1
|
Kacar S, Hacioglu C, Kar F. Irradiated riboflavin over nonradiated one: Potent antimigratory, antiproliferative and cytotoxic effects on glioblastoma cells. J Cell Mol Med 2024; 28:e18288. [PMID: 38597418 PMCID: PMC11005454 DOI: 10.1111/jcmm.18288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Riboflavin is a water-soluble yellowish vitamin and is controversial regarding its effect on tumour cells. Riboflavin is a powerful photosensitizer that upon exposure to radiation, undergoes an intersystem conversion with molecular oxygen, leading to the production of ROS. In the current study, we sought to ascertain the impact of irradiated riboflavin on C6 glioblastoma cells regarding proliferation, cell death, oxidative stress and migration. First, we compared the proliferative behaviour of cells following nonradiated and radiated riboflavin. Next, we performed apoptotic assays including Annexin V and caspase 3, 7 and 9 assays. Then we checked on oxidative stress and status by flow cytometry and ELISA kits. Finally, we examined inflammatory change and levels of MMP2 and SIRT1 proteins. We caught a clear antiproliferative and cytotoxic effect of irradiated riboflavin compared to nonradiated one. Therefore, we proceeded with our experiments using radiated riboflavin. In all apoptotic assays, we observed a dose-dependent increase. Additionally, the levels of oxidants were found to increase, while antioxidant levels decreased following riboflavin treatment. In the inflammation analysis, we observed elevated levels of both pro-inflammatory and anti-inflammatory cytokines. Additionally, after treatment, we observed reduced levels of MMP2 and SIRT. In conclusion, radiated riboflavin clearly demonstrates superior antiproliferative and apoptotic effects on C6 cells at lower doses compared to nonradiated riboflavin.
Collapse
Affiliation(s)
- Sedat Kacar
- Department of Histology and Embryology, Faculty of MedicineEskisehir Osmangazi UniversityEskisehirTurkey
- Department of Surgery, Division of Oncologic SurgeryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ceyhan Hacioglu
- Department of Medical Biochemistry, Faculty of MedicineDuzce UniversityDuzceTurkey
| | - Fatih Kar
- Department of Biochemistry, Faculty of MedicineKutahya Health Sciences UniversityKutahyaTurkey
| |
Collapse
|
2
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Scuto M, Ontario ML, Salinaro AT, Caligiuri I, Rampulla F, Zimbone V, Modafferi S, Rizzolio F, Canzonieri V, Calabrese EJ, Calabrese V. Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology. Free Radic Biol Med 2022; 179:59-75. [PMID: 34929315 DOI: 10.1016/j.freeradbiomed.2021.12.267] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
The scientific community, recently, has focused notable attention on the chemopreventive and therapeutic effects of dietary polyphenols for human health. Emerging evidence demonstrates that polyphenols, flavonoids and vitamins counteract and neutralize genetic and environmental stressors, particularly oxidative stress and inflammatory process closely connected to cancer initiation, promotion and progression. Interestingly, polyphenols can exert antioxidant or pro-oxidant cytotoxic effects depending on their endogenous concentration. Notably, polyphenols at high dose act as pro-oxidants in a wide type of cancer cells by inhibiting Nrf2 pathway and the expression of antioxidant vitagenes, such as NAD(P)H-quinone oxidoreductase (NQO1), glutathione transferase (GT), GPx, heme oxygenase-1 (HO-1), sirtuin-1 (Sirt1) and thioredoxin (Trx) system which play an essential role in the metabolism of reactive oxygen species (ROS), detoxification of xenobiotics and inhibition of cancer progression, by inducing apoptosis and cell cycle arrest according to the hormesis approach. Importantly, mutagenesis of Nrf2 pathway can exacerbate its "dark side" role, representing a crucial event in the initiation stage of carcinogenesis. Herein, we review the hormetic effects of polyphenols and nanoincapsulated-polyphenols in chemoprevention and treatment of brain tumors via activation or inhibition of Nrf2/vitagenes to suppress carcinogenesis in the early stages, and thus inhibit its progression. Lastly, we discuss innovative preclinical approaches through mini-brain tumor organoids to study human carcinogenesis, from basic cancer research to clinical practice, as promising tools to recapitulate the arrangement of structural neuronal tissues and biological functions of the human brain, as well as test drug toxicity and drive personalized and precision medicine in brain cancer.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123, Venezia, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| |
Collapse
|
4
|
Sun W, Yan J, Ma H, Wu J, Zhang Y. Autophagy-Dependent Ferroptosis-Related Signature is Closely Associated with the Prognosis and Tumor Immune Escape of Patients with Glioma. Int J Gen Med 2022; 15:253-270. [PMID: 35023963 PMCID: PMC8747759 DOI: 10.2147/ijgm.s343046] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
Background Ferroptosis is an autophagy-dependent form of cell death, sometimes called “ferritinophagy”. Its related pathway has been proven to regulate the programmed death of glioma stem cells. Mining autophagy-dependent ferroptosis-related gene (AD-FRG) signature could facilitate the discovery of mechanisms and therapeutic targets showing drug resistance to chemotherapeutic drugs. Methods We exhaustively searched HADB, MSigDB and FerrDb datasets and obtained 25 genes confirmed to exist in autophagy and ferroptosis death pathways. Glioma gene expression and clinicopathological data were collected from TCGA and CGGA datasets. Results Lasso regression and Cox regression analysis were carried out to construct a nine AD-FRGs signature (SIRT1, MTDH, HSPB1, CISD2, HMOX1, ATG7, MTOR, PRKAA2 and EIF2AK4). ROC curve showed that nine genes signature could effectively predict 1- (AUC = 0.869), 3- (AUC = 0.922) and 5-year (AUC = 0.870) survival rates. Immunohistochemical images confirmed the protein expression level of the gene model. The prognostic nomogram of risk score, age, WHO grade, isocitrate dehydrogenase (IDH) wild-type condition, 1p/19q co-deletion state was built. The calibration curve demonstrated that the prediction of the nomogram is highly consistent with the actual results. Moreover, tumor microenvironment analysis showed that the high-risk group was associated with high immune infiltration status and high tumor purity. Correlation analysis showed that the expression of SIRT1, CISD2 and HSPB1 might be related to macrophage infiltration and immunotolerance in glioma tissues. Conclusion Based on autophagy-dependent ferroptosis-related genes, we established gene signature and nomogram that maybe effectively predict the overall survival rate of glioma and correlate with the immunosuppressive tumor microenvironment (TME).
Collapse
Affiliation(s)
- Wenjie Sun
- Laboratory of Molecular Neurobiology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Junqiang Yan
- Laboratory of Molecular Neurobiology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Hongxia Ma
- Laboratory of Molecular Neurobiology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jiannan Wu
- Laboratory of Molecular Neurobiology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Yongjiang Zhang
- Laboratory of Molecular Neurobiology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People's Republic of China
| |
Collapse
|
5
|
The role of resveratrol, Sirtuin1 and RXRα as prognostic markers in ovarian cancer. Arch Gynecol Obstet 2021; 305:1559-1572. [PMID: 34870752 PMCID: PMC9166836 DOI: 10.1007/s00404-021-06262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/15/2021] [Indexed: 11/11/2022]
Abstract
Objective Ovarian cancer is the most lethal gynecologic cancer. Resveratrol (RSV) is known to alter metabolism in cancer. It affects the nuclear retinoid-X-receptor (RXR), which implies a modulating effect of RXR to gynaecologic cancers. Furthermore, RSV targets Sirtuin1 (Sirt1), a histone deacetylase. Study design 123 tissue samples of patients with serous or mucinous ovarian cancer were examined for expression of Sirt1 and RXR. Ovarian cell lines were treated with RSV and consequences on viability and apoptosis were evaluated. The influence of RSV to Sirt1 and RXR expression was analyzed by western blotting Results A correlation of nuclear Sirt1 and RXRα expression could be detected (p = 0.006). Co-expression of nuclear RXRα and cytoplasmic (p = 0.026) or nuclear (p = 0.041) Sirt1 was associated with significantly increased overall survival in advanced tumour stages. Viability was decreased in all cell lines after stimulation with resveratrol, while cell apoptosis was increased. RSV treatment led to significant lower Sirt1 expression in A2780 cells (p = 0.025) and significant increased RXR expression in cisA2780 cells (p = 0.012) Conclusion In order to use RSV as medical target, studies could be developed to improve the understanding of drug resistance mechanisms and consequently improve treatment outcome. Supplementary Information The online version contains supplementary material available at 10.1007/s00404-021-06262-w.
Collapse
|
6
|
Sirtuin 1 and Skin: Implications in Intrinsic and Extrinsic Aging-A Systematic Review. Cells 2021; 10:cells10040813. [PMID: 33917352 PMCID: PMC8067363 DOI: 10.3390/cells10040813] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Skin, as the outermost organ of the body, is constantly exposed to both intrinsic and extrinsic causative factors of aging. Intrinsic aging is related to compromised cellular proliferative capacity, and may be accelerated by harmful environmental influences with the greatest significance of ultraviolet radiation exposure, contributing not only to premature aging, but also to skin carcinogenesis. The overall skin cancer burden and steadily increasing global antiaging market provide an incentive for searching novel targets to improve skin resistance against external injury. Sirtuin 1, initially linked to extension of yeast and rodent lifespan, plays a key role in epigenetic modification of proteins, histones, and chromatin by which regulates the expression of genes implicated in the oxidative stress response and apoptosis. The spectrum of cellular pathways regulated by sirtuin 1 suggests its beneficial impact on skin aging. However, the data on its role in carcinogenesis remains controversial. The aim of this review was to discuss the relevance of sirtuin 1 in skin aging, in the context of intrinsic factors, related to genetic premature aging syndromes, as well as extrinsic modifiable ones, with the assessment of its future application. PubMed were searched from inception to 4 January 2021 for relevant papers with further search carried out on ClinicalTrials.gov. The systematic review included 46 eligible original articles. The evidence from numerous studies proves sirtuin 1 significance in both chronological and premature aging as well as its dual role in cancer development. Several botanical compounds hold the potential to improve skin aging symptoms.
Collapse
|
7
|
Rong Y, Mo Y, Liu Y, Deng Y, Hu S, Li L, Hu J, Hu B, He H, Wang J. MiR-181a-5p inhibits goose granulosa cell viability by targeting SIRT1. Br Poult Sci 2021; 62:373-378. [PMID: 33415990 DOI: 10.1080/00071668.2020.1870660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. Granulosa cells (GCs) are involved in folliculogenesis, follicular development, and atresia. Previous studies have shown that microRNA-181a-5p (miR-181a-5p) and sirtuin 1 (SIRT1) are involved in GC proliferation and apoptosis, and SIRT1 has been predicted as one target of miR-181a-5p. However, there are few studies with poultry.2. Quantitative real-time PCR (qRT-PCR) was used to detect the expression level of miR-181a-5p in granulosa layers during geese ovarian follicular development. A methyl thiazolyl tetrazolium (MTT) assay was performed to assess the viability of geese granulosa cells treated with miR-181a-5p mimic or inhibitor. The binding sites between the SIRT1 3'-UTR region and miR-181a-5p were evaluated using a luciferase reporter assay system. SIRT1 mRNA levels were detected using qRT-PCR after transfection with miR-181a-5p mimic and inhibitor.3. The miR-181a-5p suppressed geese GC viability and regulated the mRNA expression of viability-related genes in geese GCs. SIRT1 was a target gene of miR-181a-5p and miR-181a-5p suppressed its mRNA expression.4. The miR-181a-5p may target and inhibit SIRT1 expression, thus suppressing GC viability by regulating viability-related key genes.
Collapse
Affiliation(s)
- Y Rong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Y Mo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Y Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Y Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - S Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - J Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - B Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - H He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
8
|
Rezaei T, Hejazi M, Mansoori B, Mohammadi A, Amini M, Mosafer J, Rezaei S, Mokhtarzadeh A, Baradaran B. microRNA-181a mediates the chemo-sensitivity of glioblastoma to carmustine and regulates cell proliferation, migration, and apoptosis. Eur J Pharmacol 2020; 888:173483. [DOI: 10.1016/j.ejphar.2020.173483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/24/2022]
|
9
|
Ding Y, Wang J, Zhang H, Li H. Long noncoding RNA-GAS5 attenuates progression of glioma by eliminating microRNA-10b and Sirtuin 1 in U251 and A172 cells. Biofactors 2020; 46:487-496. [PMID: 31889362 DOI: 10.1002/biof.1604] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
Abstract
Long noncoding RNA (lncRNA) growth arrest-specific 5 (GAS5) is implicated in several cancers via modulating microRNAs (miRs). However, little information is available about the correlation between GAS5 and miR-10b. Therefore, we sought out to investigate the biological role of GAS5-miR-10b node mainly in glioma cells. We artificially modulated GAS5 to explore its roles in viability assayed by cell counting kit-8 (CCK-8), motile activities by 24-Transwell assay, as well as apoptosis by a flow cytometer and Western blot assay. miR-10b and Sirtuin 1 (Sirt1) were quantified by qRT-PCR. After co-transfection, we analyzed the viability, migration, invasion, apoptosis, and Sirt1 expression. Western blot was implemented to detect the phosphorylated forms of PTEN, PI3K, AKT, MEK, and ERK. GAS5 inhibited proliferation and motile behaviors, and fortified apoptosis. As for the viability and motile activities, the property of GAS5 was reversed in miR-10b-replenished U251 and A172 cells, while maintained in miR-10b-deficient cells. Additionally, GAS5-induced apoptosis was abolished by miR-10b overexpression while fortified by miR-10b silence. Besides, GAS5 negatively modulated Sirt1 via miR-10b. Moreover, Sirt1 negatively modulated PTEN and positively mediated the abovementioned regulators. GAS5 represses the process of glioma cells by decreasing miR-10b, which as accompanied by Sirt1 silence-induced inactivation of PTEN/PI3K/AKT and MEK/ERK cascades.
Collapse
Affiliation(s)
- Yingjie Ding
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jing Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hongliang Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huanting Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Zhang Y, Liu Y, Liu H, Zhao Z, Wu F, Zeng F. Clinical and Biological Significances of a Methyltransferase-Related Signature in Diffuse Glioma. Front Oncol 2020; 10:508. [PMID: 32373523 PMCID: PMC7185060 DOI: 10.3389/fonc.2020.00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Methylation of DNA, RNA or protein is a reversible modification. The proteins and genes that regulate this modification can be a candidate target for tumor therapy. However, the characteristics of methyltransferase related genes in glioma remain obscure. In this study, we systematically analyzed the relationship between methyltransferase-related genes expression profiles and outcomes in glioma patients based on The Cancer Genome Atlas and Chinese Glioma Genome Atlas RNA sequencing datasets. Consensus clustering identified two robust groups with significantly different pathological features and prognosis. Then a methyltransferase-related risk signature was built by a Cox proportional hazards model with elastic net penalty. Moreover, the risk score is associated with patients' clinical and molecular features and can be used as an independent prognostic indicator for patients with glioma. Furthermore, genes associated with the high-risk group were involved in various aspects of the malignant progression of glioma via Gene Ontology analysis and Gene Set Enrichment Analysis. In summary, our study identified a methyltransferase-related risk signature for predicting the prognosis of gliomas.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Yuqing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Hanjie Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
11
|
Laws MT, Bonomi RE, Gelovani DJ, Llaniguez J, Lu X, Mangner T, Gelovani JG. Noninvasive quantification of SIRT1 expression-activity and pharmacologic inhibition in a rat model of intracerebral glioma using 2-[ 18F]BzAHA PET/CT/MRI. Neurooncol Adv 2020; 2:vdaa006. [PMID: 32118205 PMCID: PMC7034639 DOI: 10.1093/noajnl/vdaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Several studies demonstrated that glioblastoma multiforme progression and recurrence is linked to epigenetic regulatory mechanisms. Sirtuin 1 (SIRT1) plays an important role in glioma progression, invasion, and treatment response and is a potential therapeutic target. The aim of this study is to test the feasibility of 2-[18F]BzAHA for quantitative imaging of SIRT1 expression–activity and monitoring pharmacologic inhibition in a rat model of intracerebral glioma. Methods Sprague Dawley rats bearing 9L (N = 12) intracerebral gliomas were injected with 2-[18F]BzAHA (300–500 µCi/animal i.v.) and dynamic positron-emission tomography (PET) imaging was performed for 60 min. Then, SIRT1 expression in 9L tumors (N = 6) was studied by immunofluorescence microscopy (IF). Two days later, rats with 9L gliomas were treated either with SIRT1 specific inhibitor EX-527 (5 mg/kg, i.p.; N = 3) or with histone deacetylases class IIa specific inhibitor MC1568 (30 mg/kg, i.p.; N = 3) and 30 min later were injected i.v. with 2-[18F]BzAHA. PET-computerized tomography-magnetic resonance (PET/CT/MR) images acquired after EX-527 and MC1568 treatments were co-registered with baseline images. Results Standard uptake values (SUVs) of 2-[18F]BzAHA in 9L tumors measured at 20 min post-radiotracer administration were 1.11 ± 0.058 and had a tumor-to-brainstem SUV ratio of 2.73 ± 0.141. IF of 9L gliomas revealed heterogeneous upregulation of SIRT1, especially in hypoxic and peri-necrotic regions. Significant reduction in 2-[18F]BzAHA SUV and distribution volume in 9L tumors was observed after administration of EX-527, but not MC1568. Conclusions PET/CT/MRI with 2-[18F]BzAHA can facilitate studies to elucidate the roles of SIRT1 in gliomagenesis and progression, as well as to optimize therapeutic doses of novel SIRT1 inhibitors.
Collapse
Affiliation(s)
- Maxwell T Laws
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Robin E Bonomi
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - David J Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jeremy Llaniguez
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Xin Lu
- Positron Emission Tomography Center, Wayne State University, Detroit, Michigan, USA
| | - Thomas Mangner
- Positron Emission Tomography Center, Wayne State University, Detroit, Michigan, USA
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA.,Molecular Imaging Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
12
|
EX527, a Sirt-1 inhibitor, induces apoptosis in glioma via activating the p53 signaling pathway. Anticancer Drugs 2020; 31:19-26. [DOI: 10.1097/cad.0000000000000824] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Li B, Li M, Li X, Li H, Lai Y, Huang S, He X, Si X, Zheng H, Liao W, Liao Y, Bin J. Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation. Aging (Albany NY) 2019; 11:12546-12567. [PMID: 31881009 PMCID: PMC6949046 DOI: 10.18632/aging.102587] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Inducing cardiomyocyte proliferation is a hopeful approach for cardiac regeneration following myocardial infarction. Previous studies have shown that p21 inhibits the cardiomyocyte proliferation and cardiac regeneration. Deacetylation of p21 by Sirt1 deacetylase may reduce p21 abundance and remove p21-induced cell cycle arrest. However, whether p21 deacetylation and Sirt1 deacetylate control cardiomyocyte proliferation is unclear. Here, we show that acetylation of p21 induces cardiomyocyte proliferation arrest, whereas blocking the acetylation of p21 increases cardiomyocyte proliferation. P21 can be acetylated by Sirt1, and Sirt1 activate p21 ubiquitination through deacetylation. Additionally, overexpression of Sirt1 induces EdU-, pH3-, and Aurora B-positive cardiomyocytes in neonatal and adult mice. In contrast, depletion of Sirt1 reduces cardiomyocyte proliferation in vitro and in vivo. Moreover, Sirt1 protects cardiac function, reduces cardiac remodeling, inhibits cardiomyocyte apoptosis, and attenuates cardiomyocyte hypertrophy post-myocardial infarction. These results suggest that Sirt1-induced p21 deacetylation plays an essential role in cardiomyocyte proliferation and that it could be a novel therapeutic strategy for myocardial infarction.
Collapse
Affiliation(s)
- Bing Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,School of Medicine, Guizhou University, Guiyang, Guizhou 550025, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Mengsha Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Hairui Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanxian Lai
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Xiaoyun Si
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| |
Collapse
|
14
|
Calycosin-7- O- β- D-glucoside Attenuates OGD/R-Induced Damage by Preventing Oxidative Stress and Neuronal Apoptosis via the SIRT1/FOXO1/PGC-1 α Pathway in HT22 Cells. Neural Plast 2019; 2019:8798069. [PMID: 31885537 PMCID: PMC6915014 DOI: 10.1155/2019/8798069] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Neuronal apoptosis induced by oxidative stress is a major pathological process that occurs after cerebral ischemia-reperfusion. Calycosin-7-O-β-D-glucoside (CG) is a representative component of isoflavones in Radix Astragali (RA). Previous studies have shown that CG has potential neuroprotective effects. However, whether CG alleviates neuronal apoptosis through antioxidant stress after ischemia-reperfusion remains unknown. To investigate the positive effects of CG on oxidative stress and apoptosis of neurons, we simulated the ischemia-reperfusion process in vitro using an immortalized hippocampal neuron cell line (HT22) and oxygen-glucose deprivation/reperfusion (OGD/R) model. CG significantly improved cell viability and reduced oxidative stress and neuronal apoptosis. In addition, CG treatment upregulated the expression of SIRT1, FOXO1, PGC-1α, and Bcl-2 and downregulated the expression of Bax. In summary, our findings indicate that CG alleviates OGD/R-induced damage via the SIRT1/FOXO1/PGC-1α signaling pathway. Thus, CG maybe a promising therapeutic candidate for brain injury associated with ischemic stroke.
Collapse
|
15
|
de Oliveira CTP, Colenci R, Pacheco CC, Mariano PM, do Prado PR, Mamprin GPR, Santana MG, Gambero A, de Oliveira Carvalho P, Priolli DG. Hydrolyzed Rutin Decreases Worsening of Anaplasia in Glioblastoma Relapse. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:405-412. [DOI: 10.2174/1871527318666190314103104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/15/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
Background:
Gliomas are aggressive and resilient tumors. Progression to advanced stages
of malignancy, characterized by cell anaplasia, necrosis, and reduced response to conventional surgery
or therapeutic adjuvant, are critical challenges in glioma therapy. Relapse of the disease poses a considerable
challenge for management. Hence, new compounds are required to improve therapeutic response.
As hydrolyzed rutin (HR), a compound modified via rutin deglycosylation, as well as some
flavonoids demonstrated antiproliferative effect for glioblastoma, these are considered potential epigenetic
drugs.
Objective:
The purpose of this study was to determine the antitumor activity and evaluate the potential
for modifying tumor aggressivity of rutin hydrolysates for treating both primary and relapsed glioblastoma.
Methods:
The glioblastoma cell line, U251, was used for analyzing cell cycle inhibition and apoptosis
and for establishing the GBM mouse model. Mice with GBM were treated with HR to verify antitumor
activity. Histological analysis was used to evaluate HR interference in aggressive behavior and
glioma grade. Immunohistochemistry, comet assay, and thiobarbituric acid reactive substance
(TBARS) values were used to evaluate the mechanism of HR action.
Results:
HR is an antiproliferative and antitumoral compound that inhibits the cell cycle via a p53-
independent pathway. HR reduces tumor growth and aggression, mainly by decreasing mitosis and necrosis
rates without genotoxicity, which is suggestive of epigenetic modulation.
Conclusion:
HR possesses antitumor activity and decreases anaplasia in glioblastoma, inhibiting progression
to malignant stages of the disease. HR can improve the effectiveness of response to conventional
therapy, which has a crucial role in recurrent glioma.
Collapse
Affiliation(s)
- Carlos Tadeu Parisi de Oliveira
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Renato Colenci
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Cesar Cozar Pacheco
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Patrick Moro Mariano
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Paula Ribeiro do Prado
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Gustavo Pignatari Rosas Mamprin
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Maycon Giovani Santana
- Nurse School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Alessandra Gambero
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Patrícia de Oliveira Carvalho
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| | - Denise Gonçalves Priolli
- Medical School Sao Francisco University, Av Sao Francisco de Assis, 218, Braganca Paulista, Sao Paulo, CEP 12916-900, Brazil
| |
Collapse
|
16
|
Chen H, Lin R, Zhang Z, Wei Q, Zhong Z, Huang J, Xu Y. Sirtuin 1 knockdown inhibits glioma cell proliferation and potentiates temozolomide toxicity via facilitation of reactive oxygen species generation. Oncol Lett 2019; 17:5343-5350. [PMID: 31186751 PMCID: PMC6507466 DOI: 10.3892/ol.2019.10235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant glioma is one of the most common types of primary malignancies in the human central nervous system. Temozolomide (TMZ) is the most commonly used drug in clinical therapy of glioma; however, chemoresistance makes glioma difficult to cure and relapse likely. Sirtuin 1 (SIRT1) serves important roles in cell proliferation, differentiation and metabolism, but the role of SIRT1 in human glioma remains largely unexplored. In the present study, SIRT1 expression was assessed in human glioma tissues and cells. RNA interference and SIRT1 inhibitor were used to determine the effect of SIRT1 on glioma growth inhibition and glioma cell chemoresistance in vitro and in vivo. The levels of reactive oxygen species (ROS) in glioma cells were detected with the dihydroethidium probe following SIRT1 inhibition. The results demonstrated that SIRT1 was overexpressed in glioma tissues and cells, and patients with higher SIRT1 expression exhibited poorer prognosis. SIRT1 inhibition inhibited the proliferation of U87 and U251 cells. In addition, SIRT1 knockdown and SIRT1 inhibitor could significantly sensitize glioma cells to TMZ treatment in vitro and in vivo. The expression of Ki67 and p53 was demonstrated to be regulated by SIRT1. Finally, SIRT1 could regulate intracellular ROS generation in TMZ. In summary, SIRT1 was essential for glioma tumorigenesis and glioma cell chemoresistance. SIRT1 inhibition increased the sensitivity of glioma cells for TMZ via the facilitation of intracellular ROS generation, which suggested that SIRT1 may serve as a target for clinical therapy of glioma.
Collapse
Affiliation(s)
- Hongwu Chen
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Rui Lin
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ziheng Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Quantang Wei
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Zhiwei Zhong
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jiehao Huang
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yimin Xu
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Professor Yimin Xu, Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
17
|
Lucena-Cacace A, Umeda M, Navas LE, Carnero A. NAMPT as a Dedifferentiation-Inducer Gene: NAD + as Core Axis for Glioma Cancer Stem-Like Cells Maintenance. Front Oncol 2019; 9:292. [PMID: 31119097 PMCID: PMC6507617 DOI: 10.3389/fonc.2019.00292] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/29/2019] [Indexed: 12/27/2022] Open
Abstract
Glioma Cancer Stem-Like Cells (GSCs) are a small subset of CD133+ cells with self-renewal properties and capable of initiating new tumors contributing to Glioma progression, maintenance, hierarchy, and complexity. GSCs are highly resistant to chemo and radiotherapy. These cells are believed to be responsible for tumor relapses and patients' fatal outcome after developing a recurrent Glioblastoma (GBM) or High Grade Glioma (HGG). GSCs are cells under replicative stress with high demands on NAD+ supply to repair DNA, maintain self-renewal capacity and to induce tumor plasticity. NAD+ feeds Poly-ADP polymerases (PARP) and NAD+-dependent deacetylases (SIRTUINS) contributing to GSC phenotype. This energetic core axis is mainly controlled by the rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT), an important oncogene contributing to tumor dedifferentiation. Targeting GSCs depicts a new frontier in Glioma therapy; hence NAMPT could represent a key regulator for GSCs maintenance. Its inhibition may attenuate GSCs properties by decreasing NAD+ supply, consequently contributing to a better outcome together with current therapies for Glioma control.
Collapse
Affiliation(s)
- Antonio Lucena-Cacace
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Masayuki Umeda
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Lola E Navas
- CIBERONC, ISCIII, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Amancio Carnero
- CIBERONC, ISCIII, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CSIC, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
18
|
Gao Q, Zhu H. The Overexpression of Sirtuin1 (SIRT1) Alleviated Lipopolysaccharide (LPS)-Induced Acute Kidney Injury (AKI) via Inhibiting the Activation of Nucleotide-Binding Oligomerization Domain-Like Receptors (NLR) Family Pyrin Domain Containing 3 (NLRP3) Inflammasome. Med Sci Monit 2019; 25:2718-2726. [PMID: 30980521 PMCID: PMC6476233 DOI: 10.12659/msm.913146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Sepsis-induced acute kidney injury (AKI) is threatening the patients with sepsis, and nucleotide-binding oligomerization domain-like receptors (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is considered to play a critical role in this complication of sepsis and might be regulated by sirtuin1 (SIRT1). Thus, we explored the roles of NLRP3 and SIRT1 in the lipopolysaccharide (LPS)-induced AKI in the HK-2 cell line. Material/Methods Cell viability was assessed by Cell Counting Kit-8 (CCK-8). Apoptosis rate was measured by flow cytometry. Protein levels of interleukin (IL)-1β and IL-18 were tested by enzyme-linked immunosorbent assay (ELISA) and NLRP3, cleaved caspase-1, caspase-1 were tested by western blot. The mRNA levels of IL-1β, IL-18, and SIRT1 were quantified by qPCR. Results LPS could decrease cell viability and the expression of SIRT1 and elevate the expressions of IL-1β, IL-18, NLRP3, and cleaved caspase-1. However, the overexpression of SIRT1 could upregulate cell viability and expression of caspase-1 and downregulate apoptosis rate, expressions of NLRP3, IL-1β, IL-18, and cleaved caspase-1. Conclusions NLRP3 inflammasome could act as a critical regulator promoting the process of AKI induced by LPS, and the overexpression of SIRT1 might be able to suppress the activation of NLRP3 and therefore resist the kidney injury, showing promise to be used as a target in the treatment of sepsis-induced AKI.
Collapse
Affiliation(s)
- Qiufang Gao
- Department of Critical Care Medicine, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| | - Hengting Zhu
- Department of Critical Care Medicine, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| |
Collapse
|
19
|
Yan S, Wang Q, Huo Z, Yang T, Yin X, Wang Z, Zhang Z, Wu H. Gene expression profiles between cystic and solid vestibular schwannoma indicate susceptible molecules and pathways in the cystic formation of vestibular schwannoma. Funct Integr Genomics 2019; 19:673-684. [PMID: 30953268 PMCID: PMC6570702 DOI: 10.1007/s10142-019-00672-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/29/2022]
Abstract
Previous research has shown that although NF2 gene mutation is the major cause of vestibular schwannoma (VS), it may not directly participate in cystic VS (CVS). To elucidate the underlying potential genetic mechanisms in the cystic formation of VS, we compared differences in gene expression between solid VS (SVS) and CVS via a bioinformatics analysis. The cDNA microarray method and miRNA sequencing were performed on 29 representative VSs (17 CVSs and 12 SVSs). A differential expression analysis was used to identify differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs). Then, miRNA-mRNA regulatory networks were constructed. Gene ontology (GO), a KEGG pathway enrichment analysis, and the protein-protein interaction (PPI) were used to analyze the co-differentially expressed DEmRNAs at the functional level. From the differential expression analyses, 1304 DEmRNAs, 55 DEmiRNAs, and hub genes including PTEN, FOXO1, FOXO3, VEGFA, and SIRT1 were identified. Histological evidence is presented to confirm the makeup of the hubs, which corresponded with the cDNA microarray. Our analysis revealed that the maps of apoptosis, cellular response to hypoxia, and the PI3K-Akt, AMPK, FOXO, and chemokine signaling pathways were significantly enriched. In addition, the TUNEL assay, immunoblotting analysis, and transmission electron microscope revealed increased degenerative changes in CVS. These findings could be the foundation for understanding the potential role of differential genes in the cystic formation of VS and be helpful in exploring the potential biomarkers for the differential diagnosis, prognosis, and development of drug targets for CVS.
Collapse
Affiliation(s)
- Shuang Yan
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Quan Wang
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zirong Huo
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tao Yang
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiaoling Yin
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhaoyan Wang
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhihua Zhang
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Hao Wu
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
20
|
He X, Maimaiti M, Jiao Y, Meng X, Li H. Sinomenine Induces G1-Phase Cell Cycle Arrest and Apoptosis in Malignant Glioma Cells Via Downregulation of Sirtuin 1 and Induction of p53 Acetylation. Technol Cancer Res Treat 2019; 17:1533034618770305. [PMID: 29756546 PMCID: PMC5952277 DOI: 10.1177/1533034618770305] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sinomenine, a bioactive alkaloid isolated from the traditional Chinese herb Sinomenium acutum, possesses antiinflammatory, antinociceptive, antifibrotic, and antitumorigenic properties. In this work, we sought to explore the biological effects of sinomenine on glioma cells. It was found that sinomenine caused a concentration-dependent inhibition of viability in both U87 and U251 glioma cells. Sinomenine at 16 μmol/L caused 55% to 60% reduction in the proliferation of U87 and U251 cells. Moreover, sinomenine treatment induced a G0/G1 cell cycle arrest and apoptosis. Mechanistically, sinomenine promoted p53 expression and acetylation and reduced the expression of sirtuin 1. Ectopic expression of sirtuin 1 significantly prevented sinomenine-induced p53 acetylation and growth suppression in glioma cells. Moreover, sinomenine inhibited the growth of U87 xenograft tumors in vivo and raised the p53 protein expression. Collectively, sinomenine shows antiproliferative effects against glioma cells which is mediated through downregulation of sirtuin 1 and induction of p53 activity.
Collapse
Affiliation(s)
- Xiaoyan He
- 1 Department of Neurology, The Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Mayinur Maimaiti
- 1 Department of Neurology, The Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Yan Jiao
- 1 Department of Neurology, The Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Xuegang Meng
- 1 Department of Neurology, The Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Hongyan Li
- 1 Department of Neurology, The Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| |
Collapse
|
21
|
Li Y, Chen X, Cui Y, Wei Q, Chen S, Wang X. Effects of SIRT1 silencing on viability, invasion and metastasis of human glioma cell lines. Oncol Lett 2019; 17:3701-3708. [PMID: 30930981 PMCID: PMC6425349 DOI: 10.3892/ol.2019.10063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/21/2019] [Indexed: 01/12/2023] Open
Abstract
Silent information regulator 1 (SIRT1), a member of the sirtuin family, is involved in the development of various types of tumor. Previous studies have revealed that SIRT1 has dual functions, as a promoter and an inhibitor, in certain tumors. However, the role of SIRT1 in invasion and metastasis of glioma cells and its associated signaling pathway remain unclear. The aim of the present study was to determine the effects of SIRT1 on these processes and on the epithelial-mesenchymal transition (EMT) in human glioma and adjacent tissues, and in the human glioma cell lines U87 and U251. SIRT1 expression in tissues was investigated using the reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. The U87 and U251 cell lines were divided into control and SIRT1-small interfering RNA (siRNA) groups. The Cell Counting Kit-8, cell invasion assays were used to evaluate the effects of SIRT1 silencing on cell viability, invasion and EMT. Results indicated that SIRT1 was highly expressed in glioma tissues compared with in adjacent brain tissues. In addition, SIRT1-siRNA significantly inhibited the viability and invasion of U87 and U251 cells. Furthermore, EMT analysis revealed that the expression levels of the mesenchymal markers fibronectin and vimentin were significantly lower in the SIRT1-siRNA group compared with in the control group. Conversely, expression levels of the epithelial markers epithelial cadherin and β-catenin were significantly higher in the SIRT1-siRNA group compared with in the control group. In conclusion, the results of the present study indicated that SIRT1 was positively associated with viability and invasion of U87 cells, potentially through EMT. These results suggested that SIRT1 may serve a crucial role in the proliferation and development of glioma.
Collapse
Affiliation(s)
- Yu Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Xin Chen
- Department of Orthopedics, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Yong Cui
- School of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650091, P.R. China
| | - Qun Wei
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Suiyun Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China.,Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Xiaofang Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
22
|
Wang G, Wang JJ, Wang YZ, Feng S, Jing G, Fu XL. Myricetin nanoliposomes induced SIRT3-mediated glycolytic metabolism leading to glioblastoma cell death. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 46:S180-S191. [PMID: 30691320 DOI: 10.1080/21691401.2018.1489825] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As the most aggressive and malignant glioma, glioblastoma multiforme (GBM) abnormally expresses genes that mediate glycolytic metabolism and tumour cell growth. In this study, we investigated myricetin incorporated nanoliposomes and ascertained their prospect in effectively treating cancer via the employment of the GBM cell line DBTRG-05MG. Notably, the myricetin nanoliposomes (MYR-NLs) displayed potent inhibition of proliferation and significantly regulated the levels of proteins related to both glycolytic metabolism and cell survival. Most importantly, SIRT3 and phosphorylated p53 were also down-regulated by MYR-NLs, indicating that the MYR-NLs inhibited GBM cell growth through the SIRT3/p53-mediated PI3K/Akt-ERK and mitochondrial pathways. Our findings thus provide rational evidence that liposomal myricetin targeted at alternative cell death pathways may be a useful adjuvant therapy in glioblastoma treatment.
Collapse
Affiliation(s)
- Gang Wang
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China
| | - Jun-Jie Wang
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China
| | - Yu-Zhu Wang
- b Department of Medicine, Jiangsu University , Zhenjiang , China
| | - Shi Feng
- b Department of Medicine, Jiangsu University , Zhenjiang , China
| | - Gao Jing
- b Department of Medicine, Jiangsu University , Zhenjiang , China
| | - Xing-Li Fu
- b Department of Medicine, Jiangsu University , Zhenjiang , China
| |
Collapse
|
23
|
Huo JF, Chen XB. Retracted Article: Aclarubicin regulates glioma cell growth and DNA damage through the SIRT1/PI3K/AKT signaling pathway. RSC Adv 2019; 9:28775-28782. [PMID: 35529648 PMCID: PMC9071234 DOI: 10.1039/c9ra05572j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022] Open
Abstract
Aclarubicin (ACR), an anthracycline anti-tumor agent, is known to play important roles in cancer. Evidence has suggested that ACR has therapeutic effects on rats intracranially implanted with C6 glioma cells. However, the function and mechanism of ACR in glioma cells remain elusive. In this study, we examined the effects of ACR on glioma cell growth, apoptosis, and DNA damage. Our results showed that treatment with different concentrations of ACR (1, 2, and 5 μM) markedly impeded glioma cell survival, significantly decreased cell proliferation, and increased cell apoptosis and caspase-3 activity. Furthermore, ACR treatment promoted DNA damage through phosphorylation of ATM and CHK1 in U87 and U251 cells. Treatment with ACR also increased sirtuin 1 (SIRT1) expression and inhibited phosphatidylinositol 3′-kinase (PI3K)/AKT pathway activation. Interestingly, we found that AKT overexpression reversed the effects of ACR on glioma cell survival, proliferation, apoptosis, and DNA damage. Thus, our data suggest that ACR induces apoptosis and DNA damage in U87 and U251 cells through the SIRT1/PI3K/AKT signaling pathway. Aclarubicin (ACR), an anthracycline anti-tumor agent, is known to play important roles in cancer.![]()
Collapse
Affiliation(s)
- Jun-feng Huo
- Second Ward, Department of Neurosurgery
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Xiao-bing Chen
- Second Ward, Department of Neurosurgery
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| |
Collapse
|
24
|
Wang G, Fu XL, Wang JJ, Guan R, Sun Y, Tony To SS. Inhibition of glycolytic metabolism in glioblastoma cells by Pt3glc combinated with PI3K inhibitor via SIRT3‐mediated mitochondrial and PI3K/Akt–MAPK pathway. J Cell Physiol 2018; 234:5888-5903. [PMID: 29336479 DOI: 10.1002/jcp.26474] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/27/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Xing-Li Fu
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
- Information Central, Hubei University of Medicine, Shiyan, China
| | - Rui Guan
- Information Central, Hubei University of Medicine, Shiyan, China
| | - Yan Sun
- Information Central, Hubei University of Medicine, Shiyan, China
| | - Shing-Shun Tony To
- Department of Healthy Technology and Information, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
25
|
Lei B, Huang Y, Zhou Z, Zhao Y, Thapa AJ, Li W, Cai W, Deng Y. Circular RNA hsa_circ_0076248 promotes oncogenesis of glioma by sponging miR-181a to modulate SIRT1 expression. J Cell Biochem 2018; 120:6698-6708. [PMID: 30506951 PMCID: PMC6587862 DOI: 10.1002/jcb.27966] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Glioma is one of the most common primary malignancies of the central nervous system, which has aggressive clinical behavior and a poorer prognosis. MicroRNAs (miRs) are a class of small noncoding RNAs that function as mediators of gene expression, which can be sponged by circRNA provided with a closed circular structure. Dysregulations of circular RNAs (circRNAs) and miRs have been implicated in the development and progression of glioma. In the current study, we investigated the role of circular RNA hsa_circ_0076248 in mediating the oncogenesis of glioma by sponging miR‐181a to modulate silent information regulator 1 (SIRT1) expression in vitro and in vivo. The quantitative real‐time polymerase chain reaction results showed that the expression of miR‐181a was significantly decreased in glioma tissues and cell lines compared with normal brain tissues and normal gliocyte, respectively, and the expression of hsa_circ_0076248 and SIRT1 demonstrated the opposite. Bioinformatics analysis identified hsa_circ_0076248 could sponge miR‐181a, and miR‐181a could target the mRNA of SIRT1. Our results verified that downregulating hsa_circ_0076248 or upregulating miR‐181a could depress the proliferation and invasion of glioma in vitro and in vivo. The experiment also showed that downregulating hsa_circ_0076248 or upregulating miR‐181a could remarkably promote the temozolomide chemotherapy sensitivity. Furthermore, Western blot analysis testified that downregulating hsa_circ_0076248 or upregulating miR‐181a could promote the expression of p53 and SIRT1. In summary, our study sheds light on the regulatory mechanism of hsa_circ_0076248 in glioma growth and invasion via sponging miR‐181a, which downregulates the SIRT1 expression and also suggests that hsa_circ_0076248, miR‐181a, and SIRT1 may serve as potential therapeutic targets for glioma.
Collapse
Affiliation(s)
- Bingxi Lei
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yutao Huang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiwei Zhou
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiying Zhao
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ashish Jung Thapa
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenpeng Li
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wangqing Cai
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuefei Deng
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Naderali E, Khaki AA, Rad JS, Ali-Hemmati A, Rahmati M, Charoudeh HN. Regulation and modulation of PTEN activity. Mol Biol Rep 2018; 45:2869-2881. [PMID: 30145641 DOI: 10.1007/s11033-018-4321-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/20/2018] [Indexed: 01/04/2023]
Abstract
PTEN (Phosphatase and tensin homolog deleted on chromosome ten) is a tumor suppressor that is frequently mutated in most human cancers. PTEN is a lipid and protein phosphatase that antagonizes PI3K/AKT pathway through lipid phosphatase activity at the plasma membrane. More recent studies showed that, in addition to the putative role of PTEN as a PI(3,4,5)P3 3-phosphatase, it is a PI(3,4)P2 3-phosphatase during stimulation of class I PI3K signaling pathway by growth factor. Although PTEN tumor suppressor function via it's lipid phosphatase activity occurs primarily in the plasma membrane, it can also be found in the nucleus, in cytoplasmic organelles and extracellular space. PTEN has also shown phosphatase independent functions in the nucleus. PTEN can exit from the cell through exosomal export or secretion and has a tumor suppressor function in adjacent cells. PTEN has a critical role in growth, the cell cycle, protein synthesis, survival, DNA repair and migration. Understanding the regulation of PTEN function, activity, stability, localization and its dysregulation outcomes and also the intracellular and extracellular role of PTEN and paracrine role of PTEN-L in tumor cells as an exogenous therapeutic agent can help to improve clinical conceptualization and treatment of cancer.
Collapse
Affiliation(s)
- Elahe Naderali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Afshin Khaki
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani Rad
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ali-Hemmati
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Clinical Biochemistry Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hojjatollah Nozad Charoudeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Cell Therapy Research Laboratory, Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran.
| |
Collapse
|
27
|
Wang D, Jiang X, Lu A, Tu M, Huang W, Huang P. BMP14 induces tenogenic differentiation of bone marrow mesenchymal stem cells in vitro. Exp Ther Med 2018; 16:1165-1174. [PMID: 30116367 PMCID: PMC6090266 DOI: 10.3892/etm.2018.6293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/24/2018] [Indexed: 01/28/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are pluripotent cells, which have the capacity to differentiate into various types of mesenchymal cell phenotypes, including osteoblasts, chondroblasts, myoblasts and tendon fibroblasts (TFs). The molecular mechanism for tenogenic differentiation of BMSCs is still unknown. The present study investigated the effects of bone morphogenetic protein (BMP) 14 on BMSC differentiation in vitro. It was revealed that BMP14 significantly increased the expression of tendon markers (scleraxis and tenomodulin) at the mRNA and protein level, which led to the upregulation of sirtuin 1 (Sirt1) expression. The gain or loss of Sirt1 function may promote or inhibit tenogenic differentiation by deacetylating the peroxisome proliferator-activated receptor (PPAR)-γ. BMP14 also triggered the phosphorylation of c-Jun N-terminal kinase (JNK) and Smad1; overexpression of Sirt1 significantly increased the phosphorylation and knockdown of Sirt1 significantly decreased the phosphorylation. The inhibition of JNK and Smad significantly increased the acetylation of PPARγ and inhibited the expression of tenogenic differentiation markers. These results suggest that BMP14 may induce the tenogenic differentiation of BMSCs via the Sirt1-JNK/Smad1-PPARγ signaling pathway. The present study provided a cellular and molecular basis for the development of novel therapeutic strategies for tendon healing.
Collapse
Affiliation(s)
- Dan Wang
- Department of Orthopedics, Jinmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China.,Department of Orthopedics, Jingchu Center Hospital Affiliated to The Institute of Technology, Jingmen, Hubei 448000, P.R. China
| | - Xinhao Jiang
- Department of Orthopedics, Jinmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China.,Department of Orthopedics, Jingchu Center Hospital Affiliated to The Institute of Technology, Jingmen, Hubei 448000, P.R. China
| | - Aiqing Lu
- Department of Orthopedics, Jinmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China.,Department of Orthopedics, Jingchu Center Hospital Affiliated to The Institute of Technology, Jingmen, Hubei 448000, P.R. China
| | - Min Tu
- Department of Orthopedics, Jinmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China.,Department of Orthopedics, Jingchu Center Hospital Affiliated to The Institute of Technology, Jingmen, Hubei 448000, P.R. China
| | - Wei Huang
- Department of Orthopedics, Jinmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China.,Department of Orthopedics, Jingchu Center Hospital Affiliated to The Institute of Technology, Jingmen, Hubei 448000, P.R. China
| | - Ping Huang
- Department of Orthopedics, Jinmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China.,Department of Orthopedics, Jingchu Center Hospital Affiliated to The Institute of Technology, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
28
|
Chen YH, Zeng WJ, Wen ZP, Cheng Q, Chen XP. Under explored epigenetic modulators: role in glioma chemotherapy. Eur J Pharmacol 2018; 833:201-209. [PMID: 29864410 DOI: 10.1016/j.ejphar.2018.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
Abstract
Patients with somatic mutations of epigenetic regulators are characterized by aberrant chromatin modification patterns. Recent mechanistic studies pairing chemical tool compounds and deep-sequencing technology have greatly broadened our understanding of epigenetic regulation in glioma progression and underpinned alternative treatment of epigenetic inhibitors. However, the effect of most inhibitors is condition-dependent, and the overall results of clinical trials still have not been applied to patients. There is an intense need to develop more potent and specific compounds as well as identify the population who may achieve clinical benefits. Besides, combination therapy with conventional therapeutics is another alternative strategy. In this review, we summarize well-characterized chemical probes in glioma research and clinical translation. We also discuss the target population and combination of therapy regimens of various agents. In a holistic sense, we try to provide guidance for selecting targeted chemical probes and pave the way for personalized rational therapy.
Collapse
Affiliation(s)
- Yan-Hong Chen
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Wen-Jing Zeng
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Zhi-Peng Wen
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Quan Cheng
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Xiao-Ping Chen
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China.
| |
Collapse
|
29
|
Brown RE, Buryanek J, Katz AM, Paz K, Wolff JE. Alveolar rhabdomyosarcoma: morphoproteomics and personalized tumor graft testing further define the biology of PAX3-FKHR(FOXO1) subtype and provide targeted therapeutic options. Oncotarget 2018; 7:46263-46272. [PMID: 27323832 PMCID: PMC5216796 DOI: 10.18632/oncotarget.10089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022] Open
Abstract
Alveolar rhabdomyosarcoma (ARMS) represents a block in differentiation of malignant myoblasts. Genomic events implicated in the pathogenesis of ARMS involve PAX3-FKHR (FOXO1) or PAX7-FKHR (FOXO1) translocation with corresponding fusion transcripts and fusion proteins. Commonalities in ARMS include uncontrollable proliferation and failure to differentiate. The genomic-molecular correlates contributing to the etiopathogenesis of ARMS incorporate PAX3-FKHR (FOXO1) fusion protein stimulation of the IGF-1R, c-Met and GSK3-β pathways. With sequential morphoproteomic profiling on such a case in conjunction with personalized tumor graft testing, we provide an expanded definition of the biology of PAX3-FKHR (FOXO1) ARMS that integrates genomics, proteomics and pharmacogenomics. Moreover, therapies that target the genomic and molecular biology and lead to tumoral regression and/or tumoral growth inhibition in a xenograft model of ARMS are identified.
Collapse
Affiliation(s)
- Robert E Brown
- Department of Pathology & Laboratory Medicine, UT Health, McGovern Medical School, Houston, TX 77025, USA
| | - Jamie Buryanek
- Department of Pathology & Laboratory Medicine, UT Health, McGovern Medical School, Houston, TX 77025, USA
| | - Amanda M Katz
- Scientific Operations, Champions Oncology, Baltimore, MD 21205, USA
| | - Keren Paz
- Scientific Operations, Champions Oncology, Baltimore, MD 21205, USA
| | - Johannes E Wolff
- Present address: Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
| |
Collapse
|
30
|
Chai C, Song LJ, Han SY, Li XQ, Li M. MicroRNA-21 promotes glioma cell proliferation and inhibits senescence and apoptosis by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway. CNS Neurosci Ther 2018; 24:369-380. [PMID: 29316313 DOI: 10.1111/cns.12785] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022] Open
Abstract
AIMS Our study aims to investigate the effect of microRNA-21 (miR-21) on the proliferation, senescence, and apoptosis of glioma cells by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway. METHODS Glioma tissues and brain tissues were collected for this study after surgical decompression for traumatic brain injury. RT-qPCR was employed to measure mRNA levels of miR-21, SPRY1, PTEN, PI3K, and AKT, and Western blotting was conducted to determine protein levels of SPRY1, PTEN, PI3K, AKT, p-AKT, Caspase-3, Caspase-9, P53, GSK3, and p-GSK3. Human glioma U87 cells were assigned into the blank, negative control (NC), miR-21 mimics, miR-21 inhibitors, siRNA-SPRY1, and miR-21 inhibitors + siRNA-SPRY1 groups, with human HEB cells serving as the normal group. Cell proliferation, cell cycle, and apoptosis were determined by MTT and flow cytometry, respectively. RESULTS Compared with control group, an increased expression of miR-21, PI3K, AKT, p-AKT, P53, and p-GSK3, and a decreased expression of SPRY1, PTEN, Caspase-3, and Caspase-9 were observed in the glioma group, and no significant differences were found in the expression of GSK3. SPRY1 was verified to be the target gene of miR-21. Compared with the blank and NC groups, levels of PI3K, AKT, p-AKT, P53, and p-GSK3 increased while levels of SPRY1, PTEN, Caspase-3, and Caspase-9 decreased in the miR-21 mimics and siRNA-SPRY1 groups; the miR-21 inhibitors group reversed the tendency; furthermore, the miR-21 inhibitors group showed decreased cell proliferation but promoted apoptosis, which were opposite to the results of the miR-21 mimics and siRNA-SPRY1 groups. CONCLUSION MicroRNA-21 might promote cell proliferation and inhibit cell senescence and apoptosis of human glioma cells by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Chang Chai
- Henan Eye Institute, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lai-Jun Song
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang-Yin Han
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xi-Qing Li
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ming Li
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
31
|
Brody LP, Sahuri-Arisoylu M, Parkinson JR, Parkes HG, So PW, Hajji N, Thomas EL, Frost GS, Miller AD, Bell JD. Cationic lipid-based nanoparticles mediate functional delivery of acetate to tumor cells in vivo leading to significant anticancer effects. Int J Nanomedicine 2017; 12:6677-6685. [PMID: 28932113 PMCID: PMC5598551 DOI: 10.2147/ijn.s135968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Metabolic reengineering using nanoparticle delivery represents an innovative therapeutic approach to normalizing the deregulation of cellular metabolism underlying many diseases, including cancer. Here, we demonstrated a unique and novel application to the treatment of malignancy using a short-chain fatty acid (SCFA)-encapsulated lipid-based delivery system – liposome-encapsulated acetate nanoparticles for cancer applications (LITA-CAN). We assessed chronic in vivo administration of our nanoparticle in three separate murine models of colorectal cancer. We demonstrated a substantial reduction in tumor growth in the xenograft model of colorectal cancer cell lines HT-29, HCT-116 p53+/+ and HCT-116 p53−/−. Nanoparticle-induced reductions in histone deacetylase gene expression indicated a potential mechanism for these anti-proliferative effects. Together, these results indicated that LITA-CAN could be used as an effective direct or adjunct therapy to treat malignant transformation in vivo.
Collapse
Affiliation(s)
- Leigh P Brody
- Department of Life Sciences, Faculty of Science and Technology, University of Westminster
| | - Meliz Sahuri-Arisoylu
- Department of Life Sciences, Faculty of Science and Technology, University of Westminster
| | - James R Parkinson
- Department of Life Sciences, Faculty of Science and Technology, University of Westminster
| | - Harry G Parkes
- CR-UK Clinical MR Research Group, Institute of Cancer Research, Sutton, Surrey
| | - Po Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London
| | - Nabil Hajji
- Department of Medicine, Division of Experimental Medicine, Centre for Pharmacology & Therapeutics, Toxicology Unit, Imperial College London
| | - E Louise Thomas
- Department of Life Sciences, Faculty of Science and Technology, University of Westminster
| | - Gary S Frost
- Faculty of Medicine, Nutrition and Dietetic Research Group, Division of Diabetes, Endocrinology and Metabolism, Department of Investigative Medicine, Imperial College London, Hammersmith Hospital
| | - Andrew D Miller
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Jimmy D Bell
- Department of Life Sciences, Faculty of Science and Technology, University of Westminster
| |
Collapse
|
32
|
Voigt A, Nowick K, Almaas E. A composite network of conserved and tissue specific gene interactions reveals possible genetic interactions in glioma. PLoS Comput Biol 2017; 13:e1005739. [PMID: 28957313 PMCID: PMC5634634 DOI: 10.1371/journal.pcbi.1005739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 10/10/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
Differential co-expression network analyses have recently become an important step in the investigation of cellular differentiation and dysfunctional gene-regulation in cell and tissue disease-states. The resulting networks have been analyzed to identify and understand pathways associated with disorders, or to infer molecular interactions. However, existing methods for differential co-expression network analysis are unable to distinguish between various forms of differential co-expression. To close this gap, here we define the three different kinds (conserved, specific, and differentiated) of differential co-expression and present a systematic framework, CSD, for differential co-expression network analysis that incorporates these interactions on an equal footing. In addition, our method includes a subsampling strategy to estimate the variance of co-expressions. Our framework is applicable to a wide variety of cases, such as the study of differential co-expression networks between healthy and disease states, before and after treatments, or between species. Applying the CSD approach to a published gene-expression data set of cerebral cortex and basal ganglia samples from healthy individuals, we find that the resulting CSD network is enriched in genes associated with cognitive function, signaling pathways involving compounds with well-known roles in the central nervous system, as well as certain neurological diseases. From the CSD analysis, we identify a set of prominent hubs of differential co-expression, whose neighborhood contains a substantial number of genes associated with glioblastoma. The resulting gene-sets identified by our CSD analysis also contain many genes that so far have not been recognized as having a role in glioblastoma, but are good candidates for further studies. CSD may thus aid in hypothesis-generation for functional disease-associations.
Collapse
Affiliation(s)
- André Voigt
- Network Systems Biology Group, Department of Biotechnology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Katja Nowick
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- Human Biology, Institute for Biology, Free University Berlin, Berlin, Germany
| | - Eivind Almaas
- Network Systems Biology Group, Department of Biotechnology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and General Practice, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
33
|
Yang X, Mei S, Niu H, Li J. Nicotinic acid impairs assembly of leading edge in glioma cells. Oncol Rep 2017; 38:829-836. [PMID: 28656206 PMCID: PMC5562096 DOI: 10.3892/or.2017.5757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/15/2017] [Indexed: 01/04/2023] Open
Abstract
Malignant glioma is a clinically formidable disease. It commonly leads to death within 5 years after diagnosis. Physicians are often baffled since the inevitable diffuse invasion deteriorates clinical outcomes rapidly. Therefore, cancerous infiltration presents a foremost challenge to all therapeutic strategies on glioblastoma multiforme (GBM). Previously, we demonstrated that nicotinic acid (NA) possesses a brand new function by targeting F-actin stress fibers. By treating HEK293 or NIH3T3 cells with a certain concentration of NA, the F-actin stress fiber was significantly disassembled. This notable finding inspired us to explore NA further in cancer cell lines, such as GBM cells, since F-actin stress fibers are the critical foundation of cell migration, proliferation and numerous essential signaling pathways. Expectedly, we observed that optimized concentrations of NA, 3.5 mM and 7.0 mM, detached U251 from culturing petri dishes. Moreover, 7.0 mM of NA was capable of disrupting the leading-edge assembly. Additionally, we collected paraffin specimens from 85 GBM patients and evaluated the expression pattern of paxillin. Notably, we found that discernable paxillin signals were detected in 67 out of 85 samples. Given that leading edge is critical for cancer cell migration, we propose that NA treatment may be developed into a potential therapy for malignant glioma.
Collapse
Affiliation(s)
- Xiangcai Yang
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Shuting Mei
- Department of Gerontology, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Hua Niu
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| | - Jiejing Li
- Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
34
|
Mvunta DH, Miyamoto T, Asaka R, Yamada Y, Ando H, Higuchi S, Ida K, Kashima H, Shiozawa T. SIRT1 Regulates the Chemoresistance and Invasiveness of Ovarian Carcinoma Cells. Transl Oncol 2017; 10:621-631. [PMID: 28667895 PMCID: PMC5491457 DOI: 10.1016/j.tranon.2017.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND SIRT1 is a longevity gene that forestalls aging and age-related diseases including cancer, and has recently attracted widespread attention due to its overexpression in some cancers. We previously identified the overexpression of SIRT1 in ovarian carcinoma (OvCa) as a poor prognostic factor. However, mechanistic insights into the function of SIRT1 in OvCa have yet to be elucidated. METHODS Quantitative real-time reverse PCR (qRT-PCR) and Western blotting were employed to examine the expression of SIRT1 in a panel of human OvCa cell lines. si-RNA or sh-RNA and cDNA technologies were utilized to knockdown or overexpress SIRT1, respectively. The effects of SIRT1 on proliferation and chemoresistance were examined using a WST-1 assay, and the underlying mechanisms were confirmed using an apoptotic assay, and the quantification of glutathione (GSH), and reactive oxygen species (ROS). The aggressiveness of SIRT1 was analyzed using in vitro invasion and migration assays. RESULTS SIRT1 was more strongly expressed in OvCa cell lines than in the immortalized ovarian epithelium at the gene and protein levels. Stress up-regulated the expression of SIRT1 in dose- and time-dependent manners. SIRT1 significantly enhanced the proliferation (P<.05), chemoresistance (P<.05), and aggressiveness of OvCa cells by up-regulating multiple antioxidant pathways to inhibit oxidative stress. Further study into the overexpression of SIRT1 demonstrated the up-regulation of several stemness-associated genes and enrichment of CD44v9 via an as-yet-unidentified pathway. CONCLUSIONS Our results suggest that SIRT1 plays a role in the acquisition of aggressiveness and chemoresistance by OvCa, and has potential as a therapeutic target for OvCa.
Collapse
Affiliation(s)
- David Hamisi Mvunta
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Tsutomu Miyamoto
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | - Ryoichi Asaka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Yasushi Yamada
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Hirofumi Ando
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Shotaro Higuchi
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Koichi Ida
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Hiroyasu Kashima
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Tanri Shiozawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
35
|
Zou Q, Tang Q, Pan Y, Wang X, Dong X, Liang Z, Huang D. MicroRNA-22 inhibits cell growth and metastasis in breast cancer via targeting of SIRT1. Exp Ther Med 2017; 14:1009-1016. [PMID: 28781618 PMCID: PMC5526179 DOI: 10.3892/etm.2017.4590] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/18/2017] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRs), which are a class of small non-coding RNAs, are key regulators of gene expression via induction of translational repression or mRNA degradation. However, the molecular mechanism of miR-22 underlying the malignant progression of breast cancer, remains to be elucidated. The present study aimed to explore the regulatory mechanism of miR-22 in breast cancer cell growth and metastasis. Reverse transcription-quantitative polymerase chain reaction data revealed that miR-22 was significantly downregulated in breast cancer tissues, compared with adjacent non-tumor tissues. Furthermore, the miR-22 levels were further decreased in stage III–IV, compared with stage I–II breast cancer. In addition, low miR-22 levels were significantly associated with the poor differentiation, metastasis and advanced clinical stages of breast cancer. Sirtuin1 (SIRT1) was demonstrated to act as a direct target gene of miR-22 and its protein expression negatively regulated by miR-22 in the MCF-7 breast cancer cell line. Furthermore, SIRT1 expression levels were significantly upregulated in breast cancer tissues, compared with adjacent non-tumor tissues. SIRT1 levels were observed to be increased in stage III–IV when compared with stage I–II breast cancer. miR-22 overexpression decreased the proliferation, migration and invasion of MCF-7 cells, whereas overexpression of SIRT1 eliminated the suppressive effects of the miR-22 overexpression on the malignant phenotype of MCF-7 cells. The results of the present study therefore suggested that miR-22 demonstrated suppressive effects on breast cancer growth and metastasis via targeting SIRT1, and thus the miR-22/SIRT1 axis may be used as a novel and potential therapeutic target for breast cancer in the future.
Collapse
Affiliation(s)
- Quanqing Zou
- Department of Breast Surgery, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Department of Hepatobiliary and Endocrine Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Qianli Tang
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Yinhua Pan
- Department of Hepatobiliary and Endocrine Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Xuedi Wang
- Department of Hepatobiliary and Endocrine Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Xiaofeng Dong
- Department of Hepatobiliary and Endocrine Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Zhongxiao Liang
- Department of Hepatobiliary and Endocrine Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Dong Huang
- Department of Hepatobiliary and Endocrine Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
36
|
Bu P, Luo C, He Q, Yang P, Li X, Xu D. MicroRNA-9 inhibits the proliferation and migration of malignant melanoma cells via targeting sirituin 1. Exp Ther Med 2017; 14:931-938. [PMID: 28810544 PMCID: PMC5526066 DOI: 10.3892/etm.2017.4595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/01/2017] [Indexed: 11/05/2022] Open
Abstract
MicroRNA (miR) are a class of small non-coding RNA that are able to inhibit gene expression by directly binding to the 3′ untranslated region (UTR) of their target mRNA and thus promote translational repression or mRNA degradation. Recently, miR-9 was reported to have a suppressive role in malignant melanoma; however, the underlying mechanism remains largely unclear. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to examine the mRNA and protein expression levels in malignant melanoma tissues and cell lines. The MTT assay and wound healing assay were used to examine the cell viability, proliferation and migratory capacities. Bioinformatics prediction and luciferase reporter assay were performed to investigate the relationship between miR-9 and its potential target gene. The present data revealed that miR-9 expression was significantly downregulated in malignant melanoma tissues when compared with their matched adjacent non-tumor tissues. Furthermore, the expression levels of miR-9 were reduced in malignant melanoma cell lines when compared with human normal skin HACAT cells. Moreover, the ectopic expression of miR-9 significantly suppressed the proliferation and migration of malignant melanoma cells, accompanied with a remarkable decrease in the protein expression levels of sirtuin 1 (SIRT1), which were markedly upregulated in malignant melanoma tissues and cell lines. Additionally, restoration of SIRT1 reversed the suppressive effects of miR-9 on the proliferation and migration of malignant melanoma cells. Luciferase reporter assay data further identified SIRT1 as a direct target gene of miR-9. To conclude, the present findings indicate that miR-9 has a suppressive role in malignant melanoma cell viability and migration, at least in part, via directly inhibiting the protein expression of its target gene, SIRT1. Therefore, miR-9 may serve as a potential candidate for the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Pingyuan Bu
- Department of Burns and Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chengqun Luo
- Department of Burns and Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Quanyong He
- Department of Burns and Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ping Yang
- Department of Burns and Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xi Li
- Department of Burns and Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Dan Xu
- Department of Burns and Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
37
|
Yuan Z, Mo H, Mo L, He J, Wu Z, Lin X. Suppressive effect of microRNA-138 on the proliferation and invasion of osteosarcoma cells via targeting SIRT1. Exp Ther Med 2017; 13:3417-3423. [PMID: 28587420 PMCID: PMC5450556 DOI: 10.3892/etm.2017.4426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 02/07/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs), a class of small non-coding RNAs, function as key regulators in gene expression through binding to the 3'-untranslated region (UTR) of their target mRNA, which further leads to translational repression or mRNA degradation. Recently, miR-138 has been found to have a tumor suppressive role in a variety of human malignancies. However, the exact role of miR-138 in regulating the malignant phenotypes of osteosarcoma (OS) has remained to be elucidated. In the present study, reverse-transcription PCR analysis showed that the expression of miR-138 was markedly reduced in OS tissues compared to that in matched adjacent non-tumorous tissues. Furthermore, it was also downregulated in several common OS cell lines, when compared with that in a normal human osteoblast cell line. Overexpression of miR-138 suppressed cell proliferation and invasion and led to a significant decrease in the protein expression of sirtuin 1 (SIRT1), which was further identified as a direct target gene of miR-138 in MG63 cells. Moreover, restoration of SIRT1 expression reversed the suppressive effects of miR-138 on MG63 cell proliferation and invasion. Finally, the expression of SIRT1 was found to be significantly upregulated in OS tissues compared to that in matched adjacent tissues, and SIRT1 levels were inversely correlated with the miR-138 levels in OS tissues. Therefore, the present study demonstrated that miR-138 has a role in inhibiting OS cell proliferation and invasion via directly targeting SIRT1, and suggested that the miR-138/SIRT1 axis may become a promising therapeutic target for OS.
Collapse
Affiliation(s)
- Zhenchao Yuan
- Department of Bone and Soft Tissue Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hao Mo
- Department of Bone and Soft Tissue Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China,Correspondence to: Dr Hao Mo, Department of Bone and Soft Tissue Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, 71 He Di Road, Nanning, Guangxi 530021, P.R. China, E-mail:
| | - Ligen Mo
- Department of Bone and Soft Tissue Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Juliang He
- Department of Bone and Soft Tissue Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhenjie Wu
- Department of Bone and Soft Tissue Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiang Lin
- Department of Bone and Soft Tissue Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
38
|
Huo L, Bai X, Wang Y, Wang M. Betulinic acid derivative B10 inhibits glioma cell proliferation through suppression of SIRT1, acetylation of FOXO3a and upregulation of Bim/PUMA. Biomed Pharmacother 2017; 92:347-355. [PMID: 28554130 DOI: 10.1016/j.biopha.2017.05.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
Glioma is the most common primary malignant tumor of the central nervous system. B10 is a new glycosylated derivative of betulinic acid with enhanced cytotoxic activity. The present study was designed to explore the molecular mechanism underlying the anticancer effect of B10 in glioma cells. 25-50μM B10 resulted in a significant decrease of cell viability and BrdU incorporation. 25-50mg/kg B10 significantly reduced the implanted tumor weight and volume in nude mice. Activation of apoptosis was found in glioma cells when the cells were exposed to B10, as evidenced by increased number of TUNEL-stained cells, increased caspase 3 and 9 activities, and Bax and cleaved PARP expression. B10 caused a significant decrease in mitochondrial oxygen consumption rate, mitochondrial complex I, II, III, IV, and V activities, and ATP level, and increase of mitochondrial ROS production, indicating the induction of mitochondrial dysfunction. B10 reduced the expression of sirtuin (SIRT) 1 and resulted in an increase in forkhead box O (FOXO) 3a expression and acetylation. Activation of SIRT1 by SRT-1720 and downregualtion of FOXO3a using shRNA significantly inhibited B10-induced cytotoxicity. B10 markedly increased the expression of Bim and PUMA. Downregualtion of FOXO3a or activation of SIRT1 significantly inhibited B10-induced increase of Bim and PUMA expression. Downregualtion of Bim or PUMA could suppress B10-induced increase of Bax expression. Moreover, B10-induced cytotoxicity was significantly suppressed by downregulation of Bim or PUMA. In summary, we identified B10 as a potent therapeutic candidate for glioma treatment and SIRT1-FOXO3a-Bim/PUMA axis as a novel therapeutic target.
Collapse
Affiliation(s)
- Longwei Huo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, Shaanxi, China; Department of Neurosurgery, Yulin First Hospital Affiliated to Xi'an Jiao Tong University, Yulin 719000, Shaanxi, China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, Shaanxi, China
| | - Yafei Wang
- Department of Neurosurgery, Yulin First Hospital Affiliated to Xi'an Jiao Tong University, Yulin 719000, Shaanxi, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
39
|
Li D, Liu N, Zhao HH, Zhang X, Kawano H, Liu L, Zhao L, Li HP. Interactions between Sirt1 and MAPKs regulate astrocyte activation induced by brain injury in vitro and in vivo. J Neuroinflammation 2017; 14:67. [PMID: 28356158 PMCID: PMC5372348 DOI: 10.1186/s12974-017-0841-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
Background Astrocyte activation is a hallmark of traumatic brain injury resulting in neurological dysfunction or death for an overproduction of inflammatory cytokines and glial scar formation. Both the silent mating type information (Sirt1) expression and mitogen-activated protein kinase (MAPK) signal pathway activation represent a promising therapeutic target for several models of neurodegenerative diseases. We investigated the potential effects of Sirt1 upregulation and MAPK pathway pharmacological inhibition on astrocyte activation in vitro and in vivo. Moreover, we attempted to confirm the underlying interactions between Sirt1 and MAPK pathways in astrocyte activation after brain injury. Methods The present study employs an interleukin-1β (IL-1β) stimulated primary cortical astrocyte model in vitro and a nigrostriatal pathway injury model in vivo to mimic the astrocyte activation induced by traumatic brain injury. The activation of GFAP, Sirt1, and MAPK pathways were detected by Western blot; astrocyte morphological hypertrophy was assessed using immunofluorescence staining; in order to explore the neuroprotective effect of regulation Sirt1 expression and MAPK pathway activation, the motor and neurological function tests were assessed after injury. Results GFAP level and morphological hypertrophy of astrocytes are elevated after injury in vitro or in vivo. Furthermore, the expressions of phosphorylated extracellular regulated protein kinases (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated p38 activation (p-p38) are upregulated, but the Sirt1 expression is downregulated. Overexpression of Sirt1 significantly increases the p-ERK expression and reduces the p-JNK and p-p38 expressions. Inhibition of ERK, JNK, or p38 activation respectively with their inhibitors significantly elevated the Sirt1 expression and attenuated the astrocyte activation. Both the overproduction of Sirt1 and inhibition of ERK, JNK, or p38 activation can alleviate the astrocyte activation, thereby improving the neurobehavioral function according to the modified neurological severity scores (mNSS) and balance latency test. Conclusions Thus, Sirt1 plays a protective role against astrocyte activation, which may be associated with the regulation of the MAPK pathway activation induced by brain injury in vitro and in vivo.
Collapse
Affiliation(s)
- Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Nan Liu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hai-Hua Zhao
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hitoshi Kawano
- Department of Health and Dietetics, Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, 170-8445, Japan
| | - Lu Liu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liang Zhao
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hong-Peng Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
40
|
Sitarek P, Skała E, Toma M, Wielanek M, Szemraj J, Skorski T, Białas AJ, Sakowicz T, Kowalczyk T, Radek M, Wysokińska H, Śliwiński T. Transformed Root Extract of Leonurus sibiricus Induces Apoptosis through Intrinsic and Extrinsic Pathways in Various Grades of Human Glioma Cells. Pathol Oncol Res 2016; 23:679-687. [PMID: 28032310 DOI: 10.1007/s12253-016-0170-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
This study determines the influence of transformed root (TR) extract of Leonurus sibiricus L. on various grades (I-III) of human glioma cells derived from patients. This plant occurs in southern Asia and Siberia and is widely used as a medicinal plant with various biological activities. Chromatographic profile of TR extract have revealed the presence of various polyphenolic compounds (4-hydroxybenzoic acid, gentisic acid, vanilic acid, 1,3-dicaffeoylquinic acid, α-resorcylic acid). We found TR root extract to have antiproliferative activity on glioma cells after 24 h of treatment. TR root extract induces apoptosis on various grades (I-III) of human glioma cells by the generation of reactive oxygen species (ROS) along with concurrent loss of mitochondrial membrane potential, enhanced S and G2/M phases of the cell cycle, and altered mRNA levels of Bax, Bcl-2, p53, Cas-3, Cas-8 and Cas-9 factors involved in apoptosis. This work for the first time demonstrate that TR extract from L. sibiricus root has the potential to activate apoptosis in grade I-III human glioma cells through the intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego Street 1, 90-151, Łódź, Poland.
| | - Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego Street 1, 90-151, Łódź, Poland
| | - Monika Toma
- Department of Molecular Genetics, University of Lodz, Łódź, Poland
| | - Marzena Wielanek
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Łódź, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, and Fels Institute for Cancer Research, School of Medicine, Temple University, Philadelphia, PA, USA
| | - Adam J Białas
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
| | - Tomasz Sakowicz
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Łódź, Poland
| | - Tomasz Kowalczyk
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Łódź, Poland
| | - Maciej Radek
- Department of Neurosurgery, Surgery of Spine and Peripheral Nerves, Medical University of Łódź, University Hospital WAM-CSW, Łódź, Poland
| | - Halina Wysokińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego Street 1, 90-151, Łódź, Poland
| | - Tomasz Śliwiński
- Department of Molecular Genetics, University of Lodz, Łódź, Poland
| |
Collapse
|
41
|
Wang G, Wang JJ, Du L, Fei L, To SST. Inhibitory Kinetics and Mechanism of Flavonoids Extracted from Cotinus coggygria Scop. Against Glioblastoma Cancer. Nutr Cancer 2016; 68:1357-1368. [PMID: 27673410 DOI: 10.1080/01635581.2016.1225105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This proposal seeks to study the potential therapeutic modality of chemoprevention and anticancer effects and mechanisms of the flavonoids from Cotinus coggygria Scop. on glioblastoma cancer. In the current study, the total flavonoids (TFs) isolated from Cotinus coggygria Scop. var. cinerea Engl. (Cotinus coggygria Scop.) and the major flavonoids of Cotinus coggygria Scop. (CCFs) were identified, and the inhibitory kinetics of TF and CCF on glioblastoma cell lines were calculated. We also investigated whether TF or CCF regulated the apoptotic mechanism in cellular models of glio-blastoma cells. Finally, we evaluated whether treatment with TF or CCF suppressed tumor growth and inhibited migration in orthotopic mouse models of glioblastoma in vivo. In this study, the CCFs were identified as rutin, myricetin, and fisetin. TF and CCF remarkably inhibited cell proliferation and downregulated the PI3K/Akt and ERK signaling pathway in glioblastoma cell lines. Furthermore, the mitochondrial caspase-dependent cascade was regulated by TF and myricetin. In addition, TF and myricetin exhibited significant antitumor effects on glioblastoma in vivo. Taken together, these results suggest that phytochemical and biological data provide evidence for the active components in Cotinus coggygria, and that the TFs are responsible for the anticancer effects on glioblastoma cell growth via induction of apoptosis. In addition, the representative compound myricetin could provide a clinically relevant therapeutic opportunity. Therefore, our data strongly suggest that myricetin-deprived CCF can serve as a potent chemopreventive herbal medicine.
Collapse
Affiliation(s)
- Gang Wang
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China
| | - Jun-Jie Wang
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China.,b Hubei University of Medicine , Shiyan , Hubei , China
| | - Li Du
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China
| | - Li Fei
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China
| | - Shing-Shun Tony To
- c Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Hong Kong
| |
Collapse
|
42
|
Romeo SG, Conti A, Polito F, Tomasello C, Barresi V, La Torre DL, Cucinotta M, Angileri FF, Bartolotta M, Di Giorgio RM, Aguennouz M. miRNA regulation of Sirtuin-1 expression in human astrocytoma. Oncol Lett 2016; 12:2992-2998. [PMID: 27698888 DOI: 10.3892/ol.2016.4960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 06/08/2016] [Indexed: 12/19/2022] Open
Abstract
Sirtuins are a family of 7 histone deacetylases largely involved in the regulation of cell proliferation, survival and death. The role of sirtuins in tumorigenesis and cancer progression has been previously studied in certain cancer types. Few studies have investigated sirtuin expression in gliomas, with controversial results. The aim of the present study was to investigate the expression of sirtuin-1 (Sirt-1) in diffuse astrocytoma [low grade astrocytoma (LGA)], anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM) and in primary glioma cell lines: PLGAC (primary LGA cells); PAAC (primary AA cells); and PGBMC (primary GBM cells). Tumor samples were obtained from patients who underwent craniotomy for microsurgical tumor resection at the Neurosurgery Unit of the University of Messina between 2011 and 2014. Sirt-1 expression was qualitatively analyzed in 30 human glial tumor samples and 5 non-neoplastic brain tissue (NBT) specimens using immunohistochemistry and western blotting techniques. Sirt-1 expression was quantitatively analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, Sirt-1 expression in primary cell lines was investigated by immunoblotting and RT-qPCR. Sirt-1 expression was downregulated in gliomas compared to NBTs. Sirt-1 levels also varied among different tumor grades, with more evident downregulation in high-grade (P<0.001) than low-grade tumors (P<0.01). These data were confirmed in cell lines, with the exception of upregulation of protein level in the highest malignancy grade cell lines. The present results suggest a role for miRNA-34a, miRNA-132 and miRNA-217 in the epigenetic control of Sirt-1 during gliomagenesis and progression, and demonstrate the different implications of Sirt-1 in human tissues and cell lines. Furthermore, the present results reveal that Sirt-1 may be an intrinsic regulator of tumor progression and the regulation of Sirt-1 involves complex molecular pathways. However, the biological functions of Sirt-1 in gliomagenesis require additional investigation.
Collapse
Affiliation(s)
| | - Alfredo Conti
- Department of Neurosciences, University of Messina, I-98125 Messina, Italy
| | - Francesca Polito
- Department of Neurosciences, University of Messina, I-98125 Messina, Italy
| | - Chiara Tomasello
- Department of Neurosciences, University of Messina, I-98125 Messina, Italy
| | - Valeria Barresi
- Department of Human Pathology, University of Messina, I-98125 Messina, Italy
| | | | - Maria Cucinotta
- Department of Neurosciences, University of Messina, I-98125 Messina, Italy
| | | | - Marcello Bartolotta
- Department of Human Pathology, University of Messina, I-98125 Messina, Italy
| | | | - M'Hammed Aguennouz
- Department of Neurosciences, University of Messina, I-98125 Messina, Italy
| |
Collapse
|
43
|
Li C, Liu Z, Yang K, Chen X, Zeng Y, Liu J, Li Z, Liu Y. miR-133b inhibits glioma cell proliferation and invasion by targeting Sirt1. Oncotarget 2016; 7:36247-36254. [PMID: 27166997 PMCID: PMC5094997 DOI: 10.18632/oncotarget.9198] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) are a class of small non-coding RNAs that function as mediators of gene expression. Dysregulations of miRs have been implicated in the development and progression of glioma. In the present study, we investigated the role of miR-133b in mediating the proliferation and invasion of glioma cells, and the potential mechanism. Real-time RT-PCR results showed that miR-133b expression was significantly decreased in glioma tissues compared with normal brain tissues. Luciferase reporter assay further identified silent information regulator 1 (Sirt1) as a novel direct target of miR-133b in glioma U87 cells. Overexpression of miR-133b suppressed Sirt1 expression and reduced the proliferation and invasion of U87 cells, which could be partly rescued by forced expression of Sirt1. In addition, the Sirt1 mRNA level was significantly higher in glioma tissues than in normal brain tissues, and was inversely correlated with miR-133b level in glioma tissues. In summary, our study sheds light on the regulatory mechanism of miR-133b in glioma growth and metastasis via direct mediation of Sirt1 expression, and suggests that Sirt1 may serve as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Chuntao Li
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Kui Yang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Xin Chen
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Zhenyan Li
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Yunsheng Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| |
Collapse
|
44
|
Rios A, Hsu SH, Blanco A, Buryanek J, Day AL, McGuire MF, Brown RE. Durable response of glioblastoma to adjuvant therapy consisting of temozolomide and a weekly dose of AMD3100 (plerixafor), a CXCR4 inhibitor, together with lapatinib, metformin and niacinamide. Oncoscience 2016; 3:156-63. [PMID: 27489862 PMCID: PMC4965258 DOI: 10.18632/oncoscience.311] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a CNS (central nervous system) malignancy with a low cure rate. Median time to progression after standard treatment is 7 months and median overall survival is 15 months [1]. Post-treatment vasculogenesis promoted by recruitment of bone marrow derived cells (BMDCs, CD11b+ myelomonocytes) is one of main mechanisms of GBM resistance to initial chemoradiotherapy treatment [2]. Local secretion of SDF-1, cognate ligand of BMDCs CXCR4 receptors attracts BMDCs to the post-radiation tumor site.[3]. This SDF-1 hypoxia-dependent effect can be blocked by AMD3100 (plerixafor) [4]. We report a GBM case treated after chemo- radiotherapy with plerixafor and a combination of an mTOR, a Sirt1 and an EGFRvIII inhibitor. After one year temozolomide and the EGFRvIII inhibitor were stopped. Plerixafor, and the MTOR and Sirt-1 inhibitors were continued. He is in clinical and radiologic remission 30 months from the initiation of his adjuvant treatment. To our knowledge, this is the first report of a patient treated for over two years with a CXCR4 inhibitor (plerixafor), as part of his adjuvant treatment. We believe there is sufficient experimental evidence to consider AMD3100 (plerixafor) part of the adjuvant treatment of GBM.
Collapse
Affiliation(s)
- Adan Rios
- Division of Oncology at UTHealth McGovern Medical School, Houston, TX, USA
| | - Sigmund H Hsu
- Department of Neurosurgery at UTHealth McGovern Medical School, Houston, TX, USA
| | - Angel Blanco
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Jamie Buryanek
- Department of Pathology and Laboratory Medicine at UTHealth McGovern Medical School, Houston, TX, USA
| | - Arthur L Day
- Department of Neurosurgery at UTHealth McGovern Medical School, Houston, TX, USA
| | - Mary F McGuire
- Adjunct Faculty, Mathematics & Computer Science at University of St. Thomas-Houston, Houston, TX, USA
| | - Robert E Brown
- Department of Pathology and Laboratory Medicine at UTHealth McGovern Medical School, Houston, TX, USA
| |
Collapse
|
45
|
Tian Z, Jiang H, Liu Y, Huang Y, Xiong X, Wu H, Dai X. MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1. Exp Cell Res 2016; 343:135-147. [PMID: 27090017 DOI: 10.1016/j.yexcr.2016.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that function as critical gene regulators by targeting mRNAs for translational repression or degradation. In this study, we showed that the expression level of miR-133b was decreased, while Sirt1 mRNA expression levels were increased in hepatocellular carcinoma (HCC) and cell lines, and we identified Sirt1 as a novel direct target of miR-133b. The over-expression of miR-133b suppressed Sirt1 expression. In addition, miR-133b over-expression resulted in attenuating HCC cell proliferation and invasion together with apoptosis increase in vitro. HepG2 cell transplantation revealed that up-regulation of miR-133b could inhibit HCC tumor genesis in vivo. Forced expression of Sirt1 partly rescued the effect of miR-133b in vitro. Furthermore, our study showed that miR-133b over-expression or Sirt1 down-regulation elevated E-cadherin expression, and repressed glypican-3 (GPC3) and the anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1) expression. The inhibition of GPC3 expression repressed Bcl-2, Bcl-xL, and Mcl-1 expression, and elevated E-cadherin expression. Moreover, the Sirt1 up-regulation resulted in increases in HCC cell proliferation and invasion together with decreases apoptosis, and increases in the cytosolic accumulation and nuclear translocation of the transcription factor β-catenin in vitro. But the effect of Sirt1 up-regulation was partly reversed by GPC3 down-regulation in vitro. Taken together, these findings provide insight into the role and mechanism of miR-133b in regulating HCC cell proliferation, invasion and apoptosis via the miR-133b/Sirt1/GPC3/Wnt β-catenin axis, and miR-133b may serve as a potential therapeutic target in HCC in the future.
Collapse
Affiliation(s)
- Zhijie Tian
- School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Hequn Jiang
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, China
| | - Ying Liu
- School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Yong Huang
- School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Xin Xiong
- Laboratory Research Center, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041, China.
| | - Xiaozhen Dai
- School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500, China; Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400044, China; Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
46
|
MicroRNA-132 cause apoptosis of glioma cells through blockade of the SREBP-1c metabolic pathway related to SIRT1. Biomed Pharmacother 2016; 78:177-184. [DOI: 10.1016/j.biopha.2016.01.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/24/2015] [Accepted: 01/13/2016] [Indexed: 12/19/2022] Open
|
47
|
Xiong F, Hu L, Zhang Y, Xiao X, Xiao J. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1. Biol Open 2016; 5:367-71. [PMID: 26912776 PMCID: PMC4810753 DOI: 10.1242/bio.016907] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Granulosa cell (GC) apoptosis has been shown to be involved in follicular atresia, which is a degenerative process in ovarian follicles of mammals. However, the mechanism underlying the regulation of follicular atresia, particularly by microRNAs, is not well known. Real-time PCR (RT-PCR) was used to detect the expression level of miR-22 in healthy follicles (HF), early atretic follicles (EAF), and progressively atretic follicles (PAF). Flow cytometry was performed to assess the apoptosis of mouse granulosa cells (mGCs) treated with miR-22 mimics or negative control (NC) mimics. Regulation of the expression of SIRT1 by miR-22 was evaluated using a luciferase reporter assay system. To investigate the roles of SIRT1 in mGC apoptosis, the endogenous SIRT1 gene in mGCs was knocked down using an siRNA specific for SIRT1. miR-22 was increased during follicular atresia and suppressed granulosa cell apoptosis. The results of the luciferase reporter assay indicated that SIRT1 was a target gene of miR-22. In addition, knockdown of SIRT1 attenuated apoptosis in mGCs. miR-22 inhibits mGC apoptosis by downregulating SIRT1 directly in vitro. This study provides important insights into understanding the regulation mechanism of ovarian follicle atresia. Summary: Overexpression of miR-22 inhibits mGC apoptosis by targeting SIRT1, and knockdown of SIRT1 attenuated apoptosis in mGCs. Taken together, these findings provide an improved understanding of the molecular mechanisms of miR-22-mediated follicular development.
Collapse
Affiliation(s)
- Fang Xiong
- Procreation and Medicine Centre, Wuxi Maternal and Child Health Hospital, Wuxi 214002, China
| | - Lingqing Hu
- Procreation and Medicine Centre, Wuxi Maternal and Child Health Hospital, Wuxi 214002, China
| | - Yun Zhang
- Procreation and Medicine Centre, Wuxi Maternal and Child Health Hospital, Wuxi 214002, China
| | - Xiao Xiao
- Procreation and Medicine Centre, Wuxi Maternal and Child Health Hospital, Wuxi 214002, China
| | - Juxia Xiao
- Procreation and Medicine Centre, Wuxi Maternal and Child Health Hospital, Wuxi 214002, China
| |
Collapse
|
48
|
Effect and Mechanism of Total Flavonoids Extracted from Cotinus coggygria against Glioblastoma Cancer In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2015; 2015:856349. [PMID: 26557705 PMCID: PMC4628721 DOI: 10.1155/2015/856349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 12/13/2022]
Abstract
Flavonoids, a major constituent of Cotinus coggygria (CC), have been reported to possess diverse biological activities, including antigenotoxic and hepatoprotective effects; however, few studies have investigated the biological activity of the total flavonoids of Cotinus coggygria, especially in terms of its cytotoxicity in cancer cells. In the present study, the Cotinus coggygria flavonoids (CCF) were extracted from Cotinus coggygria and characterized by HPLC. These results indicated that CCF extracts could inhibit cell proliferation, with IC50 values of 128.49 µg/mL (U87), 107.62 µg/mL (U251), and 93.57 µg/mL (DBTRG-05MG). The current investigation also revealed that CCF induced apoptosis in highly malignant glioblastoma cells, a process that apparently involved the inhibition of Akt coupled with ERK protein expression. This finding suggests that the PI3K/Akt-ERK signaling pathway is regulated by CCF and leads to the inhibition of the glioblastoma cancer cells. Furthermore, a significant antitumor effect of CCF was observed in xenograft animal models of glioblastoma multiforme in vivo. Taken together, these data suggest that CCF is the active component in the Cotinus coggygria plant that offers potential therapeutic modality in the abrogation of cancer cell proliferation, including the induction of apoptosis.
Collapse
|
49
|
Regulation of HepG2 cell apoptosis by hepatitis C virus (HCV) core protein via the sirt1-p53-bax pathway. Virus Genes 2015; 51:338-46. [PMID: 26459383 DOI: 10.1007/s11262-015-1253-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) core protein stimulates many signaling pathways related to apoptosis inhibition resulting in hepatocellular carcinoma (HCC). It has been reported that sirt1 is involved in regulating apoptosis; therefore, we investigated the influence of HCV core protein on sirt1 expression and apoptosis in human HepG2 cells. Our study showed that HCV core protein inhibited apoptosis of HepG2 cells as well as caspase-3 expression and activity (P < 0.05). At the same time, sirt1 expression was increased at both the mRNA (P < 0.05) and protein (P < 0.05) levels. Furthermore, apoptosis inhibition was reversed when sirt1 was knocked down (P < 0.05). Our study provides further evidence that the sirt1-p53-Bax signaling pathway plays an important role in regulating the suppression of cell apoptosis induced by HCV core protein.
Collapse
|
50
|
Engler A, Tange C, Frank-Bertoncelj M, Gay RE, Gay S, Ospelt C. Regulation and function of SIRT1 in rheumatoid arthritis synovial fibroblasts. J Mol Med (Berl) 2015; 94:173-82. [PMID: 26298564 DOI: 10.1007/s00109-015-1332-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and destruction of synovial joints. The function of sirtuin (SIRT)1 in RA is inconclusive. In human synovial cells, SIRT1 was shown to promote cytokine production and apoptosis resistance. However, deletion of SIRT1 aggravated inflammatory arthritis in mice and increased production of pro-inflammatory cytokines in murine macrophages. In the current study, we investigated the regulation, expression, and function of SIRT1 in RA, in particular its role in adhesion and proliferation of human RA synovial fibroblasts (RASF). We found that expression of SIRT1 was increased in vivo in synovial tissues of RA smokers and in vitro by stimulation of RASF with TNFα, but decreased upon treatment with cigarette smoke extract. Synovial tissues of RA smokers showed higher leukocytic infiltration that positively correlated with enhanced levels of SIRT1. Global transcriptome analysis revealed that SIRT1 modulates expression of genes involved in the regulation of inflammatory response and cell adhesion. In functional studies, silencing of SIRT1 reduced proliferation and leukocytic adhesion to RASF but showed inconsistent results in the regulation of adhesion to plastic. In conclusion, SIRT1 modulates the proliferative and potentially also adhesive properties of RASF and can therefore promote progression of RA. KEY MESSAGES SIRT1 is upregulated by TNFα but decreased upon CSE treatment of RASF. Upregulation of SIRT1 in RA smokers correlates with increased leukocytic infiltration. SIRT1 modulates expression of genes regulating cell adhesion and inflammation. SIRT1 regulates proliferation of RASF.
Collapse
Affiliation(s)
- Anna Engler
- Center of Experimental Rheumatology, Bio-Technopark Schlieren, University Hospital Zurich, Gloriastrasse 25, 8091 Zurich and Wagistrasse 14, 8952, Schlieren, Switzerland.,Zurich Center of Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Clare Tange
- Center of Experimental Rheumatology, Bio-Technopark Schlieren, University Hospital Zurich, Gloriastrasse 25, 8091 Zurich and Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Mojca Frank-Bertoncelj
- Center of Experimental Rheumatology, Bio-Technopark Schlieren, University Hospital Zurich, Gloriastrasse 25, 8091 Zurich and Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Renate E Gay
- Center of Experimental Rheumatology, Bio-Technopark Schlieren, University Hospital Zurich, Gloriastrasse 25, 8091 Zurich and Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Steffen Gay
- Center of Experimental Rheumatology, Bio-Technopark Schlieren, University Hospital Zurich, Gloriastrasse 25, 8091 Zurich and Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Caroline Ospelt
- Center of Experimental Rheumatology, Bio-Technopark Schlieren, University Hospital Zurich, Gloriastrasse 25, 8091 Zurich and Wagistrasse 14, 8952, Schlieren, Switzerland.
| |
Collapse
|