1
|
Xie Y, Clarke BP, Xie D, Mei M, Bhat P, Hill PS, Angelos AE, Çağatay T, Haider M, Collier SE, Chambers MG, Aksenova V, Dasso M, Fontoura BMA, Ren Y. Structures and mRNP remodeling mechanism of the TREX-2 complex. Structure 2025; 33:566-582.e6. [PMID: 39862860 PMCID: PMC11890942 DOI: 10.1016/j.str.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/18/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
mRNAs are packaged with proteins into messenger ribonucleoprotein complexes (mRNPs) in the nucleus. mRNP assembly and export are of fundamental importance for all eukaryotic gene expression. Before export to the cytoplasm, mRNPs undergo dynamic remodeling governed by the DEAD-box helicase DDX39B (yeast Sub2). DDX39B/Sub2 primarily functions in the nucleus and leaves the mRNP prior to export through the nuclear pore complex; however, the underlying mechanisms remain elusive. Here, we identify the conserved TREX-2 complex as the long-sought factor that facilitates DDX39B/Sub2 to complete the mRNP remodeling cycle. Our crystallographic and cryoelectron microscopy (cryo-EM) analyses demonstrate that TREX-2 modulates the activities of DDX39B/Sub2 through multiple interactions. Critically, a conserved "trigger loop" from TREX-2 splits the two RecA domains of DDX39B/Sub2 and promotes the removal of DDX39B/Sub2 from mRNP. Our findings suggest that TREX-2 coordinates with DDX39B/Sub2 and the human export receptor NXF1-NXT1 (yeast Mex67-Mtr2) to complete the final steps of nuclear mRNP assembly.
Collapse
Affiliation(s)
- Yihu Xie
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Bradley P Clarke
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA
| | - Dongqi Xie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Menghan Mei
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA
| | - Prasanna Bhat
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pate S Hill
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA
| | - Alexia E Angelos
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA
| | - Tolga Çağatay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mariam Haider
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Scott E Collier
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Melissa G Chambers
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Vdovina YA, Georgieva SG, Kopytova DV. Point Mutations in the M Domain of PCID2 Impair Its Function in mRNA Export in Drosophila melanogaster. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:112-115. [PMID: 39128950 DOI: 10.1134/s0012496624600167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 08/13/2024]
Abstract
The PCID2 protein is a component of the eukaryotic TREX-2 complex, which is responsible for mRNA export from the nucleus into the cytoplasm. We have previously shown that Drosophila melanogaster PCID2 is involved in specific mRNA recognition and identified the key amino acids responsible for its interaction with the ras2 RNA. In this work, point mutations of the amino acids were shown to disrupt the PCID2 interaction with cell RNAs and to distort the export of polyA-containing mRNAs from the nucleus into the cytoplasm in Drosophila cells.
Collapse
Affiliation(s)
- Yu A Vdovina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - S G Georgieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D V Kopytova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Querl L, Krebber H. Defenders of the Transcriptome: Guard Protein-Mediated mRNA Quality Control in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:10241. [PMID: 39408571 PMCID: PMC11476243 DOI: 10.3390/ijms251910241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Cell survival depends on precise gene expression, which is controlled sequentially. The guard proteins surveil mRNAs from their synthesis in the nucleus to their translation in the cytoplasm. Although the proteins within this group share many similarities, they play distinct roles in controlling nuclear mRNA maturation and cytoplasmic translation by supporting the degradation of faulty transcripts. Notably, this group is continuously expanding, currently including the RNA-binding proteins Npl3, Gbp2, Hrb1, Hrp1, and Nab2 in Saccharomyces cerevisiae. Some of the human serine-arginine (SR) splicing factors (SRSFs) show remarkable similarities to the yeast guard proteins and may be considered as functional homologues. Here, we provide a comprehensive summary of their crucial mRNA surveillance functions and their implications for cellular health.
Collapse
Affiliation(s)
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
4
|
Pulido V, Rodríguez-Peña JM, Alonso G, Sanz AB, Arroyo J, García R. mRNA Decapping Activator Pat1 Is Required for Efficient Yeast Adaptive Transcriptional Responses via the Cell Wall Integrity MAPK Pathway. J Mol Biol 2024; 436:168570. [PMID: 38604529 DOI: 10.1016/j.jmb.2024.168570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Cellular mRNA levels, particularly under stress conditions, can be finely regulated by the coordinated action of transcription and degradation processes. Elements of the 5'-3' mRNA degradation pathway, functionally associated with the exonuclease Xrn1, can bind to nuclear chromatin and modulate gene transcription. Within this group are the so-called decapping activators, including Pat1, Dhh1, and Lsm1. In this work, we have investigated the role of Pat1 in the yeast adaptive transcriptional response to cell wall stress. Thus, we demonstrated that in the absence of Pat1, the transcriptional induction of genes regulated by the Cell Wall Integrity MAPK pathway was significantly affected, with no effect on the stability of these transcripts. Furthermore, under cell wall stress conditions, Pat1 is recruited to Cell Wall Integrity-responsive genes in parallel with the RNA Pol II complex, participating both in pre-initiation complex assembly and transcriptional elongation. Indeed, strains lacking Pat1 showed lower recruitment of the transcription factor Rlm1, less histone H3 displacement at Cell Wall Integrity gene promoters, and impaired recruitment and progression of RNA Pol II. Moreover, Pat1 and the MAPK Slt2 occupied the coding regions interdependently. Our results support the idea that Pat1 and presumably other decay factors behave as transcriptional regulators of Cell Wall Integrity-responsive genes under cell wall stress conditions.
Collapse
Affiliation(s)
- Verónica Pulido
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Jose M Rodríguez-Peña
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Graciela Alonso
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Ana Belén Sanz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain.
| | - Raúl García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain.
| |
Collapse
|
5
|
Crespo R, Ne E, Reinders J, Meier JI, Li C, Jansen S, Górska A, Koçer S, Kan TW, Doff W, Dekkers D, Demmers J, Palstra RJ, Rao S, Mahmoudi T. PCID2 dysregulates transcription and viral RNA processing to promote HIV-1 latency. iScience 2024; 27:109152. [PMID: 38384833 PMCID: PMC10879814 DOI: 10.1016/j.isci.2024.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/06/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
HIV-1 latency results from tightly regulated molecular processes that act at distinct steps of HIV-1 gene expression. Here, we characterize PCI domain-containing 2 (PCID2) protein, a subunit of the transcription and export complex 2 (TREX2) complex, to enforce transcriptional repression and post-transcriptional blocks to HIV-1 gene expression during latency. PCID2 bound the latent HIV-1 LTR (long terminal repeat) and repressed transcription initiation during latency. Depletion of PCID2 remodeled the chromatin landscape at the HIV-1 promoter and resulted in transcriptional activation and latency reversal. Immunoprecipitation coupled to mass spectrometry identified PCID2-interacting proteins to include negative viral RNA (vRNA) splicing regulators, and PCID2 depletion resulted in over-splicing of intron-containing vRNA in cell lines and primary cells obtained from PWH. MCM3AP and DSS1, two other RNA-binding TREX2 complex subunits, also inhibit transcription initiation and vRNA alternative splicing during latency. Thus, PCID2 is a novel HIV-1 latency-promoting factor, which in context of the TREX2 sub-complex PCID2-DSS1-MCM3AP blocks transcription and dysregulates vRNA processing.
Collapse
Affiliation(s)
- Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Enrico Ne
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Julian Reinders
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Jenny I.J. Meier
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Chengcheng Li
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Sanne Jansen
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Alicja Górska
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Selin Koçer
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Tsung Wai Kan
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wouter Doff
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Vdovina YA, Kurshakova MM, Georgieva SG, Kopytova DV. PCID2 Subunit of the Drosophila TREX-2 Complex Has Two RNA-Binding Regions. Curr Issues Mol Biol 2023; 45:5662-5676. [PMID: 37504273 PMCID: PMC10378293 DOI: 10.3390/cimb45070357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Drosophila PCID2 is a subunit of the TREX-2 mRNA nuclear export complex. Although the complex has long been studied in eukaryotes, it is still unclear how TREX-2 interacts with mRNA in multicellular organisms. Here, the interaction between Drosophila PCID2 and the ras2 RNA was studied by EMSA. We show that the C-terminal region of the WH domain of PCID2 specifically binds the 3'-noncoding region of the ras2 RNA. While the same region of PCID2 interacts with the Xmas-2 subunit of the TREX-2 complex, PCID2 interacts with RNA independently of Xmas-2. An additional RNA-binding region (M region) was identified in the N-terminal part of the PCI domain and found to bind RNA nonspecifically. Point mutations of evolutionarily conserved amino acid residues in this region completely abolish the PCID2-RNA interaction, while a deletion of the C-terminal domain only partly decreases it. Thus, the specific interaction of PCID2 with RNA requires nonspecific PCID2-RNA binding.
Collapse
Affiliation(s)
- Yulia A Vdovina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria M Kurshakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sofia G Georgieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Daria V Kopytova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Al Adhami H, Vallet J, Schaal C, Schumacher P, Bardet AF, Dumas M, Chicher J, Hammann P, Daujat S, Weber M. Systematic identification of factors involved in the silencing of germline genes in mouse embryonic stem cells. Nucleic Acids Res 2023; 51:3130-3149. [PMID: 36772830 PMCID: PMC10123117 DOI: 10.1093/nar/gkad071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
In mammals, many germline genes are epigenetically repressed to prevent their illegitimate expression in somatic cells. To advance our understanding of the mechanisms restricting the expression of germline genes, we analyzed their chromatin signature and performed a CRISPR-Cas9 knock-out screen for genes involved in germline gene repression using a Dazl-GFP reporter system in mouse embryonic stem cells (mESCs). We show that the repression of germline genes mainly depends on the polycomb complex PRC1.6 and DNA methylation, which function additively in mESCs. Furthermore, we validated novel genes involved in the repression of germline genes and characterized three of them: Usp7, Shfm1 (also known as Sem1) and Erh. Inactivation of Usp7, Shfm1 or Erh led to the upregulation of germline genes, as well as retrotransposons for Shfm1, in mESCs. Mechanistically, USP7 interacts with PRC1.6 components, promotes PRC1.6 stability and presence at germline genes, and facilitates DNA methylation deposition at germline gene promoters for long term repression. Our study provides a global view of the mechanisms and novel factors required for silencing germline genes in embryonic stem cells.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Judith Vallet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Celia Schaal
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Paul Schumacher
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.,Karlsruhe Institute of Technology (KIT), IAB, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Sylvain Daujat
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| |
Collapse
|
8
|
Nikolić I, Samardžić J, Stevanović S, Miljuš-Đukić J, Milisavljević M, Timotijević G. CRISPR/Cas9-Targeted Disruption of Two Highly Homologous Arabidopsis thaliana DSS1 Genes with Roles in Development and the Oxidative Stress Response. Int J Mol Sci 2023; 24:ijms24032442. [PMID: 36768765 PMCID: PMC9916663 DOI: 10.3390/ijms24032442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
Global climate change has a detrimental effect on plant growth and health, causing serious losses in agriculture. Investigation of the molecular mechanisms of plant responses to various environmental pressures and the generation of plants tolerant to abiotic stress are imperative to modern plant science. In this paper, we focus on the application of the well-established technology CRISPR/Cas9 genome editing to better understand the functioning of the intrinsically disordered protein DSS1 in plant response to oxidative stress. The Arabidopsis genome contains two highly homologous DSS1 genes, AtDSS1(I) and AtDSS1(V). This study was designed to identify the functional differences between AtDSS1s, focusing on their potential roles in oxidative stress. We generated single dss1(I) and dss1(V) mutant lines of both Arabidopsis DSS1 genes using CRISPR/Cas9 technology. The homozygous mutant lines with large indels (dss1(I)del25 and dss1(V)ins18) were phenotypically characterized during plant development and their sensitivity to oxidative stress was analyzed. The characterization of mutant lines revealed differences in root and stem lengths, and rosette area size. Plants with a disrupted AtDSS1(V) gene exhibited lower survival rates and increased levels of oxidized proteins in comparison to WT plants exposed to oxidative stress induced by hydrogen peroxide. In this work, the dss1 double mutant was not obtained due to embryonic lethality. These results suggest that the DSS1(V) protein could be an important molecular component in plant abiotic stress response.
Collapse
|
9
|
Klama S, Hirsch AG, Schneider UM, Zander G, Seel A, Krebber H. A guard protein mediated quality control mechanism monitors 5'-capping of pre-mRNAs. Nucleic Acids Res 2022; 50:11301-11314. [PMID: 36305816 PMCID: PMC9638935 DOI: 10.1093/nar/gkac952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
Efficient gene expression requires properly matured mRNAs for functional transcript translation. Several factors including the guard proteins monitor maturation and act as nuclear retention factors for unprocessed pre-mRNAs. Here we show that the guard protein Npl3 monitors 5'-capping. In its absence, uncapped transcripts resist degradation, because the Rat1-Rai1 5'-end degradation factors are not efficiently recruited to these faulty transcripts. Importantly, in npl3Δ, these improperly capped transcripts escape this quality control checkpoint and leak into the cytoplasm. Our data suggest a model in which Npl3 associates with the Rai1 bound pre-mRNAs. In case the transcript was properly capped and is thus CBC (cap binding complex) bound, Rai1 dissociates from Npl3 allowing the export factor Mex67 to interact with this guard protein and support nuclear export. In case Npl3 does not detect proper capping through CBC attachment, Rai1 binding persists and Rat1 can join this 5'-complex to degrade the faulty transcript.
Collapse
Affiliation(s)
| | | | - Ulla M Schneider
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Gesa Zander
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Anika Seel
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Heike Krebber
- To whom correspondence should be addressed. Tel: +49 551 39 33801; Fax: +49 551 39 33805;
| |
Collapse
|
10
|
Kuang Z, Ke J, Hong J, Zhu Z, Niu L. Structural assembly of the nucleic-acid-binding Thp3-Csn12-Sem1 complex functioning in mRNA splicing. Nucleic Acids Res 2022; 50:8882-8897. [PMID: 35904806 PMCID: PMC9410885 DOI: 10.1093/nar/gkac634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/26/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
PCI domain proteins play important roles in post-transcriptional gene regulation. In the TREX-2 complex, PCI domain-containing Sac3 and Thp1 proteins and accessory Sem1 protein form a ternary complex required for mRNA nuclear export. In contrast, structurally related Thp3–Csn12–Sem1 complex mediates pre-mRNA splicing. In this study, we determined the structure of yeast Thp3186–470–Csn12–Sem1 ternary complex at 2.9 Å resolution. Both Thp3 and Csn12 structures have a typical PCI structural fold, characterized by a stack of α-helices capped by a C-terminal winged-helix (WH) domain. The overall structure of Thp3186–470–Csn12–Sem1 complex has an inverted V-shape with Thp3 and Csn12 forming the two sides. A fishhook-shaped Sem1 makes extensive contacts on Csn12 to stabilize its conformation. The overall structure of Thp3186–470–Csn12–Sem1 complex resembles the previously reported Sac3–Thp1–Sem1 complex, but also has significant structural differences. The C-terminal WH domains of Thp3 and Csn12 form a continuous surface to bind different forms of nucleic acids with micromolar affinity. Mutation of the basic residues in the WH domains of Thp3 and Csn12 affects nucleic acid binding in vitro and mRNA splicing in vivo. The Thp3–Csn12–Sem1 structure provides a foundation for further exploring the structural elements required for its specific recruitment to spliceosome for pre-mRNA splicing.
Collapse
Affiliation(s)
- Zhiling Kuang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiyuan Ke
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Northwest corner of Susong Rd & Guanhai Rd, Hefei, Anhui 230601, China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Bryll AR, Peterson CL. Functional interaction between the RNA exosome and the sirtuin deacetylase Hst3 maintains transcriptional homeostasis. Genes Dev 2021; 36:17-22. [PMID: 34916303 PMCID: PMC8763048 DOI: 10.1101/gad.348923.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
In this study, Bryll et al. found that inactivation of the RNA exosome leads to global reduction of nascent mRNA transcripts, and that this defect is accentuated by loss of deposition of histone variant H2A.Z. They identify the mRNA for the sirtuin deacetylase Hst3 as a key target for the RNA exosome that mediates communication between RNA degradation and transcription machineries. Eukaryotic cells maintain an optimal level of mRNAs through unknown mechanisms that balance RNA synthesis and degradation. We found that inactivation of the RNA exosome leads to global reduction of nascent mRNA transcripts, and that this defect is accentuated by loss of deposition of histone variant H2A.Z. We identify the mRNA for the sirtuin deacetylase Hst3 as a key target for the RNA exosome that mediates communication between RNA degradation and transcription machineries. These findings reveal how the RNA exosome and H2A.Z function together to control a deacetylase, ensuring proper levels of transcription in response to changes in RNA degradation.
Collapse
Affiliation(s)
- Alysia R Bryll
- Program of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Craig L Peterson
- Program of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
12
|
Targa A, Larrimore KE, Wong CK, Chong YL, Fung R, Lee J, Choi H, Rancati G. Non-genetic and genetic rewiring underlie adaptation to hypomorphic alleles of an essential gene. EMBO J 2021; 40:e107839. [PMID: 34528284 PMCID: PMC8561638 DOI: 10.15252/embj.2021107839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Adaptive evolution to cellular stress is a process implicated in a wide range of biological and clinical phenomena. Two major routes of adaptation have been identified: non-genetic changes, which allow expression of different phenotypes in novel environments, and genetic variation achieved by selection of fitter phenotypes. While these processes are broadly accepted, their temporal and epistatic features in the context of cellular evolution and emerging drug resistance are contentious. In this manuscript, we generated hypomorphic alleles of the essential nuclear pore complex (NPC) gene NUP58. By dissecting early and long-term mechanisms of adaptation in independent clones, we observed that early physiological adaptation correlated with transcriptome rewiring and upregulation of genes known to interact with the NPC; long-term adaptation and fitness recovery instead occurred via focal amplification of NUP58 and restoration of mutant protein expression. These data support the concept that early phenotypic plasticity allows later acquisition of genetic adaptations to a specific impairment. We propose this approach as a genetic model to mimic targeted drug therapy in human cells and to dissect mechanisms of adaptation.
Collapse
Affiliation(s)
- Altea Targa
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Skin Research Institute of Singapore (SRIS)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Katherine E Larrimore
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Skin Research Institute of Singapore (SRIS)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Cheng Kit Wong
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yu Lin Chong
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Skin Research Institute of Singapore (SRIS)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Ronald Fung
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Joseph Lee
- Department of MedicineYong Loo Lin School of MedicineNUS and National University Health SystemSingaporeSingapore
| | - Hyungwon Choi
- Department of MedicineYong Loo Lin School of MedicineNUS and National University Health SystemSingaporeSingapore
| | - Giulia Rancati
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Skin Research Institute of Singapore (SRIS)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
13
|
Zheleva A, Camino LP, Fernández-Fernández N, García-Rubio M, Askjaer P, García-Muse T, Aguilera A. THSC/TREX-2 deficiency causes replication stress and genome instability in Caenorhabditis elegans. J Cell Sci 2021; 134:jcs258435. [PMID: 34553761 PMCID: PMC10658913 DOI: 10.1242/jcs.258435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/11/2021] [Indexed: 11/20/2022] Open
Abstract
Transcription is an essential process of DNA metabolism, yet it makes DNA more susceptible to DNA damage. THSC/TREX-2 is a conserved eukaryotic protein complex with a key role in mRNP biogenesis and maturation that prevents genome instability. One source of such instability is linked to transcription, as shown in yeast and human cells, but the underlying mechanism and whether this link is universal is still unclear. To obtain further insight into the putative role of the THSC/TREX-2 complex in genome integrity, we have used Caenorhabditis elegans mutants of the thp-1 and dss-1 components of THSC/TREX-2. These mutants show similar defective meiosis, DNA damage accumulation and activation of the DNA damage checkpoint. However, they differ from each other regarding replication defects, as determined by measuring dUTP incorporation in the germline. Interestingly, this specific thp-1 mutant phenotype can be partially rescued by overexpression of RNase H. Furthermore, both mutants show a mild increase in phosphorylation of histone H3 at Ser10 (H3S10P), a mark previously shown to be linked to DNA-RNA hybrid-mediated genome instability. These data support the view that both THSC/TREX-2 factors prevent transcription-associated DNA damage derived from DNA-RNA hybrid accumulation by separate means.
Collapse
Affiliation(s)
- Angelina Zheleva
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Lola P. Camino
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Nuria Fernández-Fernández
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - María García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Peter Askjaer
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Tatiana García-Muse
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
14
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
15
|
Transcription/Replication Conflicts in Tumorigenesis and Their Potential Role as Novel Therapeutic Targets in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13153755. [PMID: 34359660 PMCID: PMC8345052 DOI: 10.3390/cancers13153755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Multiple myeloma is a hematologic cancer characterized by the accumulation of malignant plasma cells in the bone marrow. It remains a mostly incurable disease due to the inability to overcome refractory disease and drug-resistant relapse. Oncogenic transformation of PC in multiple myeloma is thought to occur within the secondary lymphoid organs. However, the precise molecular events leading to myelomagenesis remain obscure. Here, we identified genes involved in the prevention and the resolution of conflicts between the replication and transcription significantly overexpressed during the plasma cell differentiation process and in multiple myeloma cells. We discussed the potential role of these factors in myelomagenesis and myeloma biology. The specific targeting of these factors might constitute a new therapeutic strategy in multiple myeloma. Abstract Plasma cells (PCs) have an essential role in humoral immune response by secretion of antibodies, and represent the final stage of B lymphocytes differentiation. During this differentiation, the pre-plasmablastic stage is characterized by highly proliferative cells that start to secrete immunoglobulins (Igs). Thus, replication and transcription must be tightly regulated in these cells to avoid transcription/replication conflicts (TRCs), which could increase replication stress and lead to genomic instability. In this review, we analyzed expression of genes involved in TRCs resolution during B to PC differentiation and identified 41 genes significantly overexpressed in the pre-plasmablastic stage. This illustrates the importance of mechanisms required for adequate processing of TRCs during PCs differentiation. Furthermore, we identified that several of these factors were also found overexpressed in purified PCs from patients with multiple myeloma (MM) compared to normal PCs. Malignant PCs produce high levels of Igs concomitantly with cell cycle deregulation. Therefore, increasing the TRCs occurring in MM cells could represent a potent therapeutic strategy for MM patients. Here, we describe the potential roles of TRCs resolution factors in myelomagenesis and discuss the therapeutic interest of targeting the TRCs resolution machinery in MM.
Collapse
|
16
|
Ruidiaz SF, Dreier JE, Hartmann-Petersen R, Kragelund BB. The disordered PCI-binding human proteins CSNAP and DSS1 have diverged in structure and function. Protein Sci 2021; 30:2069-2082. [PMID: 34272906 PMCID: PMC8442969 DOI: 10.1002/pro.4159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022]
Abstract
Intrinsically disordered proteins (IDPs) regularly constitute components of larger protein assemblies contributing to architectural stability. Two small, highly acidic IDPs have been linked to the so-called PCI complexes carrying PCI-domain subunits, including the proteasome lid and the COP9 signalosome. These two IDPs, DSS1 and CSNAP, have been proposed to have similar structural propensities and functions, but they display differences in their interactions and interactome sizes. Here we characterized the structural properties of human DSS1 and CSNAP at the residue level using NMR spectroscopy and probed their propensities to bind ubiquitin. We find that distinct structural features present in DSS1 are completely absent in CSNAP, and vice versa, with lack of relevant ubiquitin binding to CSNAP, suggesting the two proteins to have diverged in both structure and function. Our work additionally highlights that different local features of seemingly similar IDPs, even subtle sequence variance, may endow them with different functional traits. Such traits may underlie their potential to engage in multiple interactions thereby impacting their interactome sizes.
Collapse
Affiliation(s)
- Sarah F Ruidiaz
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jesper E Dreier
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Rasmus Hartmann-Petersen
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
17
|
Ccr4-Not as a mediator of environmental signaling: a jack of all trades and master of all. Curr Genet 2021; 67:707-713. [PMID: 33791857 DOI: 10.1007/s00294-021-01180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
The cellular response to environmental exposures, such as nutrient shifts and various forms of stress, requires the integration of the signaling apparatus that senses these environmental changes with the downstream gene regulatory machinery. Delineating this molecular circuitry remains essential for understanding how organisms adapt to environmental flux, and it is critical for determining how dysregulation of these mechanisms causes disease. Ccr4-Not is a highly conserved regulatory complex that controls all aspects of the gene expression process. Recent studies in budding yeast have identified novel roles for Ccr4-Not as a key regulator of core nutrient signaling pathways that control cell growth and proliferation, including signaling through the mechanistic target of rapamycin complex 1 (TORC1) pathway. Herein, I will review the current evidence that implicate Ccr4-Not in nutrient signaling regulation, and I will discuss important unanswered questions that should help guide future efforts to delineate Ccr4-Not's role in linking environmental signaling with the gene regulatory machinery. Ccr4-Not is highly conserved throughout eukaryotes, and increasing evidence indicates it is dysregulated in a variety of diseases. Determining how Ccr4-Not regulates these signaling pathways in model organisms such as yeast will provide a guide for defining how it controls these processes in human cells.
Collapse
|
18
|
Glukhova AA, Kurshakova MM, Nabirochkina EN, Georgieva SG, Kopytova DV. PCID2, a subunit of the Drosophila TREX-2 nuclear export complex, is essential for both mRNA nuclear export and its subsequent cytoplasmic trafficking. RNA Biol 2021; 18:1969-1980. [PMID: 33602059 DOI: 10.1080/15476286.2021.1885198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The TREX-2 complex is essential for the general nuclear mRNA export in eukaryotes. TREX-2 interacts with the nuclear pore and transcriptional apparatus and links transcription to the mRNA export. However, it remains poorly understood how the TREX-2-dependent nuclear export is connected to the subsequent stages of mRNA trafficking. Here, we show that the PCID2 subunit of Drosophila TREX-2 is present in the cytoplasm of the cell. The cytoplasmic PCID2 directly interacts with the NudC protein and this interaction maintains its stability in the cytoplasm. Moreover, PCID2 is associated with the cytoplasmic mRNA and microtubules. The PCID2 knockdown blocks nuclear export of mRNA and also affects the general mRNA transport into the cytoplasm. These data suggest that PCID2 could be the link between the nuclear TREX-2-dependent export and the subsequent cytoplasmic trafficking of mRNA.
Collapse
Affiliation(s)
- A A Glukhova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - M M Kurshakova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - E N Nabirochkina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - S G Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D V Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Cheng CL, Wong MK, Li Y, Hochstrasser M. Conserved proline residues in the coiled coil-OB domain linkers of Rpt proteins facilitate eukaryotic proteasome base assembly. J Biol Chem 2021; 296:100660. [PMID: 33862083 PMCID: PMC8134078 DOI: 10.1016/j.jbc.2021.100660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/05/2022] Open
Abstract
The proteasome is a large protease complex that degrades many different cellular proteins. In eukaryotes, the 26S proteasome contains six different subunits of the ATPases associated with diverse cellular activities family, Rpt1-Rpt6, which form a hexameric ring as part of the base subcomplex that drives unfolding and translocation of substrates into the proteasome core. Archaeal proteasomes contain only a single Rpt-like ATPases associated with diverse cellular activities ATPase, the proteasome-activating nucleotidase, which forms a trimer of dimers. A key proteasome-activating nucleotidase proline residue (P91) forms cis- and trans-peptide bonds in successive subunits around the ring, allowing efficient dimerization through upstream coiled coils. However, the importance of the equivalent Rpt prolines for eukaryotic proteasome assembly was unknown. Here we showed that the equivalent proline is highly conserved in Rpt2, Rpt3, and Rpt5, and loosely conserved in Rpt1, in deeply divergent eukaryotes. Although in no case was a single Pro-to-Ala substitution in budding yeast strongly deleterious to growth, the rpt5-P76A mutation decreased levels of the protein and induced a mild proteasome assembly defect. Moreover, the rpt2-P103A, rpt3-P93A, and rpt5-P76A mutations all caused synthetic defects when combined with deletions of specific proteasome base assembly chaperones. The rpt2-P103A rpt5-P76A double mutant had uniquely strong growth defects attributable to defects in proteasome base formation. Several Rpt subunits in this mutant formed aggregates that were cleared, at least in part, by Hsp42 chaperone-mediated protein quality control. We propose that the conserved Rpt linker prolines promote efficient 26S proteasome base assembly by facilitating specific ATPase heterodimerization.
Collapse
Affiliation(s)
- Chin Leng Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Michael K Wong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yanjie Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
20
|
Braberg H, Echeverria I, Bohn S, Cimermancic P, Shiver A, Alexander R, Xu J, Shales M, Dronamraju R, Jiang S, Dwivedi G, Bogdanoff D, Chaung KK, Hüttenhain R, Wang S, Mavor D, Pellarin R, Schneidman D, Bader JS, Fraser JS, Morris J, Haber JE, Strahl BD, Gross CA, Dai J, Boeke JD, Sali A, Krogan NJ. Genetic interaction mapping informs integrative structure determination of protein complexes. Science 2020; 370:eaaz4910. [PMID: 33303586 PMCID: PMC7946025 DOI: 10.1126/science.aaz4910] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 07/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Determining structures of protein complexes is crucial for understanding cellular functions. Here, we describe an integrative structure determination approach that relies on in vivo measurements of genetic interactions. We construct phenotypic profiles for point mutations crossed against gene deletions or exposed to environmental perturbations, followed by converting similarities between two profiles into an upper bound on the distance between the mutated residues. We determine the structure of the yeast histone H3-H4 complex based on ~500,000 genetic interactions of 350 mutants. We then apply the method to subunits Rpb1-Rpb2 of yeast RNA polymerase II and subunits RpoB-RpoC of bacterial RNA polymerase. The accuracy is comparable to that based on chemical cross-links; using restraints from both genetic interactions and cross-links further improves model accuracy and precision. The approach provides an efficient means to augment integrative structure determination with in vivo observations.
Collapse
Affiliation(s)
- Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan Bohn
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Peter Cimermancic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anthony Shiver
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Richard Alexander
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Gajendradhar Dwivedi
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Derek Bogdanoff
- Center for Advanced Technology, Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kaitlin K Chaung
- Center for Advanced Technology, Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Shuyi Wang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Mavor
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dina Schneidman
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James S Fraser
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John Morris
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Carol A Gross
- Department of Microbiology and Immunology and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jef D Boeke
- NYU Langone Health, New York, NY 10016, USA.
- High Throughput Biology Center and Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
21
|
Al-Husini N, Medler S, Ansari A. Crosstalk of promoter and terminator during RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194657. [PMID: 33246184 DOI: 10.1016/j.bbagrm.2020.194657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
The transcription cycle of RNAPII is comprised of three consecutive steps; initiation, elongation and termination. It has been assumed that the initiation and termination steps occur in spatial isolation, essentially as independent events. A growing body of evidence, however, has challenged this dogma. First, factors involved in initiation and termination exhibit both a genetic and a physical interaction during transcription. Second, the initiation and termination factors have been found to occupy both ends of a transcribing gene. Third, physical interaction of initiation and termination factors occupying distal ends of a gene sometime results in the entire terminator region of a genes looping back and contact its cognate promoter, thereby forming a looped gene architecture during transcription. A logical interpretation of these findings is that the initiation and termination steps of transcription do not occur in isolation. There is extensive communication of factors occupying promoter and terminator ends of a gene during transcription cycle. This review entails a discussion of the promoter-terminator crosstalk and its implication in the context of transcription.
Collapse
Affiliation(s)
- Nadra Al-Husini
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America
| | - Scott Medler
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America.
| |
Collapse
|
22
|
Muniz MMM, Fonseca LFS, Dos Santos Silva DB, de Oliveira HR, Baldi F, Chardulo AL, Ferro JA, Cánovas A, de Albuquerque LG. Identification of novel mRNA isoforms associated with meat tenderness using RNA sequencing data in beef cattle. Meat Sci 2020; 173:108378. [PMID: 33248741 DOI: 10.1016/j.meatsci.2020.108378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022]
Abstract
The Warner-Bratzler shear force (WBSF) and myofibrillar fragmentation index (MFI) are complementary methodologies used to measure beef tenderness. Longissimus thoracis samples from the 20 most extreme bulls (out of 80 bulls set) for WBSF (tender (n = 10) and tough (n = 10)) and MFI (high (n = 10) and low (n = 10)) traits were collected to perform transcriptomic analysis using RNA-Sequencing. All analysis were performed through CLC Genomics Workbench. A total of 39 and 27 transcripts for WBSF and MFI phenotypes were DE, respectively. The possible DE novel mRNA isoforms, for WBSF and MFI traits, are myosin encoders (e.g. MYL1 and MYL6). In addition, we identified potential mRNA isoforms related to genes affecting the speed fibers degradation during the meat aging process. The DE novel transcripts are transcripted by genes with biological functions related to oxidative process, energy production and striated muscle contraction. The results suggest that the identified mRNA isoforms could be used as potential candidate to select animals in order to improve meat tenderness.
Collapse
Affiliation(s)
- Maria Malane Magalhães Muniz
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
| | | | | | - Hinayah Rojas de Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Fernando Baldi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; National Council for Scientific and Technological Development (CNPq), Brazil
| | - Artur Loyola Chardulo
- National Council for Scientific and Technological Development (CNPq), Brazil; São Paulo State University (Unesp), College of Veterinary and Animal Science, Botucatu, SP, Brazil
| | - Jesus Aparecido Ferro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; National Council for Scientific and Technological Development (CNPq), Brazil
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Lucia Galvão de Albuquerque
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; National Council for Scientific and Technological Development (CNPq), Brazil.
| |
Collapse
|
23
|
Pick E. The necessity of NEDD8/Rub1 for vitality and its association with mitochondria-derived oxidative stress. Redox Biol 2020; 37:101765. [PMID: 33099217 PMCID: PMC7582104 DOI: 10.1016/j.redox.2020.101765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Access of molecular oxygen to the respiratory electron transport chain at the mitochondria costs in the generation of reactive oxygen-derived species (ROS). ROS induces progressive damage to macromolecules in all living cells, hence, rapid defense mechanisms to maintain cellular redox homeostasis are vital. NEDD8/Rub1 is a highly conserved ubiquitin-like modifier that has recently been identified as a key regulator of cellular redox homeostasis. In this review, I will present NEDD8/Rub1, its modification cascade of enzymes, substrates and hydrolases. After introduction, I will show that the NEDD8/Rub1 pathway is linked with mitochondria physiology, namely, oxidative stress. In the rest of the review, I will approach the Ascomycota phylum of the kingdom fungi instrumentally, to present existing links between NEDD8/Rub1 vitality and the aerobic lifestyle of model species belonging to three subphyla: Saccharomycotina (S. cerevisiae and C. albicans), Pezizomycotina (A. nidulans and N. crassa), and Taphrinomycotina (S. pombe). NEDD8/Rub1 is a key regulator of cellular redox homeostasis. Ascomycota species that produce mitochondria-derived ROS during glycolysis require NEDD8/Rub1for viability. NEDD8/Rub1 essentiality correlates with the existence of NEDP1 in the organism genome.
Collapse
Affiliation(s)
- Elah Pick
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon, 3600600, Israel.
| |
Collapse
|
24
|
Le HP, Ma X, Vaquero J, Brinkmeyer M, Guo F, Heyer WD, Liu J. DSS1 and ssDNA regulate oligomerization of BRCA2. Nucleic Acids Res 2020; 48:7818-7833. [PMID: 32609828 PMCID: PMC7641332 DOI: 10.1093/nar/gkaa555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 01/27/2023] Open
Abstract
The tumor suppressor BRCA2 plays a key role in initiating homologous recombination by facilitating RAD51 filament formation on single-stranded DNA. The small acidic protein DSS1 is a crucial partner to BRCA2 in this process. In vitro and in cells (1,2), BRCA2 associates into oligomeric complexes besides also existing as monomers. A dimeric structure was further characterized by electron microscopic analysis (3), but the functional significance of the different BRCA2 assemblies remains to be determined. Here, we used biochemistry and electron microscopic imaging to demonstrate that the multimerization of BRCA2 is counteracted by DSS1 and ssDNA. When validating the findings, we identified three self-interacting regions and two types of self-association, the N-to-C terminal and the N-to-N terminal interactions. The N-to-C terminal self-interaction of BRCA2 is sensitive to DSS1 and ssDNA. The N-to-N terminal self-interaction is modulated by ssDNA. Our results define a novel role of DSS1 to regulate BRCA2 in an RPA-independent fashion. Since DSS1 is required for BRCA2 function in recombination, we speculate that the monomeric and oligomeric forms of BRCA2 might be active for different cellular events in recombinational DNA repair and replication fork stabilization.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Xiaoyan Ma
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Jorge Vaquero
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Megan Brinkmeyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Fei Guo
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616-8665, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| |
Collapse
|
25
|
Fischer J, Song YS, Yosef N, di Iulio J, Churchman LS, Choder M. The yeast exoribonuclease Xrn1 and associated factors modulate RNA polymerase II processivity in 5' and 3' gene regions. J Biol Chem 2020; 295:11435-11454. [PMID: 32518159 DOI: 10.1074/jbc.ra120.013426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/05/2020] [Indexed: 11/06/2022] Open
Abstract
mRNA levels are determined by the balance between mRNA synthesis and decay. Protein factors that mediate both processes, including the 5'-3' exonuclease Xrn1, are responsible for a cross-talk between the two processes that buffers steady-state mRNA levels. However, the roles of these proteins in transcription remain elusive and controversial. Applying native elongating transcript sequencing (NET-seq) to yeast cells, we show that Xrn1 functions mainly as a transcriptional activator and that its disruption manifests as a reduction of RNA polymerase II (Pol II) occupancy downstream of transcription start sites. By combining our sequencing data and mathematical modeling of transcription, we found that Xrn1 modulates transcription initiation and elongation of its target genes. Furthermore, Pol II occupancy markedly increased near cleavage and polyadenylation sites in xrn1Δ cells, whereas its activity decreased, a characteristic feature of backtracked Pol II. We also provide indirect evidence that Xrn1 is involved in transcription termination downstream of polyadenylation sites. We noted that two additional decay factors, Dhh1 and Lsm1, seem to function similarly to Xrn1 in transcription, perhaps as a complex, and that the decay factors Ccr4 and Rpb4 also perturb transcription in other ways. Interestingly, the decay factors could differentiate between SAGA- and TFIID-dominated promoters. These two classes of genes responded differently to XRN1 deletion in mRNA synthesis and were differentially regulated by mRNA decay pathways, raising the possibility that one distinction between these two gene classes lies in the mechanisms that balance mRNA synthesis with mRNA decay.
Collapse
Affiliation(s)
- Jonathan Fischer
- Computer Science Division, University of California, Berkeley, California, USA.,Department of Statistics, University of California, Berkeley, California, USA
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, California, USA.,Department of Statistics, University of California, Berkeley, California, USA.,Chan Zuckerberg BioHub, San Francisco, California, USA
| | - Nir Yosef
- Chan Zuckerberg BioHub, San Francisco, California, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Julia di Iulio
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mordechai Choder
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
26
|
Puleo N, Lamitina T. The conserved multi-functional nuclear protein dss-1/Sem1 is required for C9orf72-associated ALS/FTD dipeptide toxicity. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32550521 PMCID: PMC7266659 DOI: 10.17912/micropub.biology.000262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Noah Puleo
- University of Pittsburgh, Depts. of Pediatrics and Cell Biology
| | - Todd Lamitina
- University of Pittsburgh, Depts. of Pediatrics and Cell Biology
| |
Collapse
|
27
|
Sinha A, Israeli R, Cirigliano A, Gihaz S, Trabelcy B, Braus GH, Gerchman Y, Fishman A, Negri R, Rinaldi T, Pick E. The COP9 signalosome mediates the Spt23 regulated fatty acid desaturation and ergosterol biosynthesis. FASEB J 2020; 34:4870-4889. [PMID: 32077151 DOI: 10.1096/fj.201902487r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/02/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
The COP9 signalosome (CSN) is a conserved eukaryotic complex, essential for vitality in all multicellular organisms and critical for the turnover of key cellular proteins through catalytic and non-catalytic activities. Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of the CSN complex, since it includes a conserved enzymatic core but lacks non-catalytic activities, probably explaining its non-essentiality for life. A previous transcriptomic analysis of an S. cerevisiae strain deleted in the CSN5/RRI1 gene, encoding to the CSN catalytic subunit, revealed a downregulation of genes involved in lipid metabolism. We now show that the S. cerevisiae CSN holocomplex is essential for cellular lipid homeostasis. Defects in CSN assembly or activity lead to decreased quantities of ergosterol and unsaturated fatty acids (UFA); vacuole defects; diminished lipid droplets (LDs) size; and to accumulation of endoplasmic reticulum (ER) stress. The molecular mechanism behind these findings depends on CSN involvement in upregulating mRNA expression of SPT23. Spt23 is a novel activator of lipid desaturation and ergosterol biosynthesis. Our data reveal for the first time a functional link between the CSN holocomplex and Spt23. Moreover, CSN-dependent upregulation of SPT23 transcription is necessary for the fine-tuning of lipid homeostasis and for cellular health.
Collapse
Affiliation(s)
- Abhishek Sinha
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Israel
| | - Ran Israeli
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Israel
| | - Angela Cirigliano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Shalev Gihaz
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Beny Trabelcy
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Israel
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Yoram Gerchman
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rodolfo Negri
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Elah Pick
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Israel
| |
Collapse
|
28
|
Wang Y, Fang H, Yang D, Zhao H, Deng M. Network Clustering Analysis Using Mixture Exponential-Family Random Graph Models and Its Application in Genetic Interaction Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1743-1752. [PMID: 28858811 DOI: 10.1109/tcbb.2017.2743711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
MOTIVATION Epistatic miniarrary profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. It provides an incredible set of molecular tools and advanced technologies that should be efficiently understanding the relationship between the genotypes and phenotypes of individuals. However, the network information gained from EMAP cannot be fully exploited using the traditional statistical network models. Because the genetic network is always heterogeneous, for example, the network structure features for one subset of nodes are different from those of the left nodes. Exponential-family random graph models (ERGMs) are a family of statistical models, which provide a principled and flexible way to describe the structural features (e.g., the density, centrality, and assortativity) of an observed network. However, the single ERGM is not enough to capture this heterogeneity of networks. In this paper, we consider a mixture ERGM (MixtureEGRM) networks, which model a network with several communities, where each community is described by a single EGRM. RESULTS EM algorithm is a classical method to solve the mixture problem, however, it will be very slow when the data size is huge in the numerous applications. We adopt an efficient novel online graph clustering algorithm to classify the graph nodes and estimate the ERGM parameters for the MixtureERGM. In comparison studies, the MixtureERGM outperforms the role analysis for the network cluster in which the mixture of exponential-family random graph model is developed for many ego-network according to their roles. One genetic interaction network of yeast and two real social networks (provided as supplemental materials, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TCBB.2017.2743711) show the wide potential application of the MixtureERGM.
Collapse
|
29
|
Genome-Wide Discovery of DEAD-Box RNA Helicase Targets Reveals RNA Structural Remodeling in Transcription Termination. Genetics 2019; 212:153-174. [PMID: 30902808 DOI: 10.1534/genetics.119.302058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 11/18/2022] Open
Abstract
RNA helicases are a class of enzymes that unwind RNA duplexes in vitro but whose cellular functions are largely enigmatic. Here, we provide evidence that the DEAD-box protein Dbp2 remodels RNA-protein complex (RNP) structure to facilitate efficient termination of transcription in Saccharomyces cerevisiae via the Nrd1-Nab3-Sen1 (NNS) complex. First, we find that loss of DBP2 results in RNA polymerase II accumulation at the 3' ends of small nucleolar RNAs and a subset of mRNAs. In addition, Dbp2 associates with RNA sequence motifs and regions bound by Nrd1 and can promote its recruitment to NNS-targeted regions. Using Structure-seq, we find altered RNA/RNP structures in dbp2∆ cells that correlate with inefficient termination. We also show a positive correlation between the stability of structures in the 3' ends and a requirement for Dbp2 in termination. Taken together, these studies provide a role for RNA remodeling by Dbp2 and further suggests a mechanism whereby RNA structure is exploited for gene regulation.
Collapse
|
30
|
Domain Requirements and Genetic Interactions of the Mud1 Subunit of the Saccharomyces cerevisiae U1 snRNP. G3-GENES GENOMES GENETICS 2019; 9:145-151. [PMID: 30413416 PMCID: PMC6325900 DOI: 10.1534/g3.118.200781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mud1 is an inessential 298-amino acid protein subunit of the Saccharomyces cerevisiae U1 snRNP. Mud1 consists of N-terminal and C-terminal RRM domains (RRM1 and RRM2) separated by a linker domain. Synthetic lethal interactions of mud1∆ with deletions of inessential spliceosome components Nam8, Mud2, and Msl1, or missense mutations in the branchpoint-binding protein Msl5 enabled us to dissect genetically the domain requirements for Mud1 function. We find that the biological activities of Mud1 can be complemented by co-expressing separately the RRM1 (aa 1-127) and linker-RRM2 (aa 128-298) modules. Whereas RRM1 and RRM2 (aa 197-298) per se are inactive in all tests of functional complementation, the linker-RRM2 by itself partially complements a subset of synthetic lethal mud1∆ interactions. Linker segment aa 155 to 196 contains a nuclear localization signal rich in basic amino acids that is necessary for RRM2 activity in mud1∆ complementation. Alanine scanning mutagenesis indicates that none of the individual RRM1 amino acid contacts to U1 snRNA in the cryo-EM model of the yeast U1 snRNP is necessary for mud1∆ complementation activity.
Collapse
|
31
|
Zeidan Q, He F, Zhang F, Zhang H, Jacobson A, Hinnebusch AG. Conserved mRNA-granule component Scd6 targets Dhh1 to repress translation initiation and activates Dcp2-mediated mRNA decay in vivo. PLoS Genet 2018; 14:e1007806. [PMID: 30532217 PMCID: PMC6307823 DOI: 10.1371/journal.pgen.1007806] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/27/2018] [Accepted: 11/02/2018] [Indexed: 12/21/2022] Open
Abstract
Scd6 protein family members are evolutionarily conserved components of translationally silent mRNA granules. Yeast Scd6 interacts with Dcp2 and Dhh1, respectively a subunit and a regulator of the mRNA decapping enzyme, and also associates with translation initiation factor eIF4G to inhibit translation in cell extracts. However, the role of Scd6 in mRNA turnover and translational repression in vivo is unclear. We demonstrate that tethering Scd6 to a GFP reporter mRNA reduces mRNA abundance via Dcp2 and suppresses reporter mRNA translation via Dhh1. Thus, in a dcp2Δ mutant, tethered Scd6 reduces GFP protein expression with little effect on mRNA abundance, whereas tethered Scd6 has no impact on GFP protein or mRNA expression in a dcp2Δ dhh1Δ double mutant. The conserved LSm domain of Scd6 is required for translational repression and mRNA turnover by tethered Scd6. Both functions are enhanced in a ccr4Δ mutant, suggesting that the deadenylase function of Ccr4-Not complex interferes with a more efficient repression pathway enlisted by Scd6. Ribosome profiling and RNA-Seq analysis of scd6Δ and dhh1Δ mutants suggests that Scd6 cooperates with Dhh1 in translational repression and turnover of particular native mRNAs, with both processes dependent on Dcp2. Our results suggest that Scd6 can (i) recruit Dhh1 to confer translational repression and (ii) activate mRNA decapping by Dcp2 with attendant degradation of specific mRNAs in vivo, in a manner dependent on the Scd6 LSm domain and modulated by Ccr4.
Collapse
Affiliation(s)
- Quira Zeidan
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Fan Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Hongen Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Alan G. Hinnebusch
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
32
|
Schenstrøm SM, Rebula CA, Tatham MH, Hendus-Altenburger R, Jourdain I, Hay RT, Kragelund BB, Hartmann-Petersen R. Expanded Interactome of the Intrinsically Disordered Protein Dss1. Cell Rep 2018; 25:862-870. [PMID: 30355493 PMCID: PMC6218214 DOI: 10.1016/j.celrep.2018.09.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/24/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
Dss1 (also known as Sem1) is a conserved, intrinsically disordered protein with a remarkably broad functional diversity. It is a proteasome subunit but also associates with the BRCA2, RPA, Csn12-Thp1, and TREX-2 complexes. Accordingly, Dss1 functions in protein degradation, DNA repair, transcription, and mRNA export. Here in Schizosaccharomyces pombe, we expand its interactome further to include eIF3, the COP9 signalosome, and the mitotic septins. Within its intrinsically disordered ensemble, Dss1 forms a transiently populated C-terminal helix that dynamically interacts with and shields a central binding region. The helix interfered with the interaction to ATP-citrate lyase but was required for septin binding, and in strains lacking Dss1, ATP-citrate lyase solubility was reduced and septin rings were more persistent. Thus, even weak, transient interactions within Dss1 may dynamically rewire its interactome.
Collapse
Affiliation(s)
- Signe M Schenstrøm
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Caio A Rebula
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ruth Hendus-Altenburger
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Isabelle Jourdain
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
33
|
Dehecq M, Decourty L, Namane A, Proux C, Kanaan J, Le Hir H, Jacquier A, Saveanu C. Nonsense-mediated mRNA decay involves two distinct Upf1-bound complexes. EMBO J 2018; 37:embj.201899278. [PMID: 30275269 DOI: 10.15252/embj.201899278] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA degradation pathway involved in many cellular pathways and crucial for telomere maintenance and embryo development. Core NMD factors Upf1, Upf2 and Upf3 are conserved from yeast to mammals, but a universal NMD model is lacking. We used affinity purification coupled with mass spectrometry and an improved data analysis protocol to characterize the composition and dynamics of yeast NMD complexes in yeast (112 experiments). Unexpectedly, we identified two distinct complexes associated with Upf1: Upf1-23 (Upf1, Upf2, Upf3) and Upf1-decapping Upf1-decapping contained the mRNA decapping enzyme, together with Nmd4 and Ebs1, two proteins that globally affected NMD and were critical for RNA degradation mediated by the Upf1 C-terminal helicase region. The fact that Nmd4 association with RNA was partially dependent on Upf1-23 components and the similarity between Nmd4/Ebs1 and mammalian Smg5-7 proteins suggest that NMD operates through conserved, successive Upf1-23 and Upf1-decapping complexes. This model can be extended to accommodate steps that are missing in yeast, to serve for further mechanistic studies of NMD in eukaryotes.
Collapse
Affiliation(s)
- Marine Dehecq
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Laurence Decourty
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| | - Abdelkader Namane
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| | - Caroline Proux
- Transcriptome and Epigenome, CITECH, Institut Pasteur, Paris, France
| | - Joanne Kanaan
- Expression des ARN Messagers Eucaryotes, Biology Department, CNRS UMR8197, Inserm U1024, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Hervé Le Hir
- Expression des ARN Messagers Eucaryotes, Biology Department, CNRS UMR8197, Inserm U1024, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Alain Jacquier
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| | - Cosmin Saveanu
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| |
Collapse
|
34
|
Abstract
The ubiquitin-proteasome system (UPS) controls cellular functions by maintenance of a functional proteome and degradation of key regulatory proteins. Central to the UPS is the proteasome that adjusts the abundance of numerous proteins, thereby safeguarding their activity or initiating regulatory events. Here, we demonstrate that the essential Saccharomyces cerevisiae protein Yjr141w/Ipa1 (Important for cleavage and PolyAdenylation) belongs to the HECT_2 (homologous to E6-AP carboxyl terminus_2) family. We found that five cysteine residues within the HECT_2 family signature and the C-terminus are essential for Ipa1 activity. Furthermore, Ipa1 interacts with several ubiquitin-conjugating enzymes in vivo and localizes to the cytosol and nucleus. Importantly, Ipa1 has an impact on proteasome activity, which is indicated by the activation of the Rpn4 regulon as well as by decreased turnover of destabilized proteasome substrates in an IPA1 mutant. These changes in proteasome activity might be connected to reduced maturation or modification of proteasomal core particle proteins. Our results highlight the influence of Ipa1 on the UPS. The conservation within the HECT_2 family and the connection of the human HECT_2 family member to an age-related degeneration disease might suggest that HECT_2 family members share a conserved function linked to proteasome activity.
Collapse
|
35
|
Roguev A, Ryan CJ, Hartsuiker E, Krogan NJ. High-Throughput Quantitative Genetic Interaction Mapping in the Fission Yeast Schizosaccharomyces pombe. Cold Spring Harb Protoc 2018; 2018:pdb.top079905. [PMID: 28733404 DOI: 10.1101/pdb.top079905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epistasis mapping, in which the phenotype that emerges from combining pairs of mutations is measured quantitatively, is a powerful tool for unbiased study of gene function. When performed at a large scale, this approach has been used to assign function to previously uncharacterized genes, define functional modules and pathways, and study their cross talk. These experiments rely heavily on methods for rapid sampling of binary combinations of mutant alleles by systematic generation of a series of double mutants. Epistasis mapping technologies now exist in various model systems. Here we provide an overview of different epistasis mapping technologies, including the pombe epistasis mapper (PEM) system designed for the collection of quantitative genetic interaction data in fission yeast Schizosaccharomyces pombe Comprising a series of high-throughput selection steps for generation and characterization of double mutants, the PEM system has provided insight into a wide range of biological processes as well as facilitated evolutionary analysis of genetic interactomes across different species.
Collapse
Affiliation(s)
- Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94518
| | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Edgar Hartsuiker
- North West Cancer Research Institute, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94518
| |
Collapse
|
36
|
Nissen KE, Homer CM, Ryan CJ, Shales M, Krogan NJ, Patrick KL, Guthrie C. The histone variant H2A.Z promotes splicing of weak introns. Genes Dev 2017; 31:688-701. [PMID: 28446597 PMCID: PMC5411709 DOI: 10.1101/gad.295287.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Abstract
In this study, Nissen et al. investigated the function of the highly conserved histone variant H2A.Z in pre-mRNA splicing using the intron-rich model yeast S. pombe. The findings suggest that H2A.Z occupancy promotes cotranscriptional splicing of suboptimal introns that may otherwise be discarded via proofreading ATPases. Multiple lines of evidence implicate chromatin in the regulation of premessenger RNA (pre-mRNA) splicing. However, the influence of chromatin factors on cotranscriptional splice site usage remains unclear. Here we investigated the function of the highly conserved histone variant H2A.Z in pre-mRNA splicing using the intron-rich model yeast Schizosaccharomyces pombe. Using epistatic miniarray profiles (EMAPs) to survey the genetic interaction landscape of the Swr1 nucleosome remodeling complex, which deposits H2A.Z, we uncovered evidence for functional interactions with components of the spliceosome. In support of these genetic connections, splicing-specific microarrays show that H2A.Z and the Swr1 ATPase are required during temperature stress for the efficient splicing of a subset of introns. Notably, affected introns are enriched for H2A.Z occupancy and more likely to contain nonconsensus splice sites. To test the significance of the latter correlation, we mutated the splice sites in an affected intron to consensus and found that this suppressed the requirement for H2A.Z in splicing of that intron. These data suggest that H2A.Z occupancy promotes cotranscriptional splicing of suboptimal introns that may otherwise be discarded via proofreading ATPases. Consistent with this model, we show that overexpression of splicing ATPase Prp16 suppresses both the growth and splicing defects seen in the absence of H2A.Z.
Collapse
Affiliation(s)
- Kelly E Nissen
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| | - Christina M Homer
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco 94158, California, USA.,California Institute for Quantitative Biosciences (QB3), San Francisco 94158, California, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco 94158, California, USA.,California Institute for Quantitative Biosciences (QB3), San Francisco 94158, California, USA.,J. David Gladstone Institutes, San Francisco 94158, California, USA
| | - Kristin L Patrick
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas 77807, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| |
Collapse
|
37
|
Du D, Roguev A, Gordon DE, Chen M, Chen SH, Shales M, Shen JP, Ideker T, Mali P, Qi LS, Krogan NJ. Genetic interaction mapping in mammalian cells using CRISPR interference. Nat Methods 2017; 14:577-580. [PMID: 28481362 PMCID: PMC5584685 DOI: 10.1038/nmeth.4286] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/05/2017] [Indexed: 01/04/2023]
Abstract
We describe a combinatorial CRISPR interference (CRISPRi) screening platform for mapping genetic interactions in mammalian cells. We targeted 107 chromatin-regulation factors in human cells with pools of either single or double single guide RNAs (sgRNAs) to downregulate individual genes or gene pairs, respectively. Relative enrichment analysis of individual sgRNAs or sgRNA pairs allowed for quantitative characterization of genetic interactions, and comparison with protein-protein-interaction data revealed a functional map of chromatin regulation.
Collapse
Affiliation(s)
- Dan Du
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA
- Stanford ChEM-H, Stanford University, Stanford, California, USA
| | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, California, USA
| | - David E Gordon
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, California, USA
| | - Meng Chen
- Department of Bioengineering, Stanford University, Stanford, California, USA
- J. David Gladstone Institutes, San Francisco, California, USA
| | - Si-Han Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, California, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, California, USA
| | - John Paul Shen
- Division of Genetics, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA
- Stanford ChEM-H, Stanford University, Stanford, California, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, California, USA
- J. David Gladstone Institutes, San Francisco, California, USA
| |
Collapse
|
38
|
Kurshakova MM, Georgieva SG, Kopytova DV. Protein complexes coordinating mRNA export from the nucleus into the cytoplasm. Mol Biol 2016. [DOI: 10.1134/s0026893316050095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Agarwal R, Schwer B, Shuman S. Structure-function analysis and genetic interactions of the Luc7 subunit of the Saccharomyces cerevisiae U1 snRNP. RNA (NEW YORK, N.Y.) 2016; 22:1302-10. [PMID: 27354704 PMCID: PMC4986886 DOI: 10.1261/rna.056911.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/19/2016] [Indexed: 05/08/2023]
Abstract
Luc7 is an essential 261-amino acid protein subunit of the Saccharomyces cerevisiae U1 snRNP. To establish structure-function relations for yeast Luc7, we conducted an in vivo mutational analysis entailing N- and C-terminal truncations and alanine scanning of phylogenetically conserved amino acids, including two putative zinc finger motifs, ZnF1 and ZnF2, and charged amino acids within the ZnF2 module. We identify Luc7-(31-246) as a minimal functional protein and demonstrate that whereas mutations of the CCHH ZnF2 motif are lethal, mutations of the ZnF1 CCCH motif and the charged residues of the ZnF2 modules are not. Though dispensable for vegetative growth in an otherwise wild-type background, the N-terminal 18-amino acid segment of Luc7 plays an important role in U1 snRNP function, evinced by our findings that its deletion (i) impaired the splicing of SUS1 pre-mRNA; (ii) was synthetically lethal absent other U1 snRNP constituents (Mud1, Nam8, the TMG cap, the C terminus of Snp1), absent the Mud2 subunit of the Msl5•Mud2 branchpoint binding complex, and when the m(7)G cap-binding site of Cbc2 was debilitated; and (iii) bypassed the need for the essential DEAD-box ATPase Prp28. Similar phenotypes were noted for ZnF1 mutations C45A, C53A, and C68A and ZnF2 domain mutations D214A, R215A, R216A, and D219A These findings highlight the contributions of the Luc7 N-terminal peptide, the ZnF1 motif, and the ZnF2 module in stabilizing the interactions of the U1 snRNP with the pre-mRNA 5' splice site and promoting the splicing of a yeast pre-mRNA, SUS1, that has a nonconsensus 5' splice site.
Collapse
Affiliation(s)
- Radhika Agarwal
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
40
|
Schwer B, Kruchten J, Shuman S. Structure-function analysis and genetic interactions of the SmG, SmE, and SmF subunits of the yeast Sm protein ring. RNA (NEW YORK, N.Y.) 2016; 22:1320-8. [PMID: 27417296 PMCID: PMC4986888 DOI: 10.1261/rna.057448.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 05/08/2023]
Abstract
A seven-subunit Sm protein ring forms a core scaffold of the U1, U2, U4, and U5 snRNPs that direct pre-mRNA splicing. Using human snRNP structures to guide mutagenesis in Saccharomyces cerevisiae, we gained new insights into structure-function relationships of the SmG, SmE, and SmF subunits. An alanine scan of 19 conserved amino acids of these three proteins, comprising the Sm RNA binding sites or inter-subunit interfaces, revealed that, with the exception of Arg74 in SmF, none are essential for yeast growth. Yet, for SmG, SmE, and SmF, as for many components of the yeast spliceosome, the effects of perturbing protein-RNA and protein-protein interactions are masked by built-in functional redundancies of the splicing machine. For example, tests for genetic interactions with non-Sm splicing factors showed that many benign mutations of SmG, SmE, and SmF (and of SmB and SmD3) were synthetically lethal with null alleles of U2 snRNP subunits Lea1 and Msl1. Tests of pairwise combinations of SmG, SmE, SmF, SmB, and SmD3 alleles highlighted the inherent redundancies within the Sm ring, whereby simultaneous mutations of the RNA binding sites of any two of the Sm subunits are lethal. Our results suggest that six intact RNA binding sites in the Sm ring suffice for function but five sites may not.
Collapse
Affiliation(s)
- Beate Schwer
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA
| | - Joshua Kruchten
- Microbiology and Immunology Department, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
41
|
The Evolutionarily-conserved Polyadenosine RNA Binding Protein, Nab2, Cooperates with Splicing Machinery to Regulate the Fate of pre-mRNA. Mol Cell Biol 2016; 36:2697-2714. [PMID: 27528618 PMCID: PMC5064217 DOI: 10.1128/mcb.00402-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Numerous RNA binding proteins are deposited onto an mRNA transcript to modulate post-transcriptional processing events ensuring proper mRNA maturation. Defining the interplay between RNA binding proteins that couple mRNA biogenesis events is crucial for understanding how gene expression is regulated. To explore how RNA binding proteins control mRNA processing, we investigated a role for the evolutionarily conserved polyadenosine RNA binding protein, Nab2, in mRNA maturation within the nucleus. This work reveals that nab2 mutant cells accumulate intron-containing pre-mRNA in vivo We extend this analysis to identify genetic interactions between mutant alleles of nab2 and genes encoding the splicing factor, MUD2, and the RNA exosome, RRP6, with in vivo consequences of altered pre-mRNA splicing and poly(A) tail length control. As further evidence linking Nab2 proteins to splicing, an unbiased proteomic analysis of vertebrate Nab2, ZC3H14, identifies physical interactions with numerous components of the spliceosome. We validated the interaction between ZC3H14 and U2AF2/U2AF65 Taking all the findings into consideration, we present a model where Nab2/ZC3H14 interacts with spliceosome components to allow proper coupling of splicing with subsequent mRNA processing steps contributing to a kinetic proofreading step that allows properly processed mRNA to exit the nucleus and escape Rrp6-dependent degradation.
Collapse
|
42
|
Srivas R, Shen JP, Yang CC, Sun SM, Li J, Gross AM, Jensen J, Licon K, Bojorquez-Gomez A, Klepper K, Huang J, Pekin D, Xu JL, Yeerna H, Sivaganesh V, Kollenstart L, van Attikum H, Aza-Blanc P, Sobol RW, Ideker T. A Network of Conserved Synthetic Lethal Interactions for Exploration of Precision Cancer Therapy. Mol Cell 2016; 63:514-25. [PMID: 27453043 DOI: 10.1016/j.molcel.2016.06.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/03/2016] [Accepted: 06/15/2016] [Indexed: 01/06/2023]
Abstract
An emerging therapeutic strategy for cancer is to induce selective lethality in a tumor by exploiting interactions between its driving mutations and specific drug targets. Here we use a multi-species approach to develop a resource of synthetic lethal interactions relevant to cancer therapy. First, we screen in yeast ∼169,000 potential interactions among orthologs of human tumor suppressor genes (TSG) and genes encoding drug targets across multiple genotoxic environments. Guided by the strongest signal, we evaluate thousands of TSG-drug combinations in HeLa cells, resulting in networks of conserved synthetic lethal interactions. Analysis of these networks reveals that interaction stability across environments and shared gene function increase the likelihood of observing an interaction in human cancer cells. Using these rules, we prioritize ∼10(5) human TSG-drug combinations for future follow-up. We validate interactions based on cell and/or patient survival, including topoisomerases with RAD17 and checkpoint kinases with BLM.
Collapse
Affiliation(s)
- Rohith Srivas
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; The Cancer Cell Map Initiative
| | - John Paul Shen
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; The Cancer Cell Map Initiative
| | - Chih Cheng Yang
- Functional Genomics Core, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Su Ming Sun
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Jianfeng Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Andrew M Gross
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Jensen
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine Licon
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Bojorquez-Gomez
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kristin Klepper
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Justin Huang
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Pekin
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jia L Xu
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Huwate Yeerna
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Vignesh Sivaganesh
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Leonie Kollenstart
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Pedro Aza-Blanc
- Functional Genomics Core, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Robert W Sobol
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; The Cancer Cell Map Initiative.
| |
Collapse
|
43
|
Kuzmin E, Costanzo M, Andrews B, Boone C. Synthetic Genetic Arrays: Automation of Yeast Genetics. Cold Spring Harb Protoc 2016; 2016:pdb.top086652. [PMID: 27037078 DOI: 10.1101/pdb.top086652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genome-sequencing efforts have led to great strides in the annotation of protein-coding genes and other genomic elements. The current challenge is to understand the functional role of each gene and how genes work together to modulate cellular processes. Genetic interactions define phenotypic relationships between genes and reveal the functional organization of a cell. Synthetic genetic array (SGA) methodology automates yeast genetics and enables large-scale and systematic mapping of genetic interaction networks in the budding yeast,Saccharomyces cerevisiae SGA facilitates construction of an output array of double mutants from an input array of single mutants through a series of replica pinning steps. Subsequent analysis of genetic interactions from SGA-derived mutants relies on accurate quantification of colony size, which serves as a proxy for fitness. Since its development, SGA has given rise to a variety of other experimental approaches for functional profiling of the yeast genome and has been applied in a multitude of other contexts, such as genome-wide screens for synthetic dosage lethality and integration with high-content screening for systematic assessment of morphology defects. SGA-like strategies can also be implemented similarly in a number of other cell types and organisms, includingSchizosaccharomyces pombe,Escherichia coli, Caenorhabditis elegans, and human cancer cell lines. The genetic networks emerging from these studies not only generate functional wiring diagrams but may also play a key role in our understanding of the complex relationship between genotype and phenotype.
Collapse
Affiliation(s)
- Elena Kuzmin
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario M5S 3E1, Canada
| | - Michael Costanzo
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario M5S 3E1, Canada
| | - Brenda Andrews
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
44
|
Kopytova D, Popova V, Kurshakova M, Shidlovskii Y, Nabirochkina E, Brechalov A, Georgiev G, Georgieva S. ORC interacts with THSC/TREX-2 and its subunits promote Nxf1 association with mRNP and mRNA export in Drosophila. Nucleic Acids Res 2016; 44:4920-33. [PMID: 27016737 PMCID: PMC4889942 DOI: 10.1093/nar/gkw192] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
The origin recognition complex (ORC) of eukaryotes associates with the replication origins and initiates the pre-replication complex assembly. In the literature, there are several reports of interaction of ORC with different RNAs. Here, we demonstrate for the first time a direct interaction of ORC with the THSC/TREX-2 mRNA nuclear export complex. The THSC/TREX-2 was purified from the Drosophila embryonic extract and found to bind with a fraction of the ORC. This interaction occurred via several subunits and was essential for Drosophila viability. Also, ORC was associated with mRNP, which was facilitated by TREX-2. ORC subunits interacted with the Nxf1 receptor mediating the bulk mRNA export. The knockdown of Orc5 led to a drop in the Nxf1 association with mRNP, while Orc3 knockdown increased the level of mRNP-bound Nxf1. The knockdown of Orc5, Orc3 and several other ORC subunits led to an accumulation of mRNA in the nucleus, suggesting that ORC participates in the regulation of the mRNP export.
Collapse
Affiliation(s)
- Daria Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Varvara Popova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria Kurshakova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Yulii Shidlovskii
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena Nabirochkina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander Brechalov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Georgii Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Sofia Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
45
|
Kragelund BB, Schenstrøm SM, Rebula CA, Panse VG, Hartmann-Petersen R. DSS1/Sem1, a Multifunctional and Intrinsically Disordered Protein. Trends Biochem Sci 2016; 41:446-459. [PMID: 26944332 DOI: 10.1016/j.tibs.2016.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/24/2023]
Abstract
DSS1/Sem1 is a versatile intrinsically disordered protein. Besides being a bona fide subunit of the 26S proteasome, DSS1 associates with other protein complexes, including BRCA2-RPA, involved in homologous recombination; the Csn12-Thp3 complex, involved in RNA splicing; the integrator, involved in transcription; and the TREX-2 complex, involved in nuclear export of mRNA and transcription elongation. As a subunit of the proteasome, DSS1 functions both in complex assembly and possibly as a ubiquitin receptor. Here, we summarise structural and functional aspects of DSS1/Sem1 with particular emphasis on its multifunctional and disordered properties. We suggest that DSS1/Sem1 can act as a polyanionic adhesive to prevent nonproductive interactions during construction of protein assemblies, uniquely employing different structures when associating with the diverse multisubunit complexes.
Collapse
Affiliation(s)
- Birthe B Kragelund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Signe M Schenstrøm
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Caio A Rebula
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Vikram Govind Panse
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Rasmus Hartmann-Petersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
46
|
Bhat W, Ahmad S, Côté J. TINTIN, at the interface of chromatin, transcription elongation, and mRNA processing. RNA Biol 2016; 12:486-9. [PMID: 25775193 DOI: 10.1080/15476286.2015.1026032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent work including high-resolution genome-wide analysis uncovered a new trimeric complex involved in transcription elongation, both as an integral part of the NuA4 histone acetyltransferase and as an independent functional entity. The complex is conserved in eukaryotes and is named TINTIN, for Trimer Independent of NuA4 for transcription Interactions with Nucleosomes. This point of view covers the current knowledge regarding TINTIN's function in modulating chromatin structure and influencing transcription elongation in eukaryotes. It also points to several physical and functional links to co-transcriptional processes, including interactions with the mRNA splicing machinery and the nuclear exosome.
Collapse
Affiliation(s)
- Wajid Bhat
- a St-Patrick Research Group in Basic Oncology; Laval University Cancer Research Center; CHU de Quebec Research Center-Oncology Axis; Hôtel-Dieu de Québec (CHU de Québec) ; Quebec City , Quebec , Canada
| | | | | |
Collapse
|
47
|
Li P, Noegel AA. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export. Nucleic Acids Res 2015; 43:9874-88. [PMID: 26476453 PMCID: PMC4787764 DOI: 10.1093/nar/gkv1058] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 10/01/2015] [Indexed: 11/12/2022] Open
Abstract
Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153.
Collapse
Affiliation(s)
- Ping Li
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| |
Collapse
|
48
|
Low-Rank and Sparse Matrix Decomposition for Genetic Interaction Data. BIOMED RESEARCH INTERNATIONAL 2015; 2015:573956. [PMID: 26273633 PMCID: PMC4529927 DOI: 10.1155/2015/573956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/13/2015] [Indexed: 11/28/2022]
Abstract
Background. Epistatic miniarray profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. One approach to analyze EMAP data is to identify gene modules with densely interacting genes. In addition, genetic interaction score (S score) reflects the degree of synergizing or mitigating effect of two mutants, which is also informative. Statistical approaches that exploit both modularity and the pairwise interactions may provide more insight into the underlying biology. However, the high missing rate in EMAP data hinders the development of such approaches. To address the above problem, we adopted the matrix decomposition methodology “low-rank and sparse decomposition” (LRSDec) to decompose EMAP data matrix into low-rank part and sparse part. Results. LRSDec has been demonstrated as an effective technique for analyzing EMAP data. We applied a synthetic dataset and an EMAP dataset studying RNA-related processes in Saccharomyces cerevisiae. Global views of the genetic cross talk between different RNA-related protein complexes and processes have been structured, and novel functions of genes have been predicted.
Collapse
|
49
|
Zhao W, Vaithiyalingam S, San Filippo J, Maranon DG, Jimenez-Sainz J, Fontenay GV, Kwon Y, Leung SG, Lu L, Jensen RB, Chazin WJ, Wiese C, Sung P. Promotion of BRCA2-Dependent Homologous Recombination by DSS1 via RPA Targeting and DNA Mimicry. Mol Cell 2015; 59:176-87. [PMID: 26145171 PMCID: PMC4506714 DOI: 10.1016/j.molcel.2015.05.032] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/21/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
The tumor suppressor BRCA2 is thought to facilitate the handoff of ssDNA from replication protein A (RPA) to the RAD51 recombinase during DNA break and replication fork repair by homologous recombination. However, we find that RPA-RAD51 exchange requires the BRCA2 partner DSS1. Biochemical, structural, and in vivo analyses reveal that DSS1 allows the BRCA2-DSS1 complex to physically and functionally interact with RPA. Mechanistically, DSS1 acts as a DNA mimic to attenuate the affinity of RPA for ssDNA. A mutation in the solvent-exposed acidic domain of DSS1 compromises the efficacy of RPA-RAD51 exchange. Thus, by targeting RPA and mimicking DNA, DSS1 functions with BRCA2 in a two-component homologous recombination mediator complex in genome maintenance and tumor suppression. Our findings may provide a paradigm for understanding the roles of DSS1 in other biological processes.
Collapse
Affiliation(s)
- Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sivaraja Vaithiyalingam
- Departments of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Joseph San Filippo
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gerald V Fontenay
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stanley G Leung
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lucy Lu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
50
|
Wickramasinghe VO, Laskey RA. Control of mammalian gene expression by selective mRNA export. Nat Rev Mol Cell Biol 2015; 16:431-42. [PMID: 26081607 DOI: 10.1038/nrm4010] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nuclear export of mRNAs is a crucial step in the regulation of gene expression, linking transcription in the nucleus to translation in the cytoplasm. Although important components of the mRNA export machinery are well characterized, such as transcription-export complexes TREX and TREX-2, recent work has shown that, in some instances, mammalian mRNA export can be selective and can regulate crucial biological processes such as DNA repair, gene expression, maintenance of pluripotency, haematopoiesis, proliferation and cell survival. Such findings show that mRNA export is an unexpected, yet potentially important, mechanism for the control of gene expression and of the mammalian transcriptome.
Collapse
Affiliation(s)
- Vihandha O Wickramasinghe
- Medical Research Centre (MRC) Cancer Unit, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Ronald A Laskey
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|