1
|
Shu H, Zhang P, Gu L. Alpha-synuclein in peripheral body fluid as a biomarker for Parkinson's disease. Acta Neurol Belg 2024; 124:831-842. [PMID: 38170418 DOI: 10.1007/s13760-023-02452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Whether alpha-synuclein in peripheral body fluids can be used for the diagnosis of Parkinson's disease (PD) remains in controversy. This study evaluates diagnostic potential of alpha-synuclein for PD in various peripheral body fluids using a meta-analysis approach. METHODS Studies published before October 2022 were searched in Web of Science and PubMed databases. The results were computed using the STATA 12.0 statistical software. RESULTS In plasma, PD patients exhibited elevated alpha-synuclein levels relative to healthy controls (HCs) [standard mean difference (SMD) = 0.78, 95% confidence interval (CI) = 0.42 to 1.15] with a sensitivity of 0.79 (95% CI: 0.64-0.89) and a specificity of 0.95 (95% CI: 0.90-0.98). Higher plasma alpha-synuclein levels were correlated with longer disease durations, higher Unified Parkinson's Disease Rating Scale motor scores, and higher Hoehn and Yahr stages in PD patients. Plasma neural-derived exosomal alpha-synuclein levels (SMD = 1.82, 95% CI = 0.30 to 3.35), ratio of plasma neural-derived exosomal alpha-synuclein to total alpha-synuclein (SMD = 1.26, 95% CI = 0.19 to 2.33), and erythrocytic alpha-synuclein levels were also increased in PD patients (SMD = 6.57, 95% CI = 3.55 to 9.58). In serum, there was no significant difference in alpha-synuclein levels between PD patients and HCs (SMD = 0.54, 95% CI = - 0.27 to 1.34). In saliva, reduced alpha-synuclein levels were observed in PD patients (SMD = - 0.85, 95% CI = - 1.67 to - 0.04). CONCLUSIONS Alpha-synuclein levels in plasma, plasma neural-derived exosome, erythrocyte, and saliva may serve as potential biomarkers for the diagnosis of PD.
Collapse
Affiliation(s)
- Hao Shu
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China
| | - Pengcheng Zhang
- Institute of Environment and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300041, China
| | - Lihua Gu
- Department of Neurology, Tianjin Huanhu Hospital, No. 6 Jizhao Road, Tianjin, 300350, China.
| |
Collapse
|
2
|
Dinamarca MC, Colombo L, Brykczynska U, Grimm A, Fruh I, Hossain I, Gabriel D, Eckert A, Müller M, Pecho-Vrieseling E. Transmission-selective muscle pathology induced by the active propagation of mutant huntingtin across the human neuromuscular synapse. Front Mol Neurosci 2024; 16:1287510. [PMID: 38235149 PMCID: PMC10791992 DOI: 10.3389/fnmol.2023.1287510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Neuron-to-neuron transmission of aggregation-prone, misfolded proteins may potentially explain the spatiotemporal accumulation of pathological lesions in the brains of patients with neurodegenerative protein-misfolding diseases (PMDs). However, little is known about protein transmission from the central nervous system to the periphery, or how this propagation contributes to PMD pathology. To deepen our understanding of these processes, we established two functional neuromuscular systems derived from human iPSCs. One was suitable for long-term high-throughput live-cell imaging and the other was adapted to a microfluidic system assuring that connectivity between motor neurons and muscle cells was restricted to the neuromuscular junction. We show that the Huntington's disease (HD)-associated mutant HTT exon 1 protein (mHTTEx1) is transmitted from neurons to muscle cells across the human neuromuscular junction. We found that transmission is an active and dynamic process that starts before aggregate formation and is regulated by synaptic activity. We further found that transmitted mHTTEx1 causes HD-relevant pathology at both molecular and functional levels in human muscle cells, even in the presence of the ubiquitous expression of mHTTEx1. In conclusion, we have uncovered a causal link between mHTTEx1 synaptic transmission and HD pathology, highlighting the therapeutic potential of blocking toxic protein transmission in PMDs.
Collapse
Affiliation(s)
- Margarita C. Dinamarca
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Colombo
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Urszula Brykczynska
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Isabelle Fruh
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Imtiaz Hossain
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Daniela Gabriel
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Anne Eckert
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Matthias Müller
- Biomedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Eline Pecho-Vrieseling
- Neuronal Development and Degeneration Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Lang M, Pramstaller PP, Pichler I. Crosstalk of organelles in Parkinson's disease - MiT family transcription factors as central players in signaling pathways connecting mitochondria and lysosomes. Mol Neurodegener 2022; 17:50. [PMID: 35842725 PMCID: PMC9288732 DOI: 10.1186/s13024-022-00555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Living organisms constantly need to adapt to their surrounding environment and have evolved sophisticated mechanisms to deal with stress. Mitochondria and lysosomes are central organelles in the response to energy and nutrient availability within a cell and act through interconnected mechanisms. However, when such processes become overwhelmed, it can lead to pathologies. Parkinson's disease (PD) is a common neurodegenerative disorder (NDD) characterized by proteinaceous intracellular inclusions and progressive loss of dopaminergic neurons, which causes motor and non-motor symptoms. Genetic and environmental factors may contribute to the disease etiology. Mitochondrial dysfunction has long been recognized as a hallmark of PD pathogenesis, and several aspects of mitochondrial biology are impaired in PD patients and models. In addition, defects of the autophagy-lysosomal pathway have extensively been observed in cell and animal models as well as PD patients' brains, where constitutive autophagy is indispensable for adaptation to stress and energy deficiency. Genetic and molecular studies have shown that the functions of mitochondria and lysosomal compartments are tightly linked and influence each other. Connections between these organelles are constituted among others by mitophagy, organellar dynamics and cellular signaling cascades, such as calcium (Ca2+) and mTOR (mammalian target of rapamycin) signaling and the activation of transcription factors. Members of the Microphthalmia-associated transcription factor family (MiT), including MITF, TFE3 and TFEB, play a central role in regulating cellular homeostasis in response to metabolic pressure and are considered master regulators of lysosomal biogenesis. As such, they are part of the interconnection between mitochondria and lysosome functions and therefore represent attractive targets for therapeutic approaches against NDD, including PD. The activation of MiT transcription factors through genetic and pharmacological approaches have shown encouraging results at ameliorating PD-related phenotypes in in vitro and in vivo models. In this review, we summarize the relationship between mitochondrial and autophagy-lysosomal functions in the context of PD etiology and focus on the role of the MiT pathway and its potential as pharmacological target against PD.
Collapse
Affiliation(s)
- Martin Lang
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
4
|
Schaffner SL, Wassouf Z, Lazaro DF, Xylaki M, Gladish N, Lin DTS, MacIsaac J, Ramadori K, Hentrich T, Schulze-Hentrich JM, Outeiro TF, Kobor MS. Alpha-synuclein overexpression induces epigenomic dysregulation of glutamate signaling and locomotor pathways. Hum Mol Genet 2022; 31:3694-3714. [PMID: 35567546 PMCID: PMC9616577 DOI: 10.1093/hmg/ddac104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson’s disease (PD) is a neurological disorder with complex interindividual etiology that is becoming increasingly prevalent worldwide. Elevated alpha-synuclein levels can increase risk of PD and may influence epigenetic regulation of PD pathways. Here, we report genome-wide DNA methylation and hydroxymethylation alterations associated with overexpression of two PD-linked alpha-synuclein variants (wild-type and A30P) in LUHMES cells differentiated to dopaminergic neurons. Alpha-synuclein altered DNA methylation at thousands of CpGs and DNA hydroxymethylation at hundreds of CpGs in both genotypes, primarily in locomotor behavior and glutamate signaling pathway genes. In some cases, epigenetic changes were associated with transcription. SMITE network analysis incorporating H3K4me1 ChIP-seq to score DNA methylation and hydroxymethylation changes across promoters, enhancers, and gene bodies confirmed epigenetic and transcriptional deregulation of glutamate signaling modules in both genotypes. Our results identify distinct and shared impacts of alpha-synuclein variants on the epigenome, and associate alpha-synuclein with the epigenetic etiology of PD.
Collapse
Affiliation(s)
- Samantha L Schaffner
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Zinah Wassouf
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Diana F Lazaro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Nicole Gladish
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - David T S Lin
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Julia MacIsaac
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Katia Ramadori
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Julia M Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.,Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
5
|
Menon S, Armstrong S, Hamzeh A, Visanji NP, Sardi SP, Tandon A. Alpha-Synuclein Targeting Therapeutics for Parkinson's Disease and Related Synucleinopathies. Front Neurol 2022; 13:852003. [PMID: 35614915 PMCID: PMC9124903 DOI: 10.3389/fneur.2022.852003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (asyn) is a key pathogenetic factor in a group of neurodegenerative diseases generically known as synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Although the initial triggers of pathology and progression are unclear, multiple lines of evidence support therapeutic targeting of asyn in order to limit its prion-like misfolding. Here, we review recent pre-clinical and clinical work that offers promising treatment strategies to sequester, degrade, or silence asyn expression as a means to reduce the levels of seed or substrate. These diverse approaches include removal of aggregated asyn with passive or active immunization or by expression of vectorized antibodies, modulating kinetics of misfolding with small molecule anti-aggregants, lowering asyn gene expression by antisense oligonucleotides or inhibitory RNA, and pharmacological activation of asyn degradation pathways. We also discuss recent technological advances in combining low intensity focused ultrasound with intravenous microbubbles to transiently increase blood-brain barrier permeability for improved brain delivery and target engagement of these large molecule anti-asyn biologics.
Collapse
Affiliation(s)
- Sindhu Menon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Sabrina Armstrong
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Amir Hamzeh
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
| | - Naomi P. Visanji
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | | | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Lucien F, Benarroch EE, Mullan A, Ali F, Boeve BF, Mielke MM, Petersen RC, Kim Y, Stang C, Camerucci E, Ross OA, Wszolek ZK, Knopman D, Bower J, Singer W, Savica R. Poly (ADP-Ribose) and α-synuclein extracellular vesicles in patients with Parkinson disease: A possible biomarker of disease severity. PLoS One 2022; 17:e0264446. [PMID: 35395000 PMCID: PMC8993007 DOI: 10.1371/journal.pone.0264446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/10/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND/OBJECTIVE Despite multiple attempts, no surrogate biomarker of Parkinson disease (PD) has been definitively identified. Alternatively, identifying a non-invasive biomarker is crucial to understanding the natural history, severity, and progression of PD and to guide future therapeutic trials. Recent work highlighted alpha synuclein-containing extracellular vesicles and Poly (ADP-ribose) polymerase (PARP-1) activity as drivers of PD pathogenesis and putative PD biomarkers. This exploratory study evaluated the role of alpha-synuclein-positive extracellular vesicles and PARP-1 activity in the plasma of PD patients as non-invasive markers of the disease's severity and progression. METHODS We collected plasma of 57 PD patients (discovery cohort 20, replication cohort 37) and compared it with 20 unaffected individuals, 20 individuals with clinically diagnosed Alzheimer's disease, and 20 individuals with dementia with Lewy bodies. We analyzed alpha-synuclein-positive extracellular vesicles from platelet-free plasma by nanoscale flow cytometry and blood concentrations of poly ADP-ribose using sandwich ELISA kits. RESULTS Median concentration of α-synuclein extracellular vesicles was significantly higher in PD patients compared to the other groups (Kruskal-Wallis, p < .0001). In the discovery cohort, patients with higher α-synuclein extracellular vesicles had a higher Unified Parkinson Disease Rating Scale score (UPDRS III median = 22 vs. 5, p = 0.045). Seven out of 20 patients (35%) showed detectable PAR levels, with positive patients showing significantly higher levels of α-synuclein extracellular vesicles. In the replication cohort, we did not observe a significant difference in the PAR-positive cases in relationship with UPDRS III. CONCLUSIONS Non-invasive determination of α-synuclein-positive extracellular vesicles may provide a potential non-invasive marker of PD disease severity, and longitudinal studies are needed to evaluate the role of α-synuclein-positive extracellular vesicles as a marker of disease progression.
Collapse
Affiliation(s)
- Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eduardo E. Benarroch
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aidan Mullan
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Bradley F. Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michelle M. Mielke
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cole Stang
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Emanuele Camerucci
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Zbigniew K. Wszolek
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - James Bower
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Wolfgang Singer
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
7
|
Jadavi S, Canepa E, Diaspro A, Canale C, Relini A, Dante S. α-Synuclein interacts differently with membranes mimicking the inner and outer leaflets of neuronal membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183814. [PMID: 34774499 DOI: 10.1016/j.bbamem.2021.183814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022]
Abstract
The toxicity of α-synuclein (α-syn), the amyloidogenic protein responsible for Parkinson's disease, is likely related to its interaction with the asymmetric neuronal membrane. α-Syn exists as cytoplasmatic and as extracellular protein as well. To shed light on the different interactions occurring at the different α-syn localizations, we have here modelled the external and internal membrane leaflets of the neuronal membrane with two complex lipid mixtures, characterized by phase coexistence and with negative charge confined to either the ordered or the disordered phase, respectively. To this purpose, we selected a five-component (DOPC/SM/DOPE/DOPS/chol) and a four-component (DOPC/SM/GM1/chol) lipid mixtures, which contained the main membrane lipid constituents and exhibited a phase separation with formation of ordered domains. We have compared the action of α-syn in monomeric form and at different concentrations (1 nM, 40 nM, and 200 nM) with respect to lipid systems with different composition and shape by AFM, QCM-D, and vesicle leakage experiments. The experiments coherently showed a higher stability of the membranes composed by the internal leaflet mixture to the interaction with α-syn. Damage to membranes made of the external leaflet mixture was detected in a concentration-dependent manner. Interestingly, the membrane damage was related to the fluidity of the lipid domains and not to the presence of negatively charged lipids.
Collapse
Affiliation(s)
- Samira Jadavi
- Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genova, Italy; Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Ester Canepa
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Alberto Diaspro
- Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genova, Italy; Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Claudio Canale
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Annalisa Relini
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | - Silvia Dante
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
8
|
Spathopoulou A, Edenhofer F, Fellner L. Targeting α-Synuclein in Parkinson's Disease by Induced Pluripotent Stem Cell Models. Front Neurol 2022; 12:786835. [PMID: 35145469 PMCID: PMC8821105 DOI: 10.3389/fneur.2021.786835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder characterized by motor and non-motor symptoms. To date, no specific treatment to halt disease progression is available, only medication to alleviate symptoms can be prescribed. The main pathological hallmark of PD is the development of neuronal inclusions, positive for α-synuclein (α-syn), which are termed Lewy bodies (LBs) or Lewy neurites. However, the cause of the inclusion formation and the loss of neurons remain largely elusive. Various genetic determinants were reported to be involved in PD etiology, including SNCA, DJ-1, PRKN, PINK1, LRRK2, and GBA. Comprehensive insights into pathophysiology of PD critically depend on appropriate models. However, conventional model organisms fall short to faithfully recapitulate some features of this complex disease and as a matter-of-fact access to physiological tissue is limiting. The development of disease models replicating PD that are close to human physiology and dynamic enough to analyze the underlying molecular mechanisms of disease initiation and progression, as well as the generation of new treatment options, is an important and overdue step. Recently, the establishment of induced pluripotent stem cell (iPSC)-derived neural models, particularly from genetic PD-variants, developed into a promising strategy to investigate the molecular mechanisms regarding formation of inclusions and neurodegeneration. As these iPSC-derived neurons can be generated from accessible biopsied samples of PD patients, they carry pathological alterations and enable the possibility to analyze the differences compared to healthy neurons. This review focuses on iPSC models carrying genetic PD-variants of α-syn that will be especially helpful in elucidating the pathophysiological mechanisms of PD. Furthermore, we discuss how iPSC models can be instrumental in identifying cellular targets, potentially leading to the development of new therapeutic treatments. We will outline the enormous potential, but also discuss the limitations of iPSC-based α-syn models.
Collapse
|
9
|
Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022; 10:1134-1165. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Hallie Arnott
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - William A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada.,Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
10
|
Nordström E, Eriksson F, Sigvardson J, Johannesson M, Kasrayan A, Jones-Kostalla M, Appelkvist P, Söderberg L, Nygren P, Blom M, Rachalski A, Nordenankar K, Zachrisson O, Amandius E, Osswald G, Moge M, Ingelsson M, Bergström J, Lannfelt L, Möller C, Giorgetti M, Fälting J. ABBV-0805, a novel antibody selective for soluble aggregated α-synuclein, prolongs lifespan and prevents buildup of α-synuclein pathology in mouse models of Parkinson's disease. Neurobiol Dis 2021; 161:105543. [PMID: 34737044 DOI: 10.1016/j.nbd.2021.105543] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 10/20/2022] Open
Abstract
A growing body of evidence suggests that aggregated α-synuclein, the major constituent of Lewy bodies, plays a key role in the pathogenesis of Parkinson's disease and related α-synucleinopathies. Immunotherapies, both active and passive, against α-synuclein have been developed and are promising novel treatment strategies for such disorders. Here, we report on the humanization and pharmacological characteristics of ABBV-0805, a monoclonal antibody that exhibits a high selectivity for human aggregated α-synuclein and very low affinity for monomers. ABBV-0805 binds to a broad spectrum of soluble aggregated α-synuclein, including small and large aggregates of different conformations. Binding of ABBV-0805 to pathological α-synuclein was demonstrated in Lewy body-positive post mortem brains of Parkinson's disease patients. The functional potency of ABBV-0805 was demonstrated in several cellular assays, including Fcγ-receptor mediated uptake of soluble aggregated α-synuclein in microglia and inhibition of neurotoxicity in primary neurons. In vivo, the murine version of ABBV-0805 (mAb47) displayed significant dose-dependent decrease of α-synuclein aggregates in brain in several mouse models, both in prophylactic and therapeutic settings. In addition, mAb47 treatment of α-synuclein transgenic mice resulted in a significantly prolonged survival. ABBV-0805 selectively targets soluble toxic α-synuclein aggregates with a picomolar affinity and demonstrates excellent in vivo efficacy. Based on the strong preclinical findings described herein, ABBV-0805 has been progressed into clinical development as a potential disease-modifying treatment for Parkinson's disease.
Collapse
Affiliation(s)
- Eva Nordström
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | | | | | | | - Alex Kasrayan
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | | | | | - Linda Söderberg
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | - Patrik Nygren
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | - Magdalena Blom
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | | | | | - Olof Zachrisson
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | - Ebba Amandius
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | - Gunilla Osswald
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | - Mikael Moge
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden.
| | - Joakim Bergström
- Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden.
| | - Lars Lannfelt
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden; Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden.
| | - Christer Möller
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| | | | - Johanna Fälting
- BioArctic AB, Warfvinges väg 35, SE-112 51 Stockholm, Sweden.
| |
Collapse
|
11
|
Evidence of distinct α-synuclein strains underlying disease heterogeneity. Acta Neuropathol 2021; 142:73-86. [PMID: 32440702 DOI: 10.1007/s00401-020-02163-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the misfolding and self-templating of the protein α-synuclein, or the formation of α-synuclein prions. Each disorder differs by age of onset, presenting clinical symptoms, α-synuclein inclusion morphology, and neuropathological distribution. Explaining this disease-specific variability, the strain hypothesis postulates that each prion disease is encoded by a distinct conformation of the misfolded protein, and therefore, each synucleinopathy is caused by a unique α-synuclein structure. This review discusses the current data supporting the role of α-synuclein strains in disease heterogeneity. Several in vitro and in vivo models exist for evaluating strain behavior, however, as the focus of this article is to compare strains across synucleinopathy patients, our discussion predominantly focuses on the two models most commonly used for this purpose: the α-syn140*A53T-YFP cell line and the TgM83+/- mouse model. Here we define each strain based on biochemical stability, ability to propagate in α-syn140-YFP cell lines, and incubation period, inclusion morphology and distribution, and neurological signs in TgM83+/- mice.
Collapse
|
12
|
Super-resolution imaging reveals α-synuclein seeded aggregation in SH-SY5Y cells. Commun Biol 2021; 4:613. [PMID: 34021258 PMCID: PMC8139990 DOI: 10.1038/s42003-021-02126-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/20/2021] [Indexed: 02/04/2023] Open
Abstract
Aggregation of α-synuclein (α-syn) is closely linked to Parkinson's disease (PD) and the related synucleinopathies. Aggregates spread through the brain during the progression of PD, but the mechanism by which this occurs is still not known. One possibility is a self-propagating, templated-seeding mechanism, but this cannot be established without quantitative information about the efficiencies and rates of the key steps in the cellular process. To address this issue, we imaged the uptake and seeding of unlabeled exogenous α-syn fibrils by SH-SY5Y cells and the resulting secreted aggregates, using super-resolution microscopy. Externally-applied fibrils very inefficiently induced self-assembly of endogenous α-syn in a process accelerated by the proteasome. Seeding resulted in the increased secretion of nanoscopic aggregates (mean 35 nm diameter), of both α-syn and Aβ. Our results suggest that cells respond to seed-induced disruption of protein homeostasis predominantly by secreting nanoscopic aggregates; this mechanism may therefore be an important protective response by cells to protein aggregation.
Collapse
|
13
|
Michiels E, Liu S, Gallardo R, Louros N, Mathelié-Guinlet M, Dufrêne Y, Schymkowitz J, Vorberg I, Rousseau F. Entropic Bristles Tune the Seeding Efficiency of Prion-Nucleating Fragments. Cell Rep 2021; 30:2834-2845.e3. [PMID: 32101755 PMCID: PMC7043027 DOI: 10.1016/j.celrep.2020.01.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/07/2020] [Accepted: 01/28/2020] [Indexed: 01/04/2023] Open
Abstract
Prions of lower eukaryotes are self-templating protein aggregates with cores formed by parallel in-register beta strands. Short aggregation-prone glutamine (Q)- and asparagine (N)-rich regions embedded in longer disordered domains have been proposed to act as nucleation sites that initiate refolding of soluble prion proteins into highly ordered fibrils, termed amyloid. We demonstrate that a short Q/N-rich peptide corresponding to a proposed nucleation site in the prototype Saccharomyces cerevisiae prion protein Sup35 is sufficient to induce infectious cytosolic prions in mouse neuroblastoma cells ectopically expressing the soluble Sup35 NM prion domain. Embedding this nucleating core in a non-native N-rich sequence that does not form amyloid but acts as an entropic bristle quadruples seeding efficiency. Our data suggest that large disordered sequences flanking an aggregation core in prion proteins act as not only solubilizers of the monomeric protein but also breakers of the formed amyloid fibrils, enhancing infectivity of the prion seeds. A short peptide derived from Sup35 (p103–113) forms rigid amyloid fibrils p103–113 fibrils can induce infectious Sup35 NM prions in mammalian cells Embedding p103–113 in an N-rich sequence increases fibril brittleness Increased fibril brittleness enhances prion-inducing capacity
Collapse
Affiliation(s)
- Emiel Michiels
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium
| | - Shu Liu
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Rodrigo Gallardo
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium
| | - Nikolaos Louros
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, 1348 Louvain-la-Neuve, Belgium
| | - Yves Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, 1348 Louvain-la-Neuve, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium.
| | - Ina Vorberg
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany; Rheinische Friedrich-Wilhelms-Universität Bonn, Siegmund-Freud-Str. 25, 53127 Bonn, Germany.
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Streubel-Gallasch L, Giusti V, Sandre M, Tessari I, Plotegher N, Giusto E, Masato A, Iovino L, Battisti I, Arrigoni G, Shimshek D, Greggio E, Tremblay ME, Bubacco L, Erlandsson A, Civiero L. Parkinson's Disease-Associated LRRK2 Interferes with Astrocyte-Mediated Alpha-Synuclein Clearance. Mol Neurobiol 2021; 58:3119-3140. [PMID: 33629273 PMCID: PMC8257537 DOI: 10.1007/s12035-021-02327-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative, progressive disease without a cure. To prevent PD onset or at least limit neurodegeneration, a better understanding of the underlying cellular and molecular disease mechanisms is crucial. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene represent one of the most common causes of familial PD. In addition, LRRK2 variants are risk factors for sporadic PD, making LRRK2 an attractive therapeutic target. Mutations in LRRK2 have been linked to impaired alpha-synuclein (α-syn) degradation in neurons. However, in which way pathogenic LRRK2 affects α-syn clearance by astrocytes, the major glial cell type of the brain, remains unclear. The impact of astrocytes on PD progression has received more attention and recent data indicate that astrocytes play a key role in α-syn-mediated pathology. In the present study, we aimed to compare the capacity of wild-type astrocytes and astrocytes carrying the PD-linked G2019S mutation in Lrrk2 to ingest and degrade fibrillary α-syn. For this purpose, we used two different astrocyte culture systems that were exposed to sonicated α-syn for 24 h and analyzed directly after the α-syn pulse or 6 days later. To elucidate the impact of LRRK2 on α-syn clearance, we performed various analyses, including complementary imaging, transmission electron microscopy, and proteomic approaches. Our results show that astrocytes carrying the G2019S mutation in Lrrk2 exhibit a decreased capacity to internalize and degrade fibrillar α-syn via the endo-lysosomal pathway. In addition, we demonstrate that the reduction of α-syn internalization in the Lrrk2 G2019S astrocytes is linked to annexin A2 (AnxA2) loss of function. Together, our findings reveal that astrocytic LRRK2 contributes to the clearance of extracellular α-syn aggregates through an AnxA2-dependent mechanism.
Collapse
Affiliation(s)
| | | | - Michele Sandre
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padova, Padua, Italy.,PNC, Padua Neuroscience Center, University of Padova, Padua, Italy
| | | | | | | | - Anna Masato
- Department of Biology, University of Padova, Padua, Italy
| | | | - Ilaria Battisti
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padua, Italy.,CRIBI Biotechnology Center, University of Padova, Padua, Italy
| | - Derya Shimshek
- Novartis Institutes of BioMedical Research, Basel, Switzerland
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| | | | - Luigi Bubacco
- Department of Biology, University of Padova, Padua, Italy
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.
| | - Laura Civiero
- Department of Biology, University of Padova, Padua, Italy. .,IRCCS San Camillo Hospital, Venice, Italy.
| |
Collapse
|
15
|
Brás IC, Outeiro TF. Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies. Cells 2021; 10:cells10020375. [PMID: 33673034 PMCID: PMC7917664 DOI: 10.3390/cells10020375] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The accumulation of misfolded alpha-synuclein (aSyn) throughout the brain, as Lewy pathology, is a phenomenon central to Parkinson’s disease (PD) pathogenesis. The stereotypical distribution and evolution of the pathology during disease is often attributed to the cell-to-cell transmission of aSyn between interconnected brain regions. The spreading of conformationally distinct aSyn protein assemblies, commonly referred as strains, is thought to result in a variety of clinically and pathologically heterogenous diseases known as synucleinopathies. Although tremendous progress has been made in the field, the mechanisms involved in the transfer of these assemblies between interconnected neural networks and their role in driving PD progression are still unclear. Here, we present an update of the relevant discoveries supporting or challenging the prion-like spreading hypothesis. We also discuss the importance of aSyn strains in pathology progression and the various putative molecular mechanisms involved in cell-to-cell protein release. Understanding the pathways underlying aSyn propagation will contribute to determining the etiology of PD and related synucleinopathies but also assist in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Inês C. Brás
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Tiago F. Outeiro
- Center for Biostructural Imaging of Neurodegeneration, Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany;
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with a Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
- Correspondence: ; Tel.: +49-(0)-551-391-3544; Fax: +49-(0)-551-392-2693
| |
Collapse
|
16
|
Seeding Propensity and Characteristics of Pathogenic αSyn Assemblies in Formalin-Fixed Human Tissue from the Enteric Nervous System, Olfactory Bulb, and Brainstem in Cases Staged for Parkinson's Disease. Cells 2021; 10:cells10010139. [PMID: 33445653 PMCID: PMC7828121 DOI: 10.3390/cells10010139] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/03/2023] Open
Abstract
We investigated α-synuclein's (αSyn) seeding activity in tissue from the brain and enteric nervous system. Specifically, we assessed the seeding propensity of pathogenic αSyn in formalin-fixed tissue from the gastric cardia and five brain regions of 29 individuals (12 Parkinson's disease, 8 incidental Lewy body disease, 9 controls) using a protein misfolding cyclic amplification assay. The structural characteristics of the resultant αSyn assemblies were determined by limited proteolysis and transmission electron microscopy. We show that fixed tissue from Parkinson's disease (PD) and incidental Lewy body disease (ILBD) seeds the aggregation of monomeric αSyn into fibrillar assemblies. Significant variations in the characteristics of fibrillar assemblies derived from different regions even within the same individual were observed. This finding suggests that fixation stabilizes seeds with an otherwise limited seeding propensity, that yield assemblies with different intrinsic structures (i.e., strains). The lag phase preceding fibril assembly for patients ≥80 was significantly shorter than in other age groups, suggesting the existence of increased numbers of seeds or a higher seeding potential of pathogenic αSyn with time. Seeding activity did not diminish in late-stage disease. No statistically significant difference in the seeding efficiency of specific regions was found, nor was there a relationship between seeding efficiency and the load of pathogenic αSyn in a particular region at a given neuropathological stage.
Collapse
|
17
|
Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders. Mol Psychiatry 2021; 26:2685-2706. [PMID: 33495544 PMCID: PMC8505258 DOI: 10.1038/s41380-020-00999-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders emerge from the failure of intricate cellular mechanisms, which ultimately lead to the loss of vulnerable neuronal populations. Research conducted across several laboratories has now provided compelling evidence that pathogenic proteins can also contribute to non-cell autonomous toxicity in several neurodegenerative contexts, including Alzheimer's, Parkinson's, and Huntington's diseases as well as Amyotrophic Lateral Sclerosis. Given the nearly ubiquitous nature of abnormal protein accumulation in such disorders, elucidating the mechanisms and routes underlying these processes is essential to the development of effective treatments. To this end, physiologically relevant human in vitro models are critical to understand the processes surrounding uptake, release and nucleation under physiological or pathological conditions. This review explores the use of human-induced pluripotent stem cells (iPSCs) to study prion-like protein propagation in neurodegenerative diseases, discusses advantages and limitations of this model, and presents emerging technologies that, combined with the use of iPSC-based models, will provide powerful model systems to propel fundamental research forward.
Collapse
|
18
|
Domingues AV, Pereira IM, Vilaça-Faria H, Salgado AJ, Rodrigues AJ, Teixeira FG. Glial cells in Parkinson´s disease: protective or deleterious? Cell Mol Life Sci 2020; 77:5171-5188. [PMID: 32617639 PMCID: PMC11104819 DOI: 10.1007/s00018-020-03584-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Glial cells have been identified more than 100 years ago, and are known to play a key role in the central nervous system (CNS) function. A recent piece of evidence is emerging showing that in addition to the capacity of CNS modulation and homeostasis, glial cells are also being looked like as a promising cell source not only to study CNS pathologies initiation and progression but also to the establishment and development of new therapeutic strategies. Thus, in the present review, we will discuss the current evidence regarding glial cells' contribution to neurodegenerative diseases as Parkinson's disease, providing cellular, molecular, functional, and behavioral data supporting its active role in disease initiation, progression, and treatment. As so, considering their functional relevance, glial cells may be important to the understanding of the underlying mechanisms regarding neuronal-glial networks in neurodegeneration/regeneration processes, which may open new research opportunities for their future use as a target or treatment in human clinical trials.
Collapse
Affiliation(s)
- Ana V Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Inês M Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Helena Vilaça-Faria
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Ana J Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
19
|
Jeon YM, Kwon Y, Jo M, Lee S, Kim S, Kim HJ. The Role of Glial Mitochondria in α-Synuclein Toxicity. Front Cell Dev Biol 2020; 8:548283. [PMID: 33262983 PMCID: PMC7686475 DOI: 10.3389/fcell.2020.548283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
The abnormal accumulation of alpha-synuclein (α-syn) aggregates in neurons and glial cells is widely known to be associated with many neurodegenerative diseases, including Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and Multiple system atrophy (MSA). Mitochondrial dysfunction in neurons and glia is known as a key feature of α-syn toxicity. Studies aimed at understanding α-syn-induced toxicity and its role in neurodegenerative diseases have primarily focused on neurons. However, a growing body of evidence demonstrates that glial cells such as microglia and astrocytes have been implicated in the initial pathogenesis and the progression of α-Synucleinopathy. Glial cells are important for supporting neuronal survival, synaptic functions, and local immunity. Furthermore, recent studies highlight the role of mitochondrial metabolism in the normal function of glial cells. In this work, we review the complex relationship between glial mitochondria and α-syn-mediated neurodegeneration, which may provide novel insights into the roles of glial cells in α-syn-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
20
|
Dominguez-Meijide A, Vasili E, König A, Cima-Omori MS, Ibáñez de Opakua A, Leonov A, Ryazanov S, Zweckstetter M, Griesinger C, Outeiro TF. Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization. Sci Rep 2020; 10:12827. [PMID: 32732936 PMCID: PMC7393090 DOI: 10.1038/s41598-020-69744-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are common neurodegenerative disorders of the elderly and, therefore, affect a growing number of patients worldwide. Both diseases share, as a common hallmark, the accumulation of characteristic protein aggregates, known as Lewy bodies (LB) in PD, and neurofibrillary tangles in AD. LBs are primarily composed of misfolded α-synuclein (aSyn), and neurofibrillary tangles are primarily composed of tau protein. Importantly, upon pathological evaluation, most AD and PD/Lewy body dementia cases exhibit mixed pathology, with the co-occurrence of both LB and neurofibrillary tangles, among other protein inclusions. Recent studies suggest that both aSyn and tau pathology can spread and propagate through neuronal connections. Therefore, it is important to investigate the mechanisms underlying aggregation and propagation of these proteins for the development of novel therapeutic strategies. Here, we assessed the effects of different pharmacological interventions on the aggregation and internalization of tau and aSyn. We found that anle138b and fulvic acid decrease aSyn and tau aggregation, that epigallocatechin gallate decreases aSyn aggregation, and that dynasore reduces tau internalization. Establishing the effects of small molecules with different chemical properties on the aggregation and spreading of aSyn and tau will be important for the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Göttingen, Germany.,Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Göttingen, Germany
| | - Maria-Sol Cima-Omori
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Alain Ibáñez de Opakua
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Andrei Leonov
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Sergey Ryazanov
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany.,Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Christian Griesinger
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Göttingen, Germany. .,Max Planck Institute for Experimental Medicine, Göttingen, Germany. .,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
21
|
O'Hara DM, Pawar G, Kalia SK, Kalia LV. LRRK2 and α-Synuclein: Distinct or Synergistic Players in Parkinson's Disease? Front Neurosci 2020; 14:577. [PMID: 32625052 PMCID: PMC7311858 DOI: 10.3389/fnins.2020.00577] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized by prominent degeneration of dopaminergic neurons in the substantia nigra and aggregation of the protein α-synuclein within intraneuronal inclusions known as Lewy bodies. Ninety percent of PD cases are idiopathic while the remaining 10% are associated with gene mutations that affect cellular functions ranging from kinase activity to mitochondrial quality control, hinting at a multifactorial disease process. Mutations in LRRK2 and SNCA (the gene coding for α-synuclein) cause monogenic forms of autosomal dominant PD, and polymorphisms in either gene are also associated with increased risk of idiopathic PD. Although Lewy bodies are a defining neuropathological feature of PD, an appreciable subset of patients with LRRK2 mutations present with a clinical phenotype indistinguishable from idiopathic PD but lack Lewy pathology at autopsy, suggesting that LRRK2-mediated PD may occur independently of α-synuclein aggregation. Here, we examine whether LRRK2 and α-synuclein, as mediators of neurodegeneration in PD, exist in common or distinct pathways. Specifically, we review evidence from preclinical models and human neuropathological studies examining interactions between the two proteins. Elucidating the degree of interplay between LRRK2 and α-synuclein will be necessary for treatment stratification once effective targeted disease-modifying therapies are developed.
Collapse
Affiliation(s)
- Darren M O'Hara
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Grishma Pawar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson's Disease With the Alpha-Synuclein Protein. Front Pharmacol 2020; 11:356. [PMID: 32390826 PMCID: PMC7191035 DOI: 10.3389/fphar.2020.00356] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (α-Syn) is a key protein involved in Parkinson's disease (PD) pathology. PD is characterized by the loss of dopaminergic neuronal cells in the substantia nigra pars compacta and the abnormal accumulation and aggregation of α-Syn in the form of Lewy bodies and Lewy neurites. More precisely, the aggregation of α-Syn is associated with the dysfunctionality and degeneration of neurons in PD. Moreover, mutations in the SNCA gene, which encodes α-Syn, cause familial forms of PD and are the basis of sporadic PD risk. Given the role of the α-Syn protein in the pathology of PD, animal models that reflect the dopaminergic neuronal loss and the widespread and progressive formation of α-Syn aggregates in different areas of the brain constitute a valuable tool. Indeed, animal models of PD are important for understanding the molecular mechanisms of the disease and might contribute to the development and validation of new therapies. In the absence of animal models that faithfully reproduce human PD, in recent years, numerous animal models of PD based on α-Syn have been generated. In this review, we summarize the main features of the α-Syn pre-formed fibrils (PFFs) model and recombinant adeno-associated virus vector (rAAV) mediated α-Syn overexpression models, providing a detailed comparative analysis of both models. Here, we discuss how each model has contributed to our understanding of PD pathology and the advantages and weakness of each of them.
Collapse
Affiliation(s)
- Mónica Gómez-Benito
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Granado
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia García-Sanz
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Anne Michel
- UCB Biopharma, Neuroscience TA, Braine L'Alleud, Belgium
| | - Mireille Dumoulin
- Centre of Protein Engineering, InBios, University of Liege, Liège, Belgium
| | - Rosario Moratalla
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Teil M, Arotcarena ML, Faggiani E, Laferriere F, Bezard E, Dehay B. Targeting α-synuclein for PD Therapeutics: A Pursuit on All Fronts. Biomolecules 2020; 10:biom10030391. [PMID: 32138193 PMCID: PMC7175302 DOI: 10.3390/biom10030391] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's Disease (PD) is characterized both by the loss of dopaminergic neurons in the substantia nigra and the presence of cytoplasmic inclusions called Lewy Bodies. These Lewy Bodies contain the aggregated α-synuclein (α-syn) protein, which has been shown to be able to propagate from cell to cell and throughout different regions in the brain. Due to its central role in the pathology and the lack of a curative treatment for PD, an increasing number of studies have aimed at targeting this protein for therapeutics. Here, we reviewed and discussed the many different approaches that have been studied to inhibit α-syn accumulation via direct and indirect targeting. These analyses have led to the generation of multiple clinical trials that are either completed or currently active. These clinical trials and the current preclinical studies must still face obstacles ahead, but give hope of finding a therapy for PD with time.
Collapse
Affiliation(s)
- Margaux Teil
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie-Laure Arotcarena
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Emilie Faggiani
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Florent Laferriere
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (M.T.); (M.-L.A.); (E.F.); (F.L.); (E.B.)
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
24
|
O'Hara DM, Kalia SK, Kalia LV. Methods for detecting toxic α-synuclein species as a biomarker for Parkinson's disease. Crit Rev Clin Lab Sci 2020; 57:291-307. [PMID: 32116096 DOI: 10.1080/10408363.2019.1711359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the accumulation of α-synuclein (α-syn) into insoluble aggregates known as Lewy bodies and Lewy neurites in the brain. However, prior to the formation of these large aggregates, α-syn forms oligomers and small fibrils, which are believed to be the pathogenic species leading to the death of neurons in the substantia nigra in disease. The majority of aggregated α-syn is phosphorylated, and it is thought that this post-translational modification may be critical in disease pathogenesis. Thus, early detection of the toxic forms of α-syn may provide a window of opportunity for an intervention to halt or slow the progression of neurodegeneration in PD. Expression of α-syn is not restricted to the central nervous system and the protein can be found elsewhere, including bodily fluids and peripheral tissues. This review will examine current methods for detecting toxic forms of α-syn in accessible biospecimens and outline emerging techniques that may provide reliable identification of biomarkers for PD.
Collapse
Affiliation(s)
- Darren M O'Hara
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Neurology, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Neurology, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Wang XJ, Ma MM, Zhou LB, Jiang XY, Hao MM, Teng RKF, Wu E, Tang BS, Li JY, Teng JF, Ding XB. Autonomic ganglionic injection of α-synuclein fibrils as a model of pure autonomic failure α-synucleinopathy. Nat Commun 2020; 11:934. [PMID: 32071315 PMCID: PMC7028908 DOI: 10.1038/s41467-019-14189-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 12/18/2019] [Indexed: 11/18/2022] Open
Abstract
α-Synucleinopathies are characterized by autonomic dysfunction and motor impairments. In the pure autonomic failure (PAF), α-synuclein (α-Syn) pathology is confined within the autonomic nervous system with no motor features, but mouse models recapitulating PAF without motor dysfunction are lacking. Here, we show that in TgM83+/- mice, inoculation of α-Syn preformed fibrils (PFFs) into the stellate and celiac ganglia induces spreading of α-Syn pathology only through the autonomic pathway to both the central nervous system (CNS) and the autonomic innervation of peripheral organs bidirectionally. In parallel, the mice develop autonomic dysfunction, featured by orthostatic hypotension, constipation, hypohidrosis and hyposmia, without motor dysfunction. Thus, we have generated a mouse model of pure autonomic dysfunction caused by α-Syn pathology. This model may help define the mechanistic link between transmission of pathological α-Syn and the cardinal features of autonomic dysfunction in α-synucleinopathy.
Collapse
Affiliation(s)
- Xue-Jing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Ming-Ming Ma
- Department of Neurology, Affiliated People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Le-Bo Zhou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiao-Yi Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Miao-Miao Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Robert K F Teng
- Collage of Electronic and Information Engineering, Shenzhen University, Shen Zhen, Guangdong, 518060, China
| | - Erxi Wu
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, 76508, USA
| | - Bei-Sha Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China.
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84, Lund, Sweden.
- Institute of Health Sciences, China Medical University, 110112, Shenyang, China.
| | - Jun-Fang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Xue-Bing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
26
|
Simmnacher K, Lanfer J, Rizo T, Kaindl J, Winner B. Modeling Cell-Cell Interactions in Parkinson's Disease Using Human Stem Cell-Based Models. Front Cell Neurosci 2020; 13:571. [PMID: 32009903 PMCID: PMC6978672 DOI: 10.3389/fncel.2019.00571] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022] Open
Abstract
Parkinson’s disease (PD) is the most frequently occurring movement disorder, with an increasing incidence due to an aging population. For many years, the post-mortem brain was regarded as the gold standard for the analysis of the human pathology of this disease. However, modern stem cell technologies, including the analysis of patient-specific neurons and glial cells, have opened up new avenues for dissecting the pathologic mechanisms of PD. Most data on morphological changes, such as cell death or changes in neurite complexity, or functional deficits were acquired in 2D and few in 3D models. This review will examine the prerequisites for human disease modeling in PD, covering the generation of midbrain neurons, 3D organoid midbrain models, the selection of controls including genetically engineered lines, and the study of cell-cell interactions. We will present major disease phenotypes in human in vitro models of PD, focusing on those phenotypes that have been detected in genetic and sporadic PD models. An additional point covered in this review will be the use of induced pluripotent stem cell (iPSC)-derived technologies to model cell-cell interactions in PD.
Collapse
Affiliation(s)
- Katrin Simmnacher
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jonas Lanfer
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna Kaindl
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Hudák A, Kusz E, Domonkos I, Jósvay K, Kodamullil AT, Szilák L, Hofmann-Apitius M, Letoha T. Contribution of syndecans to cellular uptake and fibrillation of α-synuclein and tau. Sci Rep 2019; 9:16543. [PMID: 31719623 PMCID: PMC6851098 DOI: 10.1038/s41598-019-53038-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022] Open
Abstract
Scientific evidence suggests that α-synuclein and tau have prion-like properties and that prion-like spreading and seeding of misfolded protein aggregates constitutes a central mechanism for neurodegeneration. Heparan sulfate proteoglycans (HSPGs) in the plasma membrane support this process by attaching misfolded protein fibrils. Despite of intense studies, contribution of specific HSPGs to seeding and spreading of α-synuclein and tau has not been explored yet. Here we report that members of the syndecan family of HSPGs mediate cellular uptake of α-synuclein and tau fibrils via a lipid-raft dependent and clathrin-independent endocytic route. Among syndecans, the neuron predominant syndecan-3 exhibits the highest affinity for both α-synuclein and tau. Syndecan-mediated internalization of α-synuclein and tau depends heavily on conformation as uptake via syndecans start to dominate once fibrils are formed. Overexpression of syndecans, on the other hand, reduces cellular uptake of monomeric α-synuclein and tau, yet exerts a fibril forming effect on both proteins. Data obtained from syndecan overexpressing cellular models presents syndecans, especially the neuron predominant syndecan-3, as important mediators of seeding and spreading of α-synuclein and tau and reveal how syndecans contribute to fundamental molecular events of α-synuclein and tau pathology.
Collapse
Affiliation(s)
| | | | - Ildikó Domonkos
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Katalin Jósvay
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Alpha Tom Kodamullil
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, 53754, Germany
| | - László Szilák
- Szilak Laboratories, Bioinformatics and Molecule-Design, Szeged, H-6723, Hungary
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, 53754, Germany
| | | |
Collapse
|
28
|
Lempart J, Tse E, Lauer JA, Ivanova MI, Sutter A, Yoo N, Huettemann P, Southworth D, Jakob U. Mechanistic insights into the protective roles of polyphosphate against amyloid cytotoxicity. Life Sci Alliance 2019; 2:2/5/e201900486. [PMID: 31533964 PMCID: PMC6751573 DOI: 10.26508/lsa.201900486] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022] Open
Abstract
This study provides novel insights into the mechanisms by which presence of polyP alters the formation, structural properties, and cytotoxic effects of α-synuclein fibers. The universally abundant polyphosphate (polyP) accelerates fibril formation of disease-related amyloids and protects against amyloid cytotoxicity. To gain insights into the mechanism(s) by which polyP exerts these effects, we focused on α-synuclein, a well-studied amyloid protein, which constitutes the major component of Lewy bodies found in Parkinson’s disease. Here, we demonstrate that polyP is unable to accelerate the rate-limiting step of α-synuclein fibril formation but effectively nucleates fibril assembly once α-synuclein oligomers are formed. Binding of polyP to α-synuclein either during fibril formation or upon fibril maturation substantially alters fibril morphology and effectively reduces the ability of α-synuclein fibrils to interact with cell membranes. The effect of polyP appears to be α-synuclein fibril specific and successfully prevents the uptake of fibrils into neuronal cells. These results suggest that altering the polyP levels in the extracellular space might be a potential therapeutic strategy to prevent the spreading of the disease.
Collapse
Affiliation(s)
- Justine Lempart
- Graduate Program in Biochemistry, Department of Chemistry, Technische Universität München, München, Germany.,Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor, MI, USA
| | - Eric Tse
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - James A Lauer
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor, MI, USA
| | - Magdalena I Ivanova
- Biophysics Program, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Nicholas Yoo
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor, MI, USA
| | - Philipp Huettemann
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor, MI, USA
| | - Daniel Southworth
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor, MI, USA .,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
29
|
Reyes JF, Sackmann C, Hoffmann A, Svenningsson P, Winkler J, Ingelsson M, Hallbeck M. Binding of α-synuclein oligomers to Cx32 facilitates protein uptake and transfer in neurons and oligodendrocytes. Acta Neuropathol 2019; 138:23-47. [PMID: 30976973 PMCID: PMC6570706 DOI: 10.1007/s00401-019-02007-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
Abstract
The intercellular transfer of alpha-synuclein (α-syn) has been implicated in the progression of Parkinson's disease (PD) and multiple system atrophy (MSA). The cellular mechanisms underlying this process are now beginning to be elucidated. In this study, we demonstrate that the gap junction protein connexin-32 (Cx32) is centrally involved in the preferential uptake of α-syn oligomeric assemblies (oα-syn) in neurons and oligodendrocytes. In vitro, we demonstrate a clear correlation between Cx32 expression and oα-syn uptake. Pharmacological and genetic strategies targeting Cx32 successfully blocked oα-syn uptake. In cellular and transgenic mice modeling PD and MSA, we observed significant upregulation of Cx32 which correlates with α-syn accumulation. Notably, we could also demonstrate a direct interaction between α-syn and Cx32 in two out of four human PD cases that was absent in all four age-matched controls. These data are suggestive of a link between Cx32 and PD pathophysiology. Collectively, our results provide compelling evidence for Cx32 as a novel target for therapeutic intervention in PD and related α-synucleinopathies.
Collapse
Affiliation(s)
- Juan F Reyes
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Christopher Sackmann
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Martin Ingelsson
- Section of Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
30
|
Youssef K, Tandon A, Rezai P. Studying Parkinson’s disease using Caenorhabditis elegans models in microfluidic devices. Integr Biol (Camb) 2019; 11:186-207. [DOI: 10.1093/intbio/zyz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder associated with the loss of dopaminergic neurons (DNs) in the substantia nigra and the widespread accumulation of α-synuclein (α-syn) protein, leading to motor impairments and eventual cognitive dysfunction. In-vitro cell cultures and in-vivo animal models have provided the opportunity to investigate the PD pathological hallmarks and identify different therapeutic compounds. However, PD pathogenesis and causes are still not well understood, and effective inhibitory drugs for PD are yet to be discovered. Biologically simple but pathologically relevant disease models and advanced screening technologies are needed to reveal the mechanisms underpinning protein aggregation and PD progression. For instance, Caenorhabditis elegans (C. elegans) offers many advantages for fundamental PD neurobehavioral studies including a simple, well-mapped, and accessible neuronal system, genetic homology to humans, body transparency and amenability to genetic manipulation. Several transgenic worm strains that exhibit multiple PD-related phenotypes have been developed to perform neuronal and behavioral assays and drug screening. However, in conventional worm-based assays, the commonly used techniques are equipment-intensive, slow and low in throughput. Over the past two decades, microfluidics technology has contributed significantly to automation and control of C. elegans assays. In this review, we focus on C. elegans PD models and the recent advancements in microfluidic platforms used for manipulation, handling and neurobehavioral screening of these models. Moreover, we highlight the potential of C. elegans to elucidate the in-vivo mechanisms of neuron-to-neuron protein transfer that may underlie spreading Lewy pathology in PD, and its suitability for in-vitro studies. Given the advantages of C. elegans and microfluidics technology, their integration has the potential to facilitate the investigation of disease pathology and discovery of potential chemical leads for PD.
Collapse
Affiliation(s)
- Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
31
|
Vasili E, Dominguez-Meijide A, Outeiro TF. Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Front Mol Neurosci 2019; 12:107. [PMID: 31105524 PMCID: PMC6494944 DOI: 10.3389/fnmol.2019.00107] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are age-associated neurodegenerative disorders characterized by the misfolding and aggregation of alpha-synuclein (aSyn) and tau, respectively. The coexistence of aSyn and tau aggregates suggests a strong overlap between tauopathies and synucleinopathies. Interestingly, misfolded forms of aSyn and tau can propagate from cell to cell, and throughout the brain, thereby templating the misfolding of native forms of the proteins. The exact mechanisms involved in the propagation of the two proteins show similarities, and are reminiscent of the spreading characteristic of prion diseases. Recently, several models were developed to study the spreading of aSyn and tau. Here, we discuss the mechanisms involved, the similarities and differences between the spreading of the two proteins and that of the prion protein, and the different cell and animal models used for studying these processes. Ultimately, a deeper understanding of the molecular mechanisms involved may lead to the identification of novel targets for therapeutic intervention in a variety of devastating neurodegenerative diseases.
Collapse
Affiliation(s)
- Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,The Medical School, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
32
|
de Boni L, Wüllner U. Epigenetic Analysis in Human Neurons: Considerations for Disease Modeling in PD. Front Neurosci 2019; 13:276. [PMID: 31024227 PMCID: PMC6460245 DOI: 10.3389/fnins.2019.00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/08/2019] [Indexed: 12/28/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder next to Alzheimer’s disease. Most PD cases are considered to be sporadic and despite considerable scientific effort, the underlying cause(s) still remain(s) enigmatic. In particular, it is unknown to which extent epigenetic alterations contribute to the pathophysiology of this devastating disorder. This is partly due to the fact that appropriate PD models are not yet available. Moreover, epigenetic patterns and mechanisms are species specific and murine systems reflect only a few of the idiosyncrasies of human neurons. For several years now, patient-specific stem cell-derived neural and non-neural cells have been employed to overcome this limitation allowing the analysis and establishment of humanized disease models for PD. Thus, several studies tried to dissect epigenetic alterations such as aberrant DNA methylation or microRNA patterns using lund human mesencephalic cell lines or neurons derived from (patient-specific) induced pluripotent stem cells. These studies demonstrate that human neurons have the potential to be used as model systems for the study of epigenetic modifications in PD such as characterizing epigenetic changes, correlating epigenetic changes to gene expression alterations and hopefully using these insights for the development of novel therapeutics. However, more research is required to define the epigenetic (age-associated) landscape of human in vitro neurons and compare these to native neurons before they can be established as suitable models for epigenetic studies in PD. In this review, we summarize the knowledge about epigenetic studies performed on human neuronal PD models, and we discuss advantages and current limitations of these (stem cell-derived) neuronal models for the study of epigenetic alterations in PD.
Collapse
Affiliation(s)
- Laura de Boni
- Dementia Research Institute, University College London, London, United Kingdom
| | - Ullrich Wüllner
- Department of Neurology, University Hospital Bonn, German Center for Neurologic Diseases, Bonn, Germany
| |
Collapse
|
33
|
Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK. Plant Extracts and Phytochemicals Targeting α-Synuclein Aggregation in Parkinson's Disease Models. Front Pharmacol 2019; 9:1555. [PMID: 30941047 PMCID: PMC6433754 DOI: 10.3389/fphar.2018.01555] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (α-syn) is a presynaptic protein that regulates the release of neurotransmitters from synaptic vesicles in the brain. α-Syn aggregates, including Lewy bodies, are features of both sporadic and familial forms of Parkinson's disease (PD). These aggregates undergo several key stages of fibrillation, oligomerization, and aggregation. Therapeutic benefits of drugs decline with disease progression and offer only symptomatic treatment. Novel therapeutic strategies are required which can either prevent or delay the progression of the disease. The link between α-syn and the etiopathogenesis and progression of PD are well-established in the literature. Studies indicate that α-syn is an important therapeutic target and inhibition of α-syn aggregation, oligomerization, and fibrillation are an important disease modification strategy. However, recent studies have shown that plant extracts and phytochemicals have neuroprotective effects on α-syn oligomerization and fibrillation by targeting different key stages of its formation. Although many reviews on the antioxidant-mediated, neuroprotective effect of plant extracts and phytochemicals on PD symptoms have been well-highlighted, the antioxidant mechanisms show limited success for translation to clinical studies. The identification of specific plant extracts and phytochemicals that target α-syn aggregation will provide selective molecules to develop new drugs for PD. The present review provides an overview of plant extracts and phytochemicals that target α-syn in PD and summarizes the observed effects and the underlying mechanisms. Furthermore, we provide a synopsis of current experimental models and techniques used to evaluate plant extracts and phytochemicals. Plant extracts and phytochemicals were found to inhibit the aggregation or fibril formation of oligomers. These also appear to direct α-syn oligomer formation into its unstructured form or promote non-toxic pathways and suggested to be valuable drug candidates for PD and related synucleinopathy. Current evidences from in vitro studies require confirmation in the in vivo studies. Further studies are needed to ascertain their potential effects and safety in preclinical studies for pharmaceutical/nutritional development of these phytochemicals or dietary inclusion of the plant extracts in PD treatment.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shreesh Kumar Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
34
|
Vargas JY, Grudina C, Zurzolo C. The prion-like spreading of α-synuclein: From in vitro to in vivo models of Parkinson's disease. Ageing Res Rev 2019; 50:89-101. [PMID: 30690184 DOI: 10.1016/j.arr.2019.01.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. PD is characterized by the loss of dopaminergic neurons, primarily in brain regions that control motor functions, thereby leading to motor impairments in the patients. Pathological aggregated forms of the synaptic protein, α-synuclein (α-syn), are involved in the generation and progression of PD. In PD brains, α-syn accumulates inside neurons and propagates from cell-to-cell in a prion-like manner. In this review, we discuss the in vitro and in vivo models used to study the prion-like properties of α-syn and related findings. In particular, we focus on the different mechanisms of α-syn spreading, which could be relevant for the development of alternative therapeutic approaches for PD treatment.
Collapse
|
35
|
Patterson L, Rushton SP, Attems J, Thomas AJ, Morris CM. Degeneration of dopaminergic circuitry influences depressive symptoms in Lewy body disorders. Brain Pathol 2019; 29:544-557. [PMID: 30582885 PMCID: PMC6767514 DOI: 10.1111/bpa.12697] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
Aims Depression is commonly observed even in prodromal stages of Lewy body disorders (LBD), and is associated with cognitive impairment and a faster rate of cognitive decline. Given the role of dopamine in the development of movement disorders, but also in motivation and reward, we investigated neurodegenerative pathology in dopaminergic circuitry in Parkinson's disease (PD), PD with dementia (PDD) and dementia with Lewy bodies (DLB) patients in relation to depressive symptoms. Methods α‐synuclein, hyperphosphorylated tau and amyloid‐beta pathology was assessed in 17 DLB, 14 PDD and 8 PD cases within striatal and midbrain subregions, with neuronal cell density assessed in substantia nigra and ventral tegmental area. Additionally, we used a structural equation modeling (SEM) approach to investigate the extent to which brain connectivity might influence the deposition of pathological proteins within dopaminergic pathways. Results A significantly higher α‐synuclein burden was observed in the substantia nigra (P = 0.006), ventral tegmental area (P = 0.011) and nucleus accumbens (P = 0.031) in LBD patients with depression. Significant negative correlations were observed between cell density in substantia nigra with Lewy body (LB) Braak stage (P = 0.013), whereas cell density in ventral tegmental area showed negative correlations with LB Braak stage (P = 0.026) and neurofibrillary tangle Braak stage (P = 0.007). Conclusions Dopaminergic α‐synuclein pathology appears to drive depression. Selective targeting of dopaminergic pathways may therefore provide symptomatic relief for depressive symptoms in LBD patients.
Collapse
Affiliation(s)
- Lina Patterson
- Alzheimer's Society Doctoral Training Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Steven P Rushton
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, UK
| | - Johannes Attems
- Alzheimer's Society Doctoral Training Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Alan J Thomas
- Alzheimer's Society Doctoral Training Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.,Gateshead Health NHS Foundation Trust, Queen Elizabeth Hospital, Gateshead, UK
| | - Christopher M Morris
- NIHR Biomedical Research Centre Newcastle, Biomedical Research Building, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| |
Collapse
|
36
|
Zhao ZH, Chen ZT, Zhou RL, Zhang X, Ye QY, Wang YZ. Increased DJ-1 and α-Synuclein in Plasma Neural-Derived Exosomes as Potential Markers for Parkinson's Disease. Front Aging Neurosci 2019; 10:438. [PMID: 30692923 PMCID: PMC6339871 DOI: 10.3389/fnagi.2018.00438] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/21/2018] [Indexed: 01/12/2023] Open
Abstract
The diagnosis of PD might be in difficulty, especially in the early stages. Therefore, the identification of novel biomarkers is imperative for the diagnosis and monitoring disease progression in PD. DJ-1 and α-synuclein, are two proteins that are critically involved in the pathogenesis of PD, and they have been examined as disease biomarkers in studies. However, no study exists regarding DJ-1 in plasma neural-derived exosomes. In the present study, the levels of DJ-1 and α-synuclein in plasma neural-derived exosomes were studied together in order to investigate novel biomarkers for PD. DJ-1 and α-synuclein in plasma and plasma neural-derived exosomes of the patients with PD and controls were quantified by ELISAs. The data revealed that the levels of DJ-1 and α-synuclein in plasma neural-derived exosomes and the ratio of plasma neural-derived exosomal DJ-1 to total DJ-1 were significantly higher in patients with PD, compared with controls, while levels of the two proteins in plasma exhibited no difference between the patients with PD and controls. However, no relationship was identified between biomarkers and disease progression. In addition, significant positive correlations between DJ-1 and α-synuclein in plasma neural-derived exosomes were found in the patients with PD and in healthy individuals. We hypothesize that DJ-1 in plasma neural-derived exosomes may be used as a potential biomarker as α-synuclein in PD and they might participate in the mechanism of PD together.
Collapse
Affiliation(s)
- Zhen-Hua Zhao
- Department of Neurology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Zhi-Ting Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rui-Ling Zhou
- Department of Neurology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Xu Zhang
- Department of Neurology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Qin-Yong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yin-Zhou Wang
- Department of Neurology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
37
|
Secretion and Uptake of α-Synuclein Via Extracellular Vesicles in Cultured Cells. Cell Mol Neurobiol 2018; 38:1539-1550. [PMID: 30288631 PMCID: PMC6223723 DOI: 10.1007/s10571-018-0622-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
Abstract
In Parkinson’s disease and other Lewy body disorders, the propagation of pathology has been accredited to the spreading of extracellular α-synuclein (α-syn). Although the pathogenic mechanisms are not fully understood, cell-to-cell transfer of α-syn via exosomes and other extracellular vesicles (EVs) has been reported. Here, we investigated whether altered molecular properties of α-syn can influence the distribution and secretion of α-syn in human neuroblastoma cells. Different α-syn variants, including α-syn:hemi-Venus and disease-causing mutants, were overexpressed and EVs were isolated from the conditioned medium. Of the secreted α-syn, 0.1–2% was associated with vesicles. The major part of EV α-syn was attached to the outer membrane of vesicles, whereas a smaller fraction was found in their lumen. For α-syn expressed with N-terminal hemi-Venus, the relative levels associated with EVs were higher than for WT α-syn. Moreover, such EV-associated α-syn:hemi-Venus species were internalized in recipient cells to a higher degree than the corresponding free-floating forms. Among the disease-causing mutants, A53T α-syn displayed an increased association with EVs. Taken together, our data suggest that α-syn species with presumably lost physiological functions or altered aggregation properties may shift the cellular processing towards vesicular secretion. Our findings thus lend further support to the tenet that EVs can mediate spreading of harmful α-syn species and thereby contribute to the pathology in α-synucleinopathies.
Collapse
|
38
|
Mercado G, López N, Martínez A, Sardi SP, Hetz C. A new model to study cell-to-cell transfer of αSynuclein in vivo. Biochem Biophys Res Commun 2018; 503:1385-1393. [PMID: 30025892 DOI: 10.1016/j.bbrc.2018.07.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) compromises motor control due to the loss of dopaminergic neurons in the substantia nigra pars compacta. At the histopathological level, PD is characterized by the accumulation of Lewy bodies, large protein inclusions containing aggregated αSynuclein (αSyn). The progression of PD involves the spreading of αSyn misfolding through the brain mediated by a prion-like mechanism, where the protein is transferred between cells. Here we report that αSyn internalization is a dynamic process, where the protein transits through different sub-cellular compartments. Importantly, cells incorporating αSyn develop larger protein-like inclusions when compared to αSyn producing cells. We developed a new tool to monitor cell-to-cell transfer of αSyn in vivo using an adeno-associated viral (AAV) vector expressing αSyn fused to a red fluorescent protein in addition to soluble EGFP to label donor cells. Intra-nigral delivery of this reporter AAV construct allowed the visualization of αSyn incorporation into surrounding neurons. This work provides a new tool to study αSyn cell-to-cell transfer in vivo and may open new opportunities to study PD pathogenesis.
Collapse
Affiliation(s)
- Gabriela Mercado
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Independencia 1027, Santiago, 8380453, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, 8380453, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism (GERO), Independencia 1027, Santiago, 8380453, Chile
| | - Nélida López
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Independencia 1027, Santiago, 8380453, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, 8380453, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism (GERO), Independencia 1027, Santiago, 8380453, Chile
| | - Alexis Martínez
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Independencia 1027, Santiago, 8380453, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, 8380453, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism (GERO), Independencia 1027, Santiago, 8380453, Chile
| | - Sergio P Sardi
- Neuroscience Therapeutic Area, Sanofi, 49 New York Avenue, Framingham, MA, 01701, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Independencia 1027, Santiago, 8380453, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, 8380453, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism (GERO), Independencia 1027, Santiago, 8380453, Chile; Buck Institute for Research on Aging, Novato, CA, 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
39
|
Aliakbari F, Mohammad-Beigi H, Rezaei-Ghaleh N, Becker S, Dehghani Esmatabad F, Eslampanah Seyedi HA, Bardania H, Tayaranian Marvian A, Collingwood JF, Christiansen G, Zweckstetter M, Otzen DE, Morshedi D. The potential of zwitterionic nanoliposomes against neurotoxic alpha-synuclein aggregates in Parkinson's Disease. NANOSCALE 2018; 10:9174-9185. [PMID: 29725687 DOI: 10.1039/c8nr00632f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The protein α-synuclein (αSN) aggregates to form fibrils in neuronal cells of Parkinson's patients. Here we report on the effect of neutral (zwitterionic) nanoliposomes (NLPs), supplemented with cholesterol (NLP-Chol) and decorated with PEG (NLP-Chol-PEG), on αSN aggregation and neurotoxicity. Both NLPs retard αSN fibrillization in a concentration-independent fashion. They do so largely by increasing lag time (formation of fibrillization nuclei) rather than elongation (extension of existing nuclei). Interactions between neutral NLPs and αSN may locate to the N-terminus of the protein. This interaction can even perturb the interaction of αSN with negatively charged NLPs which induces an α-helical structure in αSN. This interaction was found to occur throughout the fibrillization process. Both NLP-Chol and NLP-Chol-PEG were shown to be biocompatible in vitro, and to reduce αSN neurotoxicity and reactive oxygen species (ROS) levels with no influence on intracellular calcium in neuronal cells, emphasizing a prospective role for NLPs in reducing αSN pathogenicity in vivo as well as utility as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Farhang Aliakbari
- Bioprocess Engineering Research group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Piper DA, Sastre D, Schüle B. Advancing Stem Cell Models of Alpha-Synuclein Gene Regulation in Neurodegenerative Disease. Front Neurosci 2018; 12:199. [PMID: 29686602 PMCID: PMC5900030 DOI: 10.3389/fnins.2018.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (non A4 component of amyloid precursor, SNCA, NM_000345.3) plays a central role in the pathogenesis of Parkinson's disease (PD) and related Lewy body disorders such as Parkinson's disease dementia, Lewy body dementia, and multiple system atrophy. Since its discovery as a disease-causing gene in 1997, alpha-synuclein has been a central point of scientific interest both at the protein and gene level. Mutations, including copy number variants, missense mutations, short structural variants, and single nucleotide polymorphisms, can be causative for PD and affect conformational changes of the protein, can contribute to changes in expression of alpha-synuclein and its isoforms, and can influence regulation of temporal as well as spatial levels of alpha-synuclein in different tissues and cell types. A lot of progress has been made to understand both the physiological transcriptional and epigenetic regulation of the alpha-synuclein gene and whether changes in transcriptional regulation could lead to disease and neurodegeneration in PD and related alpha-synucleinopathies. Although the histopathological changes in these neurodegenerative disorders are similar, the temporal and spatial presentation and progression distinguishes them which could be in part due to changes or disruption of transcriptional regulation of alpha-synuclein. In this review, we describe different genetic alterations that contribute to PD and neurodegenerative conditions and review aspects of transcriptional regulation of the alpha-synuclein gene in the context of the development of PD. New technologies, advanced gene engineering and stem cell modeling, are on the horizon to shed further light on a better understanding of gene regulatory processes and exploit them for therapeutic developments.
Collapse
Affiliation(s)
- Desiree A Piper
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Danuta Sastre
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| |
Collapse
|
41
|
Xiao Y, Chen X, Huang S, Li G, Mo M, Zhang L, Chen C, Guo W, Zhou M, Wu Z, Cen L, Long S, Li S, Yang X, Qu S, Pei Z, Xu P. Iron promotes α-synuclein aggregation and transmission by inhibiting TFEB-mediated autophagosome-lysosome fusion. J Neurochem 2018; 145:34-50. [PMID: 29364516 DOI: 10.1111/jnc.14312] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Yousheng Xiao
- Department of Neurology; The First Affiliated Hospital of Guangxi Medical University; Nanning China
- Department of Neurology; National Key Clinical; Department and Key Discipline of Neurology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Xiang Chen
- Department of Neurology; National Key Clinical; Department and Key Discipline of Neurology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Shuxuan Huang
- Department of Neurology; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - Guihua Li
- Department of Neurology; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - Mingshu Mo
- Department of Neurology; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - Li Zhang
- Geriatric Neurology Department; Nanjing Brain Hospital; Nanjing Medical University; Nanjing China
| | - Chaojun Chen
- Department of Neurology; Guangzhou Chinese Medical Integrated Hospital (Huadu); Guangzhou China
| | - Wenyuan Guo
- Department of Neurology; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - Miaomiao Zhou
- Department of Neurology; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - Zhuohua Wu
- Department of Neurology; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - Luan Cen
- Department of Neurology; The First Affiliated Hospital of Guangxi Medical University; Nanning China
| | - Simei Long
- Department of Neurology; National Key Clinical; Department and Key Discipline of Neurology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Shaomin Li
- Ann Romney Center for Neurologic Disease; Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| | - Xinling Yang
- Department of Neurology; The Second Affiliated Hospital of Xinjiang Medical University; Urumqi China
| | - Shaogang Qu
- Clinical Medicine Research Center; Shunde Hospital; Southern Medical University; Foshan China
| | - Zhong Pei
- Department of Neurology; National Key Clinical; Department and Key Discipline of Neurology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Pingyi Xu
- Department of Neurology; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
- Key Laboratory of Respiratory Disease; The First Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| |
Collapse
|
42
|
Heman-Ackah SM, Manzano R, Hoozemans JJM, Scheper W, Flynn R, Haerty W, Cowley SA, Bassett AR, Wood MJA. Alpha-synuclein induces the unfolded protein response in Parkinson's disease SNCA triplication iPSC-derived neurons. Hum Mol Genet 2018; 26:4441-4450. [PMID: 28973645 DOI: 10.1093/hmg/ddx331] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/17/2017] [Indexed: 11/13/2022] Open
Abstract
The recent generation of induced pluripotent stem cells (iPSCs) from a patient with Parkinson's disease (PD) resulting from triplication of the α-synuclein (SNCA) gene locus allows unprecedented opportunities to explore its contribution to the molecular pathogenesis of PD. We used the double-nicking CRISPR/Cas9 system to conduct site-specific mutagenesis of SNCA in these cells, generating an isogenic iPSC line with normalized SNCA gene dosage. Comparative gene expression analysis of neuronal derivatives from these iPSCs revealed an ER stress phenotype, marked by induction of the IRE1α/XBP1 axis of the unfolded protein response (UPR) and culminating in terminal UPR activation. Neuropathological analysis of post-mortem brain tissue demonstrated that pIRE1α is expressed in PD brains within neurons containing elevated levels of α-synuclein or Lewy bodies. Having used this pair of isogenic iPSCs to define this phenotype, these cells can be further applied in UPR-targeted drug discovery towards the development of disease-modifying therapeutics.
Collapse
Affiliation(s)
- Sabrina M Heman-Ackah
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.,NIH Oxford-Cambridge Scholars Program, National Institutes of Health, Bethesda, MD 20892, USA.,UNC MD-PhD Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raquel Manzano
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | | | - Wiep Scheper
- Department of Clinical Genetics and Alzheimer Center, VU University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV Amsterdam, The Netherlands
| | - Rowan Flynn
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sally A Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Andrew R Bassett
- Genome Engineering Oxford, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
43
|
Grozdanov V, Danzer KM. Release and uptake of pathologic alpha-synuclein. Cell Tissue Res 2018; 373:175-182. [PMID: 29411106 DOI: 10.1007/s00441-017-2775-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease, which is characterized by severe loss of dopaminergic neurons and formation of Lewy bodies, which are rich in aggregated alpha-synuclein (α-syn). Two decades of intensive research have compiled a massive body of evidence that aggregation of α-syn is a critical process in PD and other synucleinopathies. The dissemination of Lewy body pathology throughout the central nervous system strongly suggests a cell-to-cell transmission of α-syn. Although in vitro and in vivo evidence has convincingly demonstrated that aggregation-prone α-syn can spread from cell to cell, the exact mechanisms and the role for the disease pathology remain elusive. Except for cases of direct contact, the transmission of α-syn from cell to cell requires that α-syn is released to the extracellular space and taken up by recipient cells. Furthermore, internalized α-syn needs to gain access to the cytoplasm and/or target organelles of the recipient cell. Here, we review the current state of knowledge about release and uptake of α-syn and discuss the key questions that remain unanswered.
Collapse
|
44
|
Choi YR, Cha SH, Kang SJ, Kim JB, Jou I, Park SM. Prion-like Propagation of α-Synuclein Is Regulated by the FcγRIIB-SHP-1/2 Signaling Pathway in Neurons. Cell Rep 2018; 22:136-148. [DOI: 10.1016/j.celrep.2017.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/01/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022] Open
|
45
|
Cooper JF, Van Raamsdonk JM. Modeling Parkinson's Disease in C. elegans. JOURNAL OF PARKINSON'S DISEASE 2018; 8:17-32. [PMID: 29480229 PMCID: PMC5836411 DOI: 10.3233/jpd-171258] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is an adult onset neurodegenerative disease that is characterized by selective degeneration of neurons primarily in the substantia nigra. At present, the pathogenesis of PD is incompletely understood and there are no neuroprotective treatments available. Accurate animal models of PD provide the opportunity to elucidate disease mechanisms and identify therapeutic targets. This review focuses on C. elegans models of PD, including both genetic and toxicant models. This microscopic worm offers several advantages for the study of PD including ease of genetic manipulation, ability to complete experiments rapidly, low cost, and ability to perform large scale screens for disease modifiers. A number of C. elegans models of PD have been generated including transgenic worms that express α-synuclein or LRRK2, and worms with deletions in PRKN/pdr-1, PINK1/pink-1, DJ-1/djr-1.1/djr-1.2 and ATP13A2/catp-6. These worms have been shown to exhibit multiple phenotypic deficits including the loss of dopamine neurons, disruption of dopamine-dependent behaviors, increased sensitivity to stress, age-dependent aggregation, and deficits in movement. As a result, these phenotypes can be used as outcome measures to gain insight into disease pathogenesis and to identify disease modifiers. In this way, C. elegans can be used as an experimental tool to elucidate mechanisms involved in PD and to find novel therapeutic targets that can subsequently be validated in other models.
Collapse
Affiliation(s)
- Jason F. Cooper
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jeremy M. Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
46
|
Prying into the Prion Hypothesis for Parkinson's Disease. J Neurosci 2017; 37:9808-9818. [PMID: 29021298 DOI: 10.1523/jneurosci.1788-16.2017] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
In Parkinson's disease, intracellular α-synuclein inclusions form in neurons. We suggest that prion-like behavior of α-synuclein is a key component in Parkinson's disease pathogenesis. Although multiple molecular changes are involved in the triggering of the disease process, we propose that neuron-to-neuron transfer is a crucial event that is essential for Lewy pathology to spread from one brain region to another. In this review, we describe key findings in human postmortem brains, cultured cells, and animal models of disease that support the idea that α-synuclein can act as a prion. We consider potential triggers of the α-synuclein misfolding and why the aggregates escape cellular degradation under disease conditions. We also discuss whether different strains of α-synuclein fibrils can underlie differences in cellular and regional distribution of aggregates in different synucleinopathies. Our conclusion is that α-synuclein probably acts as a prion in human diseases, and a deeper understanding of this step in the pathogenesis of Parkinson's disease can facilitate the development of disease-modifying therapies in the future.Dual Perspectives Companion Paper: Parkinson's Disease Is Not Simply a Prion Disorder, by D. James Surmeier, José A. Obeso, and Glenda M. Halliday.
Collapse
|
47
|
Fan CH, Lin CY, Liu HL, Yeh CK. Ultrasound targeted CNS gene delivery for Parkinson's disease treatment. J Control Release 2017; 261:246-262. [DOI: 10.1016/j.jconrel.2017.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
|
48
|
Tyson T, Senchuk M, Cooper JF, George S, Van Raamsdonk JM, Brundin P. Novel animal model defines genetic contributions for neuron-to-neuron transfer of α-synuclein. Sci Rep 2017; 7:7506. [PMID: 28790319 PMCID: PMC5548897 DOI: 10.1038/s41598-017-07383-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/22/2017] [Indexed: 12/27/2022] Open
Abstract
Cell-to-cell spreading of misfolded α-synuclein (α-syn) is suggested to contribute to the progression of neuropathology in Parkinson’s disease (PD). Compelling evidence supports the hypothesis that misfolded α-syn transmits from neuron-to-neuron and seeds aggregation of the protein in the recipient cells. Furthermore, α-syn frequently appears to propagate in the brains of PD patients following a stereotypic pattern consistent with progressive spreading along anatomical pathways. We have generated a C. elegans model that mirrors this progression and allows us to monitor α-syn neuron-to-neuron transmission in a live animal over its lifespan. We found that modulation of autophagy or exo/endocytosis, affects α-syn transfer. Furthermore, we demonstrate that silencing C. elegans orthologs of PD-related genes also increases the accumulation of α-syn. This novel worm model is ideal for screening molecules and genes to identify those that modulate prion-like spreading of α-syn in order to target novel strategies for disease modification in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Trevor Tyson
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA.
| | - Megan Senchuk
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jason F Cooper
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Sonia George
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jeremy M Van Raamsdonk
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
49
|
Lindström V, Gustafsson G, Sanders LH, Howlett EH, Sigvardson J, Kasrayan A, Ingelsson M, Bergström J, Erlandsson A. Extensive uptake of α-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neurosci 2017; 82:143-156. [PMID: 28450268 DOI: 10.1016/j.mcn.2017.04.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 12/30/2022] Open
Abstract
The presence of Lewy bodies, mainly consisting of aggregated α-synuclein, is a pathological hallmark of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). The α-synuclein inclusions are predominantly found in neurons, but also appear frequently in astrocytes. However, the pathological significance of α-synuclein inclusions in astrocytes and the capacity of glial cells to clear toxic α-synuclein species remain unknown. In the present study we investigated uptake, degradation and toxic effects of oligomeric α-synuclein in a co-culture system of primary neurons, astrocytes and oligodendrocytes. Alpha-synuclein oligomers were found to co-localize with the glial cells and the astrocytes were found to internalize particularly large amounts of the protein. Following ingestion, the astrocytes started to degrade the oligomers via the lysosomal pathway but, due to incomplete digestion, large intracellular deposits remained. Moreover, the astrocytes displayed mitochondrial abnormalities. Taken together, our data indicate that astrocytes play an important role in the clearance of toxic α-synuclein species from the extracellular space. However, when their degrading capacity is overburdened, α-synuclein deposits can persist and result in detrimental cellular processes.
Collapse
Affiliation(s)
- Veronica Lindström
- Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, S-751 85 Uppsala, Sweden.
| | - Gabriel Gustafsson
- Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, S-751 85 Uppsala, Sweden
| | - Laurie H Sanders
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Evan H Howlett
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Alex Kasrayan
- BioArctic AB, Warfvinges väg 35, S-112 51 Stockholm, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, S-751 85 Uppsala, Sweden
| | - Joakim Bergström
- Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, S-751 85 Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, S-751 85 Uppsala, Sweden
| |
Collapse
|
50
|
Peled S, Sade D, Bram Y, Porat Z, Kreiser T, Mimouni M, Lichtenstein A, Segal D, Gazit E. Single cell imaging and quantification of TDP-43 and α-synuclein intercellular propagation. Sci Rep 2017; 7:544. [PMID: 28373710 PMCID: PMC5428807 DOI: 10.1038/s41598-017-00657-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
The intercellular spreading of protein assemblies is a major factor in the progression of neurodegenerative disorders. The quantitative study and visualization of cell-to-cell propagation using tagged-proteins is challenging due to the steric effect of relatively large fluorescence tags and the risk of 'false positive' identification when analyzing these rare transmission events. Here, we established a cell culture model to characterize the cell-to-cell transmission of TAR DNA-binding protein and α-synuclein, involved in amyotrophic lateral sclerosis and Parkinson's disease, respectively, using the small nine amino acid influenza hemagglutinin tag. The novel use of single cell resolution imaging flow cytometry allowed the visualization and quantification of all individual transmission events. Cell-level analysis of these events indicated that the degree of transfer is lower than previously reported based on conventional flow cytometry. Furthermore, our analysis can exclude 'false positive' events of cellular overlap and extracellular debris attachment. The results were corroborated by high-resolution confocal microscopy mapping of protein localization.
Collapse
Affiliation(s)
- Sivan Peled
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Dorin Sade
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Yaron Bram
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, 10021, USA
| | - Ziv Porat
- Flow Cytometry Unit, Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Topaz Kreiser
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Michael Mimouni
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| | - Alexandra Lichtenstein
- Sackler Cellular and Molecular Imaging Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv, 6997801, Israel.
- Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|