1
|
Yu X, Chen Z, Bao W, Jiang Y, Ruan F, Wu D, Le K. The neutrophil extracellular traps in neurological diseases: an update. Clin Exp Immunol 2024; 218:264-274. [PMID: 38975702 PMCID: PMC11557138 DOI: 10.1093/cei/uxae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/08/2024] [Accepted: 07/06/2024] [Indexed: 07/09/2024] Open
Abstract
Neutrophil extracellular traps (NETs) released by neutrophils are web-like DNA structures adhered to granulin proteins with bactericidal activity and can be an important mechanism for preventing pathogen dissemination or eliminating microorganisms. However, they also play important roles in diseases of other systems, such as the central nervous system. We tracked the latest advances and performed a review based on published original and review articles related to NETs and neurological diseases. Generally, neutrophils barely penetrate the blood-brain barrier into the brain parenchyma, but when pathological changes such as infection, trauma, or neurodegeneration occur, neutrophils rapidly infiltrate the central nervous system to exert their defensive effects. However, neutrophils may adversely affect the host when they uncontrollably release NETs upon persistent neuroinflammation. This review focused on recent advances in understanding the mechanisms and effects of NETs release in neurological diseases, and we also discuss the role of molecules that regulate NETs release in anticipation of clinical applications in neurological diseases.
Collapse
Affiliation(s)
- Xiaoping Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhaoyan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Wei Bao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yaqing Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Fei Ruan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Di Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong S.A.R., China
| |
Collapse
|
2
|
Kodosaki E, Bell R, Sogorb-Esteve A, Wiltshire K, Zetterberg H, Heslegrave A. More than microglia: myeloid cells and biomarkers in neurodegeneration. Front Neurosci 2024; 18:1499458. [PMID: 39544911 PMCID: PMC11560917 DOI: 10.3389/fnins.2024.1499458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
The role of myeloid cells (granulocytes and monocytes) in neurodegeneration and neurodegenerative disorders (NDD) is indisputable. Here we discuss the roles of myeloid cells in neurodegenerative diseases, and the recent advances in biofluid and imaging myeloid biomarker research with a focus on methods that can be used in the clinic. For this review, evidence from three neurodegenerative diseases will be included, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We discuss the potential for these biomarkers to be used in humans with suspected NDD as prognostic, diagnostic, or monitoring tools, identify knowledge gaps in literature, and propose potential approaches to further elucidate the role of myeloid cells in neurodegeneration and better utilize myeloid biomarkers in the understanding and treatment of NDD.
Collapse
Affiliation(s)
- Eleftheria Kodosaki
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Rosie Bell
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at UCL, London, United Kingdom
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katharine Wiltshire
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
3
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
4
|
Quan M, Zhang H, Han X, Ba Y, Cui X, Bi Y, Yi L, Li B. Single-Cell RNA Sequencing Reveals Transcriptional Landscape of Neutrophils and Highlights the Role of TREM-1 in EAE. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200278. [PMID: 38954781 PMCID: PMC11221915 DOI: 10.1212/nxi.0000000000200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/06/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVES Neutrophils, underestimated in multiple sclerosis (MS), are gaining increased attention for their significant functions in patients with MS and the experimental autoimmune encephalomyelitis (EAE) animal model. However, the precise role of neutrophils in cervical lymph nodes (CLNs), the primary CNS-draining lymph nodes where the autoimmune response is initiated during the progression of EAE, remains poorly understood. METHODS Applying single-cell RNA sequencing (scRNA-seq), we constructed a comprehensive immune cell atlas of CLNs during development of EAE. Through this atlas, we concentrated on and uncovered the transcriptional landscape, phenotypic and functional heterogeneity of neutrophils, and their crosstalk with immune cells within CLNs in the neuroinflammatory processes in EAE. RESULTS Notably, we observed a substantial increase in the neutrophil population in EAE mice, with a particular emphasis on the significant rise within the CLNs. Neutrophils in CLNs were categorized into 3 subtypes, and we explored the specific roles and developmental trajectories of each distinct neutrophil subtype. Neutrophils were found to engage in extensive interactions with other immune cells, playing crucial roles in T-cell activation. Moreover, our findings highlighted the strong migratory ability of neutrophils to CLNs, partly regulated by triggering the receptor expressed on myeloid cells 1 (TREM-1). Inhibiting TREM1 with LR12 prevents neutrophil migration both in vivo and in vitro. In addition, in patients with MS, we confirmed an increase in peripheral neutrophils with an upregulation of TREM-1. DISCUSSION Our research provides a comprehensive and precise single-cell atlas of CLNs in EAE, highlighting the role of neutrophils in regulating the periphery immune response. In addition, TREM-1 emerged as an essential regulator of neutrophil migration to CLNs, holding promise as a potential therapeutic target in MS.
Collapse
Affiliation(s)
- Moyuan Quan
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Huining Zhang
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Xianxian Han
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Yongbing Ba
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Xiaoyang Cui
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Yanwei Bi
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Le Yi
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- From the Department of Neurology (M.Q., H.Z., L.Y., B.L.), The Second Hospital of Hebei Medical University; the Key Laboratory of Hebei Neurology, Hebei Medical University, Ministry of Education, (M.Q., H.Z., L.Y., B.L.); and the Key Laboratory of Neurology of Hebei Province, (M.Q., H.Z., L.Y., B.L.), Shijiazhuang, Hebei, China; Department of Neurology (X.H.), Zhongshan People's Hospital, China; OE Biotech Co. (Yongbing Ba), Ltd. Shanghai, China; and School of Basic Medicine (X.C., Yanwei Bi), Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Li Z, Lu Q. The role of neutrophils in autoimmune diseases. Clin Immunol 2024; 266:110334. [PMID: 39098706 DOI: 10.1016/j.clim.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Historically, neutrophils have been primarily regarded as short-lived immune cells that act as initial responders to antibacterial immunity by swiftly neutralizing pathogens and facilitating the activation of adaptive immunity. However, recent evidence indicates that their roles are considerably more complex than previously recognized. Neutrophils comprise distinct subpopulations and can interact with various immune cells, release granular proteins, and form neutrophil extracellular traps. These functions are increasingly recognized as contributing factors to tissue damage in autoimmune diseases. This review comprehensively examines the physiological functions and heterogeneity of neutrophils, their interactions with other immune cells, and their significance in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, multiple sclerosis, and others. This review aims to provide a deeper understanding of the function of neutrophils in the development and progression of autoimmune disorders.
Collapse
Affiliation(s)
- Zhuoshu Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
6
|
Docampo MJ, Batruch M, Oldrati P, Berenjeno-Correa E, Hilty M, Leventhal G, Lutterotti A, Martin R, Sospedra M. Clinical and Immunologic Effects of Paraprobiotics in Long-COVID Patients: A Pilot Study. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200296. [PMID: 39106427 PMCID: PMC11318528 DOI: 10.1212/nxi.0000000000200296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND AND OBJECTIVES After the enormous health burden during the acute stages of the COVID-19 pandemic, we are now facing another important challenge, that is, long-COVID, a clinical condition with often disabling signs and symptoms of the neuropsychiatric, gastrointestinal, respiratory, cardiovascular, and immune systems. While the pathogenesis of this syndrome is still poorly understood, alterations of immune function and the gut microbiota seem to play important roles. Because affected individuals are frequently unable to work for prolonged periods and suffer numerous health compromises, effective treatments represent a major unmet medical need. Multiple potential therapies have been tried, but none is approved yet. Approaches that are able to influence the immune system and gut microbiota such as probiotics and paraprobiotics, i.e., nonviable probiotics, seem promising candidates. We, therefore, evaluated the clinical and immunologic effects of paraprobiotics in a small pilot study. METHODS A total of 6 patients with long-COVID were followed systematically for more than 12 months after disease onset using standardized validated questionnaires, a smartphone app, and wearable sensors to assess neurocognitive function, fatigue, depressiveness, autonomic nervous system alterations, and quality of life. We then offered patients defined paraprobiotics for 4 weeks and evaluated them at the end of the treatment period using the same questionnaires, smartphone app, and wearable sensors. In addition, a comprehensive immunophenotyping and gut microbiota analysis was performed before and after treatment. RESULTS Improvements in several of the neurologic symptoms such as dysautonomia, fatigue, and depression were documented using both patient-reported outcomes and data from the smartphone app and wearable sensors. Of interest, the expression of activation markers on some immune cell populations such as B cells and nonclassical monocytes and the expression of toll-like receptor 2 (TLR2) on T cells were reduced after paraprobiotics treatment. DISCUSSION Our results suggest that paraprobiotics might exert positive effects in patients with long-COVID most likely by modulating immune cell activation and expression of TLR2 on T cells. Further studies with paraprobiotics should confirm the promising observations of this small pilot study and hopefully not only improve the outcome of long-COVID but also unravel the pathomechanisms of this condition. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that paraprobiotics increase the probability of favorable changes of clinical and immunologic markers in patients with long-COVID.
Collapse
Affiliation(s)
- María José Docampo
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mattei Batruch
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pietro Oldrati
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ernesto Berenjeno-Correa
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marc Hilty
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel Leventhal
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Lutterotti
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roland Martin
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mireia Sospedra
- From the Neuroimmunology and MS Research (nims) (M.J.D., M.B., P.O., E.B.-C., M.H., A.L., R.M., M.S.), Department of Neurology, University Hospital and University Zurich; Institute for Implementation Science in Health Care (P.O.), University of Zürich; Cellerys AG (P.O., A.L., R.M., M.S.), Schlieren; Universitäts-Kinderspital Zürich (E.B.-C.); Neurozentrum Bellevue (M.H., A.L.); PharmaBiome AG (G.L.), Schlieren, Switzerland; and Therapeutic Immune Design (R.M.), Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Nikseresht A, Bahrami Z. Neutrophil-to-Lymphocyte Ratio, ESR, and CRP Have No Roles as Markers for Disease Severity and Prognosis in Patients with RRMS. Neurol India 2024; 72:806-810. [PMID: 39216038 DOI: 10.4103/neurol-india.ni_579_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/23/2020] [Indexed: 09/04/2024]
Abstract
BACKGROUND Up to now, there is no definitive prognostic factor for patients with multiple sclerosis. OBJECTIVE This study aimed to evaluate the neutrophil-to-lymphocyte ratio (N/L ratio) as a cheap, available, and noninvasive marker for disease activity and prognosis. MATERIAL AND METHODS A total of 112 patients, who were diagnosed with relapsing-remitting multiple sclerosis (RRMS), and 61 healthy controls were considered. We evaluated N/L ratio, ESR, CRP in the control, and patients in the first attack of the onset of the disease, 1 month and 6 months later during remission. All patients received interferon or Glatiramer acetate as disease-modifying therapies. The correlation of parameters with Expanded Disability Scale Score (EDSS) and Functional System (FS) involvement was evaluated. RESULTS The N/L ratio was increased significantly in patients with MS in the relapse phase (mean: 2.44 ± 0.68) compared to the healthy controls (mean: 1.84 ± 0.67) (P = 0.04). Also, we found a significant increase in CRP among the aforementioned groups (P = 0.028). A significant correlation was not found between NLR, ESR, or CRP and patient's EDSS during 6 months of follow-up. For ESR and the type of functional system, a significant difference was found between favorable and unfavorable categories, while the median (IQR) of ESR in the favorable group was 7.7 (4-12) and among unfavorable ones was 13.8 (6-17.75) (P = 0.008). CONCLUSIONS The results showed the effect of the innate immune system and inflammation during MS attacks. We considered that neutrophils, ESR, and CRP cannot predict disease severity or prognosis at least without a combination of other biomarkers.
Collapse
Affiliation(s)
- Alireza Nikseresht
- Department of Neurology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran, Islamic Republic of Iran
| | | |
Collapse
|
8
|
Kupor D, Felder ML, Kodikalla S, Chu X, Eniola-Adefeso O. Nanoparticle-neutrophils interactions for autoimmune regulation. Adv Drug Deliv Rev 2024; 209:115316. [PMID: 38663550 PMCID: PMC11246615 DOI: 10.1016/j.addr.2024.115316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Neutrophils play an essential role as 'first responders' in the immune response, necessitating many immune-modulating capabilities. Chronic, unresolved inflammation is heavily implicated in the progression and tissue-degrading effects of autoimmune disease. Neutrophils modulate disease pathogenesis by interacting with the inflammatory and autoreactive cells through effector functions, including signaling, degranulation, and neutrophil extracellular traps (NETs) release. Since the current gold standard systemic glucocorticoid administration has many drawbacks and side effects, targeting neutrophils in autoimmunity provides a new approach to developing therapeutics. Nanoparticles enable targeting of specific cell types and controlled release of a loaded drug cargo. Thus, leveraging nanoparticle properties and interactions with neutrophils provides an exciting new direction toward novel therapies for autoimmune diseases. Additionally, recent work has utilized neutrophil properties to design novel targeted particles for delivery into previously inaccessible areas. Here, we outline nanoparticle-based strategies to modulate neutrophil activity in autoimmunity, including various nanoparticle formulations and neutrophil-derived targeting.
Collapse
Affiliation(s)
- Daniel Kupor
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael L Felder
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shivanie Kodikalla
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xueqi Chu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
De Bondt M, Renders J, Struyf S, Hellings N. Inhibitors of Bruton's tyrosine kinase as emerging therapeutic strategy in autoimmune diseases. Autoimmun Rev 2024; 23:103532. [PMID: 38521213 DOI: 10.1016/j.autrev.2024.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Bruton's tyrosine kinase (BTK) is a cytoplasmic, non-receptor signal transducer, initially identified as an essential signaling molecule for B cells, with genetic mutations resulting in a disorder characterized by disturbed B cell and antibody development. Subsequent research revealed the critical role of BTK in the functionality of monocytes, macrophages and neutrophils. Various immune cells, among which B cells and neutrophils, rely on BTK activity for diverse signaling pathways downstream of multiple receptors, which makes this kinase an ideal target to treat hematological malignancies and autoimmune diseases. First-generation BTK inhibitors are already on the market to treat hematological disorders. It has been demonstrated that B cells and myeloid cells play a significant role in the pathogenesis of different autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren's syndrome. Consequently, second-generation BTK inhibitors are currently being developed to treat these disorders. Despite the acknowledged involvement of BTK in various cell types, the focus on B cells often overshadows its impact on innate immune cells. Among these cell types, neutrophils are often underestimated in the pathogenesis of autoimmune diseases. In this narrative review, the function of BTK in different immune cell subsets is discussed, after which an overview is provided of different upcoming BTK inhibitors tested for treatment of autoimmune diseases. Special attention is paid to BTK inhibition and its effect on neutrophil biology.
Collapse
Affiliation(s)
- Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium, Herestraat 49, box 1042, 3000 Leuven; Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Agoralaan building C, 3095 Diepenbeek, Belgium
| | - Janne Renders
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium, Herestraat 49, box 1042, 3000 Leuven
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium, Herestraat 49, box 1042, 3000 Leuven
| | - Niels Hellings
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Agoralaan building C, 3095 Diepenbeek, Belgium.
| |
Collapse
|
10
|
Nowaczewska-Kuchta A, Ksiazek-Winiarek D, Szpakowski P, Glabinski A. The Role of Neutrophils in Multiple Sclerosis and Ischemic Stroke. Brain Sci 2024; 14:423. [PMID: 38790402 PMCID: PMC11118671 DOI: 10.3390/brainsci14050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammation plays an important role in numerous central nervous system (CNS) disorders. Its role is ambiguous-it can induce detrimental effects, as well as repair and recovery. In response to injury or infection, resident CNS cells secrete numerous factors that alter blood-brain barrier (BBB) function and recruit immune cells into the brain, like neutrophils. Their role in the pathophysiology of CNS diseases, like multiple sclerosis (MS) and stroke, is highly recognized. Neutrophils alter BBB permeability and attract other immune cells into the CNS. Previously, neutrophils were considered a homogenous population. Nowadays, it is known that various subtypes of these cells exist, which reveal proinflammatory or immunosuppressive functions. The primary goal of this review was to discuss the current knowledge regarding the important role of neutrophils in MS and stroke development and progression. As the pathogenesis of these two disorders is completely different, it gives the opportunity to get insight into diverse mechanisms of neutrophil involvement in brain pathology. Our understanding of the role of neutrophils in CNS diseases is still evolving as new aspects of their activity are being unraveled. Neutrophil plasticity adds another level to their functional complexity and their importance for CNS pathophysiology.
Collapse
Affiliation(s)
| | | | | | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (A.N.-K.); (D.K.-W.); (P.S.)
| |
Collapse
|
11
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
12
|
Byun DJ, Lee J, Ko K, Hyun YM. NLRP3 exacerbates EAE severity through ROS-dependent NET formation in the mouse brain. Cell Commun Signal 2024; 22:96. [PMID: 38308301 PMCID: PMC10835891 DOI: 10.1186/s12964-023-01447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Neutrophil extracellular trap (NET) has been implicated in the pathology of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, the specific contributions of NLRP3, a NET-associated molecule, to EAE pathogenesis and its regulatory role in NET formation remain unknown. METHODS To investigate the detrimental effect of NETs supported by NLRP3 in MS pathogenesis, we induced EAE in WT and NLRP3 KO mice and monitored the disease severity. At the peak of the disease, NET formation was assessed by flow cytometry, immunoblotting, and immunofluorescence staining. To further identify the propensity of infiltrated neutrophils, NET-related chemokine receptors, degranulation, ROS production, and PAD4 expression levels were evaluated by flow cytometry. In some experiments, mice were injected with DNase-1 to eliminate the formed NETs. RESULTS Our data revealed that neutrophils significantly infiltrate the brain and spinal cord and form NETs during EAE pathogenesis. NLRP3 significantly elevates NET formation, primarily in the brain. NLRP3 also modulated the phenotypes of brain-infiltrated and circulating neutrophils, augmenting CXCR2 and CXCR4 expression, thereby potentially enhancing NET formation. NLRP3 facilitates NET formation in a ROS-dependent and PAD4-independent manner in brain-infiltrated neutrophils. Finally, NLRP3-supported NET formation exacerbates disease severity, triggering Th1 and Th17 cells recruitment. CONCLUSIONS Collectively, our findings suggest that NLRP3-supported NETs may be an etiological factor in EAE pathogenesis, primarily in the brain. This study provides evidence that targeting NLRP3 could be a potential therapeutic strategy for MS, specifically by attenuating NET formation.
Collapse
Affiliation(s)
- Da Jeong Byun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Lee
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyungryung Ko
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Shao BZ, Jiang JJ, Zhao YC, Zheng XR, Xi N, Zhao GR, Huang XW, Wang SL. Neutrophil extracellular traps in central nervous system (CNS) diseases. PeerJ 2024; 12:e16465. [PMID: 38188146 PMCID: PMC10771765 DOI: 10.7717/peerj.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 01/09/2024] Open
Abstract
Excessive induction of inflammatory and immune responses is widely considered as one of vital factors contributing to the pathogenesis and progression of central nervous system (CNS) diseases. Neutrophils are well-studied members of inflammatory and immune cell family, contributing to the innate and adaptive immunity. Neutrophil-released neutrophil extracellular traps (NETs) play an important role in the regulation of various kinds of diseases, including CNS diseases. In this review, current knowledge on the biological features of NETs will be introduced. In addition, the role of NETs in several popular and well-studied CNS diseases including cerebral stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and neurological cancers will be described and discussed through the reviewing of previous related studies.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | | | - Yi-Cheng Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Rui Zheng
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Na Xi
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Guan-Ren Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Wu Huang
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
14
|
Sarkar SK, Willson AML, Jordan MA. The Plasticity of Immune Cell Response Complicates Dissecting the Underlying Pathology of Multiple Sclerosis. J Immunol Res 2024; 2024:5383099. [PMID: 38213874 PMCID: PMC10783990 DOI: 10.1155/2024/5383099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease characterized by the destruction of the myelin sheath of the neuronal axon in the central nervous system. Many risk factors, including environmental, epigenetic, genetic, and lifestyle factors, are responsible for the development of MS. It has long been thought that only adaptive immune cells, especially autoreactive T cells, are responsible for the pathophysiology; however, recent evidence has indicated that innate immune cells are also highly involved in disease initiation and progression. Here, we compile the available data regarding the role immune cells play in MS, drawn from both human and animal research. While T and B lymphocytes, chiefly enhance MS pathology, regulatory T cells (Tregs) may serve a more protective role, as can B cells, depending on context and location. Cells chiefly involved in innate immunity, including macrophages, microglia, astrocytes, dendritic cells, natural killer (NK) cells, eosinophils, and mast cells, play varied roles. In addition, there is evidence regarding the involvement of innate-like immune cells, such as γδ T cells, NKT cells, MAIT cells, and innate-like B cells as crucial contributors to MS pathophysiology. It is unclear which of these cell subsets are involved in the onset or progression of disease or in protective mechanisms due to their plastic nature, which can change their properties and functions depending on microenvironmental exposure and the response of neural networks in damage control. This highlights the need for a multipronged approach, combining stringently designed clinical data with carefully controlled in vitro and in vivo research findings, to identify the underlying mechanisms so that more effective therapeutics can be developed.
Collapse
Affiliation(s)
- Sujan Kumar Sarkar
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Annie M. L. Willson
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| | - Margaret A. Jordan
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
15
|
Denorme F, Ajanel A, Campbell RA. Immunothrombosis in neurovascular disease. Res Pract Thromb Haemost 2024; 8:102298. [PMID: 38292352 PMCID: PMC10825058 DOI: 10.1016/j.rpth.2023.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/01/2024] Open
Abstract
A State of the Art lecture titled "Immunothrombosis in Neurovascular Diseases" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. Despite significant clinical advancements in stroke therapy, stroke remains a prominent contributor to both mortality and disability worldwide. Brain injury resulting from an ischemic stroke is a dynamic process that unfolds over time. Initially, an infarct core forms due to the abrupt and substantial blockage of blood flow. In the subsequent hours to days, the surrounding tissue undergoes gradual deterioration, primarily driven by sustained hypoperfusion, programmed cell death, and inflammation. While anti-inflammatory strategies have proven highly effective in experimental models of stroke, their successful translation to clinical use has proven challenging. To overcome this translational hurdle, a better understanding of the distinct immune response driving ischemic stroke brain injury is needed. In this review article, we give an overview of current knowledge regarding the immune response in ischemic stroke and the contribution of immunothrombosis to this process. We discuss therapeutic approaches to overcome detrimental immunothrombosis in ischemic stroke and how these can be extrapolated to other neurovascular diseases, such as Alzheimer's disease and multiple sclerosis. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Frederik Denorme
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
- Division of Vascular Neurology, Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Abigail Ajanel
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
- Division of Microbiology and Pathology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, USA
- Division of Microbiology and Pathology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
16
|
Obeagu EI, Obeagu GU. Type 1 diabetes mellitus: Roles of neutrophils in the pathogenesis. Medicine (Baltimore) 2023; 102:e36245. [PMID: 38115297 PMCID: PMC10727583 DOI: 10.1097/md.0000000000036245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023] Open
Abstract
Circulating neutrophil counts are reduced both in healthy autoantibody-positive individuals and in patients with type 1 diabetes, which may be related on cell-specific autoimmunity. This paper was written to give an update on roles of neutrophils in the pathogenesis of type 1 diabetes mellitus. Different research search engines like PubMed Central, Scopus, Web of Science, Researchgate, Google Scholar etc were utilised for writing this paper. A drop in blood neutrophil counts in type 1 diabetes may be caused by decreased neutrophil generation and maturation, tissue maintenance, consumption, or peripheral damage. Neutrophil count variations between studies may be explained by results from various stages of diabetes or by ethnic groups. Neutrophils can induce type 1 diabetes by colonizing pancreatic islets and interacting with other immune cells, according to exciting findings that shed new light on their role in the pathogenesis of the disease. Knowing more about the function of neutrophils in the pathogenesis of type 1 diabetes will help in early diagnosis, treatment, and even prevention of the disease.
Collapse
|
17
|
Illes Z, Jørgensen MM, Bæk R, Bente LM, Lauridsen JT, Hyrlov KH, Aboo C, Baumbach J, Kacprowski T, Cotton F, Guttmann CRG, Stensballe A. New Enhancing MRI Lesions Associate with IL-17, Neutrophil Degranulation and Integrin Microparticles: Multi-Omics Combined with Frequent MRI in Multiple Sclerosis. Biomedicines 2023; 11:3170. [PMID: 38137391 PMCID: PMC10740934 DOI: 10.3390/biomedicines11123170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Blood-barrier (BBB) breakdown and active inflammation are hallmarks of relapsing multiple sclerosis (RMS), but the molecular events contributing to the development of new lesions are not well explored. Leaky endothelial junctions are associated with increased production of endothelial-derived extracellular microvesicles (EVs) and result in the entry of circulating immune cells into the brain. MRI with intravenous gadolinium (Gd) can visualize acute blood-barrier disruption as the initial event of the evolution of new lesions. METHODS Here, weekly MRI with Gd was combined with proteomics, multiplex immunoassay, and endothelial stress-optimized EV array to identify early markers related to BBB disruption. Five patients with RMS with no disease-modifying treatment were monitored weekly using high-resolution 3T MRI scanning with intravenous gadolinium (Gd) for 8 weeks. Patients were then divided into three groups (low, medium, or high MRI activity) defined by the number of new, total, and maximally enhancing Gd-enhancing lesions and the number of new FLAIR lesions. Plasma samples taken at each MRI were analyzed for protein biomarkers of inflammation by quantitative proteomics, and cytokines using multiplex immunoassays. EVs were characterized with an optimized endothelial stress EV array based on exosome surface protein markers for the detection of soluble secreted EVs. RESULTS Proteomics analysis of plasma yielded quantitative information on 208 proteins at each patient time point (n = 40). We observed the highest number of unique dysregulated proteins (DEPs) and the highest functional enrichment in the low vs. high MRI activity comparison. Complement activation and complement/coagulation cascade were also strongly overrepresented in the low vs. high MRI activity comparison. Activation of the alternative complement pathway, pathways of blood coagulation, extracellular matrix organization, and the regulation of TLR and IGF transport were unique for the low vs. high MRI activity comparison as well, with these pathways being overrepresented in the patient with high MRI activity. Principal component analysis indicated the individuality of plasma profiles in patients. IL-17 was upregulated at all time points during 8 weeks in patients with high vs. low MRI activity. Hierarchical clustering of soluble markers in the plasma indicated that all four MRI outcomes clustered together with IL-17, IL-12p70, and IL-1β. MRI outcomes also showed clustering with EV markers CD62E/P, MIC A/B, ICAM-1, and CD42A. The combined cluster of these cytokines, EV markers, and MRI outcomes clustered also with IL-12p40 and IL-7. All four MRI outcomes correlated positively with levels of IL-17 (p < 0.001, respectively), and EV-ICAM-1 (p < 0.0003, respectively). IL-1β levels positively correlated with the number of new Gd-enhancing lesions (p < 0.01), new FLAIR lesions (p < 0.001), and total number of Gd-enhancing lesions (p < 0.05). IL-6 levels positively correlated with the number of new FLAIR lesions (p < 0.05). Random Forests and linear mixed models identified IL-17, CCL17/TARC, CCL3/MIP-1α, and TNF-α as composite biomarkers predicting new lesion evolution. CONCLUSIONS Combination of serial frequent MRI with proteome, neuroinflammation markers, and protein array data of EVs enabled assessment of temporal changes in inflammation and endothelial dysfunction in RMS related to the evolution of new and enhancing lesions. Particularly, the Th17 pathway and IL-1β clustered and correlated with new lesions and Gd enhancement, indicating their importance in BBB disruption and initiating acute brain inflammation in MS. In addition to the Th17 pathway, abundant protein changes between MRI activity groups suggested the role of EVs and the coagulation system along with innate immune responses including acute phase proteins, complement components, and neutrophil degranulation.
Collapse
Affiliation(s)
- Zsolt Illes
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Brain Research—Inter Disciplinary Guided Excellence (BRIDGE), University of Southern Denmark, 5230 Odense, Denmark
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, 9220 Aalborg, Denmark; (M.M.J.); (R.B.)
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, 9220 Aalborg, Denmark; (M.M.J.); (R.B.)
| | - Lisa-Marie Bente
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106 Braunschweig, Germany; (L.-M.B.); (T.K.)
- Braunschweig Integrated Centre for Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Jørgen T. Lauridsen
- Department of Business and Economics, University of Southern Denmark, 5230 Odense, Denmark;
| | - Kirsten H. Hyrlov
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Christopher Aboo
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, 101408 Beijing, China
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark;
- Institute for Computational Systems Biology, University of Hamburg, 20148 Hamburg, Germany
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106 Braunschweig, Germany; (L.-M.B.); (T.K.)
- Braunschweig Integrated Centre for Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Francois Cotton
- Service de Radiologie, Centre Hospitalier Lyon-Sud, France/CREATIS, Université de Lyon, 69007 Lyon, France;
| | | | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Clinical Cancer Center, Aalborg University Hospital, 9220 Aalborg, Denmark
| |
Collapse
|
18
|
El-Sayed MM, Mohak S, Gala D, Fabian R, Peterfi Z, Fabian Z. The Role of the Intestinal Microbiome in Multiple Sclerosis-Lessons to Be Learned from Hippocrates. BIOLOGY 2023; 12:1463. [PMID: 38132289 PMCID: PMC10740531 DOI: 10.3390/biology12121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Based on recent advances in research of chronic inflammatory conditions, there is a growing body of evidence that suggests a close correlation between the microbiota of the gastrointestinal tract and the physiologic activity of the immune system. This raises the idea that disturbances of the GI ecosystem contribute to the unfolding of chronic diseases including neurodegenerative pathologies. Here, we overview our current understanding on the putative interaction between the gut microbiota and the immune system from the aspect of multiple sclerosis, one of the autoimmune conditions accompanied by severe chronic neuroinflammation that affects millions of people worldwide.
Collapse
Affiliation(s)
- Mohamed Mahmoud El-Sayed
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Rd, Preston PR1 2HE, UK;
| | - Sidhesh Mohak
- Department of Clinical Sciences, Saint James School of Medicine, Park Ridge, IL 60068, USA;
| | - Dhir Gala
- American University of the Caribbean School of Medicine, 1 University Drive, Jordan Road, Cupecoy, St Marteen, The Netherlands;
| | - Reka Fabian
- Salerno, Secondary School, Threadneedle Road, H91 D9H3 Galway, Ireland;
| | - Zoltan Peterfi
- Division of Infectology, 1st Department of Internal Medicine, University of Pecs, Clinical Centre, 7623 Pécs, Hungary;
| | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Rd, Preston PR1 2HE, UK;
| |
Collapse
|
19
|
Geng H, An Q, Zhang Y, Huang Y, Wang L, Wang Y. Role of Peptidylarginine Deiminase 4 in Central Nervous System Diseases. Mol Neurobiol 2023; 60:6748-6756. [PMID: 37480499 DOI: 10.1007/s12035-023-03489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
The deimination or citrullination of arginine residues in the polypeptide chain by peptidylarginine deiminase 4 alters the charge state of the polypeptide chain and affects the function of proteins. It is one of the main ways of protein post-translational modifications to regulate its function. Peptidylarginine deiminase 4 is widely expressed in multiple tissues and organs of the body, especially the central nervous system, and regulates the normal development of organisms. The abnormal expression and activation of peptidylarginine deiminase 4 is an important pathological mechanism for the occurrence and development of central nervous system diseases such as multiple sclerosis, Alzheimer's disease, cerebral ischemia reperfusion injury, and glioblastoma.
Collapse
Affiliation(s)
- Huixia Geng
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China
| | - Qihang An
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China
| | - Yanshuo Zhang
- School of Life Science, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China
| | - Yunhang Huang
- School of Life Science, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China
| | - Lai Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China.
- School of Life Science, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China.
| | - Yanming Wang
- School of Life Science, Henan University, Henan Province, Kaifeng, 475004, People's Republic of China.
| |
Collapse
|
20
|
Holm Nielsen S, Karsdal M, Bay-Jensen AC. Neutrophil activity in serum as a biomarker for multiple sclerosis. Mult Scler Relat Disord 2023; 79:105005. [PMID: 37714096 DOI: 10.1016/j.msard.2023.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Multiple Sclerosis (MS) is an immune-mediated inflammatory disease affecting the central nervous system (CNS). Current treatments target neuroinflammation, but only limit the disease progression by reducing brain atrophy and a worsening in neurodegenerative damage. A blood-based biomarker of neutrophil activity, CPa9-HNE, holds the potential as a diagnostic biomarker in MS. We evaluated the CPa9-HNE biomarker in healthy donors, and patients with primary progressive MS (PPMS) and relapsing/remitting MS (RRMS). The CPa9-HNE was able to discriminate between the healthy donors and PPMS and RPMS with an AUROC>0.97. The CPa9-HNE biomarker may be used to assess patients' eligibility for targeted treatments.
Collapse
|
21
|
Yao L, Liu Z, Chen W, Xu J, Xu X, Xu J, Ma L, Li X, Li Q, Zhou P. Imbalance of Innate and Adaptive Immunity in Esophageal Achalasia. J Neurogastroenterol Motil 2023; 29:486-500. [PMID: 37586778 PMCID: PMC10577470 DOI: 10.5056/jnm21246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 08/18/2023] Open
Abstract
Background/Aims Previous studies reveal that immune-mediated neuroinflammation plays a key role in the etiology of esophageal achalasia. However, the understanding of leucocyte phenotype and proportion is limited. This study aim to evaluate the phenotypes of leukocytes and peripheral blood mononuclear cells transcriptomes in esophageal achalasia. Methods We performed high-dimensional flow cytometry to identified subsets of peripheral leukocytes, and further validated in lower esophageal sphincter histologically. RNA sequencing was applied to investigate the transcriptional changes in peripheral blood mononuclear cells of patients with achalasia. Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) was used for estimating the immune cell types. A differential gene expression analysis was performed and the differential expressed genes were subjected to gene ontology, Kyoto Encyclopedia of Genes and Genomes network, protein-protein interaction network construction. Results An imbalance between innate and adaptive immune cells occurred in achalasia. Specifically, neutrophils and CD8+ T cells increased both in peripheral blood and lower esophageal sphincter in achalasia. Eosinophils decreased in peripheral blood but massively infiltrated in lower esophageal sphincter. CIBERSORT analysis of peripheral blood mononuclear cells RNA sequencing displayed an increased prevalence of CD8+ T cells. 170 dysregulated genes were identified in achalasia, which were enriched in immune cells migration, immune response, etc. Proton pump inhibitor analysis revealed the intersections and gained 7 hub genes in achalasia, which were IL-6, Toll-like receptor 2, IL-1β, tumor necrosis factor, complement C3, and complement C1q A chain. Conclusion Patients with achalasia exhibited an imbalance of systematic innate and adaptive immunity, which may play an important role in the development of achalasia.
Collapse
Affiliation(s)
- Lu Yao
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zuqiang Liu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weifeng Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyue Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaxin Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyun Ma
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqing Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quanlin Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pinghong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Zong B, Yu F, Zhang X, Zhao W, Li S, Li L. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 2023; 14:1260663. [PMID: 37841264 PMCID: PMC10570846 DOI: 10.3389/fimmu.2023.1260663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to neurological disability in young adults. Although the etiology of MS is heterogeneous, it is well established that aberrant activity of adaptive and innate immune cells plays a crucial role in its pathogenesis. Several immune cell abnormalities have been described in MS and its animal models, including T lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/macrophages, and astrocytes, among others. Physical exercise offers a valuable alternative or adjunctive disease-modifying therapy for MS. A growing body of evidence indicates that exercise may reduce the autoimmune responses triggered by immune cells in MS. This is partially accomplished by restricting the infiltration of peripheral immune cells into the central nervous system (CNS) parenchyma, curbing hyperactivation of immune cells, and facilitating a transition in the balance of immune cells from a pro-inflammatory to an anti-inflammatory state. This review provides a succinct overview of the correlation between physical exercise, immune cells, and MS pathology, and highlights the potential benefits of exercise as a strategy for the prevention and treatment of MS.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyou Zhang
- School of Physical Education, Hubei University, Wuhan, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
23
|
Al-Kharashi LA, Al-Harbi NO, Ahmad SF, Attia SM, Algahtani MM, Ibrahim KE, Bakheet SA, Alanazi MM, Alqarni SA, Alsanea S, Nadeem A. Auranofin Modulates Thioredoxin Reductase/Nrf2 Signaling in Peripheral Immune Cells and the CNS in a Mouse Model of Relapsing-Remitting EAE. Biomedicines 2023; 11:2502. [PMID: 37760943 PMCID: PMC10526216 DOI: 10.3390/biomedicines11092502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is one of the most prevalent chronic inflammatory autoimmune diseases. It causes the demyelination of neurons and the subsequent degeneration of the central nervous system (CNS). The infiltration of leukocytes of both myeloid and lymphoid origins from the systemic circulation into the CNS triggers autoimmune reactions through the release of multiple mediators. These mediators include oxidants, pro-inflammatory cytokines, and chemokines which ultimately cause the characteristic plaques observed in MS. Thioredoxin reductase (TrxR) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling plays a crucial role in the regulation of inflammation by modulating the transcription of antioxidants and the suppression of inflammatory cytokines. The gold compound auranofin (AFN) is known to activate Nrf2 through the inhibition of TrxR; however, the effects of this compound have not been explored in a mouse model of relapsing-remitting MS (RRMS). Therefore, this study explored the influence of AFN on clinical features, TrxR/Nrf2 signaling [heme oxygenase 1 (HO-1), superoxide dismutase 1 (SOD-1)] and oxidative/inflammatory mediators [IL-6, IL-17A, inducible nitric oxide synthase (iNOS), myeloperoxidase (MPO), nitrotyrosine] in peripheral immune cells and the CNS of mice with the RR type of EAE. Our results showed an increase in TrxR activity and a decrease in Nrf2 signaling in SJL/J mice with RR-EAE. The treatment with AFN caused the amelioration of the clinical features of RR-EAE through the elevation of Nrf2 signaling and the subsequent upregulation of the levels of antioxidants as well as the downregulation of oxidative/pro-inflammatory mediators in peripheral immune cells and the CNS. These data suggest that AFN may be beneficial in the treatment of RRMS.
Collapse
Affiliation(s)
- Layla A. Al-Kharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad M. Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E. Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Balazs I, Horvath A, Heschl B, Khalil M, Enzinger C, Stadlbauer V, Seifert-Held T. Anti-CD20 treatment and neutrophil function in central nervous system demyelinating diseases. J Neuroimmunol 2023; 381:578136. [PMID: 37364519 DOI: 10.1016/j.jneuroim.2023.578136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION A contribution of neutrophil granulocytes to the pathogenesis of multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) is recognized. Anti-CD20 treatments applied in these diseases are associated with infectious complications and neutropenia. No data is available about functional characteristics of neutrophils obtained from patients with anti-CD20 treatments. METHODS In neutrophils isolated from 13 patients with anti-CD20 treatment (9 MS, 4 NMOSD), 11 patients without anti-CD20 treatment (9 MS, 2 NMOSD) and 5 healthy controls, we analyzed chemotaxis, production of reactive oxygen species (ROS), phagocytosis, and formation of neutrophil extracellular traps (NET) in vitro. RESULTS Chemotaxis and ROS production were found unchanged between patients with and without anti-CD20 treatment or between patients and healthy controls. We found a higher proportion of non-phagocytosing cells in patients without anti-CD20 treatment compared to patients with anti-CD20 treatment and healthy controls. As compared to healthy controls, a higher proportion of neutrophils from patients without anti-CD20 treatments underwent NET formation, either unstimulated or stimulated with phorbol 12-myristate 3-acetate for 3 h. In about half of patients with anti-CD20 treatment (n = 7), NET formation of unstimulated neutrophils occurred already within 20 min of incubation. This was not observed in patients without anti-CD20 treatment and healthy controls. CONCLUSION Anti-CD20 treatment in MS and NMOSD patients does not alter chemotaxis and ROS production of neutrophils in vitro but might restore their impaired phagocytosis in these diseases. Our study reveals a predisposition to early NET formation in vitro of neutrophils obtained from patients with anti-CD20 treatment. This may contribute to associated risks of neutropenia and infections.
Collapse
Affiliation(s)
- Irina Balazs
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Bettina Heschl
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Thomas Seifert-Held
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria; Department of Neurology, Hospital Murtal, Gaaler Strasse 10, 8720 Knittelfeld, Austria.
| |
Collapse
|
25
|
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30:64. [PMID: 37550658 PMCID: PMC10405513 DOI: 10.1186/s12929-023-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Neurological disorders such as stroke, multiple sclerosis, as well as the neurodegenerative diseases Parkinson's or Alzheimer's disease are accompanied or even powered by danger associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue. Besides protein-related DAMPs or "alarmins", numerous nucleic acid DAMPs exist in body fluids, such as cell-free nuclear and mitochondrial DNA as well as different species of extracellular RNA, collectively termed as self-extracellular nucleic acids (SENAs). Among these, microRNA, long non-coding RNAs, circular RNAs and extracellular ribosomal RNA constitute the majority of RNA-based DAMPs. Upon tissue injury, necrosis or apoptosis, such SENAs are released from neuronal, immune and other cells predominantly in association with extracellular vesicles and may be translocated to target cells where they can induce intracellular regulatory pathways in gene transcription and translation. The majority of SENA-induced signaling reactions in the brain appear to be related to neuroinflammatory processes, often causally associated with the onset or progression of the respective disease. In this review, the impact of the diverse types of SENAs on neuroinflammatory and neurodegenerative diseases will be discussed. Based on the accumulating knowledge in this field, several specific antagonistic approaches are presented that could serve as therapeutic interventions to lower the pathological outcome of the indicated brain disorders.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
26
|
Farrel A, Li P, Veenbergen S, Patel K, Maris JM, Leonard WJ. ROGUE: an R Shiny app for RNA sequencing analysis and biomarker discovery. BMC Bioinformatics 2023; 24:303. [PMID: 37516886 PMCID: PMC10386769 DOI: 10.1186/s12859-023-05420-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The growing power and ever decreasing cost of RNA sequencing (RNA-Seq) technologies have resulted in an explosion of RNA-Seq data production. Comparing gene expression values within RNA-Seq datasets is relatively easy for many interdisciplinary biomedical researchers; however, user-friendly software applications increase the ability of biologists to efficiently explore available datasets. RESULTS Here, we describe ROGUE (RNA-Seq Ontology Graphic User Environment, https://marisshiny. RESEARCH chop.edu/ROGUE/ ), a user-friendly R Shiny application that allows a biologist to perform differentially expressed gene analysis, gene ontology and pathway enrichment analysis, potential biomarker identification, and advanced statistical analyses. We use ROGUE to identify potential biomarkers and show unique enriched pathways between various immune cells. CONCLUSIONS User-friendly tools for the analysis of next generation sequencing data, such as ROGUE, will allow biologists to efficiently explore their datasets, discover expression patterns, and advance their research by allowing them to develop and test hypotheses.
Collapse
Affiliation(s)
- Alvin Farrel
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Peng Li
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon Veenbergen
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Pediatric Gastroenterology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Laboratory of Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Khushbu Patel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Seyedsadr M, Wang Y, Elzoheiry M, Shree Gopal S, Jang S, Duran G, Chervoneva I, Kasimoglou E, Wrobel JA, Hwang D, Garifallou J, Zhang X, Khan TH, Lorenz U, Su M, Ting JP, Broux B, Rostami A, Miskin D, Markovic-Plese S. IL-11 induces NLRP3 inflammasome activation in monocytes and inflammatory cell migration to the central nervous system. Proc Natl Acad Sci U S A 2023; 120:e2221007120. [PMID: 37339207 PMCID: PMC10293805 DOI: 10.1073/pnas.2221007120] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 06/22/2023] Open
Abstract
The objective of this study is to examine IL-11-induced mechanisms of inflammatory cell migration to the central nervous system (CNS). We report that IL-11 is produced at highest frequency by myeloid cells among the peripheral blood mononuclear cell (PBMC) subsets. Patients with relapsing-remitting multiple sclerosis (RRMS) have an increased frequency of IL-11+ monocytes, IL-11+ and IL-11R+ CD4+ lymphocytes, and IL-11R+ neutrophils in comparison to matched healthy controls. IL-11+ and granulocyte-macrophage colony-stimulating factor (GM-CSF)+ monocytes, CD4+ lymphocytes, and neutrophils accumulate in the cerebrospinal fluid (CSF). The effect of IL-11 in-vitro stimulation, examined using single-cell RNA sequencing, revealed the highest number of differentially expressed genes in classical monocytes, including up-regulated NFKB1, NLRP3, and IL1B. All CD4+ cell subsets had increased expression of S100A8/9 alarmin genes involved in NLRP3 inflammasome activation. In IL-11R+-sorted cells from the CSF, classical and intermediate monocytes significantly up-regulated the expression of multiple NLRP3 inflammasome-related genes, including complement, IL18, and migratory genes (VEGFA/B) in comparison to blood-derived cells. Therapeutic targeting of this pathway with αIL-11 mAb in mice with RR experimental autoimmune encephalomyelitis (EAE) decreased clinical scores, CNS inflammatory infiltrates, and demyelination. αIL-11 mAb treatment decreased the numbers of NFκBp65+, NLRP3+, and IL-1β+ monocytes in the CNS of mice with EAE. The results suggest that IL-11/IL-11R signaling in monocytes represents a therapeutic target in RRMS.
Collapse
Affiliation(s)
- Maryamsadat Seyedsadr
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Yan Wang
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - Manal Elzoheiry
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - Sowmya Shree Gopal
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - Soohwa Jang
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - Gayel Duran
- Biomedical Research Institute, Department of Immunology, Hasselt University, Hasselt 3590, Belgium
| | - Inna Chervoneva
- Department of Pharmacology, Biostatistics, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Ezgi Kasimoglou
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - John A. Wrobel
- Linberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC27599
| | - Daniel Hwang
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - James Garifallou
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Xin Zhang
- Department of Orthopedic Surgery, Duke University, Durham, NC27599
| | - Tabish H. Khan
- Divison of Laboratory and Genomic Medicine, Department of Pathology, Washington University School of Medicine, St. Louis, MO63110
| | - Ulrike Lorenz
- Divison of Laboratory and Genomic Medicine, Department of Pathology, Washington University School of Medicine, St. Louis, MO63110
| | - Maureen Su
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
| | - Jenny P. Ting
- Linberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC27599
| | - Bieke Broux
- Biomedical Research Institute, Department of Immunology, Hasselt University, Hasselt 3590, Belgium
| | - Abdolmohamad Rostami
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - Dhanashri Miskin
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| | - Silva Markovic-Plese
- Department of Neurology, Neuroimmunology Division, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
28
|
Ganesh K, Joshi MB. Neutrophil sub-types in maintaining immune homeostasis during steady state, infections and sterile inflammation. Inflamm Res 2023; 72:1175-1192. [PMID: 37212866 PMCID: PMC10201050 DOI: 10.1007/s00011-023-01737-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023] Open
Abstract
INTRODUCTION Neutrophils are component of innate immune system and a) eliminate pathogens b) maintain immune homeostasis by regulating other immune cells and c) contribute to the resolution of inflammation. Neutrophil mediated inflammation has been described in pathogenesis of various diseases. This indicates neutrophils do not represent homogeneous population but perform multiple functions through confined subsets. Hence, in the present review we summarize various studies describing the heterogeneous nature of neutrophils and associated functions during steady state and pathological conditions. METHODOLOGY We performed extensive literature review with key words 'Neutrophil subpopulations' 'Neutrophil subsets', Neutrophil and infections', 'Neutrophil and metabolic disorders', 'Neutrophil heterogeneity' in PUBMED. RESULTS Neutrophil subtypes are characterized based on buoyancy, cell surface markers, localization and maturity. Recent advances in high throughput technologies indicate the existence of functionally diverse subsets of neutrophils in bone marrow, blood and tissues in both steady state and pathological conditions. Further, we found proportions of these subsets significantly vary in pathological conditions. Interestingly, stimulus specific activation of signalling pathways in neutrophils have been demonstrated. CONCLUSION Neutrophil sub-populations differ among diseases and hence, mechanisms regulating formation, sustenance, proportions and functions of these sub-types vary between physiological and pathological conditions. Hence, mechanistic insights of neutrophil subsets in disease specific manner may facilitate development of neutrophil-targeted therapies.
Collapse
Affiliation(s)
- Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
29
|
Conley HE, Sheats MK. Targeting Neutrophil β 2-Integrins: A Review of Relevant Resources, Tools, and Methods. Biomolecules 2023; 13:892. [PMID: 37371473 DOI: 10.3390/biom13060892] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Neutrophils are important innate immune cells that respond during inflammation and infection. These migratory cells utilize β2-integrin cell surface receptors to move out of the vasculature into inflamed tissues and to perform various anti-inflammatory responses. Although critical for fighting off infection, neutrophil responses can also become dysregulated and contribute to disease pathophysiology. In order to limit neutrophil-mediated damage, investigators have focused on β2-integrins as potential therapeutic targets, but so far these strategies have failed in clinical trials. As the field continues to move forward, a better understanding of β2-integrin function and signaling will aid the design of future therapeutics. Here, we provide a detailed review of resources, tools, experimental methods, and in vivo models that have been and will continue to be utilized to investigate the vitally important cell surface receptors, neutrophil β2-integrins.
Collapse
Affiliation(s)
- Haleigh E Conley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
30
|
Chakraborty S, Tabrizi Z, Bhatt NN, Franciosa SA, Bracko O. A Brief Overview of Neutrophils in Neurological Diseases. Biomolecules 2023; 13:biom13050743. [PMID: 37238612 DOI: 10.3390/biom13050743] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in circulation and are the first line of defense after an infection or injury. Neutrophils have a broad spectrum of functions, including phagocytosis of microorganisms, the release of pro-inflammatory cytokines and chemokines, oxidative burst, and the formation of neutrophil extracellular traps. Traditionally, neutrophils were thought to be most important for acute inflammatory responses, with a short half-life and a more static response to infections and injury. However, this view has changed in recent years showing neutrophil heterogeneity and dynamics, indicating a much more regulated and flexible response. Here we will discuss the role of neutrophils in aging and neurological disorders; specifically, we focus on recent data indicating the impact of neutrophils in chronic inflammatory processes and their contribution to neurological diseases. Lastly, we aim to conclude that reactive neutrophils directly contribute to increased vascular inflammation and age-related diseases.
Collapse
Affiliation(s)
| | - Zeynab Tabrizi
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | | | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Department of Neurology, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
31
|
Teo JD, Marian OC, Spiteri AG, Nicholson M, Song H, Khor JXY, McEwen HP, Ge A, Sen MK, Piccio L, Fletcher JL, King NJC, Murray SS, Brüning JC, Don AS. Early microglial response, myelin deterioration and lethality in mice deficient for very long chain ceramide synthesis in oligodendrocytes. Glia 2023; 71:1120-1141. [PMID: 36583573 PMCID: PMC10952316 DOI: 10.1002/glia.24329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/05/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
The sphingolipids galactosylceramide (GalCer), sulfatide (ST) and sphingomyelin (SM) are essential for myelin stability and function. GalCer and ST are synthesized mostly from C22-C24 ceramides, generated by Ceramide Synthase 2 (CerS2). To clarify the requirement for C22-C24 sphingolipid synthesis in myelin biosynthesis and stability, we generated mice lacking CerS2 specifically in myelinating cells (CerS2ΔO/ΔO ). At 6 weeks of age, normal-appearing myelin had formed in CerS2ΔO/ΔO mice, however there was a reduction in myelin thickness and the percentage of myelinated axons. Pronounced loss of C22-C24 sphingolipids in myelin of CerS2ΔO/ΔO mice was compensated by greatly increased levels of C18 sphingolipids. A distinct microglial population expressing high levels of activation and phagocytic markers such as CD64, CD11c, MHC class II, and CD68 was apparent at 6 weeks of age in CerS2ΔO/ΔO mice, and had increased by 10 weeks. Increased staining for denatured myelin basic protein was also apparent in 6-week-old CerS2ΔO/ΔO mice. By 16 weeks, CerS2ΔO/ΔO mice showed pronounced myelin atrophy, motor deficits, and axon beading, a hallmark of axon stress. 90% of CerS2ΔO/ΔO mice died between 16 and 26 weeks of age. This study highlights the importance of sphingolipid acyl chain length for the structural integrity of myelin, demonstrating how a modest reduction in lipid chain length causes exposure of a denatured myelin protein epitope and expansion of phagocytic microglia, followed by axon pathology, myelin degeneration, and motor deficits. Understanding the molecular trigger for microglial activation should aid the development of therapeutics for demyelinating and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan D. Teo
- Charles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Oana C. Marian
- Charles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Alanna G. Spiteri
- Charles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Madeline Nicholson
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Huitong Song
- Charles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Jasmine X. Y. Khor
- Charles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Holly P. McEwen
- Charles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Anjie Ge
- Charles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Monokesh K. Sen
- Charles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Laura Piccio
- Charles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNew South WalesAustralia
- Department of NeurologyWashington University School of MedicineSt LouisMissouriUSA
| | - Jessica L. Fletcher
- Menzies Institute for Medical ResearchThe University of TasmaniaHobartTasmaniaAustralia
| | - Nicholas J. C. King
- Charles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNew South WalesAustralia
| | - Simon S. Murray
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Anthony S. Don
- Charles Perkins Centre and School of Medical SciencesThe University of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
32
|
Jahan I, Ahmed R, Ahmed J, Khurshid S, Biswas PP, Upama IJ, Hamid Y, Papri N, Islam Z. Neutrophil-lymphocyte ratio in Guillain-Barré syndrome: A prognostic biomarker of severe disease and mechanical ventilation in Bangladesh. J Peripher Nerv Syst 2023; 28:47-57. [PMID: 36700342 PMCID: PMC10155239 DOI: 10.1111/jns.12531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
In addition to cellular and humoral immunity, inflammatory markers play an important role in the pathogenesis of Guillain-Barré syndrome (GBS) and are used to predict prognosis in many autoimmune diseases. The aim of this study was to identify whether the neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio, and monocyte-lymphocyte ratio in the early stages of GBS have prognostic value for severe disease, mechanical ventilation (MV) and poor long-term outcome. A prospective cohort study of 140 adult patients with GBS and 140 healthy controls (HC) was performed in Bangladesh during 2019-2022. Clinicodemographic characteristics of the patients were recorded, and hematological parameters were measured using an automated hematology analyzer. Median patient age was 35 (44-23) years; 71% were male; 88% were severely affected (GBS Disability Score> 3); 32% required MV. Patients had higher NLR than HC (P< .0001). Among patients, elevated NLR was associated with severe GBS and MV (P= .001 and <.0001, respectively) and moderately positively correlated with poor outcomes at 4 weeks (r = 0.423). Multiple logistic regression revealed NLR was an independent risk factor for severe GBS (OR = 5.2, 95% CI = 1.6-17.4) and MV (OR = 1.5 1.1-2.1). No significant association was observed between elevated NLR and the long-term outcome of GBS. Receiver operating characteristic curves revealed NLR cut-off values of ≥ 2.432 and ≥ 4.4423 predicted severe disease (sensitivity = 71%, specificity = 75%, AUC = 0.750, 95% CI = 0.651-0.849, P = .001) and MV (sensitivity = 65.9%, specificity = 81.7%, AUC = 0.804, 95% CI=0.724-0.884; P< .001). The NLR in the early stage of GBS may represent an independent prognostic factor of severe GBS and the requirement for MV.
Collapse
Affiliation(s)
- Israt Jahan
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rasel Ahmed
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - Jigishu Ahmed
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - Sarah Khurshid
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - Pritha Promita Biswas
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - Ismat Jahan Upama
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - Yameen Hamid
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - Nowshin Papri
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Zhahirul Islam
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| |
Collapse
|
33
|
Shafqat A, Noor Eddin A, Adi G, Al-Rimawi M, Abdul Rab S, Abu-Shaar M, Adi K, Alkattan K, Yaqinuddin A. Neutrophil extracellular traps in central nervous system pathologies: A mini review. Front Med (Lausanne) 2023; 10:1083242. [PMID: 36873885 PMCID: PMC9981681 DOI: 10.3389/fmed.2023.1083242] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Neutrophils are the first cells to be recruited to sites of acute inflammation and contribute to host defense through phagocytosis, degranulation and neutrophil extracellular traps (NETs). Neutrophils are rarely found in the brain because of the highly selective blood-brain barrier (BBB). However, several diseases disrupt the BBB and cause neuroinflammation. In this regard, neutrophils and NETs have been visualized in the brain after various insults, including traumatic (traumatic brain injury and spinal cord injury), infectious (bacterial meningitis), vascular (ischemic stroke), autoimmune (systemic lupus erythematosus), neurodegenerative (multiple sclerosis and Alzheimer's disease), and neoplastic (glioma) causes. Significantly, preventing neutrophil trafficking into the central nervous system or NET production in these diseases alleviates brain pathology and improves neurocognitive outcomes. This review summarizes the major studies on the contribution of NETs to central nervous system (CNS) disorders.
Collapse
|
34
|
Selective inhibition of peptidyl-arginine deiminase (PAD): can it control multiple inflammatory disorders as a promising therapeutic strategy? Inflammopharmacology 2023; 31:731-744. [PMID: 36806957 DOI: 10.1007/s10787-023-01149-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Peptidyl arginine deiminases (PADs) are a family of post-translational modification enzymes that irreversibly citrullinate (deiminate) arginine residues of protein and convert them to a non-classical amino acid citrulline in the presence of calcium ions. It has five isotypes, such as PAD1, PAD2, PAD3, PAD4, and PAD6, found in mammalian species. It has been suggested that increased PAD expression in various tissues contributes to the development of multiple inflammatory diseases, including rheumatoid arthritis (RA), cancer, diabetes, and neurological disorders. Elevation of PAD enzyme expression depends on several factors like rising intracellular Ca2+ levels, oxidative stress, and proinflammatory cytokines. PAD inhibitors originating from natural or synthetic sources can be used as a novel therapeutic approach concerning inflammatory disorders. Here, we review the pathological role of PAD in several inflammatory disorders, factors that trigger PAD expression, epigenetic role and finally, decipher the therapeutic approach of PAD inhibitors in multiple inflammatory disorders.
Collapse
|
35
|
Gokce SF, Bolayır A, Cigdem B, Yildiz B. The role of systemic ımmune ınflammatory ındex in showing active lesion ın patients with multiple sclerosis : SII and other inflamatuar biomarker in radiological active multiple sclerosis patients. BMC Neurol 2023; 23:64. [PMID: 36765289 PMCID: PMC9912215 DOI: 10.1186/s12883-023-03101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) has two pathophysiological processes, one inflammatory and the other degenerative. We investigated the relationship between active lesions on magnetic resonance imaging showing the inflammatory phase in MS patients and serum parameters that can be used as inflammatory biomarkers. Thus, we aim to detect the inflammatory period in clinical and radiological follow-up and to reveal the period in which disease-modifying treatments are effective with serum parameters. METHODS One hundred eighty-six MS patients presented to our hospital between January 2016 and November 2021 and 94 age- and sex-matched healthy volunteers were recruited for our study. While 99 patients had active lesions on magnetic resonance imaging, 87 patients did not have any active lesions. Neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), and monocyte/lymphocyte ratio (MLR) were determined. The SII (systemic immune inflammatory index) value was calculated according to the platelet X neutrophil/lymphocyte ratio formula. RESULTS NLR, MLR, PLR and SII values were found to be statistically significantly higher in MS patients than in the control group. The NLR, MLR, PLR and SII were higher in the active group with gadolonium than in the group without active lesions. In addition, the cutoff values that we can use to determine the presence of active lesions were 1.53, 0.18, 117.15, and 434.45 for NLR, MLR PLR and SII, respectively. CONCLUSIONS We found that all parameters correlated with radiological activity. In addition, we showed that we can detect the inflammatory period with high sensitivity and specificity with the cutoff value used for SII and PLR. Among these easily accessible and inexpensive evaluations, we concluded that SII, including the values in the PLR formula, can come to the fore.
Collapse
Affiliation(s)
- Seyda Figul Gokce
- School of Medicine, Neurology Department, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Asli Bolayır
- grid.411689.30000 0001 2259 4311School of Medicine, Neurology Department, Sivas Cumhuriyet University, Sivas, Turkey
| | - Burhanettin Cigdem
- grid.411689.30000 0001 2259 4311School of Medicine, Neurology Department, Sivas Cumhuriyet University, Sivas, Turkey
| | - Bulent Yildiz
- grid.411689.30000 0001 2259 4311School of Medicine, Radiology Department, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
36
|
Effects of Cannabidiol on Innate Immunity: Experimental Evidence and Clinical Relevance. Int J Mol Sci 2023; 24:ijms24043125. [PMID: 36834537 PMCID: PMC9964491 DOI: 10.3390/ijms24043125] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Cannabidiol (CBD) is the main non-psychotropic cannabinoid derived from cannabis (Cannabis sativa L., fam. Cannabaceae). CBD has received approval by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the treatment of seizures associated with Lennox-Gastaut syndrome or Dravet syndrome. However, CBD also has prominent anti-inflammatory and immunomodulatory effects; evidence exists that it could be beneficial in chronic inflammation, and even in acute inflammatory conditions, such as those due to SARS-CoV-2 infection. In this work, we review available evidence concerning CBD's effects on the modulation of innate immunity. Despite the lack so far of clinical studies, extensive preclinical evidence in different models, including mice, rats, guinea pigs, and even ex vivo experiments on cells from human healthy subjects, shows that CBD exerts a wide range of inhibitory effects by decreasing cytokine production and tissue infiltration, and acting on a variety of other inflammation-related functions in several innate immune cells. Clinical studies are now warranted to establish the therapeutic role of CBD in diseases with a strong inflammatory component, such as multiple sclerosis and other autoimmune diseases, cancer, asthma, and cardiovascular diseases.
Collapse
|
37
|
Shen P, Rother M, Stervbo U, Lampropoulou V, Calderon-Gomez E, Roch T, Hilgenberg E, Ries S, Kühl AA, Jouneau L, Boudinot P, Fillatreau S. Toll-like receptors control the accumulation of neutrophils in lymph nodes that expand CD4 + T cells during experimental autoimmune encephalomyelitis. Eur J Immunol 2023; 53:e2250059. [PMID: 36458588 PMCID: PMC10107244 DOI: 10.1002/eji.202250059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Toll-like receptors (TLR) control the activation of dendritic cells that prime CD4+ T cells in draining lymph nodes, where these T cells then undergo massive clonal expansion. The mechanisms controlling this clonal T cell expansion are poorly defined. Using the CD4+ T cell-mediated disease experimental autoimmune encephalomyelitis (EAE), we show here that this process is markedly suppressed when TLR9 signaling is increased, without noticeably affecting the transcriptome of primed T cells, indicating a purely quantitative effect on CD4+ T cell expansion. Addressing the underpinning mechanisms revealed that CD4+ T cell expansion was preceded and depended on the accumulation of neutrophils in lymph nodes a few days after immunization. Underlying the importance of this immune regulation pathway, blocking neutrophil accumulation in lymph nodes by treating mice with a TLR9 agonist inhibited EAE progression in mice with defects in regulatory T cells or regulatory B cells, which otherwise developed a severe chronic disease. Collectively, this study demonstrates the key role of neutrophils in the quantitative regulation of antigen-specific CD4+ T cell expansion in lymph nodes, and the counter-regulatory role of TLR signaling in this process.
Collapse
Affiliation(s)
- Ping Shen
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Germany.,Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.,Stem Cell and Biotherapy Engineering Research Center of Henan Province, College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Madlen Rother
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Germany
| | - Ulrik Stervbo
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Germany
| | - Vicky Lampropoulou
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Germany.,Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Toralf Roch
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Germany
| | - Ellen Hilgenberg
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Germany
| | - Steffi Ries
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Germany
| | - Anja A Kühl
- Institute of Pathology/RCIS, Charité, Campus Benjamin Franklin, 12203, Berlin, Germany
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Simon Fillatreau
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Germany.,Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, F-75015, France.,Service Immunologie Biologique, AP-HP, Hôpital Necker-Enfants Malades, Paris, F-75015, France
| |
Collapse
|
38
|
Elgenidy A, Atef M, Nassar A, Cheema HA, Emad A, Salah I, Sonbol Y, Afifi AM, Ghozy S, Hassan A. Neutrophil-to-Lymphocyte Ratio: a Marker of Neuro-inflammation in Multiple Sclerosis Patients: a Meta-analysis and Systematic Review. SN COMPREHENSIVE CLINICAL MEDICINE 2023; 5:68. [DOI: 10.1007/s42399-022-01383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 09/01/2023]
|
39
|
Ledderose C, Hashiguchi N, Valsami EA, Rusu C, Junger WG. Optimized flow cytometry assays to monitor neutrophil activation in human and mouse whole blood samples. J Immunol Methods 2023; 512:113403. [PMID: 36502881 DOI: 10.1016/j.jim.2022.113403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Polymorphonuclear neutrophils (PMNs) protect the host from invading microorganisms. However, excessively activated PMNs can also cause damage to host tissues under inflammatory conditions. Here we developed simple assays to determine the activation state of PMNs in human whole blood that contains soluble mediators known to influence PMN functions. Because mouse models are widely used to study the role of PMNs in infectious and inflammatory diseases, we adapted these assays for the rapid and reliable assessment of PMN functions in murine blood samples. Freshly collected whole blood samples were stimulated with agonists of the formyl peptide receptors (FPR) of PMNs and changes in reactive oxygen species (ROS) production and the expression of CD11b, CD62L (L-selectin), CD66b, and CD63 on the cell surface were analyzed with flow cytometry. We optimized these assays to minimize inadvertent interferences such as cell stress generated during sample handling and the loss of plasma mediators that regulate PMN functions. Human PMNs readily responded to the FPR agonist N-formyl-methionyl-leucyl-phenylalanine (fMLP). The most sensitive responses of human PMNs to fMLP were CD11b, CD62L, and CD66b expression with half maximal effective concentrations (EC50) of 5, 8, and 6 nM fMLP, respectively. CD63 expression and ROS production required markedly higher fMLP concentrations with EC50 values of 19 and 50 nM fMLP, respectively. Mouse PMNs did not respond well to fMLP and required significantly higher concentrations of the FPR agonist WKYMVm (W-peptide) to achieve equivalent cell activation. The most sensitive response of mouse PMNs was ROS production with an EC50 of 38 nM W-peptide. Because mice do not express CD66b, we only assessed the expression of CD62L, CD11b, and CD63 with EC50 values of 54, 119, and 355 nM W-peptide, respectively. Validation of our optimized assays showed that they sensitively detect the responses of human PMNs to priming with endotoxin in vitro as well as the corresponding responses of murine PMNs to bacterial infection in a sepsis model. We conclude that these optimized assays could be useful tools for the monitoring of patients with infections, sepsis, and other inflammatory conditions as well as for the design and interpretation of preclinical studies of these diseases in mouse models.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Naoyuki Hashiguchi
- Department of Surgery, University of California San Diego, San Diego, CA, USA
| | | | - Christian Rusu
- Department of Surgery, University of California San Diego, San Diego, CA, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Surgery, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
40
|
Bissenova S, Ellis D, Mathieu C, Gysemans C. Neutrophils in autoimmunity: when the hero becomes the villain. Clin Exp Immunol 2022; 210:128-140. [PMID: 36208466 PMCID: PMC9750832 DOI: 10.1093/cei/uxac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils were long considered to be a short-lived homogenous cell population, limited to their role as first responders in anti-bacterial and -fungal immunity. While it is true that neutrophils are first to infiltrate the site of infection to eliminate pathogens, growing evidence suggests their functions could extend beyond those of basic innate immune cells. Along with their well-established role in pathogen elimination, utilizing effector functions such as phagocytosis, degranulation, and the deployment of neutrophil extracellular traps (NETs), neutrophils have recently been shown to possess antigen-presenting capabilities. Moreover, the identification of different subtypes of neutrophils points to a multifactorial heterogeneous cell population with great plasticity in which some subsets have enhanced pro-inflammatory characteristics, while others seem to behave as immunosuppressors. Interestingly, the aberrant presence of activated neutrophils with a pro-inflammatory profile in several systemic and organ-specific autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), multiple sclerosis (MS), and type 1 diabetes (T1D) could potentially be exploited in novel therapeutic strategies. The full extent of the involvement of neutrophils, and more specifically that of their various subtypes, in the pathophysiology of autoimmune diseases is yet to be elucidated.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Correlation between the Neutrophil-to-Lymphocyte Ratio and Multiple Sclerosis: Recent Understanding and Potential Application Perspectives. Neurol Res Int 2022; 2022:3265029. [PMID: 36340639 PMCID: PMC9629953 DOI: 10.1155/2022/3265029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/28/2022] [Accepted: 10/15/2022] [Indexed: 11/28/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic debilitating immune-mediated disease of the central nervous system, which causes demyelination and neuroaxonal damage. Low-grade systemic inflammation has been considered to lead to pathogenesis owing to the amplification of pathogenic immune response activation. However, there is a shortage of reliable systemic inflammatory biomarkers to predict the disease activity and progression of MS. In MS patients, a series of cytokines and chemokines promote the proliferation of neutrophils and lymphocytes and their transfer to the central nervous system. The neutrophil-to-lymphocyte ratio (NLR), which combines the information of the inherent and adaptive parts of the immune system, represents a reliable measure of the inflammatory burden. In this review, we aimed to discuss the inflammatory response in MS, mainly the function of lymphocytes and neutrophils, which can be implemented in the utility of NLR as a diagnostic tool in MS patients. The underlying pathophysiology is highlighted to identify new potential targets for neuroprotection and to develop novel therapeutic strategies.
Collapse
|
42
|
Mirzaei M, Abyadeh M, Turner AJ, Wall RV, Chick JM, Paulo JA, Gupta VK, Basavarajappa D, Chitranshi N, Mirshahvaladi SSO, You Y, Fitzhenry MJ, Amirkhani A, Haynes PA, Klistorner A, Gupta V, Graham SL. Fingolimod effects on the brain are mediated through biochemical modulation of bioenergetics, autophagy, and neuroinflammatory networks. Proteomics 2022; 22:e2100247. [PMID: 35866514 PMCID: PMC9786555 DOI: 10.1002/pmic.202100247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022]
Abstract
Fingolimod (FTY720) is an oral drug approved by the Food and Drug Administration (FDA) for management of multiple sclerosis (MS) symptoms, which has also shown beneficial effects against Alzheimer's (AD) and Parkinson's (PD) diseases pathologies. Although an extensive effort has been made to identify mechanisms underpinning its therapeutic effects, much remains unknown. Here, we investigated Fingolimod induced proteome changes in the cerebellum (CB) and frontal cortex (FC) regions of the brain which are known to be severely affected in MS, using a tandem mass tag (TMT) isobaric labeling-based quantitative mass-spectrometric approach to investigate the mechanism of action of Fingolimod. This study identified 6749 and 6319 proteins in CB and FC, respectively, and returned 2609 and 3086 differentially expressed proteins in mouse CB and FC, respectively, between Fingolimod treated and control groups. Subsequent bioinformatics analyses indicated a metabolic reprogramming in both brain regions of the Fingolimod treated group, where oxidative phosphorylation was upregulated while glycolysis and pentose phosphate pathway were downregulated. In addition, modulation of neuroinflammation in the Fingolimod treated group was indicated by upregulation of retrograde endocannabinoid signaling and autophagy pathways, and downregulation of neuroinflammation related pathways including neutrophil degranulation and the IL-12 mediated signaling pathway. Our findings suggest that Fingolimod may exert its protective effects on the brain by inducing metabolic reprogramming and neuroinflammation pathway modulation.
Collapse
Affiliation(s)
- Mehdi Mirzaei
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | | | - Anita J. Turner
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Roshana Vander Wall
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Joel M. Chick
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Joao A. Paulo
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Veer K. Gupta
- School of MedicineDeakin UniversityGeelongVICAustralia
| | - Devaraj Basavarajappa
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Nitin Chitranshi
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Seyed Shahab Oddin Mirshahvaladi
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Yuyi You
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | | | - Ardeshir Amirkhani
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNSWAustralia
| | - Paul A. Haynes
- School of Natural SciencesMacquarie UniversityMacquarie ParkNSWAustralia
- Biomolecular Discovery Research CentreMacquarie UniversitySydneyNSWAustralia
| | - Alexander Klistorner
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Vivek Gupta
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Stuart L. Graham
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| |
Collapse
|
43
|
Skinner DD, Syage AR, Olivarria GM, Stone C, Hoglin B, Lane TE. Sustained Infiltration of Neutrophils Into the CNS Results in Increased Demyelination in a Viral-Induced Model of Multiple Sclerosis. Front Immunol 2022; 13:931388. [PMID: 36248905 PMCID: PMC9562915 DOI: 10.3389/fimmu.2022.931388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Intracranial inoculation of the neuroadapted JHM strain of mouse hepatitis virus (JHMV) into susceptible strains of mice results in acute encephalomyelitis followed by a cimmune-mediated demyelination similar to the human demyelinating disease multiple sclerosis (MS). JHMV infection of transgenic mice in which expression of the neutrophil chemoattractant chemokine CXCL1 is under the control of a tetracycline-inducible promoter active within GFAP-positive cells results in sustained neutrophil infiltration in the central nervous system (CNS) that correlates with an increase in spinal cord demyelination. We used single cell RNA sequencing (scRNAseq) and flow cytometry to characterize molecular and cellular changes within the CNS associated with increased demyelination in transgenic mice compared to control animals. These approaches revealed the presence of activated neutrophils as determined by expression of mRNA transcripts associated with neutrophil effector functions, including CD63, MMP9, S100a8, S100a9, and ASPRV1, as well as altered neutrophil morphology and protein expression. Collectively, these findings reveal insight into changes in the profile of neutrophils associated with increased white matter damage in mice persistently infected with a neurotropic coronavirus.
Collapse
Affiliation(s)
- Dominic D. Skinner
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Amber R. Syage
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Gema M. Olivarria
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Colleen Stone
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Bailey Hoglin
- Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA, United States,Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States,Center for Virus Research, University of California Irvine, Irvine, CA, United States,*Correspondence: Thomas E. Lane,
| |
Collapse
|
44
|
Hoffmann ALC, Hauck SM, Deeg CA, Degroote RL. Pre-Activated Granulocytes from an Autoimmune Uveitis Model Show Divergent Pathway Activation Profiles upon IL8 Stimulation In Vitro. Int J Mol Sci 2022; 23:ijms23179555. [PMID: 36076947 PMCID: PMC9455241 DOI: 10.3390/ijms23179555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
In the pathophysiology of autoimmune-mediated uveitis, granulocytes have emerged as possible disease mediators and were shown to be pre-activated in equine recurrent uveitis (ERU), a spontaneous disease model. We therefore used granulocytes from ERU horses to identify early molecular mechanisms involved in this dysregulated innate immune response. Primary granulocytes from healthy and ERU horses were stimulated with IL8, and cellular response was analyzed with differential proteomics, which revealed significant differences in protein abundance of 170 proteins in ERU. Subsequent ingenuity pathway analysis identified three activated canonical pathways “PKA signaling”, “PTEN signaling” and “leukocyte extravasation”. Clustered to the leukocyte extravasation pathway, we found the membrane-type GPI-anchored protease MMP25, which was increased in IL8 stimulated ERU granulocytes. These findings point to MMP25 as a possible regulator of granulocyte extravasation in uveitis and a role of this molecule in the impaired integrity of the blood-retina-barrier. In conclusion, our analyses show a clearly divergent reaction profile of pre-activated granulocytes upon IL8 stimulation and provide basic information for further in-depth studies on early granulocyte activation in non-infectious ocular diseases. This may be of interest for the development of new approaches in uveitis diagnostics and therapy. Raw data are available via ProteomeXchange with identifier PXD013648.
Collapse
Affiliation(s)
- Anne L. C. Hoffmann
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, D-80939 Munich, Germany
| | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany
| | - Roxane L. Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, D-82152 Martinsried, Germany
- Correspondence:
| |
Collapse
|
45
|
Park J, Lee D, Yun T, Koo Y, Chae Y, Kim H, Yang MP, Kang BT. Evaluation of the blood neutrophil-to-lymphocyte ratio as a biomarker for meningoencephalitis of unknown etiology in dogs. J Vet Intern Med 2022; 36:1719-1725. [PMID: 35929724 PMCID: PMC9511057 DOI: 10.1111/jvim.16512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
Background The neutrophil‐to‐lymphocyte ratio (NLR) has been identified as a biomarker in several inflammatory and autoimmune diseases. Multiple sclerosis (MS) has been found to be associated with changes in the NLR in humans. Objectives To examine the diagnostic value of the NLR in meningoencephalitis of unknown etiology (MUE) in dogs. Animals Thirty‐eight MUE dogs, 20 hydrocephalic dogs, 10 brain tumor (BT) dogs, 32 idiopathic epilepsy (IE) dogs, and 41 healthy dogs. Methods Retrospective study. Medical records were reviewed to identify dogs with a diagnosis of neurologic disease. The NLR was determined in all dogs. Results The median NLR was significantly higher in MUE dogs (6.08) than in healthy (1.78, P < .001), IE (2.50, P < .05), and hydrocephalic dogs (1.79, P < .05). The area under the receiver operating characteristic curve of the NLR for differentiation between MUE and healthy dogs was 0.96, and between the MUE dogs and dogs with other forebrain diseases was 0.86. An optimal cutoff of 4.16 for the NLR had a sensitivity of 71.1% and specificity of 83.9% to differentiate the MUE dogs from the dogs with other forebrain diseases. Conclusions and Clinical Importance The NLR could be a biomarker for diagnosing MUE and distinguishing it from other intracranial diseases in dogs.
Collapse
Affiliation(s)
- Jooyoung Park
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Dohee Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Taesik Yun
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yoonhoi Koo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yeon Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hakhyun Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Mhan-Pyo Yang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Byeong-Teck Kang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
46
|
Smith KJ, Minns D, McHugh BJ, Holloway RK, O’Connor R, Williams A, Melrose L, McPherson R, Miron VE, Davidson DJ, Gwyer Findlay E. The antimicrobial peptide cathelicidin drives development of experimental autoimmune encephalomyelitis in mice by affecting Th17 differentiation. PLoS Biol 2022; 20:e3001554. [PMID: 36026478 PMCID: PMC9455863 DOI: 10.1371/journal.pbio.3001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 09/08/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Multiple sclerosis (MS) is a highly prevalent demyelinating autoimmune condition; the mechanisms regulating its severity and progression are unclear. The IL-17-producing Th17 subset of T cells has been widely implicated in MS and in the mouse model, experimental autoimmune encephalomyelitis (EAE). However, the differentiation and regulation of Th17 cells during EAE remain incompletely understood. Although evidence is mounting that the antimicrobial peptide cathelicidin profoundly affects early T cell differentiation, no studies have looked at its role in longer-term T cell responses. Now, we report that cathelicidin drives severe EAE disease. It is released from neutrophils, microglia, and endothelial cells throughout disease; its interaction with T cells potentiates Th17 differentiation in lymph nodes and Th17 to exTh17 plasticity and IFN-γ production in the spinal cord. As a consequence, mice lacking cathelicidin are protected from severe EAE. In addition, we show that cathelicidin is produced by the same cell types in the active brain lesions in human MS disease. We propose that cathelicidin exposure results in highly activated, cytokine-producing T cells, which drive autoimmunity; this is a mechanism through which neutrophils amplify inflammation in the central nervous system.
Collapse
Affiliation(s)
- Katie J. Smith
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Danielle Minns
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian J. McHugh
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca K. Holloway
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at The University of Edinburgh, Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Richard O’Connor
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Lauren Melrose
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Rhoanne McPherson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique E. Miron
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Donald J. Davidson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily Gwyer Findlay
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
47
|
Marino F, Pinoli M, Rasini E, Martini S, Luini A, Pulze L, Dalla Gasperina D, Grossi P, Legnaro M, Ferrari M, Congiu T, Pacheco R, Osorio-Barrios F, de Eguileor M, Cosentino M. Dopaminergic Inhibition of Human Neutrophils is Exerted Through D1-Like Receptors and Affected By Bacterial Infection. Immunol Suppl 2022; 167:508-527. [PMID: 35897164 DOI: 10.1111/imm.13550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dopamine (DA) affects immune functions in healthy subjects and during disease by acting on D1-like (D1 and D5) and D2-like (D2, D3 and D4) dopaminergic receptors (DR), however its effects on human polymorphonuclear leukocytes (PMN) are still poorly defined. METHODS We investigated DR expression in human PMN and the ability of DA to affect cell migration and reactive oxygen species (ROS) production. Experiments were performed on cells from healthy subjects (HS) and from patients (Pts) with bacterial infections as well, during the acute phase and after recovery. Some experiments were also performed in mice KO for the DRD5 gene. RESULTS PMN from HS express both D1-like and D2-like DR, and exposure to DA results in inhibition of activation-induced morphological changes, migration and ROS production which depend on the activation of D1-like DR. In agreement with these findings, DA inhibited migration of PMN obtained from wild-type mice, but not from DR D5 KO mice. In Pts with bacterial infections, during the febrile phase D1-like DR D5 on PMN were downregulated and DA failed to affect PMN migration. Both D1-like DR D5 expression and DA-induced inhibition of PMN migration were however restored after recovery. CONCLUSION Dopaminergic inhibition of human PMN is a novel mechanism which is likely to play a key role in the regulation of innate immunity. Evidence obtained in Pts with bacterial infections provides novel clues for the therapeutic modulation of PMN during infectious disease.
Collapse
Affiliation(s)
- Franca Marino
- Center for Research in Medical Pharmacology; University of Insubria, Varese, Italy
| | - Monica Pinoli
- Center for Research in Medical Pharmacology; University of Insubria, Varese, Italy
| | - Emanuela Rasini
- Center for Research in Medical Pharmacology University of Insubria, Varese, Italy
| | - Stefano Martini
- Center for Research in Medical Pharmacology; University of Insubria, Varese, Italy
| | - Alessandra Luini
- Center for Research in Medical Pharmacology; University of Insubria, Varese, Italy
| | - Laura Pulze
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Paolo Grossi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Massimiliano Legnaro
- Center for Research in Medical Pharmacology; University of Insubria, Varese, Italy
| | - Marco Ferrari
- Center for Research in Medical Pharmacology; University of Insubria, Varese, Italy
| | - Terenzio Congiu
- Department of Surgical Sciences, University of Cagliari, Italy
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | | | - Magda de Eguileor
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology; University of Insubria, Varese, Italy
| |
Collapse
|
48
|
Smith KJ, Gwyer Findlay E. Expression of antimicrobial host defence peptides in the central nervous system during health and disease. DISCOVERY IMMUNOLOGY 2022; 1:kyac003. [PMID: 38566904 PMCID: PMC10917193 DOI: 10.1093/discim/kyac003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 07/21/2022] [Indexed: 04/04/2024]
Abstract
Antimicrobial host defence peptides (HDP) are critical for the first line of defence against bacterial, viral, and fungal pathogens. Over the past decade we have become more aware that, in addition to their antimicrobial roles, they also possess the potent immunomodulatory capacity. This includes chemoattracting immune cells, activating dendritic cells and macrophages, and altering T-cell differentiation. Most examinations of their immunomodulatory roles have focused on tissues in which they are very abundant, such as the intestine and the inflamed skin. However, HDP have now been detected in the brain and the spinal cord during a number of conditions. We propose that their presence in the central nervous system (CNS) during homeostasis, infection, and neurodegenerative disease has the potential to contribute to immunosurveillance, alter host responses and skew developing immunity. Here, we review the evidence for HDP expression and function in the CNS in health and disease. We describe how a wide range of HDP are expressed in the CNS of humans, rodents, birds, and fish, suggesting a conserved role in protecting the brain from pathogens, with evidence of production by resident CNS cells. We highlight differences in methodology used and how this may have resulted in the immunomodulatory roles of HDP being overlooked. Finally, we discuss what HDP expression may mean for CNS immune responses.
Collapse
Affiliation(s)
- Katie J Smith
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK
| | - Emily Gwyer Findlay
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK
| |
Collapse
|
49
|
Shi K, Li H, Chang T, He W, Kong Y, Qi C, Li R, Huang H, Zhu Z, Zheng P, Ruan Z, Zhou J, Shi FD, Liu Q. Bone marrow hematopoiesis drives multiple sclerosis progression. Cell 2022; 185:2234-2247.e17. [PMID: 35709748 DOI: 10.1016/j.cell.2022.05.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system (CNS). Bone marrow hematopoietic stem and progenitor cells (HSPCs) rapidly sense immune activation, yet their potential interplay with autoreactive T cells in MS is unknown. Here, we report that bone marrow HSPCs are skewed toward myeloid lineage concomitant with the clonal expansion of T cells in MS patients. Lineage tracing in experimental autoimmune encephalomyelitis, a mouse model of MS, reveals remarkable bone marrow myelopoiesis with an augmented output of neutrophils and Ly6Chigh monocytes that invade the CNS. We found that myelin-reactive T cells preferentially migrate into the bone marrow compartment in a CXCR4-dependent manner. This aberrant bone marrow myelopoiesis involves the CCL5-CCR5 axis and augments CNS inflammation and demyelination. Our study suggests that targeting the bone marrow niche presents an avenue to treat MS and other autoimmune disorders.
Collapse
Affiliation(s)
- Kaibin Shi
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China; Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Handong Li
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Wenyan He
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ying Kong
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Caiyun Qi
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ran Li
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huachen Huang
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhibao Zhu
- Department of Neurology, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Pei Zheng
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhe Ruan
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Jie Zhou
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Fu-Dong Shi
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China; Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qiang Liu
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
50
|
Bhusal A, Nam Y, Seo D, Rahman MH, Hwang EM, Kim S, Lee W, Suk K. Cathelicidin‐related antimicrobial peptide promotes neuroinflammation through astrocyte–microglia communication in experimental autoimmune encephalomyelitis. Glia 2022; 70:1902-1926. [DOI: 10.1002/glia.24227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Youngpyo Nam
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Donggun Seo
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- Division of Endocrinology, Department of Medicine Rutgers Robert Wood Johnson Medical School New Brunswick New Jersey USA
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology Seoul Republic of Korea
| | - Seung‐Chan Kim
- Brain Science Institute, Korea Institute of Science and Technology Seoul Republic of Korea
| | - Won‐Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group Kyungpook National University Daegu Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine Kyungpook National University Daegu Republic of Korea
- Brain Science and Engineering Institute Kyungpook National University Daegu Republic of Korea
| |
Collapse
|