1
|
Zhao Z, Song H, Qi M, Liu Y, Zhang Y, Li S, Zhang H, Sun Y, Sun Y, Gao Z. Brain targeted polymeric micelles as drug carriers for ischaemic stroke treatment. J Drug Target 2024:1-17. [PMID: 39403962 DOI: 10.1080/1061186x.2024.2417190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Ischaemic stroke is a central nervous system disease with high morbidity, recurrence and mortality rates. Thrombolytic and neuroprotective therapies are the main therapeutic strategies for ischaemic stroke, however, the poor delivery efficiency of thrombolytic and neuroprotective drugs to the brain limits their clinical application. So far, the development of nanomedicine has brought opportunities for the above challenges, which can not only realise the effective accumulation of drugs in the target site, but also improve the pharmacokinetic behaviour of the drugs. Among the most rapidly developing nanoparticles, micelles gradually emerging as an effective strategy for ischaemic stroke treatment due to their own unique advantages. This review provided an overview of targeted and response-release micelles based on the physicochemical properties of the ischaemic stroke microenvironment, summarised the targeting strategies for delivering micellar formulations to the thrombus, blood-brain barrier, and brain parenchyma, and finally described the potentials and challenges of polymeric micelles in the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Zirui Zhao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huijia Song
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Mengge Qi
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yurong Liu
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yanchao Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Shuo Li
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huimin Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yanping Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
2
|
Wang F, Huang Y, Li J, Zhou W, Wang W. Targeted gene delivery systems for T-cell engineering. Cell Oncol (Dordr) 2024; 47:1537-1560. [PMID: 38753155 DOI: 10.1007/s13402-024-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
T lymphocytes are indispensable for the host systems of defense against pathogens, tumors, and environmental threats. The therapeutic potential of harnessing the cytotoxic properties of T lymphocytes for antigen-specific cell elimination is both evident and efficacious. Genetically engineered T-cells, such as those employed in CAR-T and TCR-T cell therapies, have demonstrated significant clinical benefits in treating cancer and autoimmune disorders. However, the current landscape of T-cell genetic engineering is dominated by strategies that necessitate in vitro T-cell isolation and modification, which introduce complexity and prolong the development timeline of T-cell based immunotherapies. This review explores the complexities of gene delivery systems designed for T cells, covering both viral and nonviral vectors. Viral vectors are known for their high transduction efficiency, yet they face significant limitations, such as potential immunogenicity and the complexities involved in large-scale production. Nonviral vectors, conversely, offer a safer profile and the potential for scalable manufacturing, yet they often struggle with lower transduction efficiency. The pursuit of gene delivery systems that can achieve targeted gene transfer to T cell without the need for isolation represents a significant advancement in the field. This review assesses the design principles and current research progress of such systems, highlighting the potential for in vivo gene modification therapies that could revolutionize T-cell based treatments. By providing a comprehensive analysis of these systems, we aim to contribute valuable insights into the future development of T-cell immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - JiaQian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
Zimmer O, Goepferich A. On the uncertainty of the correlation between nanoparticle avidity and biodistribution. Eur J Pharm Biopharm 2024; 198:114240. [PMID: 38437906 DOI: 10.1016/j.ejpb.2024.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
The specific delivery of a drug to its site of action also known as targeted drug delivery is a topic in the field of pharmaceutics studied for decades. One approach extensively investigated in this context is the use ligand functionalized nanoparticles. These particles are modified to carry receptor specific ligands, enabling them to accumulate at a desired target site. However, while this concept initially appears straightforward to implement, in-depth research has revealed several challenges hindering target site specific particle accumulation - some of which remain unresolved to this day. One of these challenges consists in the still incomplete understanding of how nanoparticles interact with biological systems. This knowledge gap significantly compromises the predictability of particle distribution in biological systems, which is critical for therapeutic efficacy. One of the most crucial steps in delivery is the attachment of nanoparticles to cells at the target site. This attachment occurs via the formation of multiple ligand receptor bonds. A process also referred to as multivalent interaction. While multivalency has been described extensively for individual molecules and macromolecules respectively, little is known on the multivalent binding of nanoparticles to cells. Here, we will specifically introduce the concept of avidity as a measure for favorable particle membrane interactions. Also, an overview about nanoparticle and membrane properties affecting avidity will be given. Thereafter, we provide a thorough review on literature investigating the correlation between nanoparticle avidity and success in targeted particle delivery. In particular, we want to analyze the currently uncertain data on the existence and nature of the correlation between particle avidity and biodistribution.
Collapse
Affiliation(s)
- Oliver Zimmer
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany.
| |
Collapse
|
4
|
Altun I, Demirlenk YM, Atar D, Cevik E, Gunduz S, Albadawi H, Oklu R. Advances and Challenges in Interventional Immuno-Oncology Locoregional Therapies. J Vasc Interv Radiol 2024; 35:164-172. [PMID: 38272636 DOI: 10.1016/j.jvir.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/15/2023] [Indexed: 01/27/2024] Open
Abstract
Interventional immuno-oncology is making strides in locoregional therapies to address complex tumor microenvironments. Long-standing interventional radiology cancer therapies, such as tumor ablation and embolization, are being recharacterized in the context of immunotherapy. Intratumoral injections, such as those of genetically engineered or unaltered viruses, and the delivery of immune cells, antibodies, proteins, or cytokines into targeted tumors, along with advancements in delivery techniques, have produced promising results in preliminary studies, indicating their antitumor effectiveness. Emerging strategies using DNA scaffolding, polysaccharides, glycan, chitosan, and natural products are also showing promise in targeted cancer therapy. The future of interventional immuno-oncology lies in personalized immunotherapies that capitalize on individual immune profiles and tumor characteristics, along with the exploration of combination therapies. This study will review various interventional immuno-oncology strategies and emerging technologies to enhance delivery of therapeutics and response to immunotherapy.
Collapse
Affiliation(s)
- Izzet Altun
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yusuf M Demirlenk
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Scottsdale, Arizona
| | - Dila Atar
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Scottsdale, Arizona
| | - Enes Cevik
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Scottsdale, Arizona
| | - Seyda Gunduz
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Scottsdale, Arizona; Department of Medical Oncology, Istinye University Bahcesehir Liv Hospital, Istanbul, Turkey
| | - Hassan Albadawi
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Scottsdale, Arizona
| | - Rahmi Oklu
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Scottsdale, Arizona.
| |
Collapse
|
5
|
Junyaprasert VB, Thummarati P. Innovative Design of Targeted Nanoparticles: Polymer-Drug Conjugates for Enhanced Cancer Therapy. Pharmaceutics 2023; 15:2216. [PMID: 37765185 PMCID: PMC10537251 DOI: 10.3390/pharmaceutics15092216] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Polymer-drug conjugates (PDCs) have shown great promise in enhancing the efficacy and safety of cancer therapy. These conjugates combine the advantageous properties of both polymers and drugs, leading to improved pharmacokinetics, controlled drug release, and targeted delivery to tumor tissues. This review provides a comprehensive overview of recent developments in PDCs for cancer therapy. First, various types of polymers used in these conjugates are discussed, including synthetic polymers, such as poly(↋-caprolactone) (PCL), D-α-tocopheryl polyethylene glycol (TPGS), and polyethylene glycol (PEG), as well as natural polymers such as hyaluronic acid (HA). The choice of polymer is crucial to achieving desired properties, such as stability, biocompatibility, and controlled drug release. Subsequently, the strategies for conjugating drugs to polymers are explored, including covalent bonding, which enables a stable linkage between the polymer and the drug, ensuring controlled release and minimizing premature drug release. The use of polymers can extend the circulation time of the drug, facilitating enhanced accumulation within tumor tissues through the enhanced permeability and retention (EPR) effect. This, in turn, results in improved drug efficacy and reduced systemic toxicity. Moreover, the importance of tumor-targeting ligands in PDCs is highlighted. Various ligands, such as antibodies, peptides, aptamers, folic acid, herceptin, and HA, can be incorporated into conjugates to selectively deliver the drug to tumor cells, reducing off-target effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a versatile and effective approach to cancer therapy. Their ability to combine the advantages of polymers and drugs offers enhanced drug delivery, controlled release, and targeted treatment, thereby improving the overall efficacy and safety of cancer therapies. Further research and development in this field has great potential to advance personalized cancer treatment options.
Collapse
|
6
|
Zhou XQ, Wang P, Ramu V, Zhang L, Jiang S, Li X, Abyar S, Papadopoulou P, Shao Y, Bretin L, Siegler MA, Buda F, Kros A, Fan J, Peng X, Sun W, Bonnet S. In vivo metallophilic self-assembly of a light-activated anticancer drug. Nat Chem 2023; 15:980-987. [PMID: 37169984 PMCID: PMC10322715 DOI: 10.1038/s41557-023-01199-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/05/2023] [Indexed: 05/13/2023]
Abstract
Self-assembling molecular drugs combine the easy preparation typical of small-molecule chemotherapy and the tumour-targeting properties of drug-nanoparticle conjugates. However, they require a supramolecular interaction that survives the complex environment of a living animal. Here we report that the metallophilic interaction between cyclometalated palladium complexes generates supramolecular nanostructures in living mice that have a long circulation time (over 12 h) and efficient tumour accumulation rate (up to 10.2% of the injected dose per gram) in a skin melanoma tumour model. Green light activation leads to efficient tumour destruction due to the type I photodynamic effect generated by the self-assembled palladium complexes, as demonstrated in vitro by an up to 96-fold cytotoxicity increase upon irradiation. This work demonstrates that metallophilic interactions are well suited to generating stable supramolecular nanotherapeutics in vivo with exceptional tumour-targeting properties.
Collapse
Affiliation(s)
- Xue-Quan Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Peiyuan Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People's Republic of China
| | - Vadde Ramu
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | - Liyan Zhang
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | - Suhua Jiang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People's Republic of China
| | - Xuezhao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
| | - Selda Abyar
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | | | - Yang Shao
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | - Ludovic Bretin
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Francesco Buda
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China.
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Universiteit Leiden, Leiden, the Netherlands.
| |
Collapse
|
7
|
Guo X, Wu M, Deng Y, Liu Y, Liu Y, Xu J. Redox-Responsive Lipidic Prodrug Nano-Delivery System Improves Antitumor Effect of Curcumin Derivative C210. Pharmaceutics 2023; 15:pharmaceutics15051546. [PMID: 37242789 DOI: 10.3390/pharmaceutics15051546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The poor bioavailability of curcumin and its derivatives limits their antitumor efficacy and clinical translation. Although curcumin derivative C210 has more potent antitumor activity than curcumin, it has a similar deficiency to curcumin. In order to improve its bioavailability and accordingly enhance its antitumor activity in vivo, we developed a redox-responsive lipidic prodrug nano-delivery system of C210. Briefly, we synthesized three conjugates of C210 and oleyl alcohol (OA) via different linkages containing single sulfur/disulfide/carbon bonds and prepared their nanoparticles using a nanoprecipitation method. The prodrugs required only a very small amount of DSPE-PEG2000 as a stabilizer to self-assemble in aqueous solution to form nanoparticles (NPs) with a high drug loading capacity (~50%). Among them, the prodrug (single sulfur bond) nanoparticles (C210-S-OA NPs) were the most sensitive to the intracellular redox level of cancer cells; therefore, they could rapidly release C210 in cancer cells and thus had the strongest cytotoxicity to cancer cells. Furthermore, C210-S-OA NPs exerted a dramatic improvement in its pharmacokinetic behavior; that is, the area under the curve (AUC), mean retention time and accumulation in tumor tissue were 10, 7 and 3 folds that of free C210, respectively. Thus, C210-S-OA NPs exhibited the strongest antitumor activity in vivo than C210 or other prodrug NPs in mouse models of breast cancer and liver cancer. The results demonstrated that the novel prodrug self-assembled redox-responsive nano-delivery platform was able to improve the bioavailability and antitumor activity of curcumin derivative C210, which provides a basis for further clinical applications of curcumin and its derivatives.
Collapse
Affiliation(s)
- Xin Guo
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Min Wu
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Yanping Deng
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Yan Liu
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Yanpeng Liu
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Jianhua Xu
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
8
|
Shekh R, Ahmad A, Tiwari RK, Saeed M, Shukla R, Al-Thubiani WS, Ansari IA, Ashfaque M, Bajpai P. High therapeutic efficacy of 5-Fluorouracil-loaded exosomes against colon cancer cells. Chem Biol Drug Des 2023; 101:962-976. [PMID: 36651797 DOI: 10.1111/cbdd.14205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The successful chemotherapeutic regime required for the clinical management of different cancers largely depends on the efficient drug delivery within the cancer cells. Exosomes have emerged as an enticing candidate for exploring their role as delivery vehicles. Exosomes are reported to be intrinsically nanosized vesicles competent for efficient delivery across the cellular membrane. In the present study, we assessed the feasibility of an autologous exosome-based drug delivery platform for delivering 5-Fluorouracil (5-FU) against human colon cancer HCT116 cells. Autologous exosomes have shown probable tropism toward the tumor microenvironment, which makes them the most competitive vehicle for drug delivery. It was observed that the autologous exosomes loaded with 5-FU showed an enhanced rate of drug release under acidic conditions. The result of the cell viability assay showed that treatment of 5-FU-loaded exosomes (equivalent to 5 μg 5-FU) resulted in enhanced cytotoxic effect in HCT116 cells as compared to an equivalent amount of free 5-FU (5 μg), which elucidated the efficient delivery of the 5-FU by exosomes inside the cancer cells. Subsequently, 5-FU-loaded exosomes led to increased nuclear condensation and fragmentation along with increased ROS production. In addition, 5-FU-loaded exosomes caused enhanced dissipation of mitochondrial membrane potential and caspase-3 activation, resulting in increased apoptosis induction. Our study also revealed that 5-FU-loaded exosomes upsurged the arrest in the cell cycle at the G0/G1 stage in HCT-116 cells and it was found to be associated with decreased CDK4 and Cyclin D1 expression concomitantly with the upregulation of CDK inhibitor, p21Cip1 expression. Thus, the findings from the present study highlight the advantages of autologous exosomes as a natural drug carrier which could efficiently deliver chemotherapeutic drugs to cancer cells.
Collapse
Affiliation(s)
- Rafia Shekh
- Department of Biosciences, Integral University, Kursi Road, India
| | - Afza Ahmad
- Department of Biosciences, Integral University, Kursi Road, India
| | | | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Ratnakar Shukla
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, India
| | - Wafa Safar Al-Thubiani
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | | | - Mohd Ashfaque
- Department of Biosciences, Integral University, Kursi Road, India
| | - Preeti Bajpai
- Department of Zoology, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
9
|
Meng Z, Fang X, Fu B, Qian C, Yang Z, Bai Y, Tao X, Huang H, Ma C, Miao W, Ren H, Wang A, Li X. Tumor immunotherapy boosted by R837 nanocrystals through combining chemotherapy and mild hyperthermia. J Control Release 2022; 350:841-856. [PMID: 36096366 DOI: 10.1016/j.jconrel.2022.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 12/07/2022]
Abstract
Melanoma is a malignant skin cancer that is prone to metastasis in the early stage and has a poor prognosis. Immunomodulatory therapy for melanoma has been a hot research topic in recent years. However, low immune cell infiltration and loss of tumor immunogenicity may occur in tumors, resulting in low response rates to immunotherapy. Thus, immunomodulatory therapy is usually used in combination with chemotherapy and radiotherapy. Development of combined therapeutic strategies with low systemic toxicity, high immune responsiveness and long-term inhibition of metastasis and recurrence of melanoma is the goal of current research. In this study, the insoluble immune adjuvant imiquimod (R837) was prepared as nanocrystals and coated with polydopamine (PDA) to form R837@PDA, which was then loaded into chitosan hydrogel (CGP) to form the drug-loaded gel system, R837@PDA@CGP (RPC), to combine immunomodulation effects, induction of immunogenic cell death (ICD) effects and immune-enhancement effects. After treatment with RPC, ICD in melanoma was induced, and the infiltration rate of cytotoxic T cells (CTLs) in melanoma was also significantly enhanced, which turned the tumor itself into an in situ vaccine and boosted the cancer-immunity cycle at the tumor site. Therefore, melanoma growth, metastasis and recurrence were notably inhibited.
Collapse
Affiliation(s)
- Zhengjie Meng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xue Fang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bowen Fu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zheng Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yunhao Bai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xinyue Tao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Haixiao Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Chenyu Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Hao Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xueming Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
10
|
Cancer Immunotherapy and Delivery System: An Update. Pharmaceutics 2022; 14:pharmaceutics14081630. [PMID: 36015256 PMCID: PMC9413869 DOI: 10.3390/pharmaceutics14081630] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
With an understanding of immunity in the tumor microenvironment, immunotherapy turns out to be a powerful tool in the clinic to treat many cancers. The strategies applied in cancer immunotherapy mainly include blockade of immune checkpoints, adoptive transfer of engineered cells, such as T cells, natural killer cells, and macrophages, cytokine therapy, cancer vaccines, and oncolytic virotherapy. Many factors, such as product price, off-target side effects, immunosuppressive tumor microenvironment, and cancer cell heterogeneity, affect the treatment efficacy of immunotherapies against cancers. In addition, some treatments, such as chimeric antigen receptor (CAR) T cell therapy, are more effective in treating patients with lymphoma, leukemia, and multiple myeloma rather than solid tumors. To improve the efficacy of targeted immunotherapy and reduce off-target effects, delivery systems for immunotherapies have been developed in past decades using tools such as nanoparticles, hydrogel matrix, and implantable scaffolds. This review first summarizes the currently common immunotherapies and their limitations. It then synopsizes the relative delivery systems that can be applied to improve treatment efficacy and minimize side effects. The challenges, frontiers, and prospects for applying these delivery systems in cancer immunotherapy are also discussed. Finally, the application of these approaches in clinical trials is reviewed.
Collapse
|
11
|
Al Bostami RD, Abuwatfa WH, Husseini GA. Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2672. [PMID: 35957103 PMCID: PMC9370272 DOI: 10.3390/nano12152672] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2022]
Abstract
Cancer therapies have advanced tremendously throughout the last decade, yet multiple factors still hinder the success of the different cancer therapeutics. The traditional therapeutic approach has been proven insufficient and lacking in the suppression of tumor growth. The simultaneous delivery of multiple small-molecule chemotherapeutic drugs and genes improves the effectiveness of each treatment, thus optimizing efficacy and improving synergistic effects. Nanomedicines integrating inorganic, lipid, and polymeric-based nanoparticles have been designed to regulate the spatiotemporal release of the encapsulated drugs. Multidrug-loaded nanocarriers are a potential strategy to fight cancer and the incorporation of co-delivery systems as a feasible treatment method has projected synergistic benefits and limited undesirable effects. Moreover, the development of co-delivery systems for maximum therapeutic impact necessitates better knowledge of the appropriate therapeutic agent ratio as well as the inherent heterogeneity of the cancer cells. Co-delivery systems can simplify clinical processes and increase patient quality of life, even though such systems are more difficult to prepare than single drug delivery systems. This review highlights the progress attained in the development and design of nano carrier-based co-delivery systems and discusses the limitations, challenges, and future perspectives in the design and fabrication of co-delivery systems.
Collapse
Affiliation(s)
- Rouba D. Al Bostami
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
12
|
López S, Rodríguez-López J, García MT, Rodríguez JF, Pérez-Ortiz JM, Ramos MJ, Gracia I. Self-assembled coumarin- and 5-fluorouracil-PEG micelles as multifunctional drug delivery systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Controlled Drug Release of Smart Magnetic Self-Assembled Micelle, Kinetics and Transport Mechanisms. J Pharm Sci 2022; 111:2378-2388. [DOI: 10.1016/j.xphs.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022]
|
14
|
Gupta N, Malviya R. Role of Polysaccharides Mimetic Components in Targeted Cancer Treatment. Curr Drug Targets 2022; 23:856-868. [PMID: 35156570 DOI: 10.2174/1389450123666220214121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Organic or inorganic compounds are synthesized or formulated in a manner that they completely show their therapeutic actions like as a natural polysaccharide in the body. Polysaccharides, the major type of natural polymers, are efficiently biologically active, non-toxic, hydrophilic, and biodegradable and show various properties. In this manuscript, the main focus is on delivering anticancer drugs with the help of mimetic components of polysaccharides. All data collected for this manuscript was from PubMed, Elsevier, Taylor, and Francis Bentham science journals. Most chemotherapeutics are therapeutically toxin to the human body, have a narrow therapeutic index, sluggish pharmaceutical delivery mechanisms, and are poorly soluble in water. The use of mimetic components of polysaccharides leads to the enhancement of the solubility of drugs in the biological environment. The manuscript summarizes the use of mimetic components of polysaccharides along with anticancer agents which are capable to inhibit the growth of cancerous cells in the body which shows lesser adverse effects in the biological system compared to other therapies.
Collapse
Affiliation(s)
- Nandan Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| |
Collapse
|
15
|
Yang K, Yang Z, Yu G, Nie Z, Wang R, Chen X. Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107434. [PMID: 34693571 DOI: 10.1002/adma.202107434] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Nanomedicines have the potential to provide advanced therapeutic strategies in combating tumors. Polymer-prodrug-based nanomedicines are particularly attractive in cancer therapies owing to the maximum drug loading, prolonged blood circulation, and reduced premature leakage and side effects in comparison with conventional nanomaterials. However, the difficulty in precisely tuning the composition and drug loading of polymer-drug conjugates leads to batch-to-batch variations of the prodrugs, thus significantly restricting their clinical translation. Polyprodrug nanomedicines inherit the numerous intrinsic advantages of polymer-drug conjugates and exhibit well-controlled composition and drug loading via direct polymerization of therapeutic monomers, representing a promising nanomedicine for clinical tumor therapies. In this review, recent advances in the development of polyprodrug nanomedicines are summarized for tumor elimination. Various types of polyprodrug nanomedicines and the corresponding properties are first summarized. The unique advantages of polyprodrug nanomedicines and their key roles in various tumor therapies are further highlighted. Finally, current challenges and the perspectives on future research of polyprodrug nanomedicines are discussed.
Collapse
Affiliation(s)
- Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| | - Zhiqing Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, P. R. China
| | - Guocan Yu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
16
|
Dhiman N, Sarvaiya J, Mohindroo P. A drift on liposomes to proliposomes: recent advances and promising approaches. J Liposome Res 2022; 32:317-331. [PMID: 35037565 DOI: 10.1080/08982104.2021.2019762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liposomes are nano-structured vesicles, made up of phospholipids that provide active ingredients at the site of action at a predetermined rate and add the advantage of the sustained-release formulation. Liposomes have stability issues that tend to agglomerate and fuse upon storage, which reflects their drawback. Hence to overcome the aggregation, fusion, hydrolysis, and/or oxidation problems associated with liposomes a new technology named Proliposomes has been introduced. Proliposomes are defined as carbohydrate carriers coated with phospholipids, which upon addition of water generate liposomes. The objective of the review is to cover the concept of proliposomes for pulmonary or alveolar delivery of drugs and compare it with that of liposomes; highlight the methods used for preparations along with the characterization parameters. This is the first systematic review that covers the categorization of liposomes, characteristic methods, and recent examples of drugs from 2015 to 2021, supplied in form of proliposomes to the macrophages as well as others and offers an advantage over the free drug by offering a prolonged drug release and sufficient bioavailability in addition to overcome the stability issues related to liposomes. Since this is a very new technology and many scientists are continuously working in this field to make the drug available for clinical trials and ultimately in the market for the targeted delivery of drugs with better storage life.HIGHLIGHTSProliposomes as an alternative to overwhelm the stability and storage-related issues of liposomes.Anhydrous carbohydrate carriers are utilized for proliposomal preparation.Inhaled delivery of drugs as solid lipid nanoparticles offers a significant impact on pulmonary tract infections, particularly in cystic fibrosis.Size of liposomes attained after proliposome hydrolysis is critical for drug delivery via respiration.
Collapse
Affiliation(s)
- Neha Dhiman
- School of Engineering and Technology, National Forensic Sciences University, Gandhinagar, India
| | - Jayrajsinh Sarvaiya
- School of Engineering and Technology, National Forensic Sciences University, Gandhinagar, India
| | - Poorti Mohindroo
- School of Engineering and Technology, National Forensic Sciences University, Gandhinagar, India
| |
Collapse
|
17
|
Zhang R, Nie T, Fang Y, Huang H, Wu J. Poly(disulfide)s: From Synthesis to Drug Delivery. Biomacromolecules 2021; 23:1-19. [PMID: 34874705 DOI: 10.1021/acs.biomac.1c01210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioresponsive polymers have been widely used in drug delivery because of their degradability. For example, poly(disulfide)s with repeating disulfide bonds in the main chain have attracted considerable research attention. The characteristics of the disulfide bonds, including their dynamic and reversible properties and their responsiveness to stimuli such as reductants, light, heat, and mechanical force, make them ideal platforms for on-demand drug delivery. This review introduces the synthesis methods and applications of poly(disulfide)s. Furthermore, the synthesis methods of poly(disulfide)s are classified on the basis of the monomers used: oxidative step-growth polymerization with dithiols, ring-opening polymerization with cyclic disulfides, and polymerization with linear disulfides. In addition, recent advances in poly(disulfide)s for the delivery of small-molecule or biomacromolecular drugs are discussed. Quantum-dot-loaded poly(disulfide) delivery systems for imaging are also included. This review provides an overview of the various design strategies employed in the construction of poly(disulfide) platforms to inspire new applications in the field of drug delivery.
Collapse
Affiliation(s)
- Ruhe Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Nie
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
18
|
Francis DM, Manspeaker MP, Archer PA, Sestito LF, Heiler AJ, Schudel A, Thomas SN. Drug-eluting immune checkpoint blockade antibody-nanoparticle conjugate enhances locoregional and systemic combination cancer immunotherapy through T lymphocyte targeting. Biomaterials 2021; 279:121184. [PMID: 34678650 PMCID: PMC8639654 DOI: 10.1016/j.biomaterials.2021.121184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/03/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022]
Abstract
Multiple small molecule immune modulators have been identified as synergistic with immune checkpoint blockade (ICB) in their effects on T lymphocytes, but are limited in their successful application to combination cancer immunotherapy due to their short in vivo retention and lack of affinity for T cells. We engineered an antibody-nanoparticle conjugate (ANC) platform consisting of 30 nm polymer nanoparticles that, due to their size and formulation, efficiently distribute after administration to lymph nodes, tissues highly enriched in lymphocytes that contribute to tumor control mediated by ICB. Displaying monoclonal antibodies against surface-expressed T cell markers, NP delivery in vivo to circulating and lymph node-resident lymphocytes was substantially enhanced, as was delivery of small molecules formulated into the NP by passive encapsulation. Using ICB monoclonal antibodies as both targeting moiety and signal-blocking therapeutic, ANCs improved the local and systemic anti-tumor effects of small molecule TGFβ receptor 1 inhibitor and an adenosine 2A antagonist when administered either locoregionally or systemically into the circulation in two syngeneic, aggressive tumor models, slowing tumor growth and prolonging animal survival. As these benefits were lost in the absence of ANC targeting, co-formulation strategies enabling the targeted co-delivery of multiple immunotherapeutics to T lymphocytes have high potential to improve ICB cancer immunotherapy by concurrent inhibition of non-redundant suppressive pathways.
Collapse
Affiliation(s)
- David M Francis
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Margaret P Manspeaker
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Lauren F Sestito
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Alexander J Heiler
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alex Schudel
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
19
|
Li G, Sun B, Li Y, Luo C, He Z, Sun J. Small-Molecule Prodrug Nanoassemblies: An Emerging Nanoplatform for Anticancer Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101460. [PMID: 34342126 DOI: 10.1002/smll.202101460] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The antitumor efficiency and clinical translation of traditional nanomedicines is mainly restricted by low drug loading, complex preparation technology, and potential toxicity caused by the overused carrier materials. In recent decades, small-molecule prodrug nanoassemblies (SMP-NAs), which are formed by the self-assembly of prodrugs themselves, have been widely investigated with distinct advantages of ultrahigh drug-loading and negligible excipients-trigged adverse reaction. Benefited from the simple preparation process, SMP-NAs are widely used for chemotherapy, phototherapy, immunotherapy, and tumor diagnosis. In addition, combination therapy based on the accurate co-delivery behavior of SMP-NAs can effectively address the challenges of tumor heterogeneity and multidrug resistance. Recent trends in SMP-NAs are outlined, and the corresponding self-assembly mechanisms are discussed in detail. Besides, the smart stimuli-responsive SMP-NAs and the combination therapy based on SMP-NAs are summarized, with special emphasis on the structure-function relationships. Finally, the outlooks and potential challenges of SMP-NAs in cancer therapy are highlighted.
Collapse
Affiliation(s)
- Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaqiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
20
|
Ganesan K, Wang Y, Gao F, Liu Q, Zhang C, Li P, Zhang J, Chen J. Targeting Engineered Nanoparticles for Breast Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13111829. [PMID: 34834243 PMCID: PMC8623926 DOI: 10.3390/pharmaceutics13111829] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the second most common cancer in women globally after lung cancer. Presently, the most important approach for BC treatment consists of surgery, followed by radiotherapy and chemotherapy. The latter therapeutic methods are often unsuccessful in the treatment of BC because of their various side effects and the damage incurred to healthy tissues and organs. Currently, numerous nanoparticles (NPs) have been identified and synthesized to selectively target BC cells without causing any impairments to the adjacent normal tissues or organs. Based on an exploratory study, this comprehensive review aims to provide information on engineered NPs and their payloads as promising tools in the treatment of BC. Therapeutic drugs or natural bioactive compounds generally incorporate engineered NPs of ideal sizes and shapes to enhance their solubility, circulatory half-life, and biodistribution, while reducing their side effects and immunogenicity. Furthermore, ligands such as peptides, antibodies, and nucleic acids on the surface of NPs precisely target BC cells. Studies on the synthesis of engineered NPs and their impact on BC were obtained from PubMed, Science Direct, and Google Scholar. This review provides insights on the importance of engineered NPs and their methodology for validation as a next-generation platform with preventive and therapeutic effects against BC.
Collapse
Affiliation(s)
- Kumar Ganesan
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China; (K.G.); (Y.W.); (Q.L.)
| | - Yan Wang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China; (K.G.); (Y.W.); (Q.L.)
| | - Fei Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (F.G.); (C.Z.)
| | - Qingqing Liu
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China; (K.G.); (Y.W.); (Q.L.)
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518063, China
| | - Chen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (F.G.); (C.Z.)
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (F.G.); (C.Z.)
- Correspondence: (J.Z.); (J.C.); Tel.: +852-3917-6479 (J.C.)
| | - Jianping Chen
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China; (K.G.); (Y.W.); (Q.L.)
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518063, China
- Correspondence: (J.Z.); (J.C.); Tel.: +852-3917-6479 (J.C.)
| |
Collapse
|
21
|
Jang H, Kim EH, Chi SG, Kim SH, Yang Y. Nanoparticles Targeting Innate Immune Cells in Tumor Microenvironment. Int J Mol Sci 2021; 22:10009. [PMID: 34576180 PMCID: PMC8468472 DOI: 10.3390/ijms221810009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
A variety of innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, natural killer cells, and neutrophils in the tumor microenvironments, contribute to tumor progression. However, while several recent reports have studied the use of immune checkpoint-based cancer immunotherapy, little work has focused on modulating the innate immune cells. This review focuses on the recent studies and challenges of using nanoparticles to target innate immune cells. In particular, we also examine the immunosuppressive properties of certain innate immune cells that limit clinical benefits. Understanding the cross-talk between tumors and innate immune cells could contribute to the development of strategies for manipulating the nanoparticles targeting tumor microenvironments.
Collapse
Affiliation(s)
- Hochung Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Eun Hye Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
22
|
Xie Y, Ma C, Yang X, Wang J, Long G, Zhou J. Phytonanomaterials as therapeutic agents and drug delivery carriers. Adv Drug Deliv Rev 2021; 176:113868. [PMID: 34303754 PMCID: PMC8482412 DOI: 10.1016/j.addr.2021.113868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/12/2021] [Accepted: 07/11/2021] [Indexed: 11/21/2022]
Abstract
Medicinal plants have been a major resource for drug discovery. Emerging evidence shows that in addition to pharmacologically active components, medicinal plants also contain phytochemical nanomaterials, or phytonanomaterials, which form nanoparticles for drug delivery. In this review, we examine the evidence supporting the existence of phytonanomaterials. Next, we review identification, isolation, and classification of phytonanomaterials, characteristics of phytonanomaterial-derived nanoparticles, and molecular mechanisms of phytonanomaterial assembly. We will then summarize the current progress in exploring phytonanomaterial-derived NPs as therapeutic agents and drug delivery carriers for disease treatment. Last, we will provide perspectives on future discovery and applications of phytonanomaterials.
Collapse
Affiliation(s)
- Ying Xie
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Chao Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jiacheng Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China
| | - Gretchen Long
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
23
|
Lopes-Nunes J, Agonia AS, Rosado T, Gallardo E, Palmeira-de-Oliveira R, Palmeira-de-Oliveira A, Martinez-de-Oliveira J, Fonseca-Moutinho J, Campello MPC, Paiva A, Paulo A, Vulgamott A, Ellignton AD, Oliveira PA, Cruz C. Aptamer-Functionalized Gold Nanoparticles for Drug Delivery to Gynecological Carcinoma Cells. Cancers (Basel) 2021; 13:4038. [PMID: 34439193 PMCID: PMC8391588 DOI: 10.3390/cancers13164038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer is one of the most common cancers and is one of the major cause of deaths in women, especially in underdeveloped countries. The patients are usually treated with surgery, radiotherapy, and chemotherapy. However, these treatments can cause several side effects and may lead to infertility. Another concerning gynecologic cancer is endometrial cancer, in which a high number of patients present a poor prognosis with low survival rates. AS1411, a DNA aptamer, increases anticancer therapeutic selectivity, and through its conjugation with gold nanoparticles (AS1411-AuNPs) it is possible to improve the anticancer effects. Therefore, AS1411-AuNPs are potential drug carriers for selectively delivering therapeutic drugs to cervical cancer. In this work, we used AS1411-AuNPs as a carrier for an acridine orange derivative (C8) or Imiquimod (IQ). The AS1411 aptamer was covalently bound to AuNPs, and each drug was associated via supramolecular assembly. The final nanoparticles presented suitable properties for pharmaceutical applications, such as small size, negative charge, and favorable drug release properties. Cellular uptake was characterized by confocal microscopy and flow cytometry, and effects on cellular viability were determined by MTT assay. The nanoparticles were then incorporated into a gel formulation of polyethylene glycol, suitable for topical application in the female genital tract. This gel showed promising tissue retention properties in Franz cells studies in the porcine vaginal epithelia. These findings suggest that the tested nanoparticles are promising drug carriers for cervical cancer therapy.
Collapse
Affiliation(s)
- Jessica Lopes-Nunes
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.L.-N.); (T.R.); (E.G.); (R.P.-d.-O.); (A.P.-d.-O.); (J.M.-d.-O.); (J.F.-M.)
| | - Ana S. Agonia
- Labfit-HPRD Health Products Research and Development, Lda, Edifício UBIMEDICAL Estrada Municipal 506, 6200-284 Covilhã, Portugal;
| | - Tiago Rosado
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.L.-N.); (T.R.); (E.G.); (R.P.-d.-O.); (A.P.-d.-O.); (J.M.-d.-O.); (J.F.-M.)
- C4-Cloud Computing Competence Centre, UBIMedical, Universidade da Beira Interior, EM506, 6200-284 Covilhã, Portugal
| | - Eugénia Gallardo
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.L.-N.); (T.R.); (E.G.); (R.P.-d.-O.); (A.P.-d.-O.); (J.M.-d.-O.); (J.F.-M.)
| | - Rita Palmeira-de-Oliveira
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.L.-N.); (T.R.); (E.G.); (R.P.-d.-O.); (A.P.-d.-O.); (J.M.-d.-O.); (J.F.-M.)
- Labfit-HPRD Health Products Research and Development, Lda, Edifício UBIMEDICAL Estrada Municipal 506, 6200-284 Covilhã, Portugal;
- Center for Neuroscience and Cell Biology, University of Coimbra, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Ana Palmeira-de-Oliveira
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.L.-N.); (T.R.); (E.G.); (R.P.-d.-O.); (A.P.-d.-O.); (J.M.-d.-O.); (J.F.-M.)
- Labfit-HPRD Health Products Research and Development, Lda, Edifício UBIMEDICAL Estrada Municipal 506, 6200-284 Covilhã, Portugal;
| | - José Martinez-de-Oliveira
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.L.-N.); (T.R.); (E.G.); (R.P.-d.-O.); (A.P.-d.-O.); (J.M.-d.-O.); (J.F.-M.)
| | - José Fonseca-Moutinho
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.L.-N.); (T.R.); (E.G.); (R.P.-d.-O.); (A.P.-d.-O.); (J.M.-d.-O.); (J.F.-M.)
- Quinta do Alvito, Centro Hospitalar Universitário Cova da Beira, 6200-251 Covilhã, Portugal
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal; (M.P.C.C.); (A.P.)
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-075 Coimbra, Portugal;
- CIMAGO/iCBR/CIBB, Faculdade de Medicina da Universidade de Coimbra, 3000-370 Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, 3046-854 Coimbra, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal; (M.P.C.C.); (A.P.)
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Alexa Vulgamott
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; (A.V.); (A.D.E.)
| | - Andrew D. Ellignton
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; (A.V.); (A.D.E.)
| | - Paula A. Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás os Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Carla Cruz
- CICS-UBI Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.L.-N.); (T.R.); (E.G.); (R.P.-d.-O.); (A.P.-d.-O.); (J.M.-d.-O.); (J.F.-M.)
| |
Collapse
|
24
|
Qu P, Kuepfert M, Ahmed E, Liu F, Weck M. Cross‐Linked Polymeric Micelles as Catalytic Nanoreactors. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Peiyuan Qu
- Molecular Design Institute and Department of Chemistry New York University 100 Washington Square East New York, NY 10003 USA
| | - Michael Kuepfert
- Molecular Design Institute and Department of Chemistry New York University 100 Washington Square East New York, NY 10003 USA
| | - Eman Ahmed
- Molecular Design Institute and Department of Chemistry New York University 100 Washington Square East New York, NY 10003 USA
| | - Fangbei Liu
- Molecular Design Institute and Department of Chemistry New York University 100 Washington Square East New York, NY 10003 USA
| | - Marcus Weck
- Molecular Design Institute and Department of Chemistry New York University 100 Washington Square East New York, NY 10003 USA
| |
Collapse
|
25
|
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332:312-336. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Polymeric micelles, i.e. aggregation colloids formed in solution by self-assembling of amphiphilic polymers, represent an innovative tool to overcome several issues related to drug administration, from the low water-solubility to the poor drug permeability across biological barriers. With respect to other nanocarriers, polymeric micelles generally display smaller size, easier preparation and sterilization processes, and good solubilization properties, unfortunately associated with a lower stability in biological fluids and a more complicated characterization. Particularly challenging is the study of their interaction with the biological environment, essential to predict the real in vivo behavior after administration. In this review, after a general presentation on micelles features and properties, different characterization techniques are discussed, from the ones used for the determination of micelles basic characteristics (critical micellar concentration, size, surface charge, morphology) to the more complex approaches used to figure out micelles kinetic stability, drug release and behavior in the presence of biological substrates (fluids, cells and tissues). The techniques presented (such as dynamic light scattering, AFM, cryo-TEM, X-ray scattering, FRET, symmetrical flow field-flow fractionation (AF4) and density ultracentrifugation), each one with their own advantages and limitations, can be combined to achieve a deeper comprehension of polymeric micelles in vivo behavior. The set-up and validation of adequate methods for micelles description represent the essential starting point for their development and clinical success.
Collapse
Affiliation(s)
- M Ghezzi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - S Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - C Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - P Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - E Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - L Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - S Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
26
|
Qambrani A, Rehman FU, Tanziela T, Shaikh S, Semcheddine F, Du T, Liu W, Jiang H, Wang X. Biocompatible exosomes nanodrug cargo for cancer cell bioimaging and drug delivery. Biomed Mater 2021; 16:025026. [PMID: 32726764 DOI: 10.1088/1748-605x/abaaa2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Therapy against cancer remains a daunting issue for human health, despite remarkable innovations in many areas of pathology. In situ biosynthesized nanoclusters bestow a novel remedy for carcinogenic cell imaging. Exosomes have received special attention as an efficient tool for the diagnosis of various diseases, including cancers. All types of cells (healthy or diseased) generate exosomes, making them significantly unique for relevant disease diagnosis and treatment. In this contribution, we exploit the possibility of utilizing the exosomes to facilitate chemotherapeutics, viz. the combination of doxorubicin (Dox) and biosynthesized silver nanoclusters in cancer cells. Our study showed a new facile way for bioimaging of cancer cells using biosynthesized silver-DNA nanoclusters, and thus further targeting cancer cells using the relevant cancer exosomes as drug delivery cargo. After isolating exosomes from neoplastic cells, i.e. HeLa, loaded with the drug, and treating other neoplastic cells with cargo-loaded isolated exosomes, we found that cargo-loaded isolated exosomes can readily enter into the targeted cancer cells and efficiently kill these neoplastic cells. This raises the possibility of acting as a novel facile modality for target cancer theranostics with high efficiency and biocompability.
Collapse
Affiliation(s)
- Aqsa Qambrani
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 China. Correspondence and requests for materials should be addressed to
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ansari MA, Chung IM, Rajakumar G, Alzohairy MA, Alomary MN, Thiruvengadam M, Pottoo FH, Ahmad N. Current Nanoparticle Approaches in Nose to Brain Drug Delivery and Anticancer Therapy - A Review. Curr Pharm Des 2020; 26:1128-1137. [PMID: 31951165 DOI: 10.2174/1381612826666200116153912] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022]
Abstract
Nanoparticles (NPs) are unique may be organic or inorganic, play a vital role in the development of drug delivery targeting the central nervous system (CNS). Intranasal drug delivery has shown to be an efficient strategy with attractive application for drug delivery to the CNS related diseases, such as Parkinson's disease, Alzheimer 's disease and brain solid tumors. Blood brain barrier (BBB) and blood-cerebrospinal fluid barriers are natural protective hindrances for entry of drug molecules into the CNS. Nanoparticles exhibit excellent intruding capacity for therapeutic agents and overcome protective barriers. By using nanotechnology based NPs targeted, drug delivery can be improved across BBB with discharge drugs in a controlled manner. NPs confer safe from degradation phenomenon. Several kinds of NPs are used for nose to the brain (N2B) enroute, such as lipidemic nanoparticles, polymeric nanoparticles, inorganic NPs, solid lipid NPs, dendrimers. Among them, popular lipidemic and polymeric NPs are discussed, and their participation in anti-cancer activity has also been highlighted in this review.
Collapse
Affiliation(s)
- Mohammad A Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| | - Govindasamy Rajakumar
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad N Alomary
- National Center of Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
28
|
Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-A review. Int J Biol Macromol 2020; 163:2145-2161. [DOI: 10.1016/j.ijbiomac.2020.09.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
|
29
|
|
30
|
Liu K, Wang X, Li-Blatter X, Wolf M, Hunziker P. Systematic and Quantitative Structure-Property Relationships of Polymeric Medical Nanomaterials: From Systematic Synthesis and Characterization to Computer Modeling and Nano-Bio Interaction and Toxicity. ACS APPLIED BIO MATERIALS 2020; 3:6919-6931. [PMID: 35019353 DOI: 10.1021/acsabm.0c00808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanomaterials allow designing targeted therapies, facilitate molecular diagnostics, and are therefore enabling platforms for personalized medicine. A systematic science and a predictive understanding of molecular/supramolecular structure relationships and nanoparticle structure/biological property relationships are needed for rational design and clinical progress but are hampered by the anecdotal nature, nonsystematic and nonrepresentative nanomaterial assortment, and oligo-disciplinary approach of many publications. Here, we find that a systematic and comprehensive multidisciplinary approach to production and exploration of molecular-structure/nanostructure relationship and nano-bio structure/function relationship of medical nanomaterials can be achieved by combining systematic chemical synthesis, thorough physicochemical analysis, computer modeling, and biological experiments, as shown in a nanomaterial family of amphiphilic, micelle-forming oxazoline/siloxane block copolymers suited for the clinical application. This comprehensive interdisciplinary approach leads to improved understanding of nanomaterial structures, allows good insights into binding modes for the nanomaterial protein corona, induces the design of minimal cell-binding materials, and yields rational strategies to avoid toxicity. Thus, this work contributes to a systematic and scientific basis for rational design of medical nanomaterials.
Collapse
Affiliation(s)
- Kegang Liu
- Nanomedicine Research Lab CLINAM, University of Basel, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland
| | - Xueya Wang
- Nanomedicine Research Lab CLINAM, University of Basel, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland
| | - Xiaochun Li-Blatter
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Marc Wolf
- Nanomedicine Research Lab CLINAM, University of Basel, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland
| | - Patrick Hunziker
- Nanomedicine Research Lab CLINAM, University of Basel, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland.,Intensive Care Clinic, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.,CLINAM Foundation for Nanomedicine, Alemannengasse, 4058 Basel, Switzerland
| |
Collapse
|
31
|
Aghaz F, Vaisi-Raygani A, Khazaei M, Arkan E. The Anti-oxidative Effects of Encapsulated Cysteamine During Mice In Vitro Matured Oocyte/Morula-Compact Stage Embryo Culture Model: a Comparison of High-Efficiency Nanocarriers for Hydrophilic Drug Delivery-a Pilot Study. Reprod Sci 2020; 28:1290-1306. [PMID: 33030694 DOI: 10.1007/s43032-020-00333-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 11/25/2022]
Abstract
Although it is well-recognized that antioxidant nano-encapsulation has many benefits such as minimizing side effects (e.g., high-dose toxicity), the most attention was paid to the hydrophobic antioxidant not hydrophilic. In this regard, we sought to compare two hydrophilic model nanocarriers to deliver the optimal dose of cystamine (Cys) into the in vitro matured oocyte and the first cleavage stages until morula-compact stage embryonic cells. The formation of Cys-loaded solid self-emulsifying lipid (Cys + SLN) and Cys-loaded chitosan shell (Cys-CS-NC) were confirmed by FT-IR and UV-Vis spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) technologies. In two experiments, the oocytes/presumptive zygotes were cultured under various concentrations of Cys-SLN and Cys-CS-NC. The results of nuclear staining (aceto-orcein and Hoechst 33342), H2DCFDA fluorescent staining, chemiluminescence test, and quantitative reverse transcription-PCR (qRT-PCR) technique as in vitro toxicity studies demonstrated that adding the lowest dose of Cys-encapsulated in both nanocarriers [Cys-SLN (5 μM) and Cys-CS-NC (10 μM)] to maturation or culture medium could accumulate a strong anti-oxidative effect in oocyte/embryo by controlled release and enhanced intracellular penetration of Cys. In comparison, Cys-SLN (5 μM) is more effective than Cys-CS-NC (10 μM) groups to improve the expression of antioxidant genes (SOD, CAT, GPx) or anti-apoptotic (BCL-2) gene and decreased apoptosis (BAX and caspase-3) or intra-/extracellular ROS levels. In a nutshell, both nanocarriers (CS-NC or SLN) can deliver the lowest dose of Cys into the oocyte/embryo, thus encouraging a better expansion of antioxidant genes and enhancing the development of in vitro oocyte/embryo.
Collapse
Affiliation(s)
- Faranak Aghaz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Elham Arkan
- Nano Drug Delivery Research Center, Faculty of Pharmacy, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
32
|
Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle-hydrogel superstructures for biomedical applications. J Control Release 2020; 324:505-521. [PMID: 32464152 PMCID: PMC7429280 DOI: 10.1016/j.jconrel.2020.05.041] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
The incorporation of nanoparticles into hydrogels yields novel superstructures that have become increasingly popular in biomedical research. Each component of these nanoparticle-hydrogel superstructures can be easily modified, resulting in platforms that are highly tunable and inherently multifunctional. The advantages of the nanoparticle and hydrogel constituents can be synergistically combined, enabling these superstructures to excel in scenarios where employing each component separately may have suboptimal outcomes. In this review, the synthesis and fabrication of different nanoparticle-hydrogel superstructures are discussed, followed by an overview of their use in a range of applications, including drug delivery, detoxification, immune modulation, and tissue engineering. Overall, these platforms hold significant clinical potential, and it is envisioned that future development along these lines will lead to unique solutions for addressing areas of pressing medical need.
Collapse
Affiliation(s)
- Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiyoung Heo
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Zocchi MR, Tosetti F, Benelli R, Poggi A. Cancer Nanomedicine Special Issue Review Anticancer Drug Delivery with Nanoparticles: Extracellular Vesicles or Synthetic Nanobeads as Therapeutic Tools for Conventional Treatment or Immunotherapy. Cancers (Basel) 2020; 12:cancers12071886. [PMID: 32668783 PMCID: PMC7409190 DOI: 10.3390/cancers12071886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Both natural and synthetic nanoparticles have been proposed as drug carriers in cancer treatment, since they can increase drug accumulation in target tissues, optimizing the therapeutic effect. As an example, extracellular vesicles (EV), including exosomes (Exo), can become drug vehicles through endogenous or exogenous loading, amplifying the anticancer effects at the tumor site. In turn, synthetic nanoparticles (NP) can carry therapeutic molecules inside their core, improving solubility and stability, preventing degradation, and controlling their release. In this review, we summarize the recent advances in nanotechnology applied for theranostic use, distinguishing between passive and active targeting of these vehicles. In addition, examples of these models are reported: EV as transporters of conventional anticancer drugs; Exo or NP as carriers of small molecules that induce an anti-tumor immune response. Finally, we focus on two types of nanoparticles used to stimulate an anticancer immune response: Exo carried with A Disintegrin And Metalloprotease-10 inhibitors and NP loaded with aminobisphosphonates. The former would reduce the release of decoy ligands that impair tumor cell recognition, while the latter would activate the peculiar anti-tumor response exerted by γδ T cells, creating a bridge between innate and adaptive immunity.
Collapse
Affiliation(s)
- Maria Raffaella Zocchi
- Division of Immunology Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
- Correspondence:
| |
Collapse
|
34
|
Mainini F, Eccles MR. Lipid and Polymer-Based Nanoparticle siRNA Delivery Systems for Cancer Therapy. Molecules 2020; 25:E2692. [PMID: 32532030 PMCID: PMC7321291 DOI: 10.3390/molecules25112692] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
RNA interference (RNAi) uses small interfering RNAs (siRNAs) to mediate gene-silencing in cells and represents an emerging strategy for cancer therapy. Successful RNAi-mediated gene silencing requires overcoming multiple physiological barriers to achieve efficient delivery of siRNAs into cells in vivo, including into tumor and/or host cells in the tumor micro-environment (TME). Consequently, lipid and polymer-based nanoparticle siRNA delivery systems have been developed to surmount these physiological barriers. In this article, we review the strategies that have been developed to facilitate siRNA survival in the circulatory system, siRNA movement from the blood into tissues and the TME, targeted siRNA delivery to the tumor or specific cell types, cellular uptake, and escape from endosomal degradation. We also discuss the use of various types of lipid and polymer-based carriers for cancer therapy, including a section on anti-tumor nanovaccines enhanced by siRNAs. Finally, we review current and recent clinical trials using NPs loaded with siRNAs for cancer therapy. The siRNA cancer therapeutics field is rapidly evolving, and it is conceivable that precision cancer therapy could, in the relatively near future, benefit from the combined use of cancer therapies, for example immune checkpoint blockade together with gene-targeting siRNAs, personalized for enhancing and fine-tuning a patient's therapeutic response.
Collapse
Affiliation(s)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
35
|
Im S, Jang D, Saravanakumar G, Lee J, Kang Y, Lee YM, Lee J, Doh J, Yang ZY, Jang MH, Kim WJ. Harnessing the Formation of Natural Killer-Tumor Cell Immunological Synapses for Enhanced Therapeutic Effect in Solid Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000020. [PMID: 32319126 DOI: 10.1002/adma.202000020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The formation of an immunological synapse (IS) on recognition of a cancer cell is the main mechanism underlying the natural killer (NK)-cell-mediated killing of tumor cells. Herein, an integrative strategy for cancer therapy against solid tumors is reported, in which alterations in the cleft of IS, following the secretion of acidic granular content, are utilized as a trigger for the delivery of chemotherapeutic drugs. NK cells are decorated with the IS-environment-responsive micellar system to ensure the release of the payload when they attack cancer cells. Using this strategy, the immunological cytotoxic killing effect of NK cells against solid tumors is reinforced with the site-specific diffusion of chemotherapeutic agents. Harnessing the intrinsic mechanism for the recognition of abnormal cells and the tumor-homing effect of NK cells limit the adverse systemic effects of chemotherapeutic drugs. This approach may provide a pragmatic platform for the universal and effective utilization of IS formation.
Collapse
Affiliation(s)
- Sooseok Im
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Donghyun Jang
- Department of Chemistry, POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gurusamy Saravanakumar
- Department of Chemistry, POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junseok Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeoul Kang
- Department of Chemistry, POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeong Mi Lee
- Department of Chemistry, POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaehyun Lee
- Department of Chemistry, POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | | | | | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemistry, POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
36
|
Li Q, Li X, Zhao C. Strategies to Obtain Encapsulation and Controlled Release of Small Hydrophilic Molecules. Front Bioeng Biotechnol 2020; 8:437. [PMID: 32478055 PMCID: PMC7237580 DOI: 10.3389/fbioe.2020.00437] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/16/2020] [Indexed: 12/03/2022] Open
Abstract
The therapeutic effect of small hydrophilic molecules is limited by the rapid clearance from the systemic circulation or a local site of administration. The unsuitable pharmacokinetics and biodistribution can be improved by encapsulating them in drug delivery systems. However, the high-water solubility, very hydrophilic nature, and low molecular weight make it difficult to encapsulate small hydrophilic molecules in many drug delivery systems. In this mini-review, we highlight three strategies to efficiently encapsulate small hydrophilic molecules and achieve controlled release: physical encapsulation in micro/nanocapsules, physical adsorption via electronic interactions, and covalent conjugation. The principles, advantages, and disadvantages of each strategy are discussed. This review paper could be a guide for scientists, engineers, and medical doctors who want to improve the therapeutic efficacy of small hydrophilic drugs.
Collapse
Affiliation(s)
| | | | - Chao Zhao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States
| |
Collapse
|
37
|
Mu YL, Zhang J, Xu MQ, Foda MF, Wu Y, Han HY. Light-Induced Caspase-3-Responsive Chimeric Peptide for Effective PDT/Chemo Combination Therapy with Good Compatibility. ACS APPLIED BIO MATERIALS 2020; 3:2392-2400. [DOI: 10.1021/acsabm.0c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong-Li Mu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng-Qing Xu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohamed F. Foda
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Yang Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - He-You Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
38
|
Molavi F, Barzegar-Jalali M, Hamishehkar H. Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches. J Control Release 2020; 320:265-282. [DOI: 10.1016/j.jconrel.2020.01.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
|
39
|
Elahi M, Ali S, Tahir HM, Mushtaq R, Bhatti MF. Sericin and fibroin nanoparticles—natural product for cancer therapy: a comprehensive review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1706515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mehreen Elahi
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Rabia Mushtaq
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Farooq Bhatti
- Department of Zoology, Government College University, Lahore, Pakistan
- Sericulture Wing, Forest Department, Lahore, Pakistan
| |
Collapse
|
40
|
Affiliation(s)
- Baoji Du
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
41
|
Gupta PK, Dharanivasan G, Misra R, Gupta S, Verma RS. Nanomedicine in Cancer Stem Cell Therapy. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
42
|
Nuñez-Rivera A, Fournier PGJ, Arellano DL, Rodriguez-Hernandez AG, Vazquez-Duhalt R, Cadena-Nava RD. Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:372-382. [PMID: 32175217 PMCID: PMC7059527 DOI: 10.3762/bjnano.11.28] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/07/2020] [Indexed: 05/06/2023]
Abstract
There is an increasing interest in the use of plant viruses as vehicles for anti-cancer therapy. In particular, the plant virus brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV) are novel potential nanocarriers for different therapies in nanomedicine. In this work, BMV and CCMV were loaded with a fluorophore and assayed on breast tumor cells. The viruses BMV and CCMV were internalized into breast tumor cells. Both viruses, BMV and CCMV, did not show cytotoxic effects on tumor cells in vitro. However, only BMV did not activate macrophages in vitro. This suggests that BMV is less immunogenic and may be a potential carrier for therapy delivery in tumor cells. Furthermore, BMV virus-like particles (VLPs) were efficiently loaded with small interfering RNA (siRNA) without packaging signal. The gene silencing was demonstrated by VLPs loaded with siGFP and tested on breast tumor cells that constitutively express the green fluorescent protein (GPF). After VLP-siGFP treatment, GFP expression was efficiently inhibited corroborating the cargo release inside tumor cells and the gene silencing. In addition, BMV VLP carring siAkt1 inhibited the tumor growth in mice. These results show the attractive potential of plant virus VLPs to deliver molecular therapy to tumor cells with low immunogenic response.
Collapse
Affiliation(s)
- Alfredo Nuñez-Rivera
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México
| | - Pierrick G J Fournier
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México
| | - Danna L Arellano
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, México
| | - Ana G Rodriguez-Hernandez
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
| | - Ruben D Cadena-Nava
- Centro de Nanociencias y Nanotecnología - Universidad Nacional Autónoma de México (UNAM) – Ensenada, Baja California, México
| |
Collapse
|
43
|
Li S, Li H, Xu X, Saw PE, Zhang L. Nanocarrier-mediated antioxidant delivery for liver diseases. Theranostics 2020; 10:1262-1280. [PMID: 31938064 PMCID: PMC6956819 DOI: 10.7150/thno.38834] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Liver is the principal detoxifying organ and metabolizes various compounds that produce free radicals (FR) constantly. To maintain the oxidative/antioxidative balance in the liver, antioxidants would scavenge FR by preventing tissue damage through FR formation, scavenging, or by enhancing their decomposition. The disruption of this balance therefore leads to oxidative stress and in turn leads to the onset of various diseases. Supplying the liver with exogeneous antioxidants is an effective way to recreate the oxidative/antioxidative balance in the liver homeostasis. Nevertheless, due to the short half-life and instability of antioxidants in circulation, the methodology for delivering antioxidants to the liver needs to be improved. Nanocarrier mediated delivery of antioxidants proved to be an ingenious way to safely and efficiently deliver a high payload of antioxidants into the liver for circumventing liver diseases. The objective of this review is to provide an overview of the role of reactive oxygen species (oxidant) and ROS scavengers (antioxidant) in liver diseases. Subsequently, current nanocarrier mediated antioxidant delivery methods for liver diseases are discussed.
Collapse
Affiliation(s)
- Senlin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Huiru Li
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| |
Collapse
|
44
|
Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, Prosperi D. Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers (Basel) 2019; 11:E1855. [PMID: 31769416 PMCID: PMC6966668 DOI: 10.3390/cancers11121855] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Starting with the enhanced permeability and retention (EPR) effect discovery, nanomedicine has gained a crucial role in cancer treatment. The advances in the field have led to the approval of nanodrugs with improved safety profile and still inspire the ongoing investigations. However, several restrictions, such as high manufacturing costs, technical challenges, and effectiveness below expectations, raised skeptical opinions within the scientific community about the clinical relevance of nanomedicine. In this review, we aim to give an overall vision of the current hurdles encountered by nanotherapeutics along with their design, development, and translation, and we offer a prospective view on possible strategies to overcome such limitations.
Collapse
Affiliation(s)
- Lucia Salvioni
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Maria Antonietta Rizzuto
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Jessica Armida Bertolini
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Laura Pandolfi
- Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Miriam Colombo
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Davide Prosperi
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
- Nanomedicine Laboratory, ICS Maugeri, via S. Maugeri 10, 27100 Pavia, Italy
| |
Collapse
|
45
|
Wei X, Liu L, Li X, Wang Y, Guo X, Zhao J, Zhou S. Selectively targeting tumor-associated macrophages and tumor cells with polymeric micelles for enhanced cancer chemo-immunotherapy. J Control Release 2019; 313:42-53. [DOI: 10.1016/j.jconrel.2019.09.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/12/2019] [Accepted: 09/28/2019] [Indexed: 02/06/2023]
|
46
|
Morales-Cruz M, Delgado Y, Castillo B, Figueroa CM, Molina AM, Torres A, Milián M, Griebenow K. Smart Targeting To Improve Cancer Therapeutics. Drug Des Devel Ther 2019; 13:3753-3772. [PMID: 31802849 PMCID: PMC6826196 DOI: 10.2147/dddt.s219489] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second largest cause of death worldwide with the number of new cancer cases predicted to grow significantly in the next decades. Biotechnology and medicine can and should work hand-in-hand to improve cancer diagnosis and treatment efficacy. However, success has been frequently limited, in particular when treating late-stage solid tumors. There still is the need to develop smart and synergistic therapeutic approaches to achieve the synthesis of strong and effective drugs and delivery systems. Much interest has been paid to the development of smart drug delivery systems (drug-loaded particles) that utilize passive targeting, active targeting, and/or stimulus responsiveness strategies. This review will summarize some main ideas about the effect of each strategy and how the combination of some or all of them has shown to be effective. After a brief introduction of current cancer therapies and their limitations, we describe the biological barriers that nanoparticles need to overcome, followed by presenting different types of drug delivery systems to improve drug accumulation in tumors. Then, we describe cancer cell membrane targets that increase cellular drug uptake through active targeting mechanisms. Stimulus-responsive targeting is also discussed by looking at the intra- and extracellular conditions for specific drug release. We include a significant amount of information summarized in tables and figures on nanoparticle-based therapeutics, PEGylated drugs, different ligands for the design of active-targeted systems, and targeting of different organs. We also discuss some still prevailing fundamental limitations of these approaches, eg, by occlusion of targeting ligands.
Collapse
Affiliation(s)
- Moraima Morales-Cruz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Yamixa Delgado
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Betzaida Castillo
- Department of Chemistry, University of Puerto Rico, Humacao Campus, Humacao, PR, USA
| | - Cindy M Figueroa
- Department of Math and Sciences, Polytechnic University of Puerto Rico, San Juan, PR, USA
| | - Anna M Molina
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Anamaris Torres
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Melissa Milián
- Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine, Caguas, PR, USA
| | - Kai Griebenow
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| |
Collapse
|
47
|
Dzuricky M, Xiong S, Weber P, Chilkoti A. Avidity and Cell Uptake of Integrin-Targeting Polypeptide Micelles is Strongly Shape-Dependent. NANO LETTERS 2019; 19:6124-6132. [PMID: 31389705 DOI: 10.1021/acs.nanolett.9b02095] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We describe a genetically encoded micelle for targeted delivery consisting of a diblock polypeptide with segments derived from repetitive protein motifs inspired by Drosophila melanogaster Rec-1 resilin and human tropoelastin with a C-terminal fusion of an integrin-targeting fibronectin type III domain. By systematically varying the weight fraction of the hydrophilic elastin-like polypeptide (ELP) block and molecular weight of the diblock polypeptide, we designed micelles of different morphologies that modulate the binding avidity of the human wild-type 10th fibronectin domain (Fn3) as a function of shape. We show that wormlike micelles that present the Fn3 domain have a 1000-fold greater avidity for the αvβ3 receptor compared to the monomer ligand and an avidity that is greater than a clinically relevant antibody that is driven by their multivalency. The amplified avidity of these micelles leads to significantly increased cellular internalization, a feature that may have utility for the intracellular delivery of drugs that are loaded into the core of these micelles.
Collapse
Affiliation(s)
- Michael Dzuricky
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Sinan Xiong
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Patrick Weber
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
- Swiss Nanoscience Institute , University of Basel , Basel 4056 , Switzerland
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
48
|
Affiliation(s)
- Qian Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology , Beijing , PR China.,Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology , Beijing , PR China
| | - Jian-Feng Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology , Beijing , PR China.,Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology , Beijing , PR China
| | - Alexander F Routh
- Department of Chemical Engineering and Biotechnology, BP Institute, University of Cambridge, Madingley Rise , Cambridge , UK
| |
Collapse
|
49
|
Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102013. [DOI: 10.1016/j.nano.2019.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
|
50
|
Kim K, Choi H, Choi ES, Park MH, Ryu JH. Hyaluronic Acid-Coated Nanomedicine for Targeted Cancer Therapy. Pharmaceutics 2019; 11:E301. [PMID: 31262049 PMCID: PMC6680416 DOI: 10.3390/pharmaceutics11070301] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/24/2022] Open
Abstract
Hyaluronic acid (HA) has been widely investigated in cancer therapy due to its excellent characteristics. HA, which is a linear anionic polymer, has biocompatibility, biodegradability, non-immunogenicity, non-inflammatory, and non-toxicity properties. Various HA nanomedicines (i.e., micelles, nanogels, and nanoparticles) can be prepared easily using assembly and modification of its functional groups such as carboxy, hydroxy and N-acetyl groups. Nanometer-sized HA nanomedicines can selectively deliver drugs or other molecules into tumor sites via their enhanced permeability and retention (EPR) effect. In addition, HA can interact with overexpressed receptors in cancer cells such as cluster determinant 44 (CD44) and receptor for HA-mediated motility (RHAMM) and be degraded by a family of enzymes called hyaluronidase (HAdase) to release drugs or molecules. By interaction with receptors or degradation by enzymes inside cancer cells, HA nanomedicines allow enhanced targeting cancer therapy. In this article, recent studies about HA nanomedicines in drug delivery systems, photothermal therapy, photodynamic therapy, diagnostics (because of the high biocompatibility), colloidal stability, and cancer targeting are reviewed for strategies using micelles, nanogels, and inorganic nanoparticles.
Collapse
Affiliation(s)
- Kibeom Kim
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Huyeon Choi
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Eun Seong Choi
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Myoung-Hwan Park
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Korea.
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| |
Collapse
|