1
|
Gerdfeldter B, Andersson A, Wiens S. Examining the lateralization of electrophysiological correlates of auditory awareness. Psychophysiology 2024; 61:e14656. [PMID: 39095947 DOI: 10.1111/psyp.14656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 06/13/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
The neurological basis for perceptual awareness remains unclear, and theories disagree as to whether sensory cortices per se generate awareness. Critically, neural activity in the sensory cortices is only a neural correlate of consciousness (NCC) if it closely matches the contents of perceptual awareness. Research in vision and touch suggest that contralateral activity in sensory cortices is an NCC. Similarly, research in hearing with two sound sources (left and right) presented over headphones also suggests that a candidate NCC called the auditory awareness negativity (AAN) matches perceived location of sound. The current study used 13 different sound sources presented over loudspeakers for natural localization cues and measured event-related potentials to a threshold stimulus in a sound localization task. Preregistered Bayesian mixed models provided moderate evidence against an overall AAN and very strong evidence against its lateralization. Because of issues regarding data quantity and quality, exploratory analyses with aggregated data from multiple loudspeakers were conducted. Results provided moderate evidence for an overall AAN and strong evidence against its lateralization. Nonetheless, the interpretations of these results remain inconclusive. Therefore, future research should reduce the number of conditions and/or test over several sessions to procure a sufficient amount of data. Taken at face value, the results may suggest issues with AAN as an NCC of auditory awareness, as it does not laterally map onto experiences in a free-field auditory environment, in contrast to the NCCs of vision and touch.
Collapse
Affiliation(s)
| | - Annika Andersson
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Stefan Wiens
- Department of Psychology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Jimenez M, Prieto A, Hinojosa JA, Montoro PR. Consciousness Under the Spotlight: The Problem of Measuring Subjective Experience. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024:e1697. [PMID: 39449331 DOI: 10.1002/wcs.1697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
The study of consciousness is considered by many one of the most difficult contemporary scientific endeavors and confronts several methodological and theoretical challenges. A central issue that makes the study of consciousness so challenging is that, while the rest of science is concerned with problems that can be verified from a "third person" view (i.e., objectively), the study of consciousness deals with the phenomenon of subjective experience, only accessible from a "first person" view. In the present article, we review early (starting during the late 19th century) and later efforts on measuring consciousness and its absence, focusing on the two main approaches used by researchers within the field: objective (i.e., performance based) and subjective (i.e., report based) measures of awareness. In addition, we compare the advantages and disadvantages of both types of awareness measures, evaluate them according to different methodological considerations, and discuss, among other issues, the possibility of comparing them by transforming them to a common sensitivity measure (d'). Finally, we explore several new approaches-such as Bayesian models to support the absence of awareness or new machine-learning based decoding models-as well as future challenges-such as measuring the qualia, the qualitative contents of awareness-in consciousness research.
Collapse
Affiliation(s)
- Mikel Jimenez
- Department of Psychology, University of Durham, Durham, UK
| | - Antonio Prieto
- Departamento de Psicología Básica I, UNED, Madrid, Spain
| | - José Antonio Hinojosa
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Psicología Experimental, Procesos Psicológicos y Logopedia, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Nebrija en Cognición (CINC), Universidad de Nebrija, Madrid, Spain
| | | |
Collapse
|
3
|
Hanke S, Niedeggen M. Event-related potentials of stimuli inhibition and access in cross-modal distractor-induced blindness. PLoS One 2024; 19:e0309425. [PMID: 39441852 PMCID: PMC11498723 DOI: 10.1371/journal.pone.0309425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Distractor-induced blindness (DIB) describes a reduced access to a cued visual target-if multiple target-like distractors have been presented beforehand. Previous ERP data suggest a cumulative frontal inhibition triggered by distractors, which affects the updating process of the upcoming target. In the present study, we examine whether the modality of the cue-formerly defined in the visual domain-affects the expression of these neural signatures. 27 subjects were tested in a cross-modal DIB task: Distractors and targets were defined by a transient change of stimuli shape in a random-dot kinematogram. The onset of the target was announced by a rise in amplitude of a sinusoidal tone. Behavioral results confirmed that detection of the target relies on the number of preceding distractor episodes. Replicating previous unimodal results, ERP responses to distractors were characterized by a frontal negativity starting at 100 ms, which increases with an increasing number of distractor episodes. However, the processing-and detection-of the target was not characterized by a more-expressed P3 response, but by an occipital negativity. The current data confirm that the neural signatures of target awareness depend on the experimental setup used: In case of the DIB, the cross-modal setting might lead to a reduction of attentional resources in the visual domain.
Collapse
Affiliation(s)
- Sophie Hanke
- Division General Psychology and Neuropsychology, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Michael Niedeggen
- Division General Psychology and Neuropsychology, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Catak EN, Ogmen H, Kafaligonul H. Attentional load leads to distinct changes in early and late cortical processing of target visibility under visual masking. Conscious Cogn 2024; 125:103760. [PMID: 39305788 DOI: 10.1016/j.concog.2024.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 11/05/2024]
Abstract
Visual masking and attentional selection play important roles in controlling information processing for perception. Using an experimental design combining metacontrast with attentional load, we investigated the time course of changes in event-related potentials under different attentional load and masking conditions. The behavioral results indicated significant effects of attentional load on masking functions (i.e., masking strength as a function of stimulus onset asynchrony between target and mask). The analyses of neural activities revealed significant effects of masking and attentional load on early components located over occipital and parieto-occipital scalp sites. There were also significant modulations in the late positivity range centered over centro-parietal electrodes. However, the nature of modulations in early and late components was different. These findings overall highlight the diverse nature of masking and attentional influences on visual processing, particularly suggesting that attentional load in the visual field may have distinct effects at different stages of perceptual processing.
Collapse
Affiliation(s)
- Esra Nur Catak
- Department of Neuroscience, Bilkent University, Ankara, Turkiye; Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkiye
| | - Haluk Ogmen
- Laboratory of Perceptual and Cognitive Dynamics, Electrical & Computer Engineering, Ritchie School of Engineering & Computer Science, University of Denver, Denver, CO, USA
| | - Hulusi Kafaligonul
- Department of Neuroscience, Bilkent University, Ankara, Turkiye; Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkiye; Neuroscience and Neurotechnology Center of Excellence (NÖROM), Faculty of Medicine, Gazi University, Ankara, Turkiye.
| |
Collapse
|
5
|
Fang Z, Dang Y, Li X, Zhao Q, Zhang M, Zhao H. Intracranial neural representation of phenomenal and access consciousness in the human brain. Neuroimage 2024; 297:120699. [PMID: 38944172 DOI: 10.1016/j.neuroimage.2024.120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
After more than 30 years of extensive investigation, impressive progress has been made in identifying the neural correlates of consciousness (NCC). However, the functional role of spatiotemporally distinct consciousness-related neural activity in conscious perception is debated. An influential framework proposed that consciousness-related neural activities could be dissociated into two distinct processes: phenomenal and access consciousness. However, though hotly debated, its authenticity has not been examined in a single paradigm with more informative intracranial recordings. In the present study, we employed a visual awareness task and recorded the local field potential (LFP) of patients with electrodes implanted in cortical and subcortical regions. Overall, we found that the latency of visual awareness-related activity exhibited a bimodal distribution, and the recording sites with short and long latencies were largely separated in location, except in the lateral prefrontal cortex (lPFC). The mixture of short and long latencies in the lPFC indicates that it plays a critical role in linking phenomenal and access consciousness. However, the division between the two is not as simple as the central sulcus, as proposed previously. Moreover, in 4 patients with electrodes implanted in the bilateral prefrontal cortex, early awareness-related activity was confined to the contralateral side, while late awareness-related activity appeared on both sides. Finally, Granger causality analysis showed that awareness-related information flowed from the early sites to the late sites. These results provide the first LFP evidence of neural correlates of phenomenal and access consciousness, which sheds light on the spatiotemporal dynamics of NCC in the human brain.
Collapse
Affiliation(s)
- Zepeng Fang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing 100875, China
| | - Yuanyuan Dang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing 100875, China
| | - Qianchuan Zhao
- Center for Intelligent and Networked Systems, Department of Automation, TNLIST, Tsinghua University, Beijing 100084, China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Hulin Zhao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
6
|
Filimonov D, Tanskanen S, Revonsuo A, Koivisto M. Is auditory awareness graded or dichotomous: Electrophysiological correlates of consciousness at different depths of stimulus processing. Conscious Cogn 2024; 123:103720. [PMID: 38901129 DOI: 10.1016/j.concog.2024.103720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The level-of-processing (LoP) hypothesis postulates that transition from unaware to aware visual stimuli is either graded or dichotomous depending on the depth of stimulus processing. Humans can be progressively aware of the low-level features, such as colors or shapes, while the high-level features, such as semantic category, enter consciousness in an all-or none fashion. Unlike in vision, sounds always unfold in time, which might require mechanisms dissimilar from visual processing. We tested the LoP hypothesis in hearing for the first time by presenting participants with words of different categories, spoken in different pitches near the perceptual threshold. We also assessed whether different electrophysiological correlates of consciousness, the auditory awareness negativity (AAN) and late positivity (LP), were associated with LoP. Our findings indicate that LoP also applies to the auditory modality. AAN is an early correlate of awareness independent of LoP, while LP was modulated by awareness, performance accuracy and the level of processing.
Collapse
Affiliation(s)
- Dmitri Filimonov
- Department of Psychology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland.
| | - Sampo Tanskanen
- Faculty of Medicine, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| | - Antti Revonsuo
- Department of Psychology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland; Division of Cognitive Neuroscience and Philosophy, University of Skövde, Sweden
| | - Mika Koivisto
- Department of Psychology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| |
Collapse
|
7
|
Motlagh SC, Joanisse M, Wang B, Mohsenzadeh Y. Unveiling the neural dynamics of conscious perception in rapid object recognition. Neuroimage 2024; 296:120668. [PMID: 38848982 DOI: 10.1016/j.neuroimage.2024.120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024] Open
Abstract
Our brain excels at recognizing objects, even when they flash by in a rapid sequence. However, the neural processes determining whether a target image in a rapid sequence can be recognized or not remains elusive. We used electroencephalography (EEG) to investigate the temporal dynamics of brain processes that shape perceptual outcomes in these challenging viewing conditions. Using naturalistic images and advanced multivariate pattern analysis (MVPA) techniques, we probed the brain dynamics governing conscious object recognition. Our results show that although initially similar, the processes for when an object can or cannot be recognized diverge around 180 ms post-appearance, coinciding with feedback neural processes. Decoding analyses indicate that gist perception (partial conscious perception) can occur at ∼120 ms through feedforward mechanisms. In contrast, object identification (full conscious perception of the image) is resolved at ∼190 ms after target onset, suggesting involvement of recurrent processing. These findings underscore the importance of recurrent neural connections in object recognition and awareness in rapid visual presentations.
Collapse
Affiliation(s)
- Saba Charmi Motlagh
- Western Center for Brain and Mind, Western University, London, Ontario, Canada; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Marc Joanisse
- Western Center for Brain and Mind, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada
| | - Boyu Wang
- Western Center for Brain and Mind, Western University, London, Ontario, Canada; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada; Department of Computer Science, Western University, London, Ontario, Canada
| | - Yalda Mohsenzadeh
- Western Center for Brain and Mind, Western University, London, Ontario, Canada; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada; Department of Computer Science, Western University, London, Ontario, Canada.
| |
Collapse
|
8
|
Filimonov D, Krabbe A, Revonsuo A, Koivisto M. The influence of feature-based attention and response requirements on ERP correlates of auditory awareness. Neurosci Conscious 2024; 2024:niae031. [PMID: 39045031 PMCID: PMC11265865 DOI: 10.1093/nc/niae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
In search for the neural correlates of consciousness (NCCs), it is important to isolate the true NCCs from their prerequisites, consequences, and co-occurring processes. To date, little is known about how attention affects the event-related potential (ERP) correlates of auditory awareness and there is contradictory evidence on whether one of them, the late positivity (LP), is affected by response requirements. By implementing a GO-NOGO design with target and nontarget stimuli, we controlled for feature-based attention and response requirements in the same experiment, while participants rated their awareness using a perceptual awareness scale. The results showed a prolonged auditory awareness negativity (AAN) for aware trials, which was influenced neither by attention nor by response requirement. The LP was affected by both attention and response requirements. Consistent with the levels of processing hypothesis, the LP was related to consciousness as a correlate of the processing of higher-level stimulus features, likely requiring access to a "global workspace." Our findings further suggest that AAN is a proper ERP correlate of auditory consciousness and thus a true NCC in the auditory modality.
Collapse
Affiliation(s)
- Dmitri Filimonov
- Department of Psychology and Speech-Language Pathology, Faculty of Social Sciences, University of Turku, Turku 20014, Finland
- Turku Brain and Mind Centre, University of Turku, Turku FI-20014, Finland
| | - Andreas Krabbe
- Turku Brain and Mind Centre, University of Turku, Turku FI-20014, Finland
- Faculty of Medicine, University of Turku, Turku, FI-20014 Finland
- Faculty of Psychology, Åbo Akademi University, Arken Tehtaankatu 2, Turku 20500, Finland
| | - Antti Revonsuo
- Department of Psychology and Speech-Language Pathology, Faculty of Social Sciences, University of Turku, Turku 20014, Finland
- Turku Brain and Mind Centre, University of Turku, Turku FI-20014, Finland
- Division of Cognitive Neuroscience and Philosophy, University of Skövde, Högskolevägen 1 PO Box 408 541 28, Skövde, Sweden
| | - Mika Koivisto
- Department of Psychology and Speech-Language Pathology, Faculty of Social Sciences, University of Turku, Turku 20014, Finland
- Turku Brain and Mind Centre, University of Turku, Turku FI-20014, Finland
| |
Collapse
|
9
|
Knight RS, Chen T, Center EG, Gratton G, Fabiani M, Savazzi S, Mazzi C, Beck DM. Bypassing input to V1 in visual awareness: A TMS-EROS investigation. Neuropsychologia 2024; 198:108864. [PMID: 38521150 PMCID: PMC11194103 DOI: 10.1016/j.neuropsychologia.2024.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Early visual cortex (V1-V3) is believed to be critical for normal visual awareness by providing the necessary feedforward input. However, it remains unclear whether visual awareness can occur without further involvement of early visual cortex, such as re-entrant feedback. It has been challenging to determine the importance of feedback activity to these areas because of the difficulties in dissociating this activity from the initial feedforward activity. Here, we applied single-pulse transcranial magnetic stimulation (TMS) over the left posterior parietal cortex to elicit phosphenes in the absence of direct visual input to early visual cortex. Immediate neural activity after the TMS pulse was assessed using the event-related optical signal (EROS), which can measure activity under the TMS coil without artifacts. Our results show that: 1) The activity in posterior parietal cortex 50 ms after TMS was related to phosphene awareness, and 2) Activity related to awareness was observed in a small portion of V1 140 ms after TMS, but in contrast (3) Activity in V2 was a more robust correlate of awareness. Together, these results are consistent with interactive models proposing that sustained and recurrent loops of activity between cortical areas are necessary for visual awareness to emerge. In addition, we observed phosphene-related activations of the anteromedial cuneus and lateral occipital cortex, suggesting a functional network subserving awareness comprising these regions, the parietal cortex and early visual cortex.
Collapse
Affiliation(s)
- Ramisha S Knight
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Aptima, Inc. 2555 University Blvd, Fairborn, OH, USA
| | - Tao Chen
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA.
| | - Evan G Center
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA; Center for Ubiquitous Computing, University of Oulu, Oulu, Finland
| | - Gabriele Gratton
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA
| | - Monica Fabiani
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA
| | - Silvia Savazzi
- Perception and Awareness (PandA) Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Mazzi
- Perception and Awareness (PandA) Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Diane M Beck
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA.
| |
Collapse
|
10
|
Ciupińska K, Orłowska W, Zębrowski A, Łępa L, Koculak M, Bola M, Wierzchoń M. The influence of spatial and temporal attention on visual awareness-a behavioral and ERP study. Cereb Cortex 2024; 34:bhae241. [PMID: 38850216 DOI: 10.1093/cercor/bhae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024] Open
Abstract
Whether attention is a prerequisite of perceptual awareness or an independent and dissociable process remains a matter of debate. Importantly, understanding the relation between attention and awareness is probably not possible without taking into account the fact that both are heterogeneous and multifaceted mechanisms. Therefore, the present study tested the impact on visual awareness of two attentional mechanisms proposed by the Posner model: temporal alerting and spatio-temporal orienting. Specifically, we evaluated the effects of attention on the perceptual level, by measuring objective and subjective awareness of a threshold-level stimulus; and on the neural level, by investigating how attention affects two postulated event-related potential correlates of awareness. We found that alerting and orienting mechanisms additively facilitate perceptual consciousness, with activation of the latter resulting in the most vivid awareness. Furthermore, we found that late positivity is unlikely to constitute a neural correlate of consciousness as its amplitude was modulated by both attentional mechanisms, but early visual awareness negativity was independent of the alerting and orienting mechanisms. In conclusion, our study reveals a nuanced relationship between attention and awareness; moreover, by investigating the effect of the alerting mechanism, this study provides insights into the role of temporal attention in perceptual consciousness.
Collapse
Affiliation(s)
- Kinga Ciupińska
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
- Social Cognition in Human-Robot Interaction (S4HRI), Italian Institute of Technology, via Enrico Melen 83, 16152 Genova, Italy
| | - Wiktoria Orłowska
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
- Doctoral School in the Social Sciences, Jagiellonian University, 34 Rynek Główny, 31-010 Krakow, Poland
| | - Aleksander Zębrowski
- Doctoral School in the Social Sciences, Jagiellonian University, 34 Rynek Główny, 31-010 Krakow, Poland
- Centre for Brain Research, Jagiellonian University, 50 Kopernika Street, 31-501 Krakow, Poland
| | - Laura Łępa
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
| | - Marcin Koculak
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
| | - Michał Bola
- Centre for Brain Research, Jagiellonian University, 50 Kopernika Street, 31-501 Krakow, Poland
| | - Michał Wierzchoń
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
- Centre for Brain Research, Jagiellonian University, 50 Kopernika Street, 31-501 Krakow, Poland
| |
Collapse
|
11
|
Zhang S, Morrison J, Sun T, Kowal DR, Greene E. Evaluating integration of letter fragments through contrast and spatially targeted masking. J Vis 2024; 24:9. [PMID: 38856981 PMCID: PMC11174100 DOI: 10.1167/jov.24.6.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/02/2024] [Indexed: 06/11/2024] Open
Abstract
Four experiments were conducted to gain a better understanding of the visual mechanisms related to how integration of partial shape cues provides for recognition of the full shape. In each experiment, letters formed as outline contours were displayed as a sequence of adjacent segments (fragments), each visible during a 17-ms time frame. The first experiment varied the contrast of the fragments. There were substantial individual differences in contrast sensitivity, so stimulus displays in the masking experiments that followed were calibrated to the sensitivity of each participant. Masks were displayed either as patterns that filled the entire screen (full field) or as successive strips that were sliced from the pattern, each strip lying across the location of the letter fragment that had been shown a moment before. Contrast of masks were varied to be lighter or darker than the letter fragments. Full-field masks, whether light or dark, provided relatively little impairment of recognition, as was the case for mask strips that were lighter than the letter fragments. However, dark strip masks proved to be very effective, with the degree of recognition impairment becoming larger as mask contrast was increased. A final experiment found the strip masks to be most effective when they overlapped the location where the letter fragments had been shown a moment before. They became progressively less effective with increased spatial separation from that location. Results are discussed with extensive reference to potential brain mechanisms for integrating shape cues.
Collapse
Affiliation(s)
- Sherry Zhang
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | | | - Thomas Sun
- Department of Statistics, Rice University, Houston, TX, USA
| | - Daniel R Kowal
- Department of Statistics, Rice University, Houston, TX, USA
| | - Ernest Greene
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Chis-Ciure R, Melloni L, Northoff G. A measure centrality index for systematic empirical comparison of consciousness theories. Neurosci Biobehav Rev 2024; 161:105670. [PMID: 38615851 DOI: 10.1016/j.neubiorev.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Consciousness science is marred by disparate constructs and methodologies, making it challenging to systematically compare theories. This foundational crisis casts doubts on the scientific character of the field itself. Addressing it, we propose a framework for systematically comparing consciousness theories by introducing a novel inter-theory classification interface, the Measure Centrality Index (MCI). Recognizing its gradient distribution, the MCI assesses the degree of importance a specific empirical measure has for a given consciousness theory. We apply the MCI to probe how the empirical measures of the Global Neuronal Workspace Theory (GNW), Integrated Information Theory (IIT), and Temporospatial Theory of Consciousness (TTC) would fare within the context of the other two. We demonstrate that direct comparison of IIT, GNW, and TTC is meaningful and valid for some measures like Lempel-Ziv Complexity (LZC), Autocorrelation Window (ACW), and possibly Mutual Information (MI). In contrast, it is problematic for others like the anatomical and physiological neural correlates of consciousness (NCC) due to their MCI-based differential weightings within the structure of the theories. In sum, we introduce and provide proof-of-principle of a novel systematic method for direct inter-theory empirical comparisons, thereby addressing isolated evolution of theories and confirmatory bias issues in the state-of-the-art neuroscience of consciousness.
Collapse
Affiliation(s)
- Robert Chis-Ciure
- New York University (NYU), New York, USA; International Center for Neuroscience and Ethics (CINET), Tatiana Foundation, Madrid, Spain; Wolfram Physics Project, USA.
| | - Lucia Melloni
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Georg Northoff
- University of Ottawa, Institute of Mental Health Research at the Royal Ottawa Hospital, Ottawa, Canada
| |
Collapse
|
13
|
Doradzińska Ł, Bola M. Early Electrophysiological Correlates of Perceptual Consciousness Are Affected by Both Exogenous and Endogenous Attention. J Cogn Neurosci 2024; 36:1297-1324. [PMID: 38579265 DOI: 10.1162/jocn_a_02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
It has been proposed that visual awareness negativity (VAN), which is an early ERP component, constitutes a neural correlate of visual consciousness that is independent of perceptual and cognitive mechanisms. In the present study, we investigated whether VAN is indeed a specific marker of phenomenal awareness or rather reflects the involvement of attention. To this end, we reanalyzed data collected in a previously published EEG experiment in which awareness of visual stimuli and two aspects that define attentional involvement, namely, the inherent saliency and task relevance of a stimulus, were manipulated orthogonally. During the experimental procedure, participants (n = 41) were presented with images of faces that were backward-masked or unmasked, fearful or neutral, and defined as task-relevant targets or task-irrelevant distractors. Single-trial ERP analysis revealed that VAN was highly dependent on attentional manipulations in the early time window (140-200 msec), up to the point that the effect of awareness was not observed for attentionally irrelevant stimuli (i.e., neutral faces presented as distractors). In the late time window (200-350 msec), VAN was present in all attentional conditions, but its amplitude was significantly higher in response to fearful faces and task-relevant face images than in response to neutral ones and task-irrelevant ones, respectively. In conclusion, we demonstrate that the amplitude of VAN is highly dependent on both exogenous (stimulus saliency) and endogenous attention (task requirements). Our results challenge the view that VAN constitutes an attention-independent correlate of phenomenal awareness.
Collapse
Affiliation(s)
- Łucja Doradzińska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Michał Bola
- Centre for Brain Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
Storm JF, Klink PC, Aru J, Senn W, Goebel R, Pigorini A, Avanzini P, Vanduffel W, Roelfsema PR, Massimini M, Larkum ME, Pennartz CMA. An integrative, multiscale view on neural theories of consciousness. Neuron 2024; 112:1531-1552. [PMID: 38447578 DOI: 10.1016/j.neuron.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.
Collapse
Affiliation(s)
- Johan F Storm
- The Brain Signaling Group, Division of Physiology, IMB, Faculty of Medicine, University of Oslo, Domus Medica, Sognsvannsveien 9, Blindern, 0317 Oslo, Norway.
| | - P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan 20122, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academisch Medisch Centrum, Postbus 22660, 1100 DD Amsterdam, the Netherlands
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan 20157, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20122, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Ye M, Wang A, Liang H, Liu X. Late Positivity Correlates with Subjective Reports: Evidence from the Low-frequency and High-frequency Reporting Tasks. Neuroscience 2024; 546:143-156. [PMID: 38574798 DOI: 10.1016/j.neuroscience.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Identifying the neural correlates of consciousness (NCCs) is an important way to understand the fundamental nature of consciousness. By recording event-related potentials (ERPs) using EEG, researchers have found three potential electrophysiological NCCs: early positive correlate of consciousness (enhanced P1), visual awareness negativity (VAN), and late positivity (LP). However, LP may reflect post-perceptual processing associated with subjective reports rather than consciousness per se. The present experiment investigated the relationship between LP and subjective reports. We adopted two subjective reporting tasks that differed in the requirement for subjective reports. In the low-frequency reporting task, participants needed to report whether they saw the target picture in 25% of trials, whereas in the high-frequency reporting task, participants needed to report whether they saw the target picture in each trial. Behavioral results showed that the hit rates were lower and false alarm rates were higher on reporting trials in low-frequency reporting tasks than on reporting trials in high-frequency reporting tasks. Unexpectedly, VAN was larger on reporting trials in the low-frequency reporting task than on reporting trials in the high-frequency reporting task. Importantly, our ERP results showed that LP was larger on reporting trials in the high-frequency reporting task than on reporting trials in the low-frequency reporting task. Thus, our findings indicated that when the frequency of reports was increased, the task relevance of the stimuli increased, which led to larger LP amplitudes. These findings suggest that LP correlates with subjective reports.
Collapse
Affiliation(s)
- Muwang Ye
- Academy of Psychology and Behavior, Faculty of Psychology, Tianjin Normal University, Tianjin, China; State Key Laboratory of Brain and Cognitive Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Anhui Wang
- Academy of Psychology and Behavior, Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Haiyang Liang
- Academy of Psychology and Behavior, Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Xiaowen Liu
- Academy of Psychology and Behavior, Faculty of Psychology, Tianjin Normal University, Tianjin, China
| |
Collapse
|
16
|
Hense A, Peters A, Bruchmann M, Dellert T, Straube T. Electrophysiological correlates of sustained conscious perception. Sci Rep 2024; 14:10593. [PMID: 38719939 PMCID: PMC11078977 DOI: 10.1038/s41598-024-61281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Previous research on the neural correlates of consciousness (NCC) in visual perception revealed an early event-related potential (ERP), the visual awareness negativity (VAN), to be associated with stimulus awareness. However, due to the use of brief stimulus presentations in previous studies, it remains unclear whether awareness-related negativities represent a transient onset-related response or correspond to the duration of a conscious percept. Studies are required that allow prolonged stimulus presentation under aware and unaware conditions. The present ERP study aimed to tackle this challenge by using a novel stimulation design. Male and female human participants (n = 62) performed a visual task while task-irrelevant line stimuli were presented in the background for either 500 or 1000 ms. The line stimuli sometimes contained a face, which needed so-called visual one-shot learning to be seen. Half of the participants were informed about the presence of the face, resulting in faces being perceived by the informed but not by the uninformed participants. Comparing ERPs between the informed and uninformed group revealed an enhanced negativity over occipitotemporal electrodes that persisted for the entire duration of stimulus presentation. Our results suggest that sustained visual awareness negativities (SVAN) are associated with the duration of stimulus presentation.
Collapse
Affiliation(s)
- Annika Hense
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany.
| | - Antje Peters
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany
| | - Torge Dellert
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany
| |
Collapse
|
17
|
White PA. The perceptual timescape: Perceptual history on the sub-second scale. Cogn Psychol 2024; 149:101643. [PMID: 38452720 DOI: 10.1016/j.cogpsych.2024.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
There is a high-capacity store of brief time span (∼1000 ms) which information enters from perceptual processing, often called iconic memory or sensory memory. It is proposed that a main function of this store is to hold recent perceptual information in a temporally segregated representation, named the perceptual timescape. The perceptual timescape is a continually active representation of change and continuity over time that endows the perceived present with a perceived history. This is accomplished primarily by two kinds of time marking information: time distance information, which marks all items of information in the perceptual timescape according to how far in the past they occurred, and ordinal temporal information, which organises items of information in terms of their temporal order. Added to that is information about connectivity of perceptual objects over time. These kinds of information connect individual items over a brief span of time so as to represent change, persistence, and continuity over time. It is argued that there is a one-way street of information flow from perceptual processing either to the perceived present or directly into the perceptual timescape, and thence to working memory. Consistent with that, the information structure of the perceptual timescape supports postdictive reinterpretations of recent perceptual information. Temporal integration on a time scale of hundreds of milliseconds takes place in perceptual processing and does not draw on information in the perceptual timescape, which is concerned with temporal segregation, not integration.
Collapse
Affiliation(s)
- Peter A White
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, Wales CF10 3YG, United Kingdom.
| |
Collapse
|
18
|
Rowe EG, Garrido MI, Tsuchiya N. Feedforward connectivity patterns from visual areas to the front of the brain contain information about sensory stimuli regardless of awareness or report. Cortex 2024; 172:284-300. [PMID: 38142179 DOI: 10.1016/j.cortex.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/25/2023]
Abstract
Current theories of consciousness can be categorized to some extent by their predictions about the putative role of the prefrontal cortex (PFC) in conscious perception. One family of the theories proposes that the PFC is necessary for conscious perception. The other postulates that the PFC is not necessary and that other areas (e.g., posterior cortical areas) are more important for conscious perception. No-report paradigms could potentially arbitrate the debate as they disentangle task reporting from conscious perception. While previous no-report paradigms tend to point to a reduction in PFC activity, they have not examined the critical role of the PFC in "monitoring" or "reading out" the patterns of activity in the sensory cortex to generate conscious perception. To address this, we reanalysed electroencephalography (EEG) data from a no-report inattentional blindness paradigm (Shafto & Pitts, 2015). We examined the role of feedforward input patterns to the PFC from sensory cortices. We employed nonparametric spectral Granger causality and quantified the amount of information that reflected the contents of consciousness using multivariate classifiers. Unexpectedly, regardless of whether the stimulus was consciously seen or not, we found that information relating to the current sensory stimulus was present in the pattern of inputs from visual areas to the PFC. In light of these findings, we suggest various theories of consciousness need to be revised to accommodate the fact that the contents of consciousness are decodable from the input patterns from posterior sensory regions to the PFC, regardless of awareness (or report).
Collapse
Affiliation(s)
- Elise G Rowe
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia.
| | - Marta I Garrido
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia; ARC Centre of Excellence for Integrative Brain Function, Victoria, Australia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan; Department of Qualia Structure, ATR Computational Neuroscience Laboratories, Seika-cho, Soraku-gun, Kyoto, Japan; ARC Centre of Excellence for Integrative Brain Function, Victoria, Australia
| |
Collapse
|
19
|
Sato W, Usui N, Kondo A, Kubota Y, Toichi M, Inoue Y. Impairment of unconscious emotional processing after unilateral medial temporal structure resection. Sci Rep 2024; 14:4269. [PMID: 38383855 PMCID: PMC10881984 DOI: 10.1038/s41598-024-54868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
The role of the amygdala in unconscious emotional processing remains a topic of debate. Past lesion studies have indicated that amygdala damage leads to impaired electrodermal activity in response to subliminally presented emotional stimuli. However, electrodermal activity can reflect both emotional and nonemotional processes. To provide behavioral evidence highlighting the critical role of the amygdala in unconscious emotional processing, we examined patients (n = 16) who had undergone unilateral resection of medial temporal lobe structures, including the amygdala. We utilized the subliminal affective priming paradigm in conjunction with unilateral visual presentation. Fearful or happy dynamic facial expressions were presented in unilateral visual fields for 30 ms, serving as negative or positive primes. Subsequently, neutral target faces were displayed, and participants were tasked with rating the valence of these targets. Positive primes, compared to negative ones, enhanced valence ratings of the target to a greater extent when they stimulated the intact hemisphere (i.e., were presented in the contralateral visual field of the intact hemisphere) than when they stimulated the resected hemisphere (i.e., were presented in the contralateral visual field of the resected hemisphere). These results suggest that the amygdala is causally involved in unconscious emotional processing.
Collapse
Affiliation(s)
- Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan.
| | - Naotaka Usui
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka, 420-8688, Japan.
| | - Akihiko Kondo
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka, 420-8688, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga University, 1-1-1 Baba, Hikone, Shiga, 522-8522, Japan
| | - Motomi Toichi
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo, Kyoto, 606-8507, Japan
| | - Yushi Inoue
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Urushiyama 886, Shizuoka, 420-8688, Japan
| |
Collapse
|
20
|
Siman-Tov Z, Lev M, Polat U. Probing the Bottleneck of Awareness Formed by Foveal Crowding: A Neurophysiological Study. Brain Sci 2024; 14:169. [PMID: 38391743 PMCID: PMC10886460 DOI: 10.3390/brainsci14020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Crowding occurs when an easily identified isolated stimulus is surrounded by stimuli with similar properties, making it very difficult to identify. Crowding is suggested as a mechanism that creates a bottleneck in object recognition and awareness. Recently, we showed that brief presentation times at the fovea resulted in a significant crowding effect on target identification, impaired the target's color awareness, and resulted in a slower reaction time. However, when tagging the target with a red letter, the crowding effect is abolished. Crowding is widely considered a grouping; hence, it is pre-attentive. An event-related potential (ERP) study that investigated the spatial-temporal properties of crowding suggested the involvement of higher-level visual processing. Here, we investigated whether ERP's components may be affected by crowding and tagging, and whether the temporal advantage of ERP can be utilized to gain further information about the crowding mechanism. The participants reported target identification using our standard foveal crowing paradigm. It is assumed that crowding occurs due to a suppressive effect; thus, it can be probed by changes in perceptual (N1, ~160 ms) and attentive (P3 ~300-400 ms) components. We found a suppression effect (less negative ERP magnitude) in N1 under foveal crowding, which was recovered under tagging conditions. ERP's amplitude components (N1 and P3) and the behavioral proportion correct are highly correlated. These findings suggest that crowding is an early grouping mechanism that may be combined with later processing involving the segmentation mechanism.
Collapse
Affiliation(s)
- Ziv Siman-Tov
- School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Maria Lev
- School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Uri Polat
- School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
21
|
Triggiani AI, Lee SJ, Scheman K, Hallett M. Moving in response to an unseen visual stimulus. Clin Neurophysiol 2024; 158:92-102. [PMID: 38198875 PMCID: PMC10872446 DOI: 10.1016/j.clinph.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE Whether consciousness has a causal role in voluntary movements is not clear. Backward masking blocks a stimulus from becoming conscious, but it can trigger movement in a reaction time paradigm. We hypothesize that if backward masking is used in a choice reaction time paradigm, when the visible stimulus (S2) differs from the masked stimulus (S1), the movement will often differ from conscious intent. We did such a study employing electroencephalography (EEG) to explore the brain activity associated with this effect. METHODS Twenty healthy adults participated in a choice reaction time task with a backwardly masked stimulus and EEG. They moved right or left hand in response to the direction of an arrow. S2 was congruent or incongruent with S1. When incongruent, responses were frequently concordant with S1, with faster reaction time than when responding to S2 and thought to be a mistake. RESULTS We show that it is possible to trigger movements from the unperceived stimuli indicating consciousness is not causal since the movement was not in accord with intent. EEG showed information flow from occipital cortex to motor cortex. CONCLUSIONS Occipital activity was the same despite response, but the parietal and frontal EEG differed. When responding to S1, the motor cortex responded as soon as information arrived, and when responding to S2, the motor cortex responded with a delay allowing for other brain processing prior to movement initiation. While the exact time of conscious recognition of S2 is not clear, when there is a response to S1, the frontal cortex signals an "error", but this is apparently too late to veto the movement. SIGNIFICANCE While consciousness does not initiate the movement, it monitors the concordance of intent and result.
Collapse
Affiliation(s)
- Antonio Ivano Triggiani
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sae-Jin Lee
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kaya Scheman
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Fang Z, Dang Y, Ling Z, Han Y, Zhao H, Xu X, Zhang M. The involvement of the human prefrontal cortex in the emergence of visual awareness. eLife 2024; 12:RP89076. [PMID: 38265851 PMCID: PMC10945701 DOI: 10.7554/elife.89076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Exploring the neural mechanisms of awareness is a fundamental task of cognitive neuroscience. There is an ongoing dispute regarding the role of the prefrontal cortex (PFC) in the emergence of awareness, which is partially raised by the confound between report- and awareness-related activity. To address this problem, we designed a visual awareness task that can minimize report-related motor confounding. Our results show that saccadic latency is significantly shorter in the aware trials than in the unaware trials. Local field potential (LFP) data from six patients consistently show early (200-300ms) awareness-related activity in the PFC, including event-related potential and high-gamma activity. Moreover, the awareness state can be reliably decoded by the neural activity in the PFC since the early stage, and the neural pattern is dynamically changed rather than being stable during the representation of awareness. Furthermore, the enhancement of dynamic functional connectivity, through the phase modulation at low frequency, between the PFC and other brain regions in the early stage of the awareness trials may explain the mechanism of conscious access. These results indicate that the PFC is critically involved in the emergence of awareness.
Collapse
Affiliation(s)
- Zepeng Fang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal UniversityBeijingChina
| | - Yuanyuan Dang
- Department of Neurosurgery, Chinese PLA General HospitalBeijingChina
| | - Zhipei Ling
- Department of Neurosurgery, Chinese PLA General HospitalBeijingChina
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third HospitalBeijingChina
| | - Hulin Zhao
- Department of Neurosurgery, Chinese PLA General HospitalBeijingChina
| | - Xin Xu
- Department of Neurosurgery, Chinese PLA General HospitalBeijingChina
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal UniversityBeijingChina
| |
Collapse
|
23
|
Eiserbeck A, Enge A, Rabovsky M, Abdel Rahman R. Distrust before first sight? Examining knowledge- and appearance-based effects of trustworthiness on the visual consciousness of faces. Conscious Cogn 2024; 117:103629. [PMID: 38150782 DOI: 10.1016/j.concog.2023.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
The present EEG study with 32 healthy participants investigated whether affective knowledge about a person influences the visual awareness of their face, additionally considering the impact of facial appearance. Faces differing in perceived trustworthiness based on appearance were associated with negative or neutral social information and shown as target stimuli in an attentional blink task. As expected, participants showed enhanced awareness of faces associated with negative compared to neutral social information. On the neurophysiological level, this effect was connected to differences in the time range of the early posterior negativity (EPN)-a component associated with enhanced attention and facilitated processing of emotional stimuli. The findings indicate that the social-affective relevance of a face based on emotional knowledge is accessed during a phase of attentional enhancement for conscious perception and can affect prioritization for awareness. In contrast, no clear evidence for influences of facial trustworthiness during the attentional blink was found.
Collapse
Affiliation(s)
- Anna Eiserbeck
- Department of Psychology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Germany; Cluster of Excellence Science of Intelligence, Technische Universität Berlin, Germany.
| | - Alexander Enge
- Department of Psychology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Germany; Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany
| | | | - Rasha Abdel Rahman
- Department of Psychology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Germany; Cluster of Excellence Science of Intelligence, Technische Universität Berlin, Germany.
| |
Collapse
|
24
|
Wu M, Auksztulewicz R, Riecke L. Multimodal acoustic-electric trigeminal nerve stimulation modulates conscious perception. Neuroimage 2024; 285:120476. [PMID: 38030051 DOI: 10.1016/j.neuroimage.2023.120476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/05/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
Multimodal stimulation can reverse pathological neural activity and improve symptoms in neuropsychiatric diseases. Recent research shows that multimodal acoustic-electric trigeminal-nerve stimulation (TNS) (i.e., musical stimulation synchronized to electrical stimulation of the trigeminal nerve) can improve consciousness in patients with disorders of consciousness. However, the reliability and mechanism of this novel approach remain largely unknown. We explored the effects of multimodal acoustic-electric TNS in healthy human participants by assessing conscious perception before and after stimulation using behavioral and neural measures in tactile and auditory target-detection tasks. To explore the mechanisms underlying the putative effects of acoustic-electric stimulation, we fitted a biologically plausible neural network model to the neural data using dynamic causal modeling. We observed that (1) acoustic-electric stimulation improves conscious tactile perception without a concomitant change in auditory perception, (2) this improvement is caused by the interplay of the acoustic and electric stimulation rather than any of the unimodal stimulation alone, and (3) the effect of acoustic-electric stimulation on conscious perception correlates with inter-regional connection changes in a recurrent neural processing model. These results provide evidence that acoustic-electric TNS can promote conscious perception. Alterations in inter-regional cortical connections might be the mechanism by which acoustic-electric TNS achieves its consciousness benefits.
Collapse
Affiliation(s)
- Min Wu
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands.
| | - Ryszard Auksztulewicz
- Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands
| |
Collapse
|
25
|
Liaw YS, Augustine GJ. The claustrum and consciousness: An update. Int J Clin Health Psychol 2023; 23:100405. [PMID: 37701759 PMCID: PMC10493512 DOI: 10.1016/j.ijchp.2023.100405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
The seminal paper of Crick and Koch (2005) proposed that the claustrum, an enigmatic and thin grey matter structure that lies beside the insular cortex, may be involved in the processing of consciousness. As a result, this otherwise obscure structure has received ever-increasing interest in the search for neural correlates of consciousness. Here we review theories of consciousness and discuss the possible relationship between the claustrum and consciousness. We review relevant experimental evidence collected since the Crick and Koch (2005) paper and consider whether these findings support or contradict their hypothesis. We also explore how future experimental work can be designed to clarify how consciousness emerges from neural activity and to understand the role of the claustrum in consciousness.
Collapse
Affiliation(s)
- Yin Siang Liaw
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - George J. Augustine
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
26
|
Wiens S, Andersson A, Gravenfors J. Neural electrophysiological correlates of detection and identification awareness. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1303-1321. [PMID: 37656374 PMCID: PMC10545648 DOI: 10.3758/s13415-023-01120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 09/02/2023]
Abstract
Humans have conscious experiences of the events in their environment. Previous research from electroencephalography (EEG) has shown visual awareness negativity (VAN) at about 200 ms to be a neural correlate of consciousness (NCC). However, when considering VAN as an NCC, it is important to explore which particular experiences are associated with VAN. Recent research proposes that VAN is an NCC of lower-level experiences (detection) rather than higher-level experiences (identification). However, previous results are mixed and have several limitations. In the present study, the stimulus was a ring with a Gabor patch tilting either left or right. On each trial, subjects rated their awareness on a three-level perceptual awareness scale that captured both detection (something vs. nothing) and identification (identification vs. something). Separate staircases were used to adjust stimulus opacity to the detection threshold and the identification threshold. Bayesian linear mixed models provided extreme evidence (BF10 = 131) that VAN was stronger at the detection threshold than at the identification threshold. Mean VAN decreased from [Formula: see text]2.12 microV [[Formula: see text]2.86, [Formula: see text]1.42] at detection to [Formula: see text]0.46 microV [[Formula: see text]0.79, [Formula: see text]0.11] at identification. These results strongly support the claim that VAN is an NCC of lower-level experiences of seeing something rather than of higher-level experiences of specific properties of the stimuli. Thus, results are consistent with recurrent processing theory in that phenomenal visual consciousness is reflected by VAN. Further, results emphasize that it is important to consider the level of experience when searching for NCC.
Collapse
Affiliation(s)
- Stefan Wiens
- Department of Psychology, Stockholm University, Stockholm, Sweden.
| | - Annika Andersson
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
27
|
Wang J, Zou L, Jiang X, Wang D, Mao L, Yang X. Visual stimulation rehabilitation for cortical blindness after vertebral artery interventional surgery: A case report and literature review. Int J Surg Case Rep 2023; 110:108753. [PMID: 37651808 PMCID: PMC10509878 DOI: 10.1016/j.ijscr.2023.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION AND IMPORTANCE Cortical blindness (CB) after vertebral artery interventional surgery is not a frequently reported complication. In this study, the efficacy of visual stimulation rehabilitation consisting of visual recovery training and repetitive transcranial magnetic stimulation (rTMS) for cortical blindness was investigated by clinical evaluation, ophthalmologic examination, and electroencephalography (EEG). CASE PRESENTATION This study reports on a 55-year-old male who showed partial bilateral posterior cerebral artery cortical branch occlusion after timely embolectomy due to thrombus dislodgement during right vertebral artery opening, stenting resulting in basilar artery tip occlusion. The lesions were mainly located in the right cerebellar hemisphere and bilateral occipital lobes, and the patient suffered from bilateral loss of vision, with only light perception preserved. The patient began to receive visual recovery training and 15 sessions of right occipital high-frequency transcranial magnetic stimulation 5 days after the onset. CLINICAL DISCUSSION After treatment, the patient's capacity to identify things improved, allowing him to watch television, as did the precision and fluency of random hand movements, walking, and self-care. CONCLUSION Visual stimulation rehabilitation composed of visual recovery training and rTMS is a promising therapy option for cortical blindness, and our case report provides clinical experience with vision recovery for patients with cortical blindness.
Collapse
Affiliation(s)
- Juehan Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liliang Zou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaorui Jiang
- Department of Rehabilitation Medicine, The First People's Hospital of Yuhang District, Hangzhou, China
| | - Daming Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaofeng Yang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
28
|
Vigué-Guix I, Soto-Faraco S. Using occipital ⍺-bursts to modulate behavior in real-time. Cereb Cortex 2023; 33:9465-9477. [PMID: 37365814 DOI: 10.1093/cercor/bhad217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Pre-stimulus endogenous neural activity can influence the processing of upcoming sensory input and subsequent behavioral reactions. Despite it is known that spontaneous oscillatory activity mostly appears in stochastic bursts, typical approaches based on trial averaging fail to capture this. We aimed at relating spontaneous oscillatory bursts in the alpha band (8-13 Hz) to visual detection behavior, via an electroencephalography-based brain-computer interface (BCI) that allowed for burst-triggered stimulus presentation in real-time. According to alpha theories, we hypothesized that visual targets presented during alpha-bursts should lead to slower responses and higher miss rates, whereas targets presented in the absence of bursts (low alpha activity) should lead to faster responses and higher false alarm rates. Our findings support the role of bursts of alpha oscillations in visual perception and exemplify how real-time BCI systems can be used as a test bench for brain-behavioral theories.
Collapse
Affiliation(s)
- Irene Vigué-Guix
- Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Salvador Soto-Faraco
- Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona 08005, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
29
|
Qiu Z, Becker SI, Xia H, Hamblin-Frohman Z, Pegna AJ. Fixation-related electrical potentials during a free visual search task reveal the timing of visual awareness. iScience 2023; 26:107148. [PMID: 37408689 PMCID: PMC10319232 DOI: 10.1016/j.isci.2023.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
It has been repeatedly claimed that emotional faces readily capture attention, and that they may be processed without awareness. Yet some observations cast doubt on these assertions. Part of the problem may lie in the experimental paradigms employed. Here, we used a free viewing visual search task during electroencephalographic recordings, where participants searched for either fearful or neutral facial expressions among distractor expressions. Fixation-related potentials were computed for fearful and neutral targets and the response compared for stimuli consciously reported or not. We showed that awareness was associated with an electrophysiological negativity starting at around 110 ms, while emotional expressions were distinguished on the N170 and early posterior negativity only when stimuli were consciously reported. These results suggest that during unconstrained visual search, the earliest electrical correlate of awareness may emerge as early as 110 ms, and fixating at an emotional face without reporting it may not produce any unconscious processing.
Collapse
Affiliation(s)
- Zeguo Qiu
- School of Psychology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stefanie I. Becker
- School of Psychology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hongfeng Xia
- School of Psychology, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Alan J. Pegna
- School of Psychology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
30
|
Vasileiadi M, Schuler AL, Woletz M, Linhardt D, Windischberger C, Tik M. Functional connectivity explains how neuronavigated TMS of posterior temporal subregions differentially affect language processing. Brain Stimul 2023; 16:1062-1071. [PMID: 37390891 DOI: 10.1016/j.brs.2023.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND "Wernicke's area" is most often used to describe the posterior superior temporal gyrus (STG) and refers to a region traditionally thought to support language comprehension. However, the posterior STG additionally plays a critical role in language production. The purpose of the current study was to determine to what extent regions within the posterior STG are selectively recruited during language production. METHODS 23 healthy right-handed participants completed an auditory fMRI localizer task, resting-state fMRI and underwent neuronavigated TMS language mapping. We applied repetitive TMS bursts during a picture naming paradigm to probe speech disruptions of different categories (anomia, speech arrest, semantic paraphasia and phonological paraphasia). We combined an in-house built high precision stimulation software suite with E-field modeling to map the naming errors to cortical regions and revealed a dissociation of language functions within the temporal gyrus. Resting state fMRI was used to explain how E-field peaks of different categories differentially affected language production. RESULTS Peaks for phonological and semantic errors were found in the STG while those for anomia and speech arrest were located in the MTG. Seed-based connectivity analysis revealed a local connectivity pattern for phonological and semantic errors, while anomia and speech arrest seeds resulted in a larger network between IFG and posterior MTG. CONCLUSIONS Our study provides important insights into the functional neuroanatomy of language production and might help to increase the current understanding of specific language production difficulties on a causal level.
Collapse
Affiliation(s)
- Maria Vasileiadi
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria
| | - Anna-Lisa Schuler
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria
| | - Michael Woletz
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria
| | - David Linhardt
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria
| | | | - Martin Tik
- Center for Medical Physics and BME, Medical University of Vienna, Vienna, Austria; Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
31
|
Simione L, Raffone A, Kirov R, Overgaard M, Berkovich-Ohana A, Cleeremans A. Editorial: Methodological issues in consciousness research. Front Psychol 2023; 14:1217732. [PMID: 37346419 PMCID: PMC10280984 DOI: 10.3389/fpsyg.2023.1217732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Luca Simione
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
- Faculty of Interpreting and Translation, Università degli Studi Internazionali, UNINT, Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Roumen Kirov
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria
| | - Morten Overgaard
- CFIN, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Aviva Berkovich-Ohana
- Faculty of Education, University of Haifa, and Brain and Behavior Hub, Haifa, Israel
| | - Axel Cleeremans
- Center for Research in Cognition and Neuroscience (CRCN), ULB Neuroscience Institute (UNI), Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
32
|
Fernandez Pujol C, Blundon EG, Dykstra AR. Laminar specificity of the auditory perceptual awareness negativity: A biophysical modeling study. PLoS Comput Biol 2023; 19:e1011003. [PMID: 37384802 PMCID: PMC10337981 DOI: 10.1371/journal.pcbi.1011003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/12/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
How perception of sensory stimuli emerges from brain activity is a fundamental question of neuroscience. To date, two disparate lines of research have examined this question. On one hand, human neuroimaging studies have helped us understand the large-scale brain dynamics of perception. On the other hand, work in animal models (mice, typically) has led to fundamental insight into the micro-scale neural circuits underlying perception. However, translating such fundamental insight from animal models to humans has been challenging. Here, using biophysical modeling, we show that the auditory awareness negativity (AAN), an evoked response associated with perception of target sounds in noise, can be accounted for by synaptic input to the supragranular layers of auditory cortex (AC) that is present when target sounds are heard but absent when they are missed. This additional input likely arises from cortico-cortical feedback and/or non-lemniscal thalamic projections and targets the apical dendrites of layer-5 (L5) pyramidal neurons. In turn, this leads to increased local field potential activity, increased spiking activity in L5 pyramidal neurons, and the AAN. The results are consistent with current cellular models of conscious processing and help bridge the gap between the macro and micro levels of perception-related brain activity.
Collapse
Affiliation(s)
- Carolina Fernandez Pujol
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States of America
| | - Elizabeth G. Blundon
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States of America
| | - Andrew R. Dykstra
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States of America
| |
Collapse
|
33
|
Sun B, Zeng X, Chen X, Zhao J, Fu S. Neural correlates of conscious processing of emotional faces: Evidence from event-related potentials. Neuropsychologia 2023; 182:108478. [PMID: 36707025 DOI: 10.1016/j.neuropsychologia.2023.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023]
Abstract
There is a theoretical debate between the early and late neural correlates of consciousness (NCCs). Previous studies using neutral face stimuli supported an early NCC and suggested that visual awareness negativity (VAN) is associated with consciousness, while late positivity (LP) reflects post-perceptual activity. However, emotional faces may help to examine the relationship between LP and consciousness due to the differences in late processing between emotional and neutral faces. To explore the effects of facial emotional information on NCCs, the present study manipulated consciousness with the inattentional blindness paradigm and used happy, fearful, and neutral faces as visual stimuli. The results showed that the conscious processing of emotional faces was correlated with VAN and LP, while the conscious processing of neutral faces was associated with VAN. First, the results suggest that VAN is an NCC, and the relationship between LP and consciousness is affected by facial emotional information. Second, VAN reflects the early perceptual experience of emotional faces, whereas LP may reflect the late conscious processing of emotional faces. Furthermore, source localization analysis showed that the LPs of emotional faces were mainly located in the frontal and parietal lobes, whereas those of neutral faces showed no significant activation. This suggests that facial emotional information may affect the brain regions associated with conscious processing. Time-frequency analysis showed that conscious processing is related to the enhancement of alpha and theta oscillation, indicating that conscious processing may be associated with the suppression of irrelevant stimuli. Overall, the present study suggests that the integration of the theories that support early and late NCCs helps explain the conscious processing of emotional faces.
Collapse
Affiliation(s)
- Bo Sun
- Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou 510006, China.
| | - Xianqing Zeng
- Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaomin Chen
- Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou 510006, China
| | - Jin Zhao
- Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou 510006, China
| | - Shimin Fu
- Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
34
|
Miraglia F, Pappalettera C, Di Ienno S, Nucci L, Cacciotti A, Manenti R, Judica E, Rossini PM, Vecchio F. The Effects of Directional and Non-Directional Stimuli during a Visuomotor Task and Their Correlation with Reaction Time: An ERP Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:3143. [PMID: 36991853 PMCID: PMC10058543 DOI: 10.3390/s23063143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Different visual stimuli can capture and shift attention into different directions. Few studies have explored differences in brain response due to directional (DS) and non-directional visual stimuli (nDS). To explore the latter, event-related potentials (ERP) and contingent negative variation (CNV) during a visuomotor task were evaluated in 19 adults. To examine the relation between task performance and ERPs, the participants were divided into faster (F) and slower (S) groups based on their reaction times (RTs). Moreover, to reveal ERP modulation within the same subject, each recording from the single participants was subdivided into F and S trials based on the specific RT. ERP latencies were analysed between conditions ((DS, nDS); (F, S subjects); (F, S trials)). Correlation was analysed between CNV and RTs. Our results reveal that the ERPs' late components are modulated differently by DS and nDS conditions in terms of amplitude and location. Differences in ERP amplitude, location and latency, were also found according to subjects' performance, i.e., between F and S subjects and trials. In addition, results show that the CNV slope is modulated by the directionality of the stimulus and contributes to motor performance. A better understanding of brain dynamics through ERPs could be useful to explain brain states in healthy subjects and to support diagnoses and personalized rehabilitation in patients with neurological diseases.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Sara Di Ienno
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Lorenzo Nucci
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di DioFatebenefratelli, 25125 Brescia, Italy
| | - Elda Judica
- Casa di Cura IGEA, Department of Neurorehabilitation Sciences, 20144 Milano, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| |
Collapse
|
35
|
Pujol CF, Blundon EG, Dykstra AR. Laminar Specificity of the Auditory Perceptual Awareness Negativity: A Biophysical Modeling Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531459. [PMID: 36945469 PMCID: PMC10028885 DOI: 10.1101/2023.03.06.531459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
How perception of sensory stimuli emerges from brain activity is a fundamental question of neuroscience. To date, two disparate lines of research have examined this question. On one hand, human neuroimaging studies have helped us understand the large-scale brain dynamics of perception. On the other hand, work in animal models (mice, typically) has led to fundamental insight into the micro-scale neural circuits underlying perception. However, translating such fundamental insight from animal models to humans has been challenging. Here, using biophysical modeling, we show that the auditory awareness negativity (AAN), an evoked response associated with perception of target sounds in noise, can be accounted for by synaptic input to the supragranular layers of auditory cortex (AC) that is present when target sounds are heard but absent when they are missed. This additional input likely arises from cortico-cortical feedback and/or non-lemniscal thalamic projections and targets the apical dendrites of layer-V pyramidal neurons (PNs). In turn, this leads to increased local field potential activity, increased spiking activity in layer-V PNs, and the AAN. The results are consistent with current cellular models of conscious processing and help bridge the gap between the macro and micro levels of perception-related brain activity. Author Summary To date, our understanding of the brain basis of conscious perception has mostly been restricted to large-scale, network-level activity that can be measured non-invasively in human subjects. However, we lack understanding of how such network-level activity is supported by individual neurons and neural circuits. This is at least partially because conscious perception is difficult to study in experimental animals, where such detailed characterization of neural activity is possible. To address this gap, we used biophysical modeling to gain circuit-level insight into an auditory brain response known as the auditory awareness negativity (AAN). This response can be recorded non-invasively in humans and is associated with perceptual awareness of sounds of interest. Our model shows that the AAN likely arises from specific cortical layers and cell types. These data help bridge the gap between circuit- and network-level theories of consciousness, and could lead to new, targeted treatments for perceptual dysfunction and disorders of consciousness.
Collapse
Affiliation(s)
| | - Elizabeth G. Blundon
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Present address: Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew R. Dykstra
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
36
|
White PA. Time marking in perception. Neurosci Biobehav Rev 2023; 146:105043. [PMID: 36642288 DOI: 10.1016/j.neubiorev.2023.105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Several authors have proposed that perceptual information carries labels that identify temporal features, including time of occurrence, ordinal temporal relations, and brief durations. These labels serve to locate and organise perceptual objects, features, and events in time. In some proposals time marking has local, specific functions such as synchronisation of different features in perceptual processing. In other proposals time marking has general significance and is responsible for rendering perceptual experience temporally coherent, just as various forms of spatial information render the visual environment spatially coherent. These proposals, which all concern time marking on the millisecond time scale, are reviewed. It is concluded that time marking is vital to the construction of a multisensory perceptual world in which things are orderly with respect to both space and time, but that much more research is needed to ascertain its functions in perception and its neurophysiological foundations.
Collapse
Affiliation(s)
- Peter A White
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3YG, Wales, UK.
| |
Collapse
|
37
|
Vormbrock R, Bruchmann M, Menne L, Straube T, Schindler S. Testing stimulus exposure time as the critical factor of increased EPN and LPP amplitudes for fearful faces during perceptual distraction tasks. Cortex 2023; 160:9-23. [PMID: 36680924 DOI: 10.1016/j.cortex.2022.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
Fearful facial expressions are prioritized across different information processing stages, as evident in early, intermediate, and late components of event-related brain potentials (ERPs). Recent studies showed that, in contrast to early N170 modulations, mid-latency (Early Posterior Negativity, EPN) and late (Late Positive Potential, LPP) emotional modulations depend on the attended perceptual feature. Nevertheless, several studies reported significant differences between emotional and neutral faces for the EPN or LPP components during distraction tasks. One cause for these conflicting findings might be that when faces are presented sufficiently long, participants attend to task-irrelevant features of the faces. In this registered report, we tested whether the presentation duration of faces is the critical factor for differences between reported emotional modulations during perceptual distraction tasks. To this end, 48 participants were required to discriminate the orientation of lines overlaid onto fearful or neutral faces, while face presentation varied (100 msec, 300 msec, 1,000 msec, 2,000 msec). While participants did not need to pay attention to the faces, we observed main effects of emotion for the EPN and LPP, but no interaction between emotion and presentation duration. Of note, unregistered exploratory tests per presentation duration showed no significant EPN and LPP emotion differences during short durations (100 and 300 msec) but significant differences with longer durations. While the presentation duration seems not to be a critical factor for EPN and LPP emotion effects, future studies are needed to investigate the role of threshold effects and the applied analytic designs to explain conflicting findings in the literature.
Collapse
Affiliation(s)
- Ria Vormbrock
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany
| | - Lucas Menne
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany
| | - Sebastian Schindler
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany.
| |
Collapse
|
38
|
Prestimulus oscillatory brain activity interacts with evoked recurrent processing to facilitate conscious visual perception. Sci Rep 2022; 12:22126. [PMID: 36550141 PMCID: PMC9780344 DOI: 10.1038/s41598-022-25720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated whether prestimulus alpha-band oscillatory activity and stimulus-elicited recurrent processing interact to facilitate conscious visual perception. Participants tried to perceive a visual stimulus that was perceptually masked through object substitution masking (OSM). We showed that attenuated prestimulus alpha power was associated with greater negative-polarity stimulus-evoked ERP activity that resembled the visual awareness negativity (VAN), previously argued to reflect recurrent processing related to conscious perception. This effect, however, was not associated with better perception. Instead, when prestimulus alpha power was elevated, a preferred prestimulus alpha phase was associated with a greater VAN-like negativity, which was then associated with better cue perception. Cue perception was worse when prestimulus alpha power was elevated but the stimulus occurred at a nonoptimal prestimulus alpha phase and the VAN-like negativity was low. Our findings suggest that prestimulus alpha activity at a specific phase enables temporally selective recurrent processing that facilitates conscious perception in OSM.
Collapse
|
39
|
Zhang S, Morrison J, Wang W, Greene E. Recognition of letters displayed as successive contour fragments. AIMS Neurosci 2022; 9:491-515. [PMID: 36660071 PMCID: PMC9826752 DOI: 10.3934/neuroscience.2022028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Shapes can be displayed as parts but perceived as a whole through feedforward and feedback mechanisms in the visual system, though the exact spatiotemporal relationships for this process are still unclear. Our experiments examined the integration of letter fragments that were displayed as a rapid sequence. We examined the effects of timing and masking on integration, hypothesizing that increasing the timing interval between frames would impair recognition by disrupting contour linkage. We further used different mask types, a full-field pattern mask and a smaller strip mask, to examine the effects of global vs local masking on integration. We found that varying mask types and contrast produced a greater decline in recognition than was found when persistence or mask density was manipulated. The study supports prior work on letter recognition and provides greater insight into the spatiotemporal factors that contribute to the identification of shapes.
Collapse
Affiliation(s)
- Sherry Zhang
- Department of Psychology, University of Southern California, Los Angeles, CA 90007, United States of America,* Correspondence:
| | - Jack Morrison
- Neuropsychology Foundation, Sun Valley, CA 91353, United States of America
| | - Wei Wang
- Departments of Medicine and Neurology, Brigham and Women's Hospital. Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, United States of America
| | - Ernest Greene
- Department of Psychology, University of Southern California, Los Angeles, CA 90007, United States of America
| |
Collapse
|
40
|
Dellert T, Krebs S, Bruchmann M, Schindler S, Peters A, Straube T. Neural correlates of consciousness in an attentional blink paradigm with uncertain target relevance. Neuroimage 2022; 264:119679. [PMID: 36220535 DOI: 10.1016/j.neuroimage.2022.119679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
Several event-related potentials (ERPs) have been proposed as neural correlates of consciousness (NCC), most prominently the early visual awareness negativity (VAN) and the late P3b component. Highly influential support for the P3b comes from studies utilizing the attentional blink (AB), where conscious perception of a first visual target (T1) impairs reporting a second target (T2) presented shortly afterwards. Recent no-report studies using other paradigms suggest that the P3b component may reflect post-perceptual processes associated with decision-making rather than awareness. However, no-report studies are limited in their awareness assessment, and their conclusions have not been tested in an AB paradigm. The present study (N = 38) addressed these issues using a novel AB paradigm, which reduced decision-making processes by omitting a discrimination task on T2 stimuli and rendering their relevance uncertain. Nevertheless, awareness was assessed trial by trial. Comparing ERPs in response to seen versus unseen T2 stimuli revealed a VAN but no enhanced P3b regardless of whether they were marked as distinct from distractor stimuli or not. Our results corroborate the VAN and challenge the P3b as NCC despite rigorous trial-by-trial assessment of conscious perception. Thus, they support the idea that awareness emerges during early sensory processing.
Collapse
Affiliation(s)
- Torge Dellert
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany.
| | - Sophie Krebs
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany
| | - Sebastian Schindler
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany
| | - Antje Peters
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Von-Esmarch-Str. 52, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149, Münster, Germany
| |
Collapse
|
41
|
Rabuffo G, Sorrentino P, Bernard C, Jirsa V. Spontaneous neuronal avalanches as a correlate of access consciousness. Front Psychol 2022; 13:1008407. [PMID: 36337573 PMCID: PMC9634647 DOI: 10.3389/fpsyg.2022.1008407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 09/03/2023] Open
Abstract
Decades of research have advanced our understanding of the biophysical mechanisms underlying consciousness. However, an overarching framework bridging between models of consciousness and the large-scale organization of spontaneous brain activity is still missing. Based on the observation that spontaneous brain activity dynamically switches between epochs of segregation and large-scale integration of information, we hypothesize a brain-state dependence of conscious access, whereby the presence of either segregated or integrated states marks distinct modes of information processing. We first review influential works on the neuronal correlates of consciousness, spontaneous resting-state brain activity and dynamical system theory. Then, we propose a test experiment to validate our hypothesis that conscious access occurs in aperiodic cycles, alternating windows where new incoming information is collected but not experienced, to punctuated short-lived integration events, where conscious access to previously collected content occurs. In particular, we suggest that the integration events correspond to neuronal avalanches, which are collective bursts of neuronal activity ubiquitously observed in electrophysiological recordings. If confirmed, the proposed framework would link the physics of spontaneous cortical dynamics, to the concept of ignition within the global neuronal workspace theory, whereby conscious access manifest itself as a burst of neuronal activity.
Collapse
Affiliation(s)
- Giovanni Rabuffo
- Institut de Neurosciences des Systemes, Aix-Marseille University, Marseille, France
| | | | | | | |
Collapse
|
42
|
Seitz RJ, Angel HF, Paloutzian RF, Taves A. Believing and social interactions: effects on bodily expressions and personal narratives. Front Behav Neurosci 2022; 16:894219. [PMID: 36275855 PMCID: PMC9584167 DOI: 10.3389/fnbeh.2022.894219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The processes of believing integrate external perceptual information from the environment with internal emotional states and prior experience to generate probabilistic neural representations of events, i.e., beliefs. As these neural representations manifest mostly below the level of a person's conscious awareness, they may inadvertently affect the spontaneous person's bodily expressions and prospective behavior. By yet to be understood mechanisms people can become aware of these representations and reflect upon them. Typically, people can communicate the content of their beliefs as personal statements and can summarize the narratives of others to themselves or to other people. Here, we describe that social interactions may benefit from the consistency between a person's bodily expressions and verbal statements because the person appears authentic and ultimately trustworthy. The transmission of narratives can thus lay the groundwork for social cooperation within and between groups and, ultimately, between communities and nations. Conversely, a discrepancy between bodily expressions and narratives may cause distrust in the addressee(s) and eventually may destroy social bonds.
Collapse
Affiliation(s)
- Rüdiger J. Seitz
- Department of Neurology, Centre of Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hans-Ferdinand Angel
- Institute of Catechetic and Pedagogic of Religion, Karl Franzens University Graz, Graz, Austria
| | | | - Ann Taves
- Department of Religious Studies, University of California, Santa Barbara, CA, United States
| |
Collapse
|
43
|
Duda-Goławska J, Imbir KK, Żygierewicz J. ERP Analysis Using a Multi-Channel Matching Pursuit Algorithm. Neuroinformatics 2022; 20:827-862. [PMID: 35286575 DOI: 10.1007/s12021-022-09575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/31/2022]
Abstract
In this study, we propose a new algorithm for analysing event-related components observed in EEG signals in psychological experiments. We investigate its capabilities and limitations. The algorithm is based on multivariate matching pursuit and clustering. It is aimed to find patterns in EEG signals which are similar across different experimental conditions, but it allows for variations in amplitude and slight variability in topography. The method proved to yield expected results in numerical simulations. For the real data coming from an emotional categorisation task experiment, we obtained two indications. First, the method can be used as a specific filter that reduces the variability of components, as defined classically, within each experimental condition. Second, equivalent dipoles fitted to items of the activity clusters identified by the algorithm localise in compact brain areas related to the task performed by the subjects across experimental conditions. Thus this activity may be studied as candidates for hypothetical latent components. The proposed algorithm is a promising new tool in ERP studies, which deserves further experimental evaluations.
Collapse
Affiliation(s)
- Joanna Duda-Goławska
- Faculty of Physics, University of Warsaw, L. Pasteura 5 Street, Warsaw, 02-093, Poland.
| | - Kamil K Imbir
- Faculty of Psychology, University of Warsaw, Stawki 5/7 Street, Warsaw, 10-587, Poland
| | - Jarosław Żygierewicz
- Faculty of Physics, University of Warsaw, L. Pasteura 5 Street, Warsaw, 02-093, Poland
| |
Collapse
|
44
|
Roth-Paysen ML, Bröcker A, Bruchmann M, Straube T. Early and late electrophysiological correlates of gradual perceptual awareness in- and outside the Attentional Blink window. Neuroimage 2022; 263:119652. [PMID: 36167269 DOI: 10.1016/j.neuroimage.2022.119652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
There is an ongoing debate on the neural correlates of consciousness (NCC) in the attentional blink (AB). Theoretical accounts propose that NCC during the attentional blink occur late in the processing hierarchy and that this quality is specific to the AB. We investigated this question by recording event-related potentials during an AB experiment with faces as T2. We analyzed ERPs to T2 stimuli inside (short lag) and outside (long lag) the AB window after carefully calibrating T2 stimuli to ensure equal visibility ratings across lags. We found that the N170, the visual awareness negativity (VAN), and the P3b showed an increased amplitude for seen compared to unseen face stimuli regardless of stimulus lag and that all these components scale linearly with subjective visibility. These findings suggest similar early and late mechanisms of graded perceptual awareness within and outside the AB across perceptual (N170, VAN) and post-perceptual (P3b) processing stages.
Collapse
Affiliation(s)
| | - Anne Bröcker
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany.
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Germany
| |
Collapse
|
45
|
Ehret G, Romand R. Awareness and consciousness in humans and animals - neural and behavioral correlates in an evolutionary perspective. Front Syst Neurosci 2022; 16:941534. [PMID: 35910003 PMCID: PMC9331465 DOI: 10.3389/fnsys.2022.941534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Awareness or consciousness in the context of stimulus perception can directly be assessed in well controlled test situations with humans via the persons' reports about their subjective experiences with the stimuli. Since we have no direct access to subjective experiences in animals, their possible awareness or consciousness in stimulus perception tasks has often been inferred from behavior and cognitive abilities previously observed in aware and conscious humans. Here, we analyze published human data primarily on event-related potentials and brain-wave generation during perception and responding to sensory stimuli and extract neural markers (mainly latencies of evoked-potential peaks and of gamma-wave occurrence) indicating that a person became aware or conscious of the perceived stimulus. These neural correlates of consciousness were then applied to sets of corresponding data from various animals including several species of mammals, and one species each of birds, fish, cephalopods, and insects. We found that the neural markers from studies in humans could also successfully be applied to the mammal and bird data suggesting that species in these animal groups can become subjectively aware of and conscious about perceived stimuli. Fish, cephalopod and insect data remained inconclusive. In an evolutionary perspective we have to consider that both awareness of and consciousness about perceived stimuli appear as evolved, attention-dependent options added to the ongoing neural activities of stimulus processing and action generation. Since gamma-wave generation for functional coupling of brain areas in aware/conscious states is energetically highly cost-intensive, it remains to be shown which animal species under which conditions of lifestyle and ecological niche may achieve significant advantages in reproductive fitness by drawing upon these options. Hence, we started our discussion about awareness and consciousness in animals with the question in how far these expressions of brain activity are necessary attributes for perceiving stimuli and responding in an adaptive way.
Collapse
Affiliation(s)
- Günter Ehret
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Raymond Romand
- Faculty of Medicine, Institute de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg and Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| |
Collapse
|
46
|
Spatial attention shifting to fearful faces depends on visual awareness in attentional blink: An ERP study. Neuropsychologia 2022; 172:108283. [PMID: 35661782 DOI: 10.1016/j.neuropsychologia.2022.108283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/07/2022] [Accepted: 05/29/2022] [Indexed: 01/18/2023]
Abstract
It remains unclear to date whether spatial attention towards emotional faces is contingent on, or independent of visual awareness. To investigate this question, a bilateral attentional blink paradigm was used in which lateralised fearful faces were presented at various levels of detectability. Twenty-six healthy participants were presented with two rapid serial streams of human faces, while they attempted to detect a pair of target faces (T2) displayed in close or distant succession of a first target pair (T1). Spatial attention shifting to the T2 fearful faces, indexed by the N2-posterior-contralateral component, was dependent on visual awareness and its magnitude covaried with the visual awareness negativity, a neural marker of awareness at the perceptual level. Additionally, information consolidation in working memory, indexed by the sustained posterior contralateral negativity, positively correlated with the level of visual awareness and spatial attention shifting. These findings demonstrate that spatial attention shifting to fearful faces depends on visual awareness, and these early processes are closely linked to information maintenance in working memory.
Collapse
|
47
|
Mazor M, Dijkstra N, Fleming SM. Dissociating the Neural Correlates of Subjective Visibility from Those of Decision Confidence. J Neurosci 2022; 42:2562-2569. [PMID: 35121637 PMCID: PMC8944226 DOI: 10.1523/jneurosci.1220-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
A key goal of consciousness science is identifying neural signatures of being aware versus unaware of simple stimuli. This is often investigated in the context of near-threshold detection, with reports of stimulus awareness being linked to heightened activation in a frontoparietal network. However, because of reports of stimulus presence typically being associated with higher confidence than reports of stimulus absence, these results could be explained by frontoparietal regions encoding stimulus visibility, decision confidence, or both. In an exploratory analysis, we leverage fMRI data from 35 human participants (20 females) to disentangle these possibilities. We first show that, whereas stimulus identity was best decoded from the visual cortex, stimulus visibility (presence vs absence) was best decoded from prefrontal regions. To control for effects of confidence, we then selectively sampled trials before decoding to equalize confidence distributions between absence and presence responses. This analysis revealed striking differences in the neural correlates of subjective visibility in PFC ROIs, depending on whether or not differences in confidence were controlled for. We interpret our findings as highlighting the importance of controlling for metacognitive aspects of the decision process in the search for neural correlates of visual awareness.SIGNIFICANCE STATEMENT While much has been learned over the past two decades about the neural basis of visual awareness, the role of the PFC remains a topic of debate. By applying decoding analyses to functional brain imaging data, we show that prefrontal representations of subjective visibility are contaminated by neural correlates of decision confidence. We propose a new analysis method to control for these metacognitive aspects of awareness reports, and use it to reveal confidence-independent correlates of perceptual judgments in a subset of prefrontal areas.
Collapse
Affiliation(s)
- Matan Mazor
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Nadine Dijkstra
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
- Department of Experimental Psychology, University College London, London, United Kingdom
| |
Collapse
|
48
|
Hunt T, Ericson M, Schooler J. Where's My Consciousness-Ometer? How to Test for the Presence and Complexity of Consciousness. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 17:1150-1165. [PMID: 35271777 DOI: 10.1177/17456916211029942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tools and tests for measuring the presence and complexity of consciousness are becoming available, but there is no established theoretical approach for what these tools are measuring. This article examines several categories of tests for making reasonable inferences about the presence and complexity of consciousness (defined as the capacity for phenomenal/subjective experience) and also suggests ways in which different theories of consciousness may be empirically distinguished. We label the various ways to measure consciousness the measurable correlates of consciousness (MCC) and include three subcategories in our taxonomy: (a) neural correlates of consciousness, (b) behavioral correlates of consciousness, and (c) creative correlates of consciousness. Finally, we reflect on how broader philosophical views about the nature of consciousness, such as materialism and panpsychism, may also be informed by the scientific process.
Collapse
Affiliation(s)
- Tam Hunt
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
| | | | - Jonathan Schooler
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
| |
Collapse
|
49
|
Almeida VN. The neural hierarchy of consciousness. Neuropsychologia 2022; 169:108202. [PMID: 35271856 DOI: 10.1016/j.neuropsychologia.2022.108202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023]
Abstract
The chief undertaking in the studies of consciousness is that of unravelling "the minimal set of neural processes that are together sufficient for the conscious experience of a particular content - the neural correlates of consciousness". To this day, this crusade remains at an impasse, with a clash of two main theories: consciousness may arise either in a graded and cortically-localised fashion, or in an all-or-none and widespread one. In spite of the long-lasting theoretical debates, neurophysiological theories of consciousness have been mostly dissociated from them. Herein, a theoretical review will be put forth with the aim to change that. In its first half, we will cover the hard available evidence on the neurophysiology of consciousness, whereas in its second half we will weave a series of considerations on both theories and substantiate a novel take on conscious awareness: the levels of processing approach, partitioning the conscious architecture into lower- and higher-order, graded and nonlinear.
Collapse
Affiliation(s)
- Victor N Almeida
- Faculdade de Letras, Universidade Federal de Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
50
|
Qiu Z, Becker SI, Pegna AJ. Spatial Attention Shifting to Emotional Faces is Contingent on Awareness and Task Relevancy. Cortex 2022; 151:30-48. [DOI: 10.1016/j.cortex.2022.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/06/2021] [Accepted: 02/23/2022] [Indexed: 11/26/2022]
|