1
|
Liao Q, Wang X. Using Chromosome Conformation Capture Combined with Deep Sequencing (Hi-C) to Study Genome Organization in Bacteria. Methods Mol Biol 2025; 2866:231-243. [PMID: 39546206 DOI: 10.1007/978-1-0716-4192-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Genome organization is fundamental to all living organisms. Long DNA molecules are organized in hierarchical orders to be accommodated into eukaryotic nuclei or bacterial cells, which are thousands of folds shorter. Over the past two decades, chromosome conformation capture (3C) techniques substantially advanced our understanding of genome folding inside cells. 3C involves crosslinking and proximity ligation, and quantifies the physical contacts between two DNA regions within the genome. Coupled with high-throughput sequencing, 3C-seq and Hi-C techniques detect genome-wide DNA interactions, providing a comprehensive view of global genome organization. Here, we describe a detailed method to prepare Hi-C libraries using Bacillus subtilis, which includes procedures of crosslinking chromatin, digesting the crosslinked genome, labeling DNA ends with biotin, ligating DNA, and preparing the DNA library for sequencing using an Illumina platform.
Collapse
Affiliation(s)
- Qin Liao
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
2
|
Golov AK, Gavrilov AA, Kaplan N, Razin SV. A genome-wide nucleosome-resolution map of promoter-centered interactions in human cells corroborates the enhancer-promoter looping model. eLife 2024; 12:RP91596. [PMID: 39688903 DOI: 10.7554/elife.91596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
The enhancer-promoter looping model, in which enhancers activate their target genes via physical contact, has long dominated the field of gene regulation. However, the ubiquity of this model has been questioned due to evidence of alternative mechanisms and the lack of its systematic validation, primarily owing to the absence of suitable experimental techniques. In this study, we present a new MNase-based proximity ligation method called MChIP-C, allowing for the measurement of protein-mediated chromatin interactions at single-nucleosome resolution on a genome-wide scale. By applying MChIP-C to study H3K4me3 promoter-centered interactions in K562 cells, we found that it had greatly improved resolution and sensitivity compared to restriction endonuclease-based C-methods. This allowed us to identify EP300 histone acetyltransferase and the SWI/SNF remodeling complex as potential candidates for establishing and/or maintaining enhancer-promoter interactions. Finally, leveraging data from published CRISPRi screens, we found that most functionally verified enhancers do physically interact with their cognate promoters, supporting the enhancer-promoter looping model.
Collapse
Affiliation(s)
- Arkadiy K Golov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Noam Kaplan
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
3
|
Xu Y, Das P, McCord RP, Shen T. Node features of chromosome structure networks and their connections to genome annotation. Comput Struct Biotechnol J 2024; 23:2240-2250. [PMID: 38827231 PMCID: PMC11140560 DOI: 10.1016/j.csbj.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
The 3D conformations of chromosomes can encode biological significance, and the implications of such structures have been increasingly appreciated recently. Certain chromosome structural features, such as A/B compartmentalization, are frequently extracted from Hi-C pairwise genome contact information (physical association between different regions of the genome) and compared with linear annotations of the genome, such as histone modifications and lamina association. We investigate how additional properties of chromosome structure can be deduced using an abstract graph representation of the contact heatmap, and describe specific network properties that can have a strong connection with some of these biological annotations. We constructed chromosome structure networks (CSNs) from bulk Hi-C data and calculated a set of site-resolved (node-based) network properties. These properties are useful for characterizing certain aspects of chromosomal structure. We examined the ability of network properties to differentiate several scenarios, such as haploid vs diploid cells, partially inverted nuclei vs conventional architecture, depletion of chromosome architectural proteins, and structural changes during cell development. We also examined the connection between network properties and a series of other linear annotations, such as histone modifications and chromatin states including poised promoter and enhancer labels. We found that semi-local network properties exhibit greater capability in characterizing genome annotations compared to diffusive or ultra-local node features. For example, the local square clustering coefficient can be a strong classifier of lamina-associated domains. We demonstrated that network properties can be useful for highlighting large-scale chromosome structure differences that emerge in different biological situations.
Collapse
Affiliation(s)
- Yingjie Xu
- Graduate School of Genome Science & Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Priyojit Das
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
4
|
Fleck K, Luria V, Garag N, Karger A, Hunter T, Marten D, Phu W, Nam KM, Sestan N, O’Donnell-Luria AH, Erceg J. Functional associations of evolutionarily recent human genes exhibit sensitivity to the 3D genome landscape and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585403. [PMID: 38559085 PMCID: PMC10980080 DOI: 10.1101/2024.03.17.585403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Genome organization is intricately tied to regulating genes and associated cell fate decisions. Here, we examine the positioning and functional significance of human genes, grouped by their lineage restriction level, within the 3D organization of the genome. We reveal that genes of different lineage restriction levels have distinct positioning relationships with both domains and loop anchors, and remarkably consistent relationships with boundaries across cell types. While the functional associations of each group of genes are primarily cell type-specific, associations of conserved genes maintain greater stability across 3D genomic features and disease than recently evolved genes. Furthermore, the expression of these genes across various tissues follows an evolutionary progression, such that RNA levels increase from young lineage restricted genes to ancient genes present in most species. Thus, the distinct relationships of gene evolutionary age, function, and positioning within 3D genomic features contribute to tissue-specific gene regulation in development and disease.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nitanta Garag
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Amir Karger
- IT-Research Computing, Harvard Medical School, Boston, MA 02115, USA
| | - Trevor Hunter
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Daniel Marten
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - William Phu
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kee-Myoung Nam
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anne H. O’Donnell-Luria
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
5
|
Joyeux M. Transcribing RNA polymerases: Dynamics of twin supercoiled domains. Biophys J 2024; 123:3898-3910. [PMID: 39367604 PMCID: PMC11617637 DOI: 10.1016/j.bpj.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024] Open
Abstract
Gene transcription by an RNA polymerase (RNAP) enzyme requires that double-stranded DNA be locally and transiently opened, which results in an increase of DNA supercoiling downstream of the RNAP and a decrease of supercoiling upstream of it. When the DNA is initially torsionally relaxed and the RNAP experiences sufficiently large rotational drag, these variations lead to positively supercoiled plectonemes ahead of the RNAPs and negatively supercoiled ones behind it, a feature known as "twin supercoiled domain" (TSD). This work aims at deciphering into some more detail the torsional dynamics of circular DNA molecules being transcribed by RNAP enzymes. To this end, we performed Brownian dynamics simulations with a specially designed coarse-grained model. Depending on the superhelical density of the DNA molecule and the ratio of RNAP's twist injection rate and rotational relaxation speed, simulations reveal a rich panel of behaviors, which sometimes differ markedly from the crude TSD picture. In particular, for sufficiently slow rotational relaxation speed, positively supercoiled plectonemes never form ahead of an RNAP that transcribes a DNA molecule with physiological negative supercoiling. Rather, negatively supercoiled plectonemes form almost periodically at the upstream side of the RNAP and grow up to a certain length before detaching from the RNAP and destabilizing rapidly. The extent to which topological barriers hinder the dynamics of TSDs is also discussed.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique, CNRS and Université Grenoble Alpes, St Martin d'Hères, France.
| |
Collapse
|
6
|
Park G, Cho WK. Visualization of endogenous enhancer-promoter interactions in a single nucleus through chromatin labeling. Mol Cells 2024; 47:100121. [PMID: 39384070 PMCID: PMC11538945 DOI: 10.1016/j.mocell.2024.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Recent studies highlight the critical role of nuclear genome organization in regulating gene expression. Dynamic changes in the hierarchical structure of chromatin modulate transcription by influencing the recruitment of transcription factors and altering the epigenetic landscape. Among these regulatory mechanisms, enhancer-promoter (E-P) interactions are of particular importance. Enhancers physically interact with the promoters of target genes, a process mediated by various coactivators, which facilitates the transfer of enhancer-bound transcription factors and ultimately leads to transcriptional bursting. While next-generation sequencing techniques have provided significant insights into the features of E-P interactions, the effects of cell-to-cell heterogeneity and the physical dynamics of these interactions remain poorly understood due to the lack of spatiotemporal information. In this article, we introduce a platform that enables imaging-based approaches to visualize E-P interactions at the single-cell level.
Collapse
Affiliation(s)
- Gunhee Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141 Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141 Korea; KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
7
|
Rahmaninejad H, Xiao Y, Tortora MMC, Fudenberg G. Dynamic barriers modulate cohesin positioning and genome folding at fixed occupancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617113. [PMID: 39416077 PMCID: PMC11482749 DOI: 10.1101/2024.10.08.617113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In mammalian interphase cells, genomes are folded by cohesin loop extrusion limited by directional CTCF barriers. This interplay leads to the enrichment of cohesin at barriers, isolation between neighboring topologically associating domains, and elevated contact frequency between convergent CTCF barriers across the genome. However, recent in vivo measurements present a puzzle: reported residence times for CTCF on chromatin are in the range of a few minutes, while lifetimes for cohesin are much longer. Can the observed features of genome folding result from the action of relatively transient barriers? To address this question, we developed a dynamic barrier model, where CTCF sites switch between bound and unbound states with rates that can be directly compared with biophysical measurements. Using this model, we investigated how barrier dynamics would impact observables for a range of experimental genomic and imaging datasets, including ChIP-seq, Hi-C, and microscopy. We found the interplay of CTCF and cohesin binding timescales influence the strength of each of these features, leaving a signature of barrier dynamics even in the population-averaged snapshots offered by genomic datasets. First, in addition to barrier occupancy, barrier bound times are crucial for instructing features of genome folding. Second, the ratio of boundary to extruder lifetime greatly alters simulated ChIP-seq and simulated Hi-C. Third, large-scale changes in chromosome morphology observed experimentally after increasing extruder lifetime require dynamic barriers. By integrating multiple sources of experimental data, our biophysical model argues that CTCF barrier bound times effectively approach those of cohesin extruder lifetimes. Together, we demonstrate how models that are informed by biophysically measured protein dynamics broaden our understanding of genome folding.
Collapse
Affiliation(s)
- Hadi Rahmaninejad
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Yao Xiao
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Maxime M C Tortora
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
8
|
De Corato M, Gomez-Benito MJ. Interplay of chromatin organization and mechanics of the cell nucleus. Biophys J 2024; 123:3386-3396. [PMID: 39126157 PMCID: PMC11480768 DOI: 10.1016/j.bpj.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
The nucleus of eukaryotic cells is constantly subjected to different kinds of mechanical stimuli, which can impact the organization of chromatin and, subsequently, the expression of genetic information. Experiments from different groups showed that nuclear deformation can lead to transient or permanent condensation or decondensation of chromatin and the mechanical activation of genes, thus altering the transcription of proteins. Changes in chromatin organization, in turn, change the mechanical properties of the nucleus, possibly leading to an auxetic behavior. Here, we model the mechanics of the nucleus as a chemically active polymer gel in which the chromatin can exist in two states: a self-attractive state representing the heterochromatin and a repulsive state representing euchromatin. The model predicts reversible or irreversible changes in chromatin condensation levels upon external deformations of the nucleus. We find an auxetic response for a broad range of parameters under small and large deformations. These results agree with experimental observations and highlight the key role of chromatin organization in the mechanical response of the nucleus.
Collapse
Affiliation(s)
- Marco De Corato
- Department of Science and Technology of Materials and Fluids, Fluid Dynamics Technology Group (TFD), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| | - Maria Jose Gomez-Benito
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
9
|
Kawasaki K, Fukaya T. Regulatory landscape of enhancer-mediated transcriptional activation. Trends Cell Biol 2024; 34:826-837. [PMID: 38355349 DOI: 10.1016/j.tcb.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Enhancers are noncoding regulatory elements that instruct spatial and temporal specificity of gene transcription in response to a variety of intrinsic and extrinsic signals during development. Although it has long been postulated that enhancers physically interact with target promoters through the formation of stable loops, recent studies have changed this static view: sequence-specific transcription factors (TFs) and coactivators are dynamically recruited to enhancers and assemble so-called transcription hubs. Dynamic assembly of transcription hubs appears to serve as a key scaffold to integrate regulatory information encoded by surrounding genome and biophysical properties of transcription machineries. In this review, we outline emerging new models of transcriptional regulation by enhancers and discuss future perspectives.
Collapse
Affiliation(s)
- Koji Kawasaki
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
10
|
Das P, San Martin R, Hong T, McCord RP. Rearrangement of 3D genome organization in breast cancer epithelial - mesenchymal transition and metastasis organotropism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609227. [PMID: 39229150 PMCID: PMC11370564 DOI: 10.1101/2024.08.23.609227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Breast cancer cells exhibit organotropism during metastasis, showing preferential homing to certain organs such as bone, lung, liver, and brain. One potential explanation for this organotropic behavior is that cancer cells gain properties that enable thriving in certain microenvironments. Such specific metastatic traits may arise from gene regulation at the primary tumor site. Spatial genome organization plays a crucial role in oncogenic transformation and progression, but the extent to which chromosome architecture contributes to organ-specific metastatic traits is unclear. This work characterizes chromosome architecture changes associated with organotropic metastatic traits. By comparing a collection of genomic data from different subtypes of localized and lung metastatic breast cancer cells with both normal and cancerous lung cells, we find important trends of genomic reorganization. The most striking differences in 3D genome compartments segregate cell types according to their epithelial vs. mesenchymal status. This EMT compartment signature occurs at genomic regions distinct from transcription-defined EMT signatures, suggesting a separate layer of regulation. Specifically querying organotropism, we find 3D genome changes consistent with adaptations needed to survive in a new microenvironment, with lung metastatic breast cells exhibiting compartment switch signatures that shift the genome architecture to a lung cell-like conformation and brain metastatic prostate cancer cells showing compartment shifts toward a brain-like state. TCGA patient data reveals gene expression changes concordant with these organ-permissive compartment changes. These results suggest that genome architecture provides an additional level of cell fate specification informing organotropism and enabling survival at the metastatic site.
Collapse
|
11
|
Tortora MMC, Fudenberg G. The physical chemistry of interphase loop extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609419. [PMID: 39229088 PMCID: PMC11370536 DOI: 10.1101/2024.08.23.609419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Loop extrusion constitutes a universal mechanism of genome organization, whereby structural maintenance of chromosomes (SMC) protein complexes load onto the chromatin fiber and generate DNA loops of increasingly-larger sizes until their eventual release. In mammalian interphase cells, loop extrusion is mediated by the cohesin complex, which is dynamically regulated by the interchange of multiple accessory proteins. Although these regulators bind the core cohesin complex only transiently, their disruption can dramatically alter cohesin dynamics, gene expression, chromosome morphology and contact patterns. Still, a theory of how cohesin regulators and their molecular interplay with the core complex modulate genome folding remains at large. Here we derive a model of cohesin loop extrusion from first principles, based on in vivo measurements of the abundance and dynamics of cohesin regulators. We systematically evaluate potential chemical reaction networks that describe the association of cohesin with its regulators and with the chromatin fiber. Remarkably, experimental observations are consistent with only a single biochemical reaction cycle, which results in a unique minimal model that may be fully parameterized by quantitative protein measurements. We demonstrate how distinct roles for cohesin regulators emerge simply from the structure of the reaction network, and how their dynamic exchange can regulate loop extrusion kinetics over time-scales that far exceed their own chromatin residence times. By embedding our cohesin biochemical reaction network within biophysical chromatin simulations, we evidence how variations in regulatory protein abundance can alter chromatin architecture across multiple length- and time-scales. Predictions from our model are corroborated by biophysical and biochemical assays, optical microscopy observations, and Hi-C conformation capture techniques. More broadly, our theoretical and numerical framework bridges the gap between in vitro observations of extrusion motor dynamics at the molecular scale and their structural consequences at the genome-wide level.
Collapse
Affiliation(s)
- Maxime M C Tortora
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
12
|
Steinek C, Guirao-Ortiz M, Stumberger G, Tölke AJ, Hörl D, Carell T, Harz H, Leonhardt H. Generation of densely labeled oligonucleotides for the detection of small genomic elements. CELL REPORTS METHODS 2024; 4:100840. [PMID: 39137784 PMCID: PMC11384094 DOI: 10.1016/j.crmeth.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The genome contains numerous regulatory elements that may undergo complex interactions and contribute to the establishment, maintenance, and change of cellular identity. Three-dimensional genome organization can be explored with fluorescence in situ hybridization (FISH) at the single-cell level, but the detection of small genomic loci remains challenging. Here, we provide a rapid and simple protocol for the generation of bright FISH probes suited for the detection of small genomic elements. We systematically optimized probe design and synthesis, screened polymerases for their ability to incorporate dye-labeled nucleotides, and streamlined purification conditions to yield nanoscopy-compatible oligonucleotides with dyes in variable arrays (NOVA probes). With these probes, we detect genomic loci ranging from genome-wide repetitive regions down to non-repetitive loci below the kilobase scale. In conclusion, we introduce a simple workflow to generate densely labeled oligonucleotide pools that facilitate detection and nanoscopic measurements of small genomic elements in single cells.
Collapse
Affiliation(s)
- Clemens Steinek
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Miguel Guirao-Ortiz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Gabriela Stumberger
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Annika J Tölke
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - David Hörl
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hartmann Harz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
13
|
Lao Z, Kamat KD, Jiang Z, Zhang B. OpenNucleome for high-resolution nuclear structural and dynamical modeling. eLife 2024; 13:RP93223. [PMID: 39146200 PMCID: PMC11326778 DOI: 10.7554/elife.93223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
The intricate structural organization of the human nucleus is fundamental to cellular function and gene regulation. Recent advancements in experimental techniques, including high-throughput sequencing and microscopy, have provided valuable insights into nuclear organization. Computational modeling has played significant roles in interpreting experimental observations by reconstructing high-resolution structural ensembles and uncovering organization principles. However, the absence of standardized modeling tools poses challenges for furthering nuclear investigations. We present OpenNucleome-an open-source software designed for conducting GPU-accelerated molecular dynamics simulations of the human nucleus. OpenNucleome offers particle-based representations of chromosomes at a resolution of 100 KB, encompassing nuclear lamina, nucleoli, and speckles. This software furnishes highly accurate structural models of nuclear architecture, affording the means for dynamic simulations of condensate formation, fusion, and exploration of non-equilibrium effects. We applied OpenNucleome to uncover the mechanisms driving the emergence of 'fixed points' within the nucleus-signifying genomic loci robustly anchored in proximity to specific nuclear bodies for functional purposes. This anchoring remains resilient even amidst significant fluctuations in chromosome radial positions and nuclear shapes within individual cells. Our findings lend support to a nuclear zoning model that elucidates genome functionality. We anticipate OpenNucleome to serve as a valuable tool for nuclear investigations, streamlining mechanistic explorations and enhancing the interpretation of experimental observations.
Collapse
Affiliation(s)
- Zhuohan Lao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Kartik D Kamat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Zhongling Jiang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
14
|
Li H, Li D, Humphreys BD. Chromatin conformation and histone modification profiling across human kidney anatomic regions. Sci Data 2024; 11:797. [PMID: 39025878 PMCID: PMC11258246 DOI: 10.1038/s41597-024-03648-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The three major anatomic regions of the human kidney include the cortex, medulla and papilla, with different functions and vulnerabilities to kidney diseases. Epigenetic mechanisms underlying these anatomic structures are incompletely understood. Here, we performed chromatin conformation capture with Hi-C and histone modification H3K4me3/H3K27me3 Cleavage Under Targets and Release Using Nuclease (CUT&RUN) sequencing on the kidney cortex, medulla and papilla dissected from one individual donor. Nuclear suspensions were generated from each region and split subjected to paired Hi-C and CUT&RUN sequencing. We evaluated the quality of next-generation sequencing data, Hi-C chromatin contact matrices and CUT&RUN peak calling. H3K4me3 and H3K27me3 histone modifications represent active and repressive gene transcription, respectively, and differences in chromatin conformation between kidney regions can be analyzed with this dataset. All raw and processed data files are publicly available, allowing researchers to survey the epigenetic landscape across regional human kidney anatomy.
Collapse
Affiliation(s)
- Haikuo Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Dian Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
15
|
Yang JH, Hansen AS. Enhancer selectivity in space and time: from enhancer-promoter interactions to promoter activation. Nat Rev Mol Cell Biol 2024; 25:574-591. [PMID: 38413840 PMCID: PMC11574175 DOI: 10.1038/s41580-024-00710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
The primary regulators of metazoan gene expression are enhancers, originally functionally defined as DNA sequences that can activate transcription at promoters in an orientation-independent and distance-independent manner. Despite being crucial for gene regulation in animals, what mechanisms underlie enhancer selectivity for promoters, and more fundamentally, how enhancers interact with promoters and activate transcription, remain poorly understood. In this Review, we first discuss current models of enhancer-promoter interactions in space and time and how enhancers affect transcription activation. Next, we discuss different mechanisms that mediate enhancer selectivity, including repression, biochemical compatibility and regulation of 3D genome structure. Through 3D polymer simulations, we illustrate how the ability of 3D genome folding mechanisms to mediate enhancer selectivity strongly varies for different enhancer-promoter interaction mechanisms. Finally, we discuss how recent technical advances may provide new insights into mechanisms of enhancer-promoter interactions and how technical biases in methods such as Hi-C and Micro-C and imaging techniques may affect their interpretation.
Collapse
Affiliation(s)
- Jin H Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
16
|
Syal K. Title-Evaluation of Interplay of Gene Expression and Chromosome Structure in E. coli Growth: Regulatory Insights. Curr Microbiol 2024; 81:235. [PMID: 38907057 DOI: 10.1007/s00284-024-03773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Affiliation(s)
- Kirtimaan Syal
- Genetics and Molecular Microbiology Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
17
|
Hayward-Lara G, Fischer MD, Mir M. Dynamic microenvironments shape nuclear organization and gene expression. Curr Opin Genet Dev 2024; 86:102177. [PMID: 38461773 PMCID: PMC11162947 DOI: 10.1016/j.gde.2024.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Live imaging has revealed that the regulation of gene expression is largely driven by transient interactions. For example, many regulatory proteins bind chromatin for just seconds, and loop-like genomic contacts are rare and last only minutes. These discoveries have been difficult to reconcile with our canonical models that are predicated on stable and hierarchical interactions. Proteomic microenvironments that concentrate nuclear factors may explain how brief interactions can still mediate gene regulation by creating conditions where reactions occur more frequently. Here, we summarize new imaging technologies and recent discoveries implicating microenvironments as a potential driver of nuclear function. Finally, we propose that key properties of proteomic microenvironments, such as their size, enrichment, and lifetimes, are directly linked to regulatory function.
Collapse
Affiliation(s)
- Gabriela Hayward-Lara
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. Philadelphia, PA 19104
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia. Philadelphia, PA 19104
- Developmental, Stem Cell, and Regenerative Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania. Philadelphia, PA 19104
| | - Matthew D. Fischer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. Philadelphia, PA 19104
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia. Philadelphia, PA 19104
| | - Mustafa Mir
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. Philadelphia, PA 19104
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia. Philadelphia, PA 19104
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania. Philadelphia, PA 19104
- Howard Hughes Medical Institute, Children’s Hospital of Philadelphia. Philadelphia, PA 19104
| |
Collapse
|
18
|
Kant A, Guo Z, Vinayak V, Neguembor MV, Li WS, Agrawal V, Pujadas E, Almassalha L, Backman V, Lakadamyali M, Cosma MP, Shenoy VB. Active transcription and epigenetic reactions synergistically regulate meso-scale genomic organization. Nat Commun 2024; 15:4338. [PMID: 38773126 PMCID: PMC11109243 DOI: 10.1038/s41467-024-48698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
In interphase nuclei, chromatin forms dense domains of characteristic sizes, but the influence of transcription and histone modifications on domain size is not understood. We present a theoretical model exploring this relationship, considering chromatin-chromatin interactions, histone modifications, and chromatin extrusion. We predict that the size of heterochromatic domains is governed by a balance among the diffusive flux of methylated histones sustaining them and the acetylation reactions in the domains and the process of loop extrusion via supercoiling by RNAPII at their periphery, which contributes to size reduction. Super-resolution and nano-imaging of five distinct cell lines confirm the predictions indicating that the absence of transcription leads to larger heterochromatin domains. Furthermore, the model accurately reproduces the findings regarding how transcription-mediated supercoiling loss can mitigate the impacts of excessive cohesin loading. Our findings shed light on the role of transcription in genome organization, offering insights into chromatin dynamics and potential therapeutic targets.
Collapse
Affiliation(s)
- Aayush Kant
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zixian Guo
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vinayak Vinayak
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Wing Shun Li
- Department of Applied Physics, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
| | - Vasundhara Agrawal
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Emily Pujadas
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
| | - Luay Almassalha
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Vadim Backman
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Melike Lakadamyali
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- ICREA, Barcelona, 08010, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Abdennur N, Abraham S, Fudenberg G, Flyamer IM, Galitsyna AA, Goloborodko A, Imakaev M, Oksuz BA, Venev SV, Xiao Y. Cooltools: Enabling high-resolution Hi-C analysis in Python. PLoS Comput Biol 2024; 20:e1012067. [PMID: 38709825 PMCID: PMC11098495 DOI: 10.1371/journal.pcbi.1012067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/16/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Chromosome conformation capture (3C) technologies reveal the incredible complexity of genome organization. Maps of increasing size, depth, and resolution are now used to probe genome architecture across cell states, types, and organisms. Larger datasets add challenges at each step of computational analysis, from storage and memory constraints to researchers' time; however, analysis tools that meet these increased resource demands have not kept pace. Furthermore, existing tools offer limited support for customizing analysis for specific use cases or new biology. Here we introduce cooltools (https://github.com/open2c/cooltools), a suite of computational tools that enables flexible, scalable, and reproducible analysis of high-resolution contact frequency data. Cooltools leverages the widely-adopted cooler format which handles storage and access for high-resolution datasets. Cooltools provides a paired command line interface (CLI) and Python application programming interface (API), which respectively facilitate workflows on high-performance computing clusters and in interactive analysis environments. In short, cooltools enables the effective use of the latest and largest genome folding datasets.
Collapse
Affiliation(s)
- Open2C
- https://open2c.github.io/
| | - Nezar Abdennur
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sameer Abraham
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Ilya M. Flyamer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Aleksandra A. Galitsyna
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Anton Goloborodko
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Maxim Imakaev
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Betul A. Oksuz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sergey V. Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Yao Xiao
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
20
|
Gómez Acuña LI, Flyamer I, Boyle S, Friman ET, Bickmore WA. Transcription decouples estrogen-dependent changes in enhancer-promoter contact frequencies and spatial proximity. PLoS Genet 2024; 20:e1011277. [PMID: 38781242 DOI: 10.1371/journal.pgen.1011277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/05/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
How enhancers regulate their target genes in the context of 3D chromatin organization is extensively studied and models which do not require direct enhancer-promoter contact have recently emerged. Here, we use the activation of estrogen receptor-dependent enhancers in a breast cancer cell line to study enhancer-promoter communication at two loci. This allows high temporal resolution tracking of molecular events from hormone stimulation to efficient gene activation. We examine how both enhancer-promoter spatial proximity assayed by DNA fluorescence in situ hybridization, and contact frequencies resulting from chromatin in situ fragmentation and proximity ligation, change dynamically during enhancer-driven gene activation. These orthogonal methods produce seemingly paradoxical results: upon enhancer activation enhancer-promoter contact frequencies increase while spatial proximity decreases. We explore this apparent discrepancy using different estrogen receptor ligands and transcription inhibitors. Our data demonstrate that enhancer-promoter contact frequencies are transcription independent whereas altered enhancer-promoter proximity depends on transcription. Our results emphasize that the relationship between contact frequencies and physical distance in the nucleus, especially over short genomic distances, is not always a simple one.
Collapse
Affiliation(s)
- Luciana I Gómez Acuña
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Ilya Flyamer
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Elias T Friman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Harju J, Broedersz CP. Physical models of bacterial chromosomes. Mol Microbiol 2024. [PMID: 38578226 DOI: 10.1111/mmi.15257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The interplay between bacterial chromosome organization and functions such as transcription and replication can be studied in increasing detail using novel experimental techniques. Interpreting the resulting quantitative data, however, can be theoretically challenging. In this minireview, we discuss how connecting experimental observations to biophysical theory and modeling can give rise to new insights on bacterial chromosome organization. We consider three flavors of models of increasing complexity: simple polymer models that explore how physical constraints, such as confinement or plectoneme branching, can affect bacterial chromosome organization; bottom-up mechanistic models that connect these constraints to their underlying causes, for instance, chromosome compaction to macromolecular crowding, or supercoiling to transcription; and finally, data-driven methods for inferring interpretable and quantitative models directly from complex experimental data. Using recent examples, we discuss how biophysical models can both deepen our understanding of how bacterial chromosomes are structured and give rise to novel predictions about bacterial chromosome organization.
Collapse
Affiliation(s)
- Janni Harju
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
22
|
Lao Z, Kamat K, Jiang Z, Zhang B. OpenNucleome for high resolution nuclear structural and dynamical modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562451. [PMID: 37905090 PMCID: PMC10614770 DOI: 10.1101/2023.10.16.562451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The intricate structural organization of the human nucleus is fundamental to cellular function and gene regulation. Recent advancements in experimental techniques, including high-throughput sequencing and microscopy, have provided valuable insights into nuclear organization. Computational modeling has played significant roles in interpreting experimental observations by reconstructing high-resolution structural ensembles and uncovering organization principles. However, the absence of standardized modeling tools poses challenges for furthering nuclear investigations. We present OpenNucleome-an open-source software designed for conducting GPU-accelerated molecular dynamics simulations of the human nucleus. OpenNucleome offers particle-based representations of chromosomes at a resolution of 100 KB, encompassing nuclear lamina, nucleoli, and speckles. This software furnishes highly accurate structural models of nuclear architecture, affording the means for dynamic simulations of condensate formation, fusion, and exploration of non-equilibrium effects. We applied OpenNucleome to uncover the mechanisms driving the emergence of "fixed points" within the nucleus-signifying genomic loci robustly anchored in proximity to specific nuclear bodies for functional purposes. This anchoring remains resilient even amidst significant fluctuations in chromosome radial positions and nuclear shapes within individual cells. Our findings lend support to a nuclear zoning model that elucidates genome functionality. We anticipate OpenNucleome to serve as a valuable tool for nuclear investigations, streamlining mechanistic explorations and enhancing the interpretation of experimental observations.
Collapse
Affiliation(s)
- Zhuohan Lao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kartik Kamat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhongling Jiang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
23
|
Liu R, Xu R, Yan S, Li P, Jia C, Sun H, Sheng K, Wang Y, Zhang Q, Guo J, Xin X, Li X, Guo D. Hi-C, a chromatin 3D structure technique advancing the functional genomics of immune cells. Front Genet 2024; 15:1377238. [PMID: 38586584 PMCID: PMC10995239 DOI: 10.3389/fgene.2024.1377238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
The functional performance of immune cells relies on a complex transcriptional regulatory network. The three-dimensional structure of chromatin can affect chromatin status and gene expression patterns, and plays an important regulatory role in gene transcription. Currently available techniques for studying chromatin spatial structure include chromatin conformation capture techniques and their derivatives, chromatin accessibility sequencing techniques, and others. Additionally, the recently emerged deep learning technology can be utilized as a tool to enhance the analysis of data. In this review, we elucidate the definition and significance of the three-dimensional chromatin structure, summarize the technologies available for studying it, and describe the research progress on the chromatin spatial structure of dendritic cells, macrophages, T cells, B cells, and neutrophils.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Dianhao Guo
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
24
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
25
|
Oberbeckmann E, Quililan K, Cramer P, Oudelaar AM. In vitro reconstitution of chromatin domains shows a role for nucleosome positioning in 3D genome organization. Nat Genet 2024; 56:483-492. [PMID: 38291333 PMCID: PMC10937381 DOI: 10.1038/s41588-023-01649-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Eukaryotic genomes are organized into chromatin domains. The molecular mechanisms driving the formation of these domains are difficult to dissect in vivo and remain poorly understood. Here we reconstitute Saccharomyces cerevisiae chromatin in vitro and determine its 3D organization at subnucleosome resolution by micrococcal nuclease-based chromosome conformation capture and molecular dynamics simulations. We show that regularly spaced and phased nucleosome arrays form chromatin domains in vitro that resemble domains in vivo. This demonstrates that neither loop extrusion nor transcription is required for basic domain formation in yeast. In addition, we find that the boundaries of reconstituted domains correspond to nucleosome-free regions and that insulation strength scales with their width. Finally, we show that domain compaction depends on nucleosome linker length, with longer linkers forming more compact structures. Together, our results demonstrate that regular nucleosome positioning is important for the formation of chromatin domains and provide a proof-of-principle for bottom-up 3D genome studies.
Collapse
Affiliation(s)
- Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany.
| | - Kimberly Quililan
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany
- The Francis Crick Institute, London, UK
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany.
| |
Collapse
|
26
|
Hung TC, Kingsley DM, Boettiger AN. Boundary stacking interactions enable cross-TAD enhancer-promoter communication during limb development. Nat Genet 2024; 56:306-314. [PMID: 38238628 DOI: 10.1038/s41588-023-01641-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024]
Abstract
Although promoters and their enhancers are frequently contained within a topologically associating domain (TAD), some developmentally important genes have their promoter and enhancers within different TADs. Hypotheses about molecular mechanisms enabling cross-TAD interactions remain to be assessed. To test these hypotheses, we used optical reconstruction of chromatin architecture to characterize the conformations of the Pitx1 locus on single chromosomes in developing mouse limbs. Our data support a model in which neighboring boundaries are stacked as a result of loop extrusion, bringing boundary-proximal cis-elements into contact. This stacking interaction also contributes to the appearance of architectural stripes in the population average maps. Through molecular dynamics simulations, we found that increasing boundary strengths facilitates the formation of the stacked boundary conformation, counter-intuitively facilitating border bypass. This work provides a revised view of the TAD borders' function, both facilitating and preventing cis-regulatory interactions, and introduces a framework to distinguish border-crossing from border-respecting enhancer-promoter pairs.
Collapse
Affiliation(s)
- Tzu-Chiao Hung
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alistair N Boettiger
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
27
|
Attar AG, Paturej J, Banigan EJ, Erbas A. Chromatin phase separation and nuclear shape fluctuations are correlated in a polymer model of the nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.16.571697. [PMID: 38168411 PMCID: PMC10760070 DOI: 10.1101/2023.12.16.571697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Abnormalities in the shapes of mammalian cell nuclei are hallmarks of a variety of diseases, including progeria, muscular dystrophy, and various cancers. Experiments have shown that there is a causal relationship between chromatin organization and nuclear morphology. Decreases in heterochromatin levels, perturbations to heterochromatin organization, and increases in euchromatin levels all lead to misshapen nuclei, which exhibit deformations, such as nuclear blebs and nuclear ruptures. However, the polymer physical mechanisms of how chromatin governs nuclear shape and integrity are poorly understood. To investigate how heterochromatin and euchromatin, which are thought to microphase separate in vivo , govern nuclear morphology, we implemented a composite coarse-grained polymer and elastic shell model. By varying chromatin volume fraction (density), heterochromatin levels and structure, and heterochromatin-lamina interactions, we show how the spatial organization of chromatin polymer phases within the nucleus could perturb nuclear shape in some scenarios. Increasing the volume fraction of chromatin in the cell nucleus stabilizes the nuclear lamina against large fluctuations. However, surprisingly, we find that increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations in our simulations by a "wetting"-like interaction. In contrast, shape fluctuations are largely insensitive to the internal structure of the heterochromatin, such as the presence or absence of chromatin-chromatin crosslinks. Therefore, our simulations suggest that heterochromatin accumulation at the nuclear periphery could perturb nuclear morphology in a nucleus or nuclear region that is sufficiently soft, while stabilization of the nucleus via heterochromatin likely occurs through mechanisms other than chromatin microphase organization.
Collapse
|
28
|
Ghani H, Pepke-Zaba J. Chronic Thromboembolic Pulmonary Hypertension: A Review of the Multifaceted Pathobiology. Biomedicines 2023; 12:46. [PMID: 38255153 PMCID: PMC10813488 DOI: 10.3390/biomedicines12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Chronic thromboembolic pulmonary disease results from the incomplete resolution of thrombi, leading to fibrotic obstructions. These vascular obstructions and additional microvasculopathy may lead to chronic thromboembolic pulmonary hypertension (CTEPH) with increased pulmonary arterial pressure and pulmonary vascular resistance, which, if left untreated, can lead to right heart failure and death. The pathobiology of CTEPH has been challenging to unravel due to its rarity, possible interference of results with anticoagulation, difficulty in selecting the most relevant study time point in relation to presentation with acute pulmonary embolism (PE), and lack of animal models. In this article, we review the most relevant multifaceted cross-talking pathogenic mechanisms and advances in understanding the pathobiology in CTEPH, as well as its challenges and future direction. There appears to be a genetic background affecting the relevant pathological pathways. This includes genetic associations with dysfibrinogenemia resulting in fibrinolysis resistance, defective angiogenesis affecting thrombus resolution, and inflammatory mediators driving chronic inflammation in CTEPH. However, these are not necessarily specific to CTEPH and some of the pathways are also described in acute PE or deep vein thrombosis. In addition, there is a complex interplay between angiogenic and inflammatory mediators driving thrombus non-resolution, endothelial dysfunction, and vascular remodeling. Furthermore, there are data to suggest that infection, the microbiome, circulating microparticles, and the plasma metabolome are contributing to the pathobiology of CTEPH.
Collapse
Affiliation(s)
- Hakim Ghani
- Pulmonary Vascular Disease Unit, Royal Papworth Hospital, Cambridge CB2 0AY, UK;
| | | |
Collapse
|
29
|
Aslhashemi A, Karamati MR, Motavalli H, Bastami M. Modeling of covalent modifications of histones to estimate the binding affinity. Chromosoma 2023; 132:247-256. [PMID: 37209163 DOI: 10.1007/s00412-023-00798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Covalent histone modifications such as methylation, acetylation, phosphorylation, and other epigenetic modifications of the chromatin play an essential role in regulating eukaryotic cells of which most of these reactions are catalyzed by the enzymes. The binding energy of enzymes is often determined by experimental data via mathematical and statistical models due to specific modifications. Many theoretical models have been introduced to study histone modifications and reprogramming experiments in mammalian cells, in which all efforts in determining the affinity binding are essential part of the work. Here, we introduce a one-dimensional statistical Potts model to accurately determine the enzyme's binding free energy using the experimental data for various types of cells. We study the methylation of lysine 4 and 27 on histone H3 and suppose that each histone has one modification site with one of the seven states: H3K27me3, H3K27me2, H3K27me1, unmodified, H3K4me1, H3K4me2, and H3K4me3. Based on this model, the histone covalent modification is described. Moreover, by using simulation data, the histone's binding free energy and the energy of chromatin states are determined, when they are subject to changes from unmodified to active or repressive states, by finding the probability of the transition.
Collapse
Affiliation(s)
- Ali Aslhashemi
- Faculty of Physics, University of Tabriz, Tabriz, 5167618949, Iran.
| | | | | | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Rapakoulia T, Lopez Ruiz De Vargas S, Omgba PA, Laupert V, Ulitsky I, Vingron M. CENTRE: a gradient boosting algorithm for Cell-type-specific ENhancer-Target pREdiction. Bioinformatics 2023; 39:btad687. [PMID: 37982748 PMCID: PMC10666202 DOI: 10.1093/bioinformatics/btad687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 11/21/2023] Open
Abstract
MOTIVATION Identifying target promoters of active enhancers is a crucial step for realizing gene regulation and deciphering phenotypes and diseases. Up to now, several computational methods were developed to predict enhancer gene interactions, but they require either many epigenomic and transcriptomic experimental assays to generate cell-type (CT)-specific predictions or a single experiment applied to a large cohort of CTs to extract correlations between activities of regulatory elements. Thus, inferring CT-specific enhancer gene interactions in unstudied or poorly annotated CTs becomes a laborious and costly task. RESULTS Here, we aim to infer CT-specific enhancer target interactions, using minimal experimental input. We introduce Cell-specific ENhancer Target pREdiction (CENTRE), a machine learning framework that predicts enhancer target interactions in a CT-specific manner, using only gene expression and ChIP-seq data for three histone modifications for the CT of interest. CENTRE exploits the wealth of available datasets and extracts cell-type agnostic statistics to complement the CT-specific information. CENTRE is thoroughly tested across many datasets and CTs and achieves equivalent or superior performance than existing algorithms that require massive experimental data. AVAILABILITY AND IMPLEMENTATION CENTRE's open-source code is available at GitHub via https://github.com/slrvv/CENTRE.
Collapse
Affiliation(s)
| | | | | | - Verena Laupert
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Igor Ulitsky
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
31
|
Chang LH, Ghosh S, Papale A, Luppino JM, Miranda M, Piras V, Degrouard J, Edouard J, Poncelet M, Lecouvreur N, Bloyer S, Leforestier A, Joyce EF, Holcman D, Noordermeer D. Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries. Nat Commun 2023; 14:5615. [PMID: 37699887 PMCID: PMC10497529 DOI: 10.1038/s41467-023-41265-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Topologically Associating Domains (TADs) separate vertebrate genomes into insulated regulatory neighborhoods that focus genome-associated processes. TADs are formed by Cohesin-mediated loop extrusion, with many TAD boundaries consisting of clustered binding sites of the CTCF insulator protein. Here we determine how this clustering of CTCF binding contributes to the blocking of loop extrusion and the insulation between TADs. We identify enrichment of three features of CTCF binding at strong TAD boundaries, consisting of strongly bound and closely spaced CTCF binding peaks, with a further enrichment of DNA-binding motifs within these peaks. Using multi-contact Nano-C analysis in cells with normal and perturbed CTCF binding, we establish that individual CTCF binding sites contribute to the blocking of loop extrusion, but in an incomplete manner. When clustered, individual CTCF binding sites thus create a stepwise insulation between neighboring TADs. Based on these results, we propose a model whereby multiple instances of temporal loop extrusion blocking create strong insulation between TADs.
Collapse
Affiliation(s)
- Li-Hsin Chang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, and National Institute of Health Research, Blood and Transplant Research Unit in Precision Cellular Therapeutics, OX3 9DS, Oxford, UK
| | - Sourav Ghosh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Department of Pathology and Laboratory Medicine, Western University, N6A3K7, London, ON, Canada
| | - Andrea Papale
- École Normale Supérieure, IBENS, Université PSL, 75005, Paris, France
| | - Jennifer M Luppino
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mélanie Miranda
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Vincent Piras
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides (LPS), 91405, Orsay, France
| | - Joanne Edouard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Mallory Poncelet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Nathan Lecouvreur
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sébastien Bloyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Amélie Leforestier
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides (LPS), 91405, Orsay, France
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Holcman
- École Normale Supérieure, IBENS, Université PSL, 75005, Paris, France
- Churchill College, University of Cambridge, CB3 0DS, Cambridge, UK
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
32
|
Forte G, Buckle A, Boyle S, Marenduzzo D, Gilbert N, Brackley CA. Transcription modulates chromatin dynamics and locus configuration sampling. Nat Struct Mol Biol 2023; 30:1275-1285. [PMID: 37537334 PMCID: PMC10497412 DOI: 10.1038/s41594-023-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
In living cells, the 3D structure of gene loci is dynamic, but this is not revealed by 3C and FISH experiments in fixed samples, leaving a notable gap in our understanding. To overcome these limitations, we applied the highly predictive heteromorphic polymer (HiP-HoP) model to determine chromatin fiber mobility at the Pax6 locus in three mouse cell lines with different transcription states. While transcriptional activity minimally affects movement of 40-kbp regions, we observed that motion of smaller 1-kbp regions depends strongly on local disruption to chromatin fiber structure marked by H3K27 acetylation. This also substantially influenced locus configuration dynamics by modulating protein-mediated promoter-enhancer loops. Importantly, these simulations indicate that chromatin dynamics are sufficiently fast to sample all possible locus conformations within minutes, generating wide dynamic variability within single cells. This combination of simulation and experimental validation provides insight into how transcriptional activity influences chromatin structure and gene dynamics.
Collapse
Affiliation(s)
- Giada Forte
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Adam Buckle
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK.
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
33
|
Hook PW, Timp W. Beyond assembly: the increasing flexibility of single-molecule sequencing technology. Nat Rev Genet 2023; 24:627-641. [PMID: 37161088 PMCID: PMC10169143 DOI: 10.1038/s41576-023-00600-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
The maturation of high-throughput short-read sequencing technology over the past two decades has shaped the way genomes are studied. Recently, single-molecule, long-read sequencing has emerged as an essential tool in deciphering genome structure and function, including filling gaps in the human reference genome, measuring the epigenome and characterizing splicing variants in the transcriptome. With recent technological developments, these single-molecule technologies have moved beyond genome assembly and are being used in a variety of ways, including to selectively sequence specific loci with long reads, measure chromatin state and protein-DNA binding in order to investigate the dynamics of gene regulation, and rapidly determine copy number variation. These increasingly flexible uses of single-molecule technologies highlight a young and fast-moving part of the field that is leading to a more accessible era of nucleic acid sequencing.
Collapse
Affiliation(s)
- Paul W Hook
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Winston Timp
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
34
|
Christou-Kent M, Cuartero S, Garcia-Cabau C, Ruehle J, Naderi J, Erber J, Neguembor MV, Plana-Carmona M, Alcoverro-Bertran M, De Andres-Aguayo L, Klonizakis A, Julià-Vilella E, Lynch C, Serrano M, Hnisz D, Salvatella X, Graf T, Stik G. CEBPA phase separation links transcriptional activity and 3D chromatin hubs. Cell Rep 2023; 42:112897. [PMID: 37516962 DOI: 10.1016/j.celrep.2023.112897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
Cell identity is orchestrated through an interplay between transcription factor (TF) action and genome architecture. The mechanisms used by TFs to shape three-dimensional (3D) genome organization remain incompletely understood. Here we present evidence that the lineage-instructive TF CEBPA drives extensive chromatin compartment switching and promotes the formation of long-range chromatin hubs during induced B cell-to-macrophage transdifferentiation. Mechanistically, we find that the intrinsically disordered region (IDR) of CEBPA undergoes in vitro phase separation (PS) dependent on aromatic residues. Both overexpressing B cells and native CEBPA-expressing cell types such as primary granulocyte-macrophage progenitors, liver cells, and trophectoderm cells reveal nuclear CEBPA foci and long-range 3D chromatin hubs at CEBPA-bound regions. In short, we show that CEBPA can undergo PS through its IDR, which may underlie in vivo foci formation and suggest a potential role of PS in regulating CEBPA function.
Collapse
Affiliation(s)
- Marie Christou-Kent
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Julia Ruehle
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Julian Naderi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Julia Erber
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Marcos Plana-Carmona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Luisa De Andres-Aguayo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Antonios Klonizakis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Cian Lynch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GP, UK
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GP, UK
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Grégoire Stik
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
| |
Collapse
|
35
|
Bressin A, Jasnovidova O, Arnold M, Altendorfer E, Trajkovski F, Kratz TA, Handzlik JE, Hnisz D, Mayer A. High-sensitive nascent transcript sequencing reveals BRD4-specific control of widespread enhancer and target gene transcription. Nat Commun 2023; 14:4971. [PMID: 37591883 PMCID: PMC10435483 DOI: 10.1038/s41467-023-40633-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Gene transcription by RNA polymerase II (Pol II) is under control of promoters and distal regulatory elements known as enhancers. Enhancers are themselves transcribed by Pol II correlating with their activity. How enhancer transcription is regulated and coordinated with transcription at target genes has remained unclear. Here, we developed a high-sensitive native elongating transcript sequencing approach, called HiS-NET-seq, to provide an extended high-resolution view on transcription, especially at lowly transcribed regions such as enhancers. HiS-NET-seq uncovers new transcribed enhancers in human cells. A multi-omics analysis shows that genome-wide enhancer transcription depends on the BET family protein BRD4. Specifically, BRD4 co-localizes to enhancer and promoter-proximal gene regions, and is required for elongation activation at enhancers and their genes. BRD4 keeps a set of enhancers and genes in proximity through long-range contacts. From these studies BRD4 emerges as a general regulator of enhancer transcription that may link transcription at enhancers and genes.
Collapse
Affiliation(s)
- Annkatrin Bressin
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195, Berlin, Germany
| | - Olga Jasnovidova
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Mirjam Arnold
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Elisabeth Altendorfer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Filip Trajkovski
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Thomas A Kratz
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Joanna E Handzlik
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| |
Collapse
|
36
|
Lyu J, Chen C. LAST-seq: single-cell RNA sequencing by direct amplification of single-stranded RNA without prior reverse transcription and second-strand synthesis. Genome Biol 2023; 24:184. [PMID: 37559123 PMCID: PMC10413806 DOI: 10.1186/s13059-023-03025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
Existing single-cell RNA sequencing (scRNA-seq) methods rely on reverse transcription (RT) and second-strand synthesis (SSS) to convert single-stranded RNA into double-stranded DNA prior to amplification, with the limited RT/SSS efficiency compromising RNA detectability. Here, we develop a new scRNA-seq method, Linearly Amplified Single-stranded-RNA-derived Transcriptome sequencing (LAST-seq), which directly amplifies the original single-stranded RNA molecules without prior RT/SSS. LAST-seq offers a high single-molecule capture efficiency and a low level of technical noise for single-cell transcriptome analyses. Using LAST-seq, we characterize transcriptional bursting kinetics in human cells, revealing a role of topologically associating domains in transcription regulation.
Collapse
Affiliation(s)
- Jun Lyu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
37
|
Wang F, Xu Y, Wang R, Zhang B, Smith N, Notaro A, Gaerlan S, Kutschera E, Kadash-Edmondson KE, Xing Y, Lin L. TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing. Nat Commun 2023; 14:4760. [PMID: 37553321 PMCID: PMC10409798 DOI: 10.1038/s41467-023-40083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
Long-read RNA sequencing (RNA-seq) is a powerful technology for transcriptome analysis, but the relatively low throughput of current long-read sequencing platforms limits transcript coverage. One strategy for overcoming this bottleneck is targeted long-read RNA-seq for preselected gene panels. We present TEQUILA-seq, a versatile, easy-to-implement, and low-cost method for targeted long-read RNA-seq utilizing isothermally linear-amplified capture probes. When performed on the Oxford nanopore platform with multiple gene panels of varying sizes, TEQUILA-seq consistently and substantially enriches transcript coverage while preserving transcript quantification. We profile full-length transcript isoforms of 468 actionable cancer genes across 40 representative breast cancer cell lines. We identify transcript isoforms enriched in specific subtypes and discover novel transcript isoforms in extensively studied cancer genes such as TP53. Among cancer genes, tumor suppressor genes (TSGs) are significantly enriched for aberrant transcript isoforms targeted for degradation via mRNA nonsense-mediated decay, revealing a common RNA-associated mechanism for TSG inactivation. TEQUILA-seq reduces the per-reaction cost of targeted capture by 2-3 orders of magnitude, as compared to a standard commercial solution. TEQUILA-seq can be broadly used for targeted sequencing of full-length transcripts in diverse biomedical research settings.
Collapse
Affiliation(s)
- Feng Wang
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yang Xu
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Wang
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatrice Zhang
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Noah Smith
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amber Notaro
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Samantha Gaerlan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathryn E Kadash-Edmondson
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Lan Lin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
39
|
Corsi F, Rusch E, Goloborodko A. Loop extrusion rules: the next generation. Curr Opin Genet Dev 2023; 81:102061. [PMID: 37354885 DOI: 10.1016/j.gde.2023.102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/26/2023]
Abstract
The interphase genome of vertebrates contains roughly 100 000 dynamic loops formed by cohesins. These loops are thought to play important roles in many functions, but their exact contribution in each case remains hotly disputed. The key challenge in studying these loops is the lack of a single experimental technique that could reliably and comprehensively visualize their locations and dynamics. Yet, we can infer them using theoretical models that integrate complementary experimental observations. Modeling proved instrumental in showing that cohesins form loops via extrusion. The loop extrusion model made numerous successful qualitative and quantitative predictions and inspired many experiments. However, it also demonstrated limited accuracy in predicting contact maps. Recent research suggests that the original model did not fully account for the intricate details of the mechanism of loop extrusion and its complex regulation. Here, we review the progress in visualizing extrusion and characterizing the cohesin cofactors. These discoveries can be summarized as 'rules' of cohesin movement along chromosomes and incorporated into the next generation of models. Such improved models will enable more accurate inferences of positions and dynamics of cohesin loops and generate better predictions for designing experiments.
Collapse
Affiliation(s)
- Flavia Corsi
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria. https://twitter.com/@flavia_corsi
| | - Emma Rusch
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria. https://twitter.com/@emma__rush
| | - Anton Goloborodko
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
40
|
Cooper S, Schwartzentruber J, Coomber EL, Wu Q, Bassett A. Screening for functional regulatory variants in open chromatin using GenIE-ATAC. Nucleic Acids Res 2023; 51:e64. [PMID: 37125635 PMCID: PMC10287956 DOI: 10.1093/nar/gkad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Understanding the effects of genetic variation in gene regulatory elements is crucial to interpreting genome function. This is particularly pertinent for the hundreds of thousands of disease-associated variants identified by GWAS, which frequently sit within gene regulatory elements but whose functional effects are often unknown. Current methods are limited in their scalability and ability to assay regulatory variants in their endogenous context, independently of other tightly linked variants. Here, we present a new medium-throughput screening system: genome engineering based interrogation of enhancers assay for transposase accessible chromatin (GenIE-ATAC), that measures the effect of individual variants on chromatin accessibility in their endogenous genomic and chromatin context. We employ this assay to screen for the effects of regulatory variants in human induced pluripotent stem cells, validating a subset of causal variants, and extend our software package (rgenie) to analyse these new data. We demonstrate that this methodology can be used to understand the impact of defined deletions and point mutations within transcription factor binding sites. We thus establish GenIE-ATAC as a method to screen for the effect of gene regulatory element variation, allowing identification and prioritisation of causal variants from GWAS for functional follow-up and understanding the mechanisms of regulatory element function.
Collapse
Affiliation(s)
- Sarah Cooper
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jeremy Schwartzentruber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Eve L Coomber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Qianxin Wu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Andrew Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
41
|
Yang A, Poholek AC. To loop or not to loop? CNS-28 is the answer. Immunity 2023; 56:895-897. [PMID: 37163987 DOI: 10.1016/j.immuni.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Regulation of interferon-γ is critical to constrain inflammation and mount effective responses to infection and anti-tumor immunity. In this issue of Immunity, Cui et al. identify a distal silencer element that disrupts promoter-enhancer looping, regulating IFN-γ expression and preventing inappropriate inflammation.
Collapse
Affiliation(s)
- Aaron Yang
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
Salataj E, Spilianakis CG, Chaumeil J. Single-cell detection of primary transcripts, their genomic loci and nuclear factors by 3D immuno-RNA/DNA FISH in T cells. Front Immunol 2023; 14:1156077. [PMID: 37215121 PMCID: PMC10193148 DOI: 10.3389/fimmu.2023.1156077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Over the past decades, it has become increasingly clear that higher order chromatin folding and organization within the nucleus is involved in the regulation of genome activity and serves as an additional epigenetic mechanism that modulates cellular functions and gene expression programs in diverse biological processes. In particular, dynamic allelic interactions and nuclear locations can be of functional importance during the process of lymphoid differentiation and the regulation of immune responses. Analyses of the proximity between chromatin and/or nuclear regions can be performed on populations of cells with high-throughput sequencing approaches such as chromatin conformation capture ("3C"-based) or DNA adenine methyltransferase identification (DamID) methods, or, in individual cells, by the simultaneous visualization of genomic loci, their primary transcripts and nuclear compartments within the 3-dimensional nuclear space using Fluorescence In Situ Hybridization (FISH) and immunostaining. Here, we present a detailed protocol to simultaneously detect nascent RNA transcripts (3D RNA FISH), their genomic loci (3D DNA FISH) and/or their chromosome territories (CT paint DNA FISH) combined with the antibody-based detection of various nuclear factors (immunofluorescence). We delineate the application and effectiveness of this robust and reproducible protocol in several murine T lymphocyte subtypes (from differentiating thymic T cells, to activated splenic and peripheral T cells) as well as other murine cells, including embryonic stem cells, B cells, megakaryocytes and macrophages.
Collapse
Affiliation(s)
- Eralda Salataj
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Charalampos G. Spilianakis
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Julie Chaumeil
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
43
|
Cheng J, Cao X, Wang X, Wang J, Yue B, Sun W, Huang Y, Lan X, Ren G, Lei C, Chen H. Dynamic chromatin architectures provide insights into the genetics of cattle myogenesis. J Anim Sci Biotechnol 2023; 14:59. [PMID: 37055796 PMCID: PMC10103417 DOI: 10.1186/s40104-023-00855-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/16/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Sharply increased beef consumption is propelling the genetic improvement projects of beef cattle in China. Three-dimensional genome structure is confirmed to be an important layer of transcription regulation. Although genome-wide interaction data of several livestock species have already been produced, the genome structure states and its regulatory rules in cattle muscle are still limited. RESULTS Here we present the first 3D genome data in Longissimus dorsi muscle of fetal and adult cattle (Bos taurus). We showed that compartments, topologically associating domains (TADs), and loop undergo re-organization and the structure dynamics were consistent with transcriptomic divergence during muscle development. Furthermore, we annotated cis-regulatory elements in cattle genome during myogenesis and demonstrated the enrichments of promoter and enhancer in selection sweeps. We further validated the regulatory function of one HMGA2 intronic enhancer near a strong sweep region on primary bovine myoblast proliferation. CONCLUSIONS Our data provide key insights of the regulatory function of high order chromatin structure and cattle myogenic biology, which will benefit the progress of genetic improvement of beef cattle.
Collapse
Affiliation(s)
- Jie Cheng
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Xiukai Cao
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Xiaogang Wang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Jian Wang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Binglin Yue
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, 610225, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Gang Ren
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling district, Yangling, Shaanxi province, 712100, China.
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
44
|
Chen LF, Lee J, Boettiger A. Recent progress and challenges in single-cell imaging of enhancer-promoter interaction. Curr Opin Genet Dev 2023; 79:102023. [PMID: 36854248 DOI: 10.1016/j.gde.2023.102023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/27/2023]
Abstract
In the past two years, approaches relying on high-resolution microscopy and live-cell imaging have increasingly contributed to our understanding of the 3D genome organization and its importance for transcriptional control. Here, we describe recent progress that has highlighted how flexible and heterogeneous 3D chromatin structure is, on the length scales relevant to transcriptional control. We describe work that has investigated how robust transcriptional outcomes may be derived from such flexible organization without the need for clearly distinct structures in active and silent cells. We survey the latest state of the art in directly observing the dynamics of chromatin interactions, and suggest how some recent, apparently contradictory conclusions may be reconciled.
Collapse
Affiliation(s)
- Liang-Fu Chen
- Department of Chemical and Systems Biology, Stanford University, USA
| | - Joo Lee
- Department of Developmental Biology, Stanford University, USA
| | | |
Collapse
|
45
|
Li X, Wang J, Yu Y, Li G, Wang J, Li C, Zeng Z, Li N, Zhang Z, Dong Q, Yu Y, Wang X, Wang T, Grover CE, Wang B, Liu B, Wendel JF, Gong L. Genomic rearrangements and evolutionary changes in 3D chromatin topologies in the cotton tribe (Gossypieae). BMC Biol 2023; 21:56. [PMID: 36941615 PMCID: PMC10029228 DOI: 10.1186/s12915-023-01560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Analysis of the relationship between chromosomal structural variation (synteny breaks) and 3D-chromatin architectural changes among closely related species has the potential to reveal causes and correlates between chromosomal change and chromatin remodeling. Of note, contrary to extensive studies in animal species, the pace and pattern of chromatin architectural changes following the speciation of plants remain unexplored; moreover, there is little exploration of the occurrence of synteny breaks in the context of multiple genome topological hierarchies within the same model species. RESULTS Here we used Hi-C and epigenomic analyses to characterize and compare the profiles of hierarchical chromatin architectural features in representative species of the cotton tribe (Gossypieae), including Gossypium arboreum, Gossypium raimondii, and Gossypioides kirkii, which differ with respect to chromosome rearrangements. We found that (i) overall chromatin architectural territories were preserved in Gossypioides and Gossypium, which was reflected in their similar intra-chromosomal contact patterns and spatial chromosomal distributions; (ii) the non-random preferential occurrence of synteny breaks in A compartment significantly associate with the B-to-A compartment switch in syntenic blocks flanking synteny breaks; (iii) synteny changes co-localize with open-chromatin boundaries of topologically associating domains, while TAD stabilization has a greater influence on regulating orthologous expression divergence than do rearrangements; and (iv) rearranged chromosome segments largely maintain ancestral in-cis interactions. CONCLUSIONS Our findings provide insights into the non-random occurrence of epigenomic remodeling relative to the genomic landscape and its evolutionary and functional connections to alterations of hierarchical chromatin architecture, on a known evolutionary timescale.
Collapse
Affiliation(s)
- Xiaochong Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yanan Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinpeng Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zixian Zeng
- Department of Biological Science, College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yiyang Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaofei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, Hainan, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
46
|
Liu S, Tang Q, Zhao K. Analysis of Chromatin Interaction and Accessibility by Trac-Looping. Methods Mol Biol 2023; 2611:85-97. [PMID: 36807066 DOI: 10.1007/978-1-0716-2899-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Spatial organization of the genome modulates pivotal biological processes. The emerging new technologies have provided novel insights into genome structure and its role in regulating cell activities. To examine the genome-wide chromatin interactions at accessible chromatin regions, we developed a DNA transposase-mediated analysis of chromatin looping (Trac-looping) method for simultaneously detecting chromatin interactions and chromatin accessibility. Here, we describe a detailed protocol of generating Trac-looping libraries.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qingsong Tang
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
Maslova A, Plotnikov V, Nuriddinov M, Gridina M, Fishman V, Krasikova A. Hi-C analysis of genomic contacts revealed karyotype abnormalities in chicken HD3 cell line. BMC Genomics 2023; 24:66. [PMID: 36750787 PMCID: PMC9906895 DOI: 10.1186/s12864-023-09158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Karyotype abnormalities are frequent in immortalized continuous cell lines either transformed or derived from primary tumors. Chromosomal rearrangements can cause dramatic changes in gene expression and affect cellular phenotype and behavior during in vitro culture. Structural variations of chromosomes in many continuous mammalian cell lines are well documented, but chromosome aberrations in cell lines from other vertebrate models often remain understudied. The chicken LSCC-HD3 cell line (HD3), generated from erythroid precursors, was used as an avian model for erythroid differentiation and lineage-specific gene expression. However, karyotype abnormalities in the HD3 cell line were not assessed. In the present study, we applied high-throughput chromosome conformation capture to analyze 3D genome organization and to detect chromosome rearrangements in the HD3 cell line. RESULTS We obtained Hi-C maps of genomic interactions for the HD3 cell line and compared A/B compartments and topologically associating domains between HD3 and several other cell types. By analysis of contact patterns in the Hi-C maps of HD3 cells, we identified more than 25 interchromosomal translocations of regions ≥ 200 kb on both micro- and macrochromosomes. We classified most of the observed translocations as unbalanced, leading to the formation of heteromorphic chromosomes. In many cases of microchromosome rearrangements, an entire microchromosome together with other macro- and microchromosomes participated in the emergence of a derivative chromosome, resembling "chromosomal fusions'' between acrocentric microchromosomes. Intrachromosomal inversions, deletions and duplications were also detected in HD3 cells. Several of the identified simple and complex chromosomal rearrangements, such as between GGA2 and GGA1qter; GGA5, GGA4p and GGA7p; GGA4q, GGA6 and GGA19; and duplication of the sex chromosome GGAW, were confirmed by FISH. CONCLUSIONS In the erythroid progenitor HD3 cell line, in contrast to mature and immature erythrocytes, the genome is organized into distinct topologically associating domains. The HD3 cell line has a severely rearranged karyotype with most of the chromosomes engaged in translocations and can be used in studies of genome structure-function relationships. Hi-C proved to be a reliable tool for simultaneous assessment of the spatial genome organization and chromosomal aberrations in karyotypes of birds with a large number of microchromosomes.
Collapse
Affiliation(s)
- A. Maslova
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| | - V. Plotnikov
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| | - M. Nuriddinov
- grid.418953.2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - M. Gridina
- grid.418953.2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - V. Fishman
- grid.418953.2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - A. Krasikova
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
48
|
Davidson C, Wordsworth BP, Cohen CJ, Knight JC, Vecellio M. Chromosome conformation capture approaches to investigate 3D genome architecture in Ankylosing Spondylitis. Front Genet 2023; 14:1129207. [PMID: 36760998 PMCID: PMC9905691 DOI: 10.3389/fgene.2023.1129207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Ankylosing Spondylitis (AS) is a chronic inflammatory arthritis of the spine exhibiting a strong genetic background. The mechanistic and functional understanding of the AS-associated genomic loci, identified with Genome Wide Association Studies (GWAS), remains challenging. Chromosome conformation capture (3C) and derivatives are recent techniques which are of great help in elucidating the spatial genome organization and of enormous support in uncover a mechanistic explanation for disease-associated genetic variants. The perturbation of three-dimensional (3D) genome hierarchy may lead to a plethora of human diseases, including rheumatological disorders. Here we illustrate the latest approaches and related findings on the field of genome organization, highlighting how the instability of 3D genome conformation may be among the causes of rheumatological disease phenotypes. We suggest a new perspective on the inclusive potential of a 3C approach to inform GWAS results in rheumatic diseases. 3D genome organization may ultimately lead to a more precise and comprehensive functional interpretation of AS association, which is the starting point for emerging and more specific therapies.
Collapse
Affiliation(s)
- Connor Davidson
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - B. Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Carla J. Cohen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Julian C. Knight
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
- Centro Ricerche Fondazione Italiana Ricerca Sull’Artrite (FIRA), Fondazione Pisana x la Scienza ONLUS, San Giuliano Terme, Italy
| |
Collapse
|
49
|
Kariti H, Feld T, Kaplan N. Hypothesis-driven probabilistic modelling enables a principled perspective of genomic compartments. Nucleic Acids Res 2023; 51:1103-1119. [PMID: 36629266 PMCID: PMC9943678 DOI: 10.1093/nar/gkac1258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/30/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
The Hi-C method has revolutionized the study of genome organization, yet interpretation of Hi-C interaction frequency maps remains a major challenge. Genomic compartments are a checkered Hi-C interaction pattern suggested to represent the partitioning of the genome into two self-interacting states associated with active and inactive chromatin. Based on a few elementary mechanistic assumptions, we derive a generative probabilistic model of genomic compartments, called deGeco. Testing our model, we find it can explain observed Hi-C interaction maps in a highly robust manner, allowing accurate inference of interaction probability maps from extremely sparse data without any training of parameters. Taking advantage of the interpretability of the model parameters, we then test hypotheses regarding the nature of genomic compartments. We find clear evidence of multiple states, and that these states self-interact with different affinities. We also find that the interaction rules of chromatin states differ considerably within and between chromosomes. Inspecting the molecular underpinnings of a four-state model, we show that a simple classifier can use histone marks to predict the underlying states with 87% accuracy. Finally, we observe instances of mixed-state loci and analyze these loci in single-cell Hi-C maps, finding that mixing of states occurs mainly at the cell level.
Collapse
Affiliation(s)
- Hagai Kariti
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Tal Feld
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel,Viterbi Faculty of Electrical & Computer Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Noam Kaplan
- To whom correspondence should be addressed. Tel: +972 4 8295293;
| |
Collapse
|
50
|
Lambert É, Puwakdandawa K, Tao YF, Robert F. From structure to molecular condensates: emerging mechanisms for Mediator function. FEBS J 2023; 290:286-309. [PMID: 34698446 DOI: 10.1111/febs.16250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023]
Abstract
Mediator is a large modular protein assembly whose function as a coactivator of transcription is conserved in all eukaryotes. The Mediator complex can integrate and relay signals from gene-specific activators bound at enhancers to activate the general transcription machinery located at promoters. It has thus been described as a bridge between these elements during initiation of transcription. Here, we review recent studies on Mediator relating to its structure, gene specificity and general requirement, roles in chromatin architecture as well as novel concepts involving phase separation and transcriptional bursting. We revisit the mechanism of action of Mediator and ultimately put forward models for its mode of action in gene activation.
Collapse
Affiliation(s)
- Élie Lambert
- Institut de recherches cliniques de Montréal, Canada
| | | | - Yi Fei Tao
- Institut de recherches cliniques de Montréal, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Canada
| |
Collapse
|