However, it is unknown if collagen defects alter ECM tensile properties. This study aims to quantify the tensile properties of healthy and OI bone ECM. In three transiliac biopsies (healthy n = 1, OI type I n = 1, OI type III n = 1), 23 microtensile specimens (gauge dimensions 10 × 5 × 2 μm3) were manufactured and loaded quasi-statically under tension in vacuum condition. The resulting loading modulus and ultimate strength were extracted. Interestingly, tensile properties in OI bone ECM were not inferior compared to controls. All specimens revealed a brittle failure behavior. Fracture surfaces were graded according to their mineralized collagen fibers (MCF) orientation into axial, mixed, and transversal fracture surface types (FST). Furthermore, tissue mineral density (TMD) of the biopsy cortices was extracted from micro-computed tomogra[hy (μCT) images. Both FST and TMD are significant factors to predict loading modulus and ultimate strength with an adjusted R 2 of 0.556 (p = 2.65e-05) and 0.46 (p = 2.2e-04), respectively. The influence of MCF orientation and DBM on the mechanical properties of the neighboring ECM was further verified with quantitative polarized Raman spectroscopy (qPRS) and site-matched nanoindentation. MCF orientation and DBM were extracted from the qPRS spectrum, and a second mechanical model was developed to predict the indentation modulus with MCF orientation and DBM (R 2 = 67.4%, p = 7.73e-07). The tensile mechanical properties of the cortical bone ECM of two OI iliac crest biopsies are not lower than the one from a healthy and are primarily dependent on MCF orientation and DBM. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael Indermaur
- ARTORG Center for Biomedical EngineeringUniversity of BernBernSwitzerland
| | - Daniele Casari
- ARTORG Center for Biomedical EngineeringUniversity of BernBernSwitzerland
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Tatiana Kochetkova
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children‐Canada, Department of Pediatric SurgeryMcGill UniversityMontrealQCCanada
| | - Johann Michler
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Jakob Schwiedrzik
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical EngineeringUniversity of BernBernSwitzerland
| |
Collapse
|
5
|
Davis S, Zekonyte J, Karali A, Roldo M, Blunn G. Early Degenerative Changes in a Spontaneous Osteoarthritis Model Assessed by Nanoindentation. Bioengineering (Basel) 2023; 10:995. [PMID: 37760097 PMCID: PMC10525236 DOI: 10.3390/bioengineering10090995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding early mechanical changes in articular cartilage (AC) and subchondral bone (SB) is crucial for improved treatment of osteoarthritis (OA). The aim of this study was to develop a method for nanoindentation of fresh, unfixed osteochondral tissue to assess the early changes in the mechanical properties of AC and SB. Nanoindentation was performed throughout the depth of AC and SB in the proximal tibia of Dunkin Hartley guinea pigs at 2 months, 3 months, and 2 years of age. The contralateral tibias were either histologically graded for OA or analyzed using immunohistochemistry. The results showed an increase in the reduced modulus (Er) in the deep zone of AC during early-stage OA (6.0 ± 1.75 MPa) compared to values at 2 months (4.04 ± 1.25 MPa) (*** p < 0.001). In severe OA (2-year) specimens, there was a significant reduction in Er throughout the superficial and middle AC zones, which correlated to increased ADAMTS 4 and 5 staining, and proteoglycan loss in these regions. In the subchondral bone, a 35.0% reduction in stiffness was observed between 2-month and 3-month specimens (*** p < 0.001). The severe OA age group had significantly increased SB stiffness of 36.2% and 109.6% compared to 2-month and 3-month-old specimens respectively (*** p < 0.001). In conclusion, this study provides useful information about the changes in the mechanical properties of both AC and SB during both early- and late-stage OA and indicates that an initial reduction in stiffness of the SB and an increase in stiffness in the deep zone of AC may precede early-stage cartilage degeneration.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK; (M.R.); (G.B.)
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; (J.Z.); (A.K.)
| | - Jurgita Zekonyte
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; (J.Z.); (A.K.)
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; (J.Z.); (A.K.)
| | - Marta Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK; (M.R.); (G.B.)
| | - Gordon Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK; (M.R.); (G.B.)
| |
Collapse
|
6
|
Tits A, Blouin S, Rummler M, Kaux JF, Drion P, van Lenthe GH, Weinkamer R, Hartmann MA, Ruffoni D. Structural and functional heterogeneity of mineralized fibrocartilage at the Achilles tendon-bone insertion. Acta Biomater 2023; 166:409-418. [PMID: 37088163 DOI: 10.1016/j.actbio.2023.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
A demanding task of the musculoskeletal system is the attachment of tendon to bone at entheses. This region often presents a thin layer of fibrocartilage (FC), mineralized close to the bone and unmineralized close to the tendon. Mineralized FC deserves increased attention, owing to its crucial anchoring task and involvement in enthesis pathologies. Here, we analyzed mineralized FC and subchondral bone at the Achilles tendon-bone insertion of rats. This location features enthesis FC anchoring tendon to bone and sustaining tensile loads, and periosteal FC facilitating bone-tendon sliding with accompanying compressive and shear forces. Using a correlative multimodal investigation, we evaluated potential specificities in mineral content, fiber organization and mechanical properties of enthesis and periosteal FC. Both tissues had a lower degree of mineralization than subchondral bone, yet used the available mineral very efficiently: for the same local mineral content, they had higher stiffness and hardness than bone. We found that enthesis FC was characterized by highly aligned mineralized collagen fibers even far away from the attachment region, whereas periosteal FC had a rich variety of fiber arrangements. Except for an initial steep spatial gradient between unmineralized and mineralized FC, local mechanical properties were surprisingly uniform inside enthesis FC while a modulation in stiffness, independent from mineral content, was observed in periosteal FC. We interpreted these different structure-property relationships as a demonstration of the high versatility of FC, providing high strength at the insertion (to resist tensile loading) and a gradual compliance at the periosteal surface (to resist contact stresses). STATEMENT OF SIGNIFICANCE: Mineralized fibrocartilage (FC) at entheses facilitates the integration of tendon in bone, two strongly dissimilar tissues. We focus on the structure-function relationships of two types of mineralized FC, enthesis and periosteal, which have clearly distinct mechanical demands. By investigating them with multiple high-resolution methods in a correlative manner, we demonstrate differences in fiber architecture and mechanical properties between the two tissues, indicative of their mechanical roles. Our results are relevant both from a medical viewpoint, targeting a clinically relevant location, as well as from a material science perspective, identifying FC as high-performance versatile composite.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium.
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Maximilian Rummler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Jean-François Kaux
- Department of Physical Medicine and Sports Traumatology, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery unit, GIGA & Credec, University of Liège, Liège, Belgium
| | | | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium.
| |
Collapse
|
7
|
Niu Y, Du T, Liu Y. Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials. J Funct Biomater 2023; 14:jfb14040212. [PMID: 37103302 PMCID: PMC10146666 DOI: 10.3390/jfb14040212] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical properties. It is important for bionic bone preparation to understand the structure of bone and the mineralization process and factors. In this paper, the research on the mineralization of collagen is reviewed in terms of the mechanical properties in recent years. Firstly, the structure and mechanical properties of bone are analyzed, and the differences of bone in different parts are described. Then, different scaffolds for bone repair are suggested considering bone repair sites. Mineralized collagen seems to be a better option for new composite scaffolds. Last, the paper introduces the most common method to prepare mineralized collagen and summarizes the factors influencing collagen mineralization and methods to analyze its mechanical properties. In conclusion, mineralized collagen is thought to be an ideal bone substitute material because it promotes faster development. Among the factors that promote collagen mineralization, more attention should be given to the mechanical loading factors of bone.
Collapse
Affiliation(s)
- Yumiao Niu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Youjun Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
8
|
Karali A, Dall'Ara E, Zekonyte J, Kao AP, Blunn G, Tozzi G. Effect of radiation-induced damage of trabecular bone tissue evaluated using indentation and digital volume correlation. J Mech Behav Biomed Mater 2023; 138:105636. [PMID: 36608532 DOI: 10.1016/j.jmbbm.2022.105636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Exposure to X-ray radiation for an extended amount of time can cause damage to the bone tissue and therefore affect its mechanical properties. Specifically, high-resolution X-ray Computed Tomography (XCT), in both synchrotron and lab-based systems, has been employed extensively for evaluating bone micro-to-nano architecture. However, to date, it is still unclear how long exposures to X-ray radiation affect the mechanical properties of trabecular bone, particularly in relation to lab-XCT systems. Indentation has been widely used to identify local mechanical properties such as hardness and elastic modulus of bone and other biological tissues. The purpose of this study is therefore, to use indentation and XCT-based investigative tools such as digital volume correlation (DVC) to assess the microdamage induced by long exposure of trabecular bone tissue to X-ray radiation and how this affects its local mechanical properties. Trabecular bone specimens were indented before and after X-ray exposures of 33 and 66 h, where variation of elastic modulus was evaluated at every stage. The resulting elastic modulus was decreased, and micro-cracks appeared in the specimens after the first long X-ray exposure and crack formation increased after the second exposure. High strain concentration around the damaged tissue exceeding 1% was also observed from DVC analysis. The outcomes of this study show the importance of designing appropriate XCT-based experiments in lab systems to avoid degradation of the bone tissue mechanical properties due to radiation and these results will help to inform future studies that require long X-ray exposure for in situ experiments or generation of reliable subject-specific computational models.
Collapse
Affiliation(s)
- Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK.
| | - Enrico Dall'Ara
- Departement of Oncology and Metabolism and Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - Jurgita Zekonyte
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Alexander P Kao
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Gianluca Tozzi
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
9
|
Verbruggen ASK, McCarthy EC, Dwyer RM, McNamara LM. Temporal and spatial changes in bone mineral content and mechanical properties during breast-cancer bone metastases. Bone Rep 2022; 17:101597. [PMID: 35754558 PMCID: PMC9218171 DOI: 10.1016/j.bonr.2022.101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer cells favour migration and metastasis to bone tissue for 70–80 % of advanced breast cancer patients and it has been proposed that bone tissue provides attractive physical properties that facilitate tumour invasion, resulting in osteolytic and or osteoblastic metastasis. However, it is not yet known how specific bone tissue composition is associated with tumour invasion. In particular, how compositional and nano-mechanical properties of bone tissue evolve during metastasis, and where in the bone they arise, may affect the overall aggressiveness of tumour invasion, but this is not well understood. The objective of this study is to develop an advanced understanding of temporal and spatial changes in nano-mechanical properties and composition of bone tissue during metastasis. Primary mammary tumours were induced by inoculation of immune-competent BALB/c mice with 4T1 breast cancer cells in the mammary fat pad local to the right femur. Microcomputed tomography and nanoindentation were conducted to quantify cortical and trabecular bone matrix mineralisation and nano-mechanical properties. Analysis was performed in proximal and distal femur regions (spatial analysis) of tumour-adjacent (ipsilateral) and contralateral femurs after 3 weeks and 6 weeks of tumour and metastasis development (temporal analysis). By 3 weeks post-inoculation there was no significant difference in bone volume fraction or nano-mechanical properties of bone tissue between the metastatic femora and healthy controls. However, early osteolysis was indicated by trabecular thinning in the distal and proximal trabecular compartment of tumour-bearing femora. Moreover, cortical thickness was significantly increased in the distal region, and the mean mineral density was significantly higher in cortical and trabecular bone tissue in both proximal and distal regions, of ipsilateral (tumour-bearing) femurs compared to healthy controls. By 6 weeks post-inoculation, overt osteolytic lesions were identified in all ipsilateral metastatic femora, but also in two of four contralateral femora of tumour-bearing mice. Bone volume fraction, cortical area, cortical and trabecular thickness were all significantly decreased in metastatic femora (both ipsilateral and contralateral). Trabecular bone tissue stiffness in the proximal femur decreased in the ipsilateral femurs compared to contralateral and control sites. Temporal and spatial analysis of bone nano-mechanical properties and mineralisation during breast cancer invasion reveals changes in bone tissue composition prior to and following overt metastatic osteolysis, local and distant from the primary tumour site. These changes may alter the mechanical environment of both the bone and tumour cells, and thereby play a role in perpetuating the cancer vicious cycle during breast cancer metastasis to bone tissue. Temporal and spatial analyses of bone tissue properties following breast cancer metastasis Trabecular thinning initiated by 3 weeks but overt osteolysis not evident until 6 weeks. Increased bone mineralisation and distal cortical thickness by 3-weeks post-inoculation
Collapse
Affiliation(s)
- Anneke S K Verbruggen
- Mechanobiology and Medical Device Research group (MMDRG), Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| | - Elan C McCarthy
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Ireland
| | - Roisin M Dwyer
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Device Research group (MMDRG), Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| |
Collapse
|
10
|
Symons HE, Galanti A, Surmon JC, Trask RS, Rochat S, Gobbo P. Automated analysis of soft material microindentation. SOFT MATTER 2022; 18:8302-8314. [PMID: 36286486 DOI: 10.1039/d2sm00857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An understanding of the mechanical properties of soft hydrogel materials over multiple length scales is important for their application in many fields. Typical measurement methods provide either bulk mechanical properties (compression, tensile, rheology) or probing of nano or microscale properties and heterogeneity (nanoindentation, AFM). In this work we demonstrate the complementarity of instrumented microindentation to these techniques, as it provides representative Young's moduli for soft materials with minimal influence of the experimental parameters chosen, and allows mechanical property mapping across macroscopic areas. To enable automated analysis of the large quantities of data required for these measurements, we develop a new fitting algorithm to process indentation data. This method allows for the determination of Young's moduli from imperfect data by automatic selection of a region of the indentation curve which does not display inelastic deformation or substrate effects. We demonstrate the applicability of our approach with a range of hydrogels, including materials with patterns and gradients in stiffness, and expect the techniques described here to be useful developments for the mechanical analysis of a wide range of soft and biological systems.
Collapse
Affiliation(s)
- Henry E Symons
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Agostino Galanti
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127, Trieste, Italy.
| | - Joseph C Surmon
- Department of Aerospace Engineering and Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK
| | - Richard S Trask
- Department of Aerospace Engineering and Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK
| | - Sebastien Rochat
- School of Chemistry, Department of Engineering Mathematics, and Bristol Composites Institute, University of Bristol, Bristol, BS8 1TS, UK
| | - Pierangelo Gobbo
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127, Trieste, Italy.
| |
Collapse
|
11
|
Zhang G, Li Z, Li N, Shi J, Fan H, Mao H. Mechanical properties of young mice tibia in four circumferential quadrants under nanoindentation. J Biomech 2022; 144:111350. [DOI: 10.1016/j.jbiomech.2022.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
12
|
Hoffseth KF, Busse E, Lacey M, Sammarco MC. Evaluating differences in Young's Modulus of regenerated and uninjured mouse digit bone through microCT density-based calculation and nanoindentation testing. J Biomech 2022; 143:111271. [PMID: 36095912 PMCID: PMC9947921 DOI: 10.1016/j.jbiomech.2022.111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/12/2022] [Accepted: 08/21/2022] [Indexed: 02/05/2023]
Abstract
The mouse digit tip amputation model is an excellent model of bone regeneration, but its size and shape present an obstacle for biomechanical testing. As a result, assessing the structural quality of the regenerated bone in this model has focused on mineral density and bone architecture analysis. Here we describe an image-processing based method for assessment of mechanical properties in the regenerated digit by using micro-computed tomography mineral density data to calculate spatially discrete Young's modulus values throughout the entire distal third phalange. Further, we validate this method through comparison to nanoindentation-measured values for Young's modulus. Application to a set of regenerated and unamputated digits shows that regenerated bone has a lower Young's modulus compared to the uninjured digit, with a similar trend for experimental hardness values. Importantly, this method heightens the utility of the digit regeneration model, allows for more impactful treatment evaluation using the model, and introduces an analysis platform that can be used for other bones that do not conform to a standard long-bone model.
Collapse
Affiliation(s)
- Kevin F. Hoffseth
- Department of Biological & Agricultural Engineering, Louisiana State University, 149 E.B. Doran Building, Baton Rouge, LA 70803, USA,Corresponding authors. (K.F. Hoffseth), (M.C. Sammarco)
| | - Emily Busse
- Department of Surgery, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Michelle Lacey
- Department of Mathematics, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Mimi C. Sammarco
- Department of Surgery, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA,Corresponding authors. (K.F. Hoffseth), (M.C. Sammarco)
| |
Collapse
|
13
|
Roseren F, Roffino S, Pithioux M. Mechanical Characterization at the Microscale of Mineralized Bone Callus after Bone Lengthening. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6207. [PMID: 36143518 PMCID: PMC9501547 DOI: 10.3390/ma15186207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Distraction osteogenesis (DO) involves several processes to form an organized distracted callus. While bone regeneration during DO has been widely described, no study has yet focused on the evolution profile of mechanical properties of mineralized tissues in the distracted callus. The aim of this study was therefore to measure the elastic modulus and hardness of calcified cartilage and trabecular and cortical bone within the distracted callus during the consolidation phase. We used a microindentation assay to measure the mechanical properties of periosteal and endosteal calluses; each was subdivided into two regions. Histological sections were used to localize the tissues. The results revealed that the mechanical properties of calcified cartilage did not evolve over time. However, trabecular bone showed temporal variation. For elastic modulus, in three out of four regions, a similar evolution profile was observed with an increase and decrease over time. Concerning hardness, this evolves differently depending on the location in the distracted callus. We also observed spatial changes in between regions. A first duality was apparent between regions close to the native cortices and the central area, while latter differences were seen between periosteal and endosteal calluses. Data showed a heterogeneity of mechanical properties in the distracted callus with a specific mineralization profile.
Collapse
Affiliation(s)
- Flavy Roseren
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Anatomy Laboratory, 13009 Marseille, France
| | - Sandrine Roffino
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Anatomy Laboratory, 13009 Marseille, France
| | - Martine Pithioux
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Anatomy Laboratory, 13009 Marseille, France
| |
Collapse
|
14
|
Does anti-IgE therapy prevent chronic allergic asthma-related bone deterioration in asthmatic mice? J Biomech 2022; 141:111180. [PMID: 35724549 DOI: 10.1016/j.jbiomech.2022.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022]
Abstract
Current evidence on the association between allergic diseases and bone metabolism indicates asthma may be a potential risk factor for bone health. Using anti-IgE has been proven effective in allergic asthma treatment with a good safety profile; however, its effects on bone health are unknown. Thus, we aimed to investigate whether: (i) chronic allergic asthma (CAA) causes any meaningful changes in bone, and if any, (ii) anti-IgE therapy prevents any CAA-induced adverse alteration. A murine model was used to study CAA. Thirty-two BALB/c male-mice were assigned into four groups (eight-mice/group): Control, CAA (treated with saline), CAA + 100 µg of anti-IgE (CAA + 100AIgE), and CAA + 200 µg of anti-IgE (CAA + 200AIgE) groups. After immunization, saline or anti-IgE was performed intraperitoneally for 8-weeks (in five-sessions at 15-days interval). Three-point bending test was used for the mechanical analysis. Bone calcium (Ca2+) and phosphorus (P3-) as well as Ca/P ratio were evaluated using inductively-coupled plasma-mass-spectrometer (ICP-MS). Compared to control, reductions observed in yield and ultimate moments, rigidity, energy-to-failure, yield and ultimate stresses, elastic modulus, toughness, and post-yield toughness parameters of the CAA group were found significant (P < 0.05). Similar declines were also detected regarding bone Ca2+, P3- and Ca/P ratio (P < 0.05). Compared to control, we observed that 200 µg administration of anti-IgE in CAA + 200AIgE group hindered CAA-related impairments in mineral and mechanical characteristics of bone, while 100 µg in CAA + 100AIgE failed to do so. Our results showed CAA may cause bone loss, leading to a decrease in bone strength, and anti-IgE administration may dose-dependently inhibit these impairments in bone.
Collapse
|
15
|
Abstract
Understanding the properties of bone is of both fundamental and clinical relevance. The basis of bone’s quality and mechanical resilience lies in its nanoscale building blocks (i.e., mineral, collagen, non-collagenous proteins, and water) and their complex interactions across length scales. Although the structure–mechanical property relationship in healthy bone tissue is relatively well characterized, not much is known about the molecular-level origin of impaired mechanics and higher fracture risks in skeletal disorders such as osteoporosis or Paget’s disease. Alterations in the ultrastructure, chemistry, and nano-/micromechanics of bone tissue in such a diverse group of diseased states have only been briefly explored. Recent research is uncovering the effects of several non-collagenous bone matrix proteins, whose deficiencies or mutations are, to some extent, implicated in bone diseases, on bone matrix quality and mechanics. Herein, we review existing studies on ultrastructural imaging—with a focus on electron microscopy—and chemical, mechanical analysis of pathological bone tissues. The nanometric details offered by these reports, from studying knockout mice models to characterizing exact disease phenotypes, can provide key insights into various bone pathologies and facilitate the development of new treatments.
Collapse
|
16
|
Microscale compressive behavior of hydrated lamellar bone at high strain rates. Acta Biomater 2021; 131:403-414. [PMID: 34245895 DOI: 10.1016/j.actbio.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022]
Abstract
The increased risk of fracture in the elderly associated with metabolic conditions like osteoporosis poses a significant strain on health care systems worldwide. Due to bone's hierarchical nature, it is necessary to study its mechanical properties and failure mechanisms at several length scales. We conducted micropillar compression experiments on ovine cortical bone to assess the anisotropic mechanical response at the lamellar scale over a wide range of strain rates (10-4 to 8·102 s-1). At the microscale, lamellar bone exhibits a strain rate sensitivity similar to what is reported at the macroscale suggesting that it is an intrinsic property of the extracellular matrix. Significant shear band thickening was observed at high strain rates by HRSEM and STEM imaging. This is likely caused by the material's inability to accommodate the imposed deformation by propagation of thin kink bands and shear cracks at high strain rates, leading to shear band thickening and nucleation. The post-yield behavior is strain rate and direction dependent: hardening was observed for transverse oriented micropillars and hardening modulus increases with strain rate by a factor of almost 2, while axially oriented micropillars showed strain softening and an increase of the softening peak width and work to ultimate stress as a function of strain rate. This suggests that for compression at the micrometer scale, energy absorption in bone increases with strain rate. This study highlights the importance of investigating bone strength and post-yield behavior at lower length scales, under hydrated conditions and at clinically relevant strain rates. STATEMENT OF SIGNIFICANCE: We performed micropillar compression experiments of ovine cortical bone at two different orientations and over seven orders of magnitude of strain rate. Experiments were performed under humid condition to mimic the natural conditions of bone in a human body using a newly developed micro-indenter setup. The strain rate sensitivity was found to be of a similar magnitude to what has been reported for higher length scales, suggesting that the strain rate sensitivity is an intrinsic property of the bone extracellular matrix. In addition, localized shear deformation in thick bands was observed for the first time at high strain rates, highlighting the importance of investigating bone under conditions representative of an accident or fall at several length scales.
Collapse
|
17
|
Shitole P, Choubey A, Mondal P, Ghosh R. LDN Protects Bone Property Deterioration at Different Hierarchical Levels in T2DM Mice Bone. ACS OMEGA 2021; 6:20369-20378. [PMID: 34395985 PMCID: PMC8358965 DOI: 10.1021/acsomega.1c02371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Type 2 diabetes mellitus (T2DM) commonly affects bone quality at different hierarchical levels and leads to an increase in the risk of bone fracture. Earlier, some anti-diabetic drugs showed positive effects on bone mechanical properties. Recently, we have investigated that low-dose naltrexone (LDN), a TLR4 antagonist treatment, improves glucose tolerance in high-fat diet (HFD)-induced T2DM mice and also gives protection against HFD-induced weight gain. However, effects on bone are still unknown. In this study, the effects of LDN on the bone properties at different hierarchical levels in T2DM mice bone were investigated. In order to investigate these, four different groups of bone (divided based on diet and treatment) were considered in this present study. These are (a) normal control diet treated with saline water, (b) normal control diet treated with LDN, (c) HFD treated with saline water, and (d) HFD treated with LDN. Bone properties were measured in terms of fracture toughness, nano-Young's modulus, hardness, mineral crystal size, bone composition, and bulk mineral to matrix ratio. Results indicated that fracture toughness, nano-Young's modulus, and hardness were decreased in T2DM bone as compared to normal bone, and interestingly, treatment with the LDN increases these material properties in T2DM mice bone. Similarly, as compared to the normal bone, decrease in the mineral crystal size and bulk mineral-to-matrix ratio was observed in the T2DM bone, whereas LDN treatment protects these alterations in the T2DM mice bone. The bone size (bone geometry) was increased in the case of HFD-induced T2DM bone; however, LDN cannot protect to increase the bone size in the T2DM mice bone. In conclusion, LDN can be used to control the T2DM-affected bone properties at different hierarchical levels.
Collapse
Affiliation(s)
- Pankaj Shitole
- School
of Engineering, Indian Institute of Technology
Mandi, Kamand, Mandi 175005, Himachal
Pradesh, India
| | - Abhinav Choubey
- School
of Basic Science, Indian Institute of Technology
Mandi, Kamand, Mandi 175005, Himachal Pradesh, India
| | - Prosenjit Mondal
- School
of Basic Science, Indian Institute of Technology
Mandi, Kamand, Mandi 175005, Himachal Pradesh, India
| | - Rajesh Ghosh
- School
of Engineering, Indian Institute of Technology
Mandi, Kamand, Mandi 175005, Himachal
Pradesh, India
| |
Collapse
|
18
|
Indermaur M, Casari D, Kochetkova T, Peruzzi C, Zimmermann E, Rauch F, Willie B, Michler J, Schwiedrzik J, Zysset P. Compressive Strength of Iliac Bone ECM Is Not Reduced in Osteogenesis Imperfecta and Increases With Mineralization. J Bone Miner Res 2021; 36:1364-1375. [PMID: 33740286 PMCID: PMC8359849 DOI: 10.1002/jbmr.4286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 01/13/2023]
Abstract
Osteogenesis imperfecta (OI) is an inheritable, genetic, and collagen-related disorder leading to an increase in bone fragility, but the origin of its "brittle behavior" is unclear. Because of its complex hierarchical structure, bone behaves differently at various length scales. This study aims to compare mechanical properties of human OI bone with healthy control bone at the extracellular matrix (ECM) level and to quantify the influence of the degree of mineralization. Degree of mineralization and mechanical properties were analyzed under dry conditions in 12 fixed and embedded transiliac crest biopsies (control n = 6, OI type I n = 3, OI type IV n = 2, and OI type III n = 1). Mean degree of mineralization was measured by microcomputed tomography at the biopsy level and the mineral-to-matrix ratio was assessed by Raman spectroscopy at the ECM level. Both methods revealed that the degree of mineralization is higher for OI bone compared with healthy control. Micropillar compression is a novel technique for quantifying post-yield properties of bone at the ECM level. Micropillars (d = 5 μm, h = 10 μm) were fabricated using focused ion beam milling and quasi-statically compressed to capture key post-yield properties such as ultimate strength. The qualitative inspection of the stress-strain curves showed that both OI and healthy control bone have a ductile response at the ECM level. The quantitative results showed that compressive strength is not reduced in OI bone and is increasing with OI severity. Nanoindentation measurements revealed that OI bone tends to have a higher Young's modulus, hardness, and dissipated energy compared with healthy bone. Micropillar strength and indentation modulus increased linearly and significantly (p < .0001) with mineral-to-matrix ratio. In conclusion, this study indicates that compressive mechanical properties of dry OI bone at the iliac crest are not inferior to healthy control at the ECM level and increase with mineralization. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Michael Indermaur
- ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland
| | - Daniele Casari
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | - Tatiana Kochetkova
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | - Cinzia Peruzzi
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | | | - Frank Rauch
- Shriners Hospital for ChildrenMontrealCanada
- McGill UniversityMontrealCanada
| | - Bettina Willie
- Shriners Hospital for ChildrenMontrealCanada
- McGill UniversityMontrealCanada
| | - Johann Michler
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | - Jakob Schwiedrzik
- Swiss Federal Laboratories for Material Science and Technology, EmpaThunSwitzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland
| |
Collapse
|
19
|
Sihota P, Yadav RN, Dhaliwal R, Bose JC, Dhiman V, Neradi D, Karn S, Sharma S, Aggarwal S, Goni VG, Mehandia V, Vashishth D, Bhadada SK, Kumar N. Investigation of Mechanical, Material, and Compositional Determinants of Human Trabecular Bone Quality in Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106:e2271-e2289. [PMID: 33475711 DOI: 10.1210/clinem/dgab027] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Increased bone fragility and reduced energy absorption to fracture associated with type 2 diabetes (T2D) cannot be explained by bone mineral density alone. This study, for the first time, reports on alterations in bone tissue's material properties obtained from individuals with diabetes and known fragility fracture status. OBJECTIVE To investigate the role of T2D in altering biomechanical, microstructural, and compositional properties of bone in individuals with fragility fracture. METHODS Femoral head bone tissue specimens were collected from patients who underwent replacement surgery for fragility hip fracture. Trabecular bone quality parameters were compared in samples of 2 groups, nondiabetic (n = 40) and diabetic (n = 30), with a mean duration of disease 7.5 ± 2.8 years. RESULTS No significant difference was observed in aBMD between the groups. Bone volume fraction (BV/TV) was lower in the diabetic group due to fewer and thinner trabeculae. The apparent-level toughness and postyield energy were lower in those with diabetes. Tissue-level (nanoindentation) modulus and hardness were lower in this group. Compositional differences in the diabetic group included lower mineral:matrix, wider mineral crystals, and bone collagen modifications-higher total fluorescent advanced glycation end-products (fAGEs), higher nonenzymatic cross-link ratio (NE-xLR), and altered secondary structure (amide bands). There was a strong inverse correlation between NE-xLR and postyield strain, fAGEs and postyield energy, and fAGEs and toughness. CONCLUSION The current study is novel in examining bone tissue in T2D following first hip fragility fracture. Our findings provide evidence of hyperglycemia's detrimental effects on trabecular bone quality at multiple scales leading to lower energy absorption and toughness indicative of increased propensity to bone fragility.
Collapse
Affiliation(s)
- Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Ram Naresh Yadav
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Ruban Dhaliwal
- Metabolic Bone Disease Center, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Jagadeesh Chandra Bose
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vandana Dhiman
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Neradi
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shailesh Karn
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sidhartha Sharma
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sameer Aggarwal
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vijay G Goni
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishwajeet Mehandia
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| |
Collapse
|
20
|
Shitole P, Choubey A, Mondal P, Ghosh R. Influence of low dose naltrexone on Raman assisted bone quality, skeletal advanced glycation end-products and nano-mechanical properties in type 2 diabetic mice bone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112011. [PMID: 33812630 DOI: 10.1016/j.msec.2021.112011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) commonly affects the bone mineral phase and advanced glycation end-products (AGEs) which eventually led to changes in bone material properties on the nano and macro-scale. Several anti-diabetic compounds are widely used to control high blood sugar or glucose caused by T2DM. Low Dose Naltrexone (LDN), an opiate receptor antagonist, and a known TLR4 antagonist, treatment can improve glucose tolerance and insulin sensitivity in high-fat-diet (HFD) induced T2DM mice. However, the influences of LDN on the local bone quality, mineralization of the bone, and the skeletal AGEs levels have not been fully elucidated. The objective of this study is to understand the effect of LDN on Raman assisted bone quality, skeletal AGEs (determined by Raman spectroscopy), and nano-mechanical properties in HFD induced T2DM mice bone. In order to investigate these, mice and corresponding bones were divided into four groups (divided based on diet and treatment), (a) normal control diet treated with saline water, (b) normal control diet treated with LDN, (c) HFD treated with saline water, and (d) HFD treated with LDN. In T2DM condition (HFD treated with saline water), alteration of Raman-based compositional measures in bone quality including mineral-to-matrix ratios, carbonate substitution, mineral crystallinity, and collagen quality was observed. Our data also indicated that T2DM enhances the skeletal AGEs, and impairs the nano-mechanical properties. Interestingly, present results indicated that LDN controls the Raman-based compositional measures in bone quality in HFD induced T2DM mice bone. Additionally, LDN also protects the alteration of the skeletal AGEs levels and nano-mechanical properties in T2DM mice bone. This study concluded that LDN can control the HFD induced T2DM affected bone abnormalities at multiple hierarchical levels.
Collapse
Affiliation(s)
- Pankaj Shitole
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| | - Abhinav Choubey
- School of Basic Science, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| | - Prosenjit Mondal
- School of Basic Science, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India.
| | - Rajesh Ghosh
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India.
| |
Collapse
|
21
|
Maghsoudi-Ganjeh M, Samuel J, Ahsan AS, Wang X, Zeng X. Intrafibrillar mineralization deficiency and osteogenesis imperfecta mouse bone fragility. J Mech Behav Biomed Mater 2021; 117:104377. [PMID: 33636677 DOI: 10.1016/j.jmbbm.2021.104377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/25/2023]
Abstract
Osteogenesis imperfecta (OI), a brittle bone disease, is known to result in severe bone fragility. However, its ultrastructural origins are still poorly understood. In this study, we hypothesized that deficient intrafibrillar mineralization is a key contributor to the OI induced bone brittleness. To test this hypothesis, we explored the mechanical and ultrastructural changes in OI bone using the osteogenesis imperfecta murine (oim) model. Synchrotron X-ray scattering experiments indicated that oim bone had much less intrafibrillar mineralization than wild type bone, thus verifying that the loss of mineral crystals indeed primarily occurred in the intrafibrillar space of oim bone. It was also found that the mineral crystals were organized from preferentially in longitudinal axis in wild type bone to more randomly in oim bone. Moreover, it revealed that the deformation of mineral crystals was more coordinated with collagen fibrils in wild type than in oim bone, suggesting that the load transfer deteriorated between the two phases in oim bone. The micropillar test revealed that the compression work to fracture of oim bone (8.2 ± 0.9 MJ/m3) was significantly smaller (p < 0.05) than that of wild type bone (13.9 ± 2.7 MJ/m3), while the bone strength was not statistically different (p > 0.05) between the two genotype groups. In contrast, the uniaxial tensile test showed that the ultimate strength of wild type bone (50 ± 4.5 MPa) was significantly greater (p < 0.05) than that of oim bone (38 ± 5.3 MPa). Furthermore, the nanoscratch test showed that the toughness of oim bone was much less than that of wild type bone (6.6 ± 2.2 GJ/m3 vs. 12.6 ± 1.4 GJ/m3). Finally, in silico simulations using a finite element model of sub-lamellar bone confirmed the links between the reduced intrafibrillar mineralization and the observed changes in the mechanical behavior of OI bone. Taken together, these results provide important mechanistic insights into the underlying cause of poor mechanical quality of OI bone, thus pave the way toward future treatments of this brittle bone disease.
Collapse
Affiliation(s)
| | - Jitin Samuel
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Abu Saleh Ahsan
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Xiaowei Zeng
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
22
|
Vahidi G, Rux C, Sherk VD, Heveran CM. Lacunar-canalicular bone remodeling: Impacts on bone quality and tools for assessment. Bone 2021; 143:115663. [PMID: 32987198 PMCID: PMC7769905 DOI: 10.1016/j.bone.2020.115663] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/06/2023]
Abstract
Osteocytes can resorb as well as replace bone adjacent to the expansive lacunar-canalicular system (LCS). Suppressed LCS remodeling decreases bone fracture toughness, but it is unclear how altered LCS remodeling impacts bone quality. The first goal of this review is to assess how LCS remodeling impacts LCS morphology as well as the composition and mechanical properties of surrounding bone tissue. The second goal is to compare tools available for the assessment of bone quality at length-scales that are physiologically-relevant to LCS remodeling. We find that changes to LCS morphology occur in response to a variety of physiological conditions and diseases and can be classified in two general phenotypes. In the 'aging phenotype', seen in aging and in some disuse models, the LCS is truncated and osteocytes apoptosis is increased. In the 'osteocytic osteolysis' phenotype, which is adaptive in some physiological settings and possibly maladaptive in others, the LCS enlarges and osteocytes generally maintain viability. Bone composition and mechanical properties vary near the osteocyte and change with at least some conditions that alter LCS morphology. However, few studies have evaluated bone composition and mechanical properties close to the LCS and so the impacts of LCS remodeling phenotypes on bone tissue quality are still undetermined. We summarize the current understanding of how LCS remodeling impacts LCS morphology, tissue-scale bone composition and mechanical properties, and whole-bone material properties. Tools are compared for assessing tissue-scale bone properties, as well as the resolution, advantages, and limitations of these techniques.
Collapse
Affiliation(s)
- G Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - C Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - V D Sherk
- Department of Orthopedics, University of Colorado Anschutz School of Medicine, United States of America
| | - C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
23
|
Fracture toughness of bone at the microscale. Acta Biomater 2021; 121:475-483. [PMID: 33307248 DOI: 10.1016/j.actbio.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 11/20/2022]
Abstract
Bone's hierarchical arrangement of collagen and mineral generates a confluence of toughening mechanisms acting at every length scale from the molecular to the macroscopic level. Molecular defects, disease, and age alter bone structure at different levels and diminish its fracture resistance. However, the inability to isolate and quantify the influence of specific features hampers our understanding and the development of new therapies. Here, we combine in situ micromechanical testing, transmission electron microscopy and phase-field modelling to quantify intrinsic deformation and toughening at the fibrillar level and unveil the critical role of fibril orientation on crack deflection. At this level dry bone is highly anisotropic, with fracture energies ranging between 5 and 30 J/m2 depending on the direction of crack propagation. These values are lower than previously calculated for dehydrated samples from large-scale tests. However, they still suggest a significant amount of energy dissipation. This approach provides a new tool to uncouple and quantify, from the bottom up, the roles played by the structural features and constituents of bone on fracture and how can they be affected by different pathologies. The methodology can be extended to support the rational development of new structural composites.
Collapse
|
24
|
Shao X, Yan Z, Wang D, Yang Y, Ding Y, Luo E, Jing D, Cai J. Pulsed Electromagnetic Fields Ameliorate Skeletal Deterioration in Bone Mass, Microarchitecture, and Strength by Enhancing Canonical Wnt Signaling-Mediated Bone Formation in Rats with Spinal Cord Injury. J Neurotrauma 2021; 38:765-776. [PMID: 33108939 DOI: 10.1089/neu.2020.7296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinal cord injury (SCI) leads to extensive bone loss and high incidence of low-energy fractures. Pulsed electromagnetic fields (PEMF) treatment, as a non-invasive biophysical technique, has proven to be efficient in promoting osteogenesis. The potential osteoprotective effect and mechanism of PEMF on SCI-related bone deterioration, however, remain unknown. The spinal cord of rats was transected at vertebral level T12 to induce SCI. Thirty rats were assigned to the control, SCI, and SCI+PEMF groups (n = 10). One week after surgery, the SCI+PEMF rats were subjected to PEMF (2.0 mT, 15 Hz, 2 h/day) for eight weeks. Micro-computed tomography results showed that PEMF significantly ameliorated trabecular and cortical bone microarchitecture deterioration induced by SCI. Three-point bending and nanoindentation assays revealed that PEMF significantly improved bone mechanical properties in SCI rats. Serum biomarker and bone histomorphometric analyses demonstrated that PEMF enhanced bone formation, as evidenced by significant increase in serum osteocalcin and P1NP, mineral apposition rate, and osteoblast number on bone surface. The PEMF had no impact, however, on serum bone-resorbing cytokines (TRACP 5b and CTX-1) or osteoclast number on bone surface. The PEMF also attenuated SCI-induced negative changes in osteocyte morphology and osteocyte survival. Moreover, PEMF significantly increased skeletal expression of canonical Wnt ligands (Wnt1 and Wnt10b) and stimulated their downstream p-GSK3β and β-catenin expression in SCI rats. This study demonstrates that PEMF can mitigate the detrimental consequence of SCI on bone quantity/quality, which might be associated with canonical Wnt signaling-mediated bone formation, and reveals that PEMF may be a promising biophysical approach for resisting osteopenia/osteoporosis after SCI in clinics.
Collapse
Affiliation(s)
- Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Dan Wang
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yongqing Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Yuanjun Ding
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
25
|
Ibrahim A, Magliulo N, Groben J, Padilla A, Akbik F, Abdel Hamid Z. Hardness, an Important Indicator of Bone Quality, and the Role of Collagen in Bone Hardness. J Funct Biomater 2020; 11:jfb11040085. [PMID: 33271801 PMCID: PMC7712352 DOI: 10.3390/jfb11040085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 01/22/2023] Open
Abstract
Bone is a nanocomposite material where the hard inorganic (hydroxyapatite crystallites) and organic (collagen fibrils) components are hierarchically arranged in the nanometer scale. Bone quality is dependent on the spatial distributions in the shape, size and composition of bone constituents (mineral, collagen and water). Bone hardness is an important property of bone, which includes both elastic and plastic deformation. In this study, a microhardness test was performed on a deer bone samples. The deer tibia shaft (diaphysis) was divided into several cross-sections of equal thickness; samples were prepared in untreated, boiled water treatment (100 °C for 30 min) and sodium hypochlorite (NaOCl) treatment conditions. Microhardness tests were performed on various regions of the tibial diaphysis to study the heterogeneous characteristics of bone microhardness and highlight the role of the organic matrix in bone hardness. The results indicated that boiled water treatment has a strong negative correlation with bone hardness. The untreated bone was significantly (+20%) harder than the boiled-water-treated bone. In general, the hardness values near the periosteal surface was significantly (23 to 45%) higher than the ones near the endosteal surface. Samples treated with NaOCl showed a significant reduction in hardness.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, New York, NY 11735, USA; (N.M.); (J.G.)
- Correspondence:
| | - Nicole Magliulo
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, New York, NY 11735, USA; (N.M.); (J.G.)
| | - James Groben
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, New York, NY 11735, USA; (N.M.); (J.G.)
| | - Ashley Padilla
- Biology Department, Farmingdale State College, Farmingdale, New York, NY 11735, USA;
| | - Firas Akbik
- Chemistry Department, Hofstra University, Hempstead, NY 11549, USA;
| | - Z. Abdel Hamid
- Central Metallurgical Research and Development Institute, Helwan 11421, Egypt;
| |
Collapse
|
26
|
Zhuang Y, Chen J, Liu Q, Zou F, Lin Y, An Q, Yu H. Preliminary study on mechanical characteristics of maxillofacial soft and hard tissues for virtual surgery. Int J Comput Assist Radiol Surg 2020; 16:151-160. [PMID: 33130999 PMCID: PMC7822777 DOI: 10.1007/s11548-020-02257-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022]
Abstract
Purpose Virtual surgery system can provide us a realistic and immersive training environment, in which haptic force-feedback gives operators ‘touching feeling.’ Appropriate deformation models of soft and hard tissues are required for the achievement of real-time haptic feedback. To improve accuracy of modeling and haptic feedback simulation for maxillofacial virtual surgery, mechanical characteristics of soft and hard tissues should be explored. Methods Craniofacial soft tissues from one male and female cadavers were divided into two layers: skin and muscle. Maxillofacial tissues were divided into frontal, chin, temporalis, masseter regions. Insertion and cutting process were conducted using VMX42 5-axis linkage system and recorded by piezoelectric dynamometer. Maximum stiffness values were analyzed, and insertion curves before puncture were fitted using a polynomial model. Elasticity modulus and hardness of maxillofacial hard tissues were measured and analyzed using Berkovich nanoindentation. Results Tissues in different maxillofacial regions, as well as from different layers (skin and muscle), displayed various mechanical performance. Maximum stiffness values and cutting force of soft tissues in male and female had significant difference. The third-order polynomial was demonstrated to fit the insertion curves well before puncture. Furthermore, elasticity modulus and hardness of enamel were significantly greater than that of zygoma, maxilla and mandible. Conclusion Mechanical properties of hard tissues are relatively stable, which can be applied in virtual surgery system for physical model construction. Insertion model and cutting force for soft tissues are meaningful and applicable and can be utilized to promote the accuracy of response for haptic feedback sensations.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Jie Chen
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Fan Zou
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, China
| | - Yuheng Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Qinglong An
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, China.
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Huangpu District, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
| |
Collapse
|
27
|
Zimmermann EA, Fiedler IAK, Busse B. Breaking new ground in mineralized tissue: Assessing tissue quality in clinical and laboratory studies. J Mech Behav Biomed Mater 2020; 113:104138. [PMID: 33157423 DOI: 10.1016/j.jmbbm.2020.104138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Mineralized tissues, such as bone and teeth, have extraordinary mechanical properties of both strength and toughness. This mechanical behavior originates from deformation and fracture resistance mechanisms in their multi-scale structure. The term quality describes the matrix composition, multi-scale structure, remodeling dynamics, water content, and micro-damage accumulation in the tissue. Aging and disease result in changes in the tissue quality that may reduce strength and toughness and lead to elevated fracture risk. Therefore, the capability to measure the quality of mineralized tissues provides critical information on disease progression and mechanical integrity. Here, we provide an overview of clinical and laboratory-based techniques to assess the quality of mineralized tissues in health and disease. Current techniques used in clinical settings include radiography-based (radiographs, dual energy x-ray absorptiometry, EOS) and x-ray tomography-based methods (high resolution peripheral quantitative computed tomography, cone beam computed tomography). In the laboratory, tissue quality can be investigated in ex vivo samples with x-ray imaging (micro and nano-computed tomography, x-ray microscopy), electron microscopy (scanning/transmission electron imaging (SEM/STEM), backscattered scanning electron microscopy, Focused Ion Beam-SEM), light microscopy, spectroscopy (Raman spectroscopy and Fourier transform infrared spectroscopy) and assessment of mechanical behavior (mechanical testing, fracture mechanics and reference point indentation). It is important for clinicians and basic science researchers to be aware of the techniques available in different types of research. While x-ray imaging techniques translated to the clinic have provided exceptional advancements in patient care, the future challenge will be to incorporate high-resolution laboratory-based bone quality measurements into clinical settings to broaden the depth of information available to clinicians during diagnostics, treatment and management of mineralized tissue pathologies.
Collapse
Affiliation(s)
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
28
|
Favier V, Gallet P, Ferry O, Jehl JP. Spherical depth-sensing nanoindentation of human anterior skull base bones: Establishment of a test protocol. J Mech Behav Biomed Mater 2020; 110:103954. [PMID: 32957246 DOI: 10.1016/j.jmbbm.2020.103954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/01/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
The mechanical properties of anterior skull base (ASB) bones are not well understood due to their complex geometry and deep location. However, it is of particular interest for skull base surgeons to appraise the force range they can apply during procedures and know what kind of haptic feedback a simulation device should produce in order to be realistic for trainees. The aim of this study was to establish a measurement protocol to set the level of hydration state, temperature and curve analysis method for spherical depth sensing nanoindentation of ASB bones. A definitive screening design method was used to test the different possible combinations of these factors. Two samples of ASB bones from the heads of two human body donors (two specimens) were selected according to their microstructure as assessed by micro-CT (microtomography): low-porosity (16.87%, sphenoid bone) and high-porosity (79.85%, ethmoid bone). Depth measurement series of 36 nanoindentations (n = 288) were performed on specimen 1 according to the L8 Taguchi orthogonal array to study the effect of temperature (two levels: 20 or 37 °C), hydration state (dry or immerged in physiological saline sodium chloride), and loading curve analysis according to the Hertzian contact theory (fitting at the start or at the end). The mean values of reduced Young's (E*) modulus varied significantly depending on the hydration status and bone microstructure. In order to obtain the physiological properties of ASB bones, we thus propose performing immersion tests. To simplify the experimentation protocol, future experiments must include a room temperature level and a fit of the curve at the end of the load. A validation series was performed on the second specimen to assess the set of parameters. The E* in dry bone gave mean values of 994.68 MPa, versus 409.79 MPa in immerged bones (p < 0.00001). This is the first time a study has been carried out on ASB bones, defining the experimental parameters related to physiological conditions.
Collapse
Affiliation(s)
- Valentin Favier
- Aide à La Décision pour une Médecine Personnalisée, EA2415, Département MIPS, Université de Montpellier, Montpellier, France; Département D'ORL et Chirurgie Cervico-faciale, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.
| | - Patrice Gallet
- Département D'ORL et Chirurgie Cervico-faciale, Hôpital Brabois, CHRU Nancy, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Olivier Ferry
- Institut Jean Lamour, Centre de Compétences Xj, CNRS UMR 7198, Université de Lorraine, Nancy, France
| | - Jean-Philippe Jehl
- Institut Jean Lamour, CNRS UMR 7198, Université de Lorraine, Nancy, France
| |
Collapse
|
29
|
Pepe V, Oliviero S, Cristofolini L, Dall'Ara E. Regional Nanoindentation Properties in Different Locations on the Mouse Tibia From C57BL/6 and Balb/C Female Mice. Front Bioeng Biotechnol 2020; 8:478. [PMID: 32500069 PMCID: PMC7243342 DOI: 10.3389/fbioe.2020.00478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
The local spatial heterogeneity of the material properties of the cortical and trabecular bone extracted from the mouse tibia is not well-known. Nevertheless, its characterization is fundamental to be able to study comprehensively the effect of interventions and to generate computational models to predict the bone strength preclinically. The goal of this study was to evaluate the nanoindentation properties of bone tissue extracted from two different mouse strains across the tibia length and in different sectors. Left tibiae were collected from four female mice, two C57BL/6, and two Balb/C mice. Nanoindentations with maximum 6 mN load were performed on different microstructures, regions along the axis of the tibiae, and sectors (379 in total). Reduced modulus (Er) and hardness (H) were computed for each indentation. Trabecular bone of Balb/C mice was 21% stiffer than that of C57BL/6 mice (20.8 ± 4.1 GPa vs. 16.5 ± 7.1 GPa). Moreover, the proximal regions of the bones were 13-36% less stiff than the mid-shaft and distal regions of the same bones. No significant differences were found for the different sectors for E r and H for Balb/C mice. The bone in the medial sector was found to be 8-14% harder and stiffer than the bone in the anterior or posterior sectors for C57BL/6 mice. In conclusion, this study showed that the nanoindentation properties of the mouse tibia are heterogeneous across the tibia length and the trabecular bone properties are different between Balb/C and C57BL/6 mice. These results will help the research community to identify regions where to characterize the mechanical properties of the bone during preclinical optimisation of treatments for skeletal diseases.
Collapse
Affiliation(s)
- Valentina Pepe
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom.,Department of Industrial Engineering, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Sara Oliviero
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom.,INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
30
|
Tibial subchondral trabecular bone micromechanical and microarchitectural properties are affected by alignment and osteoarthritis stage. Sci Rep 2020; 10:3975. [PMID: 32132556 PMCID: PMC7055326 DOI: 10.1038/s41598-020-60464-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/04/2019] [Indexed: 11/29/2022] Open
Abstract
At advanced knee osteoarthritis (OA) stages subchondral trabecular bone (STB) is altered. Lower limb alignment plays a role in OA progression and modify the macroscopic loading of the medial and lateral condyles of the tibial plateau. How the properties of the STB relate to alignment and OA stage is not well defined. OA stage (KL scores 2–4) and alignment (HKA from 17° Varus to 8° Valgus) of 30 patients were measured and their tibial plateau were collected after total knee arthroplasty. STB tissue elastic modulus, bone volume fraction (BV/TV) and trabecula thickness (Tb.Th) were evaluated with nanoindentation and µCT scans (8.1 µm voxel-size) of medial and lateral samples of each plateau. HKA and KL scores were statistically significantly associated with STB elastic modulus, BV/TV and Tb.Th. Medial to lateral BV/TV ratio correlated with HKA angle (R = −0.53, p = 0.016), revealing a higher ratio for varus than valgus subjects. STB properties showed lower values for KL stage 4 patients. Tissue elastic modulus ratios and BV.TV ratios were strongly correlated (R = 0.81, p < 0.001). Results showed that both micromechanical and microarchitectural properties of STB are affected by macroscopic loading at late stage knee OA. For the first time, a strong association between tissue stiffness and quantity of OA STB was demonstrated.
Collapse
|
31
|
Computational investigation of the effect of water on the nanomechanical behavior of bone. J Mech Behav Biomed Mater 2020; 101:103454. [DOI: 10.1016/j.jmbbm.2019.103454] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/29/2019] [Accepted: 09/25/2019] [Indexed: 01/22/2023]
|
32
|
Lefèvre E, Farlay D, Bala Y, Subtil F, Wolfram U, Rizzo S, Baron C, Zysset P, Pithioux M, Follet H. Compositional and mechanical properties of growing cortical bone tissue: a study of the human fibula. Sci Rep 2019; 9:17629. [PMID: 31772277 PMCID: PMC6879611 DOI: 10.1038/s41598-019-54016-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/08/2019] [Indexed: 01/28/2023] Open
Abstract
Human cortical bone contains two types of tissue: osteonal and interstitial tissue. Growing bone is not well-known in terms of its intrinsic material properties. To date, distinctions between the mechanical properties of osteonal and interstitial regions have not been investigated in juvenile bone and compared to adult bone in a combined dataset. In this work, cortical bone samples obtained from fibulae of 13 juveniles patients (4 to 18 years old) during corrective surgery and from 17 adult donors (50 to 95 years old) were analyzed. Microindentation was used to assess the mechanical properties of the extracellular matrix, quantitative microradiography was used to measure the degree of bone mineralization (DMB), and Fourier transform infrared microspectroscopy was used to evaluate the physicochemical modifications of bone composition (organic versus mineral matrix). Juvenile and adult osteonal and interstitial regions were analyzed for DMB, crystallinity, mineral to organic matrix ratio, mineral maturity, collagen maturity, carbonation, indentation modulus, indicators of yield strain and tissue ductility using a mixed model. We found that the intrinsic properties of the juvenile bone were not all inferior to those of the adult bone. Mechanical properties were also differently explained in juvenile and adult groups. The study shows that different intrinsic properties should be used in case of juvenile bone investigation.
Collapse
Affiliation(s)
- Emmanuelle Lefèvre
- Aix-Marseille Univ., CNRS, ISM Inst Movement Sci, Marseille, France.,Department of Orthopaedics and Traumatology, Institute for Locomotion, APHM, Sainte-Marguerite Hospital, Marseille, France
| | - Delphine Farlay
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Lyos UMR1033, F69622, Lyon, France
| | - Yohann Bala
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Lyos UMR1033, F69622, Lyon, France.,Laboratoire Vibrations Acoustique, INSA Lyon, Campus LyonTech la Doua, F69621, Villeurbanne Cedex, France
| | - Fabien Subtil
- Univ Lyon, Université Claude Bernard Lyon 1, Equipe Biostatistique Santé - LBBE, F69003, Lyon, France
| | - Uwe Wolfram
- School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, United Kingdom
| | - Sébastien Rizzo
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Lyos UMR1033, F69622, Lyon, France
| | - Cécile Baron
- Aix-Marseille Univ., CNRS, ISM Inst Movement Sci, Marseille, France.,Department of Orthopaedics and Traumatology, Institute for Locomotion, APHM, Sainte-Marguerite Hospital, Marseille, France
| | - Philippe Zysset
- ARTORG Center for biomedical engineering research, University of Bern, Bern, Switzerland
| | - Martine Pithioux
- Aix-Marseille Univ., CNRS, ISM Inst Movement Sci, Marseille, France.,Department of Orthopaedics and Traumatology, Institute for Locomotion, APHM, Sainte-Marguerite Hospital, Marseille, France
| | - Hélène Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Lyos UMR1033, F69622, Lyon, France.
| |
Collapse
|
33
|
Remache D, Semaan M, Rossi JM, Pithioux M, Milan JL. Application of the Johnson-Cook plasticity model in the finite element simulations of the nanoindentation of the cortical bone. J Mech Behav Biomed Mater 2019; 101:103426. [PMID: 31557661 DOI: 10.1016/j.jmbbm.2019.103426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/28/2018] [Accepted: 09/09/2019] [Indexed: 11/28/2022]
Abstract
The mechanical behavior of the cortical bone in nanoindentation is a complicated mechanical problem. The finite element analysis has commonly been assumed to be the most appropriate approach to this issue. One significant problem in nanoindentation modeling of the elastic-plastic materials is pile-up deformation, which is not observed in cortical bone nanoindentation testing. This phenomenon depends on the work-hardening of materials; it doesn't occur for work-hardening materials, which suggests that the cortical bone could be considered as a work-hardening material. Furthermore, in a recent study [59], a plastic hardening until failure was observed on the micro-scale of a dry ovine osteonal bone samples subjected to micropillar compression. The purpose of the current study was to apply an isotropic hardening model in the finite element simulations of the nanoindentation of the cortical bone to predict its mechanical behavior. The Johnson-Cook (JC) model was chosen as the constitutive model. The finite element modeling in combination with numerical optimization was used to identify the unknown material constants and then the finite element solutions were compared to the experimental results. A good agreement of the numerical curves with the target loading curves was found and no pile-up was predicted. A Design Of Experiments (DOE) approach was performed to evaluate the linear effects of the material constants on the mechanical response of the material. The strain hardening modulus and the strain hardening exponent were the most influential parameters. While a positive effect was noticed with the Young's modulus, the initial yield stress and the strain hardening modulus, an opposite effect was found with the Poisson's ratio and the strain hardening exponent. Finally, the JC model showed a good capability to describe the elastoplastic behavior of the cortical bone.
Collapse
Affiliation(s)
- D Remache
- Aix Marseille Univ, CNRS, ISM, Marseille, France; Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, Marseille, France.
| | - M Semaan
- Aix Marseille Univ, CNRS, ISM, Marseille, France; Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, Marseille, France; University of Balamand, Faculty of Engineering, Al Kurah, Lebanon.
| | - J M Rossi
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, Marseille, France; Aix Marseille Univ, CNRS, Centrale Marseille, ISM, Marseille, France.
| | - M Pithioux
- Aix Marseille Univ, CNRS, ISM, Marseille, France; Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, Marseille, France.
| | - J L Milan
- Aix Marseille Univ, CNRS, ISM, Marseille, France; Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, Marseille, France.
| |
Collapse
|
34
|
Sihota P, Yadav RN, Dhiman V, Bhadada SK, Mehandia V, Kumar N. Investigation of diabetic patient's fingernail quality to monitor type 2 diabetes induced tissue damage. Sci Rep 2019; 9:3193. [PMID: 30816264 PMCID: PMC6395762 DOI: 10.1038/s41598-019-39951-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/14/2019] [Indexed: 01/19/2023] Open
Abstract
Long-term Type 2 Diabetes (T2D) affects the normal functioning of heart, kidneys, nerves, arteries, bones, and joints. The T2D gradually alters the intrinsic material properties, and structural integrity of the tissues and prolonged hyperglycemia causes chronic damages to these tissues quality. Clinically no such technique is available which can assess the altered tissues quality associated with T2D. In the present study, the microstructural characterization (surface morphology, surface roughness and density and calcium content), material characterization (modulus, hardness), and macromolecular characterization (disulfide bond content, protein content and its secondary structure) are investigated among healthy, diabetic controlled (DC) and uncontrolled diabetic (UC) group of fingernail plate. It is found that T2D has an adverse effect on the human fingernail plate quality. The parameters of nail plate quality are changing in a pattern among all the three groups. The properties mentioned above are degrading in DC group, but the degradation is even worst in the case of severity of T2D (UC group) as compared to the healthy group (Healthy
Collapse
Affiliation(s)
- Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab, 140001, India
| | - Ram Naresh Yadav
- Department of Mechanical Engineering, Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab, 140001, India
| | - Vandana Dhiman
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vishwajeet Mehandia
- Department of Mechanical Engineering, Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab, 140001, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
35
|
Computational investigation of ultrastructural behavior of bone using a cohesive finite element approach. Biomech Model Mechanobiol 2018; 18:463-478. [PMID: 30470944 DOI: 10.1007/s10237-018-1096-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/08/2018] [Indexed: 01/01/2023]
Abstract
Bone ultrastructure at sub-lamellar length scale is a key structural unit in bone that bridges nano- and microscale hierarchies of the tissue. Despite its influence on bulk response of bone, the mechanical behavior of bone at ultrastructural level remains poorly understood. To fill this gap, in this study, a two-dimensional cohesive finite element model of bone at sub-lamellar level was proposed and analyzed under tensile and compressive loading conditions. In the model, ultrastructural bone was considered as a composite of mineralized collagen fibrils (MCFs) embedded in an extrafibrillar matrix (EFM) that is comprised of hydroxyapatite (HA) polycrystals bounded via thin organic interfaces of non-collagenous proteins (NCPs). The simulation results indicated that in compression, EFM dictated the pre-yield deformation of the model, then damage was initiated via relative sliding of HA polycrystals along the organic interfaces, and finally shear bands were formed followed by delamination between MCF and EFM and local buckling of MCF. In tension, EFM carried the most of load in pre-yield deformation, and then an array of opening-mode nano-cracks began to form within EFM after yielding, thus gradually transferring the load to MCF until failure, which acted as crack bridging filament. The failure modes, stress-strain curves, and in situ mineral strain of ultrastructural bone predicted by the model were in good agreement with the experimental observations reported in the literature, thus suggesting that this model can provide new insights into sub-microscale mechanical behavior of bone.
Collapse
|
36
|
Burke M, Akens M, Kiss A, Willett T, Whyne C. Mechanical behavior of metastatic vertebrae are influenced by tissue architecture, mineral content, and organic feature alterations. J Orthop Res 2018; 36:3013-3022. [PMID: 29978906 DOI: 10.1002/jor.24105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/01/2018] [Indexed: 02/04/2023]
Abstract
Diminished vertebral mechanical behavior with metastatic involvement is typically attributed to modified architecture and trabecular bone content. Previous work has identified organic and mineral phase bone quality changes in the presence of metastases, yet limited work exists on the potential influence of such tissue level modifications on vertebral mechanical characteristics. This work seeks to determine correlations between features of bone (structural and tissue level) and mechanical behavior in metastatically involved vertebral bone. It is hypothesized that tissue level properties (mineral and organic) will improve these correlations beyond architectural properties and BMD alone. Twenty-four female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic (N = 8) or mixed (osteolytic/osteoblastic, N = 7) metastases, respectively. Twenty-one days post-inoculation L1-L3 pathologic vertebral motion segments were excised and μCT imaged. 3D morphometric parameters and axial rigidity of the L2 vertebrae were quantified. Sequential loading and μCT imaging measured progression of failure, stiffness and peak force. Relationships between mechanical testing (whole bone and tissue-level) and tissue-level material property modifications with metastatic involvement were evaluated utilizing linear regression models. Osteolytic involvement reduced vertebral trabecular bone volume, structure, CT-derived axial rigidity, stiffness and failure force compared to healthy controls (N = 9). Mixed metastases demonstrated similar trends. Previously assessed collagen cross-linking and proline-based residues were correlated to mechanical behavior and improved the predictive ability of the regression models. Similarly, collagen organization improved predictive regression models for metastatic bone hardness. This work highlights the importance of both bone content/architecture and organic tissue-level features in characterizing metastatic vertebral mechanics. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3013-3022, 2018.
Collapse
Affiliation(s)
- Mikhail Burke
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave., Room S620, Toronto, Ontario,. M4N 3M5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario
| | - Margarete Akens
- Department of Surgery, University of Toronto, Toronto, Ontario.,Techna, University Health Network, Toronto, Ontario
| | - Alex Kiss
- Evaluative Clinical Sciences, Hurvitz Brain Science Program, Sunnybrook Research Institute, Toronto, Ontario
| | - Thomas Willett
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Ontario
| | - Cari Whyne
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave., Room S620, Toronto, Ontario,. M4N 3M5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario.,Department of Surgery, University of Toronto, Toronto, Ontario
| |
Collapse
|
37
|
Blouin S, Fratzl-Zelman N, Roschger A, Cabral WA, Klaushofer K, Marini JC, Fratzl P, Roschger P. Cortical bone properties in the Brtl/+ mouse model of Osteogenesis imperfecta as evidenced by acoustic transmission microscopy. J Mech Behav Biomed Mater 2018; 90:125-132. [PMID: 30366302 DOI: 10.1016/j.jmbbm.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/24/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
Higher skeletal fragility has been established for the Brtl/+ mouse model of osteogenesis imperfecta at the whole bone level, but previous investigations of mechanical properties at the bone material level were inconclusive. Bone material was analyzed separately at endosteal (ER) and periosteal regions (PR) on transverse femoral midshaft sections for 2-month old mice (wild-type n = 6; Brtl/+ n = 6). Quantitative backscattered electron imaging revealed that the mass density computed from mineral density maps was higher in PR than in ER for both wild-type (+2.1%, p < 0.05) and Brtl/+ mice (+1.8%, p < 0.05). Electron induced X-ray fluorescence analysis indicated significantly lower atomic Ca/P ratios and higher Na/Ca, Mg/Ca and K/Ca ratios in PR bone compared to ER independently of genotype. Second harmonic generation microscopy indicated that the occurrence of periodically alternating collagen orientation in ER of Brtl/+ mice was strongly reduced compared to wild-type mice. Scanning acoustic microscopy in time of flight mode revealed that the sound velocity and Young's modulus (estimated based on sound velocity and mass density maps) were significantly greater in PR (respectively +6% and +15%) compared to ER in wild-type mice but not in Brtl/+ mice. ER sound velocity and Young's modulus were significantly increased in Brtl/+ mice (+9.4% and +22%, respectively) compared to wild-type mice. These data demonstrate that the Col1a1 G349C mutation in Brtl/+ mice affects the mechanical behavior of bone material predominantly in the endosteal region by altering the collagen orientation.
Collapse
Affiliation(s)
- S Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.
| | - N Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - A Roschger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Postdam, Germany
| | - W A Cabral
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - J C Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - P Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Postdam, Germany
| | - P Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| |
Collapse
|
38
|
Pawlikowski M, Jankowski K, Skalski K. New microscale constitutive model of human trabecular bone based on depth sensing indentation technique. J Mech Behav Biomed Mater 2018; 85:162-169. [DOI: 10.1016/j.jmbbm.2018.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/14/2018] [Accepted: 05/26/2018] [Indexed: 11/29/2022]
|
39
|
Nobakhti S, Shefelbine SJ. On the Relation of Bone Mineral Density and the Elastic Modulus in Healthy and Pathologic Bone. Curr Osteoporos Rep 2018; 16:404-410. [PMID: 29869752 DOI: 10.1007/s11914-018-0449-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
PURPOSE OF REVIEW Osteoporosis could lead to the bone mechanical failure. To examine the bone health, mechanical properties are often estimated from the images of the bone density. Here, we review the relationships that have been experimentally determined between mineral density and the elastic modulus and factors that affect these relationships. RECENT FINDINGS Studies, which have investigated the relation between the elastic modulus and bone mineral at the bulk scale, have shown that approximately 70% of variations in the elastic modulus can be explained based on the amount of mineral in bone. At the tissue level, however, higher resolution techniques are used to characterize the density and modulus more locally, and this leads to the correlation of mineral with modulus to be not as strong as that of the bulk level and often times, insignificant. This observation indicates the importance of structural hierarchy and mineral crystal organization in determining the local stiffness of the bone tissue. At the bulk level in bone (cm scale), modulus (E) is related to density (ρ) through a power law relationship (E ∝ ρα). At the tissue level (μm-mm scale), the relationship between the modulus and density is weak, likely due to the effect of microstructural features at small length scales.
Collapse
Affiliation(s)
- Sabah Nobakhti
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
40
|
Boughton OR, Ma S, Zhao S, Arnold M, Lewis A, Hansen U, Cobb JP, Giuliani F, Abel RL. Measuring bone stiffness using spherical indentation. PLoS One 2018; 13:e0200475. [PMID: 30001364 PMCID: PMC6042739 DOI: 10.1371/journal.pone.0200475] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022] Open
Abstract
Objectives Bone material properties are a major determinant of bone health in older age, both in terms of fracture risk and implant fixation, in orthopaedics and dentistry. Bone is an anisotropic and hierarchical material so its measured material properties depend upon the scale of metric used. The scale used should reflect the clinical problem, whether it is fracture risk, a whole bone problem, or implant stability, at the millimetre-scale. Indentation, an engineering technique involving pressing a hard-tipped material into another material with a known force, may be able to assess bone stiffness at the millimetre-scale (the apparent elastic modulus). We aimed to investigate whether spherical-tip indentation could reliably measure the apparent elastic modulus of human cortical bone. Materials and methods Cortical bone samples were retrieved from the femoral necks of nineteen patients undergoing total hip replacement surgery (10 females, 9 males, mean age: 69 years). The samples underwent indentation using a 1.5 mm diameter, ruby, spherical indenter tip, with sixty indentations per patient sample, across six locations on the bone surfaces, with ten repeated indentations at each of the six locations. The samples then underwent mechanical compression testing. The repeatability of indentation measurements of elastic modulus was assessed using the co-efficient of repeatability and the correlation between the bone elastic modulus measured by indentation and compression testing was analysed by least-squares regression. Results In total, 1140 indentations in total were performed. Indentation was found to be repeatable for indentations performed at the same locations on the bone samples with a mean co-efficient of repeatability of 0.4 GigaPascals (GPa), confidence interval (C.I): 0.33–0.42 GPa. There was variation in the indentation modulus results between different locations on the bone samples (mean co-efficient of repeatability: 3.1 GPa, C.I: 2.2–3.90 GPa). No clear correlation was observed between indentation and compression values of bone elastic modulus (r = 0.33, p = 0.17). The mean apparent elastic modulus obtained by spherical indentation was 9.9 GPa, the standard deviation for each indent cycle was 0.11 GPa, and the standard deviation between locations on the same sample was 1.01 GPa. The mean compression apparent elastic modulus was 4.42 GPa, standard deviation 1.02 GPa. Discussion Spherical-tip indentation was found to be a repeatable test for measuring the elastic modulus of human cortical bone, demonstrated by a low co-efficient of repeatability in this study. It could not, however, reliably predict cortical bone elastic modulus determined by platens compression testing in this study. This may be due to indentation only probing mechanical properties at the micro-scale while platens compression testing assesses millimetre length-scale properties. Improvements to the testing technique, including the use of a larger diameter spherical indenter tip, may improve the measurement of bone stiffness at the millimetre scale and should be investigated further.
Collapse
Affiliation(s)
- Oliver R. Boughton
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, United Kingdom
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
- * E-mail:
| | - Shaocheng Ma
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, United Kingdom
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Sarah Zhao
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Matthew Arnold
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Angus Lewis
- Orthopaedic Surgery Department, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ulrich Hansen
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Justin P. Cobb
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Finn Giuliani
- Centre for Advanced Structural Ceramics, Department of Mechanical Engineering and Materials, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Richard L. Abel
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, United Kingdom
| |
Collapse
|
41
|
The peregrine falcon’s rapid dive: on the adaptedness of the arm skeleton and shoulder girdle. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:747-759. [DOI: 10.1007/s00359-018-1276-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023]
|
42
|
Binkley DM, Grandfield K. Advances in Multiscale Characterization Techniques of Bone and Biomaterials Interfaces. ACS Biomater Sci Eng 2017; 4:3678-3690. [PMID: 33429593 DOI: 10.1021/acsbiomaterials.7b00420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The success of osseointegrated biomaterials often depends on the functional interface between the implant and mineralized bone tissue. Several parallels between natural and synthetic interfaces exist on various length scales from the microscale toward the cellular and the atomic scale structure. Interest lies in the development of more sophisticated methods to probe these hierarchical levels in tissues at both biomaterials interfaces and natural tissue interphases. This review will highlight new and emerging perspectives toward understanding mineralized tissues, particularly bone tissue, and interfaces between bone and engineered biomaterials at multilength scales and with multidimensionality. Emphasis will be placed on highlighting novel and correlative X-ray, ion, and electron beam imaging approaches, such as electron tomography, atom probe tomography, and in situ microscopies, as well as spectroscopic and mechanical characterizations. These less conventional approaches to imaging biomaterials are contributing to the evolution of the understanding of the structure and organization in bone and bone integrating materials.
Collapse
|
43
|
Mechanical characterization via nanoindentation of the woven bone developed during bone transport. J Mech Behav Biomed Mater 2017. [DOI: 10.1016/j.jmbbm.2017.05.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Schwiedrzik J, Taylor A, Casari D, Wolfram U, Zysset P, Michler J. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta Biomater 2017; 60:302-314. [PMID: 28754646 DOI: 10.1016/j.actbio.2017.07.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/04/2023]
Abstract
Bone features a hierarchical architecture combining antagonistic properties like toughness and strength. In order to better understand the mechanisms leading to this advantageous combination, its postyield and failure behaviour was analyzed on the length scale of a single lamella. Micropillars were compressed to large strains under hydrated conditions to measure their anisotropic yield and post-yield behaviour. An increase in strength compared to the macroscale by a factor of 1.55 and a strong influence of hydration with a decrease by 60% in yield stress compared to vacuum conditions were observed. Post-compression transmission electron microscopic analysis revealed anisotropic deformation mechanisms. In axial pillars, where fibrils were oriented along the loading axis, kink bands were observed and shear cracks emerged at the interface of ordered and disordered regions. Micromechanical analysis of fibril kinking allowed an estimate of the extrafibrillar matrix shear strength to be made: 120±40MPa. When two opposing shear planes met a wedge was formed, splitting the micropillar axially in a mode 1 crack. Making use of an analytical solution, the mode 1 fracture toughness of bone extracellular matrix for splitting along the fibril direction was estimated to be 0.07MPam. This is 1-2 orders of magnitude smaller than on the macroscale, which may be explained by the absence of extrinsic toughening mechanisms. In transverse pillars, where fibrils were oriented perpendicular to the loading axis, cracks formed in regions where adverse fibril orientation reduced the local fracture resistance. This study underlines the importance of bone's hierarchical microstructure for its macroscopic strength and fracture resistance and the need to study structure-property relationships as well as failure mechanisms under hydrated conditions on all length scales. STATEMENT OF SIGNIFICANCE Bone's hierarchical architecture combines toughness and strength. To understand the governing deformation mechanisms, its postyield behaviour was analyzed at the microscale. Micropillars were compressed in physiological solution; an increased strength compared to macroscale and an influence of hydration was found. Transmission electron microscopy revealed cracks forming in regions with adverse fibril orientation in transverse pillars. In axial pillars kink bands were observed and shear cracks emerged at the interface of ordered and disordered regions. It was estimated that bone's fracture toughness for splitting between fibrils is significantly smaller than on the macroscale. This study underlines the importance of bone's hierarchical microstructure and the need to study structure-property relationships on all length scales.
Collapse
|
45
|
Labonte D, Lenz AK, Oyen ML. On the relationship between indentation hardness and modulus, and the damage resistance of biological materials. Acta Biomater 2017; 57:373-383. [PMID: 28546134 DOI: 10.1016/j.actbio.2017.05.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/20/2017] [Accepted: 05/15/2017] [Indexed: 12/28/2022]
Abstract
The remarkable mechanical performance of biological materials is based on intricate structure-function relationships. Nanoindentation has become the primary tool for characterising biological materials, as it allows to relate structural changes to variations in mechanical properties on small scales. However, the respective theoretical background and associated interpretation of the parameters measured via indentation derives largely from research on 'traditional' engineering materials such as metals or ceramics. Here, we discuss the functional relevance of indentation hardness in biological materials by presenting a meta-analysis of its relationship with indentation modulus. Across seven orders of magnitude, indentation hardness was directly proportional to indentation modulus. Using a lumped parameter model to deconvolute indentation hardness into components arising from reversible and irreversible deformation, we establish criteria which allow to interpret differences in indentation hardness across or within biological materials. The ratio between hardness and modulus arises as a key parameter, which is related to the ratio between irreversible and reversible deformation during indentation, the material's yield strength, and the resistance to irreversible deformation, a material property which represents the energy required to create a unit volume of purely irreversible deformation. Indentation hardness generally increases upon material dehydration, however to a larger extent than expected from accompanying changes in indentation modulus, indicating that water acts as a 'plasticiser'. A detailed discussion of the role of indentation hardness, modulus and toughness in damage control during sharp or blunt indentation yields comprehensive guidelines for a performance-based ranking of biological materials, and suggests that quasi-plastic deformation is a frequent yet poorly understood damage mode, highlighting an important area of future research. STATEMENT OF SIGNIFICANCE Instrumented indentation is a widespread tool for characterising the mechanical properties of biological materials. Here, we show that the ratio between indentation hardness and modulus is approximately constant in biological materials. A simple elastic-plastic series deformation model is employed to rationalise part of this correlation, and criteria for a meaningful comparison of indentation hardness across biological materials are proposed. The ratio between indentation hardness and modulus emerges as the key parameter characterising the relative amount of irreversible deformation during indentation. Despite their comparatively high hardness to modulus ratio, biological materials are susceptible to quasiplastic deformation, due to their high toughness: quasi-plastic deformation is hence hypothesised to be a frequent yet poorly understood phenomenon, highlighting an important area of future research.
Collapse
|
46
|
Vennin S, Desyatova A, Turner JA, Watson PA, Lappe JM, Recker RR, Akhter MP. Intrinsic material property differences in bone tissue from patients suffering low-trauma osteoporotic fractures, compared to matched non-fracturing women. Bone 2017; 97:233-242. [PMID: 28132909 PMCID: PMC5367951 DOI: 10.1016/j.bone.2017.01.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/10/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
Osteoporotic (low-trauma) fractures are a significant public health problem. Over 50% of women over 50yrs. of age will suffer an osteoporotic fracture in their remaining lifetimes. While current therapies reduce skeletal fracture risk by maintaining or increasing bone density, additional information is needed that includes the intrinsic material strength properties of bone tissue to help develop better treatments, since measurements of bone density account for no more than ~50% of fracture risk. The hypothesis tested here is that postmenopausal women who have sustained osteoporotic fractures have reduced bone quality, as indicated with measures of intrinsic material properties compared to those who have not fractured. Transiliac biopsies (N=120) were collected from fracturing (N=60, Cases) and non-fracturing postmenopausal women (N=60, age- and BMD-matched Controls) to measure intrinsic material properties using the nano-indentation technique. Each biopsy specimen was embedded in epoxy resin and then ground, polished and used for the nano-indentation testing. After calibration, multiple indentations were made using quasi-static (hardness, modulus) and dynamic (storage and loss moduli) testing protocols. Multiple indentations allowed the median and variance to be computed for each type of measurement for each specimen. Cases were found to have significantly lower median values for cortical hardness and indentation modulus. In addition, cases showed significantly less within-specimen variability in cortical modulus, cortical hardness, cortical storage modulus and trabecular hardness, and more within-specimen variability in trabecular loss modulus. Multivariate modeling indicated the presence of significant independent mechanical effects of cortical loss modulus, along with variability of cortical storage modulus, cortical loss modulus, and trabecular hardness. These results suggest mechanical heterogeneity of bone tissue may contribute to fracture resistance. Although the magnitudes of differences in the intrinsic properties were not overwhelming, this is the first comprehensive study to investigate, and compare the intrinsic properties of bone tissue in fracturing and non-fracturing postmenopausal women.
Collapse
Affiliation(s)
- S Vennin
- University of Nebraska-Lincoln, NE, United States
| | - A Desyatova
- University of Nebraska-Lincoln, NE, United States
| | - J A Turner
- University of Nebraska-Lincoln, NE, United States
| | - P A Watson
- Osteoporosis Research Center, Creighton University, Omaha, NE, United States
| | - J M Lappe
- Osteoporosis Research Center, Creighton University, Omaha, NE, United States
| | - R R Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE, United States
| | - M P Akhter
- Osteoporosis Research Center, Creighton University, Omaha, NE, United States.
| |
Collapse
|
47
|
Swain MV, Nohava J, Eberwein P. A simple basis for determination of the modulus and hydraulic conductivity of human ocular surface using nano-indentation. Acta Biomater 2017; 50:312-321. [PMID: 28003145 DOI: 10.1016/j.actbio.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022]
Abstract
This paper presents a simple analysis based upon Darcy's Law and indentation contact mechanics to determine the effective hydraulic conductivity and elastic modulus of fluid filled tissues. The approach is illustrated with the mechanical response of the human ocular surface using a 500μm radius spherical tipped indenter. Indentations of various regions of the ocular surface including the corneal stroma, limbal region and sclera have been conducted. Force-control indentations were made to a maximum force, which was maintained before unloading. Measurements of the indentation response of cornea at three different loading rates were also made. Elastic like response was observed during loading, which was followed by extensive creep prior to unloading. STATEMENT OF SIGNIFICANCE This manuscript attempts to provide a relatively simply model for the contact loading of fluid containing tissues and materials. It shows that the response of such materials provides a basis for determining the effective modulus and effective hydraulic conductivity (permeability) in much the same manner that hardness and modulus do for the indentation of elastic-plastic materials. Eye tissue with its anisotropic elastic and permeability properties is used to illustrate the approach.
Collapse
Affiliation(s)
- M V Swain
- Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait.
| | - J Nohava
- Anton Paar, Rue de la Gare 4, 2034 Peseux, Switzerland
| | - P Eberwein
- Eye Medical Center, University of Freiburg, Germany
| |
Collapse
|
48
|
Casanova M, Balmelli A, Carnelli D, Courty D, Schneider P, Müller R. Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160971. [PMID: 28386450 PMCID: PMC5367284 DOI: 10.1098/rsos.160971] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/20/2017] [Indexed: 06/07/2023]
Abstract
Studies investigating micromechanical properties in mouse cortical bone often solely focus on the mechanical behaviour along the long axis of the bone. Therefore, data on the anisotropy of mouse cortical bone is scarce. The aim of this study is the first-time evaluation of the anisotropy ratio between the longitudinal and transverse directions of reduced modulus and hardness in mouse femurs by using the nanoindentation technique. For this purpose, nine 22-week-old mice (C57BL/6) were sacrificed and all femurs extracted. A total of 648 indentations were performed with a Berkovich tip in the proximal (P), central (C) and distal (D) regions of the femoral shaft in the longitudinal and transverse directions. Higher values for reduced modulus are obtained for indentations in the longitudinal direction, with anisotropy ratios of 1.72 ± 0.40 (P), 1.75 ± 0.69 (C) and 1.34 ± 0.30 (D). Hardness is also higher in the longitudinal direction, with anisotropic ratios of 1.35 ± 0.27 (P), 1.35 ± 0.47 (C) and 1.17 ± 0.19 (D). We observed a significant anisotropy in the micromechanical properties of the mouse femur, but the correlation for reduced modulus and hardness between the two directions is low (r2 < 0.3) and not significant. Therefore, we highly recommend performing independent indentation testing in both the longitudinal and transverse directions when knowledge of the tissue mechanical behaviour along multiple directions is required.
Collapse
Affiliation(s)
| | - Anna Balmelli
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Davide Carnelli
- Complex Materials, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Diana Courty
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
49
|
Casanova M, Balmelli A, Carnelli D, Courty D, Schneider P, Müller R. Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone. ROYAL SOCIETY OPEN SCIENCE 2017. [PMID: 28386450 DOI: 10.5061/dryad.h5p79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Studies investigating micromechanical properties in mouse cortical bone often solely focus on the mechanical behaviour along the long axis of the bone. Therefore, data on the anisotropy of mouse cortical bone is scarce. The aim of this study is the first-time evaluation of the anisotropy ratio between the longitudinal and transverse directions of reduced modulus and hardness in mouse femurs by using the nanoindentation technique. For this purpose, nine 22-week-old mice (C57BL/6) were sacrificed and all femurs extracted. A total of 648 indentations were performed with a Berkovich tip in the proximal (P), central (C) and distal (D) regions of the femoral shaft in the longitudinal and transverse directions. Higher values for reduced modulus are obtained for indentations in the longitudinal direction, with anisotropy ratios of 1.72 ± 0.40 (P), 1.75 ± 0.69 (C) and 1.34 ± 0.30 (D). Hardness is also higher in the longitudinal direction, with anisotropic ratios of 1.35 ± 0.27 (P), 1.35 ± 0.47 (C) and 1.17 ± 0.19 (D). We observed a significant anisotropy in the micromechanical properties of the mouse femur, but the correlation for reduced modulus and hardness between the two directions is low (r2 < 0.3) and not significant. Therefore, we highly recommend performing independent indentation testing in both the longitudinal and transverse directions when knowledge of the tissue mechanical behaviour along multiple directions is required.
Collapse
Affiliation(s)
| | - Anna Balmelli
- Institute for Biomechanics , ETH Zürich , Zürich , Switzerland
| | - Davide Carnelli
- Complex Materials, Department of Materials , ETH Zürich , Zürich , Switzerland
| | - Diana Courty
- Laboratory for Nanometallurgy, Department of Materials , ETH Zürich , Zürich , Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Ralph Müller
- Institute for Biomechanics , ETH Zürich , Zürich , Switzerland
| |
Collapse
|
50
|
Biomechanical investigation of the effect of extracorporeal irradiation on resected human bone. J Mech Behav Biomed Mater 2017; 65:791-800. [DOI: 10.1016/j.jmbbm.2016.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
|