1
|
Shafiq M, Matamoros-Angles A, Meister SC, Glatzel M. Comment on "Extracellular Vesicles Slow Down Aβ(1-42) Aggregation by Interfering with the Amyloid Fibril Elongation Step". ACS Chem Neurosci 2024; 15:3791-3793. [PMID: 39382326 DOI: 10.1021/acschemneuro.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Halipi et al. explored the impact of extracellular vesicles (EVs) on amyloid-β (Aβ) aggregation. They concluded that EVs reduce Aβ aggregation, as seen by shorter and thicker fibrils. While we agree with the complex role of EVs in Alzheimer's disease, we are sceptical of the claim that EVs slow down Aβ aggregation, noting missing key references. Previous literature rather suggests that EVs (derived from neuronal cell lines) accelerate the process of Aβ fibrillation and plaque formation. Halipi et al.'s findings may be skewed due to the lack of essential neuronally expressed Aβ-binding partners, like the prion protein (PrPC) in their EV samples. The commentary, in the light of included original experiments and cited literature, suggests that membrane proteins like PrPC are crucial to fully understand the role of EVs in Aβ aggregation, and Halipi et al.'s conclusions should be reexamined in light of these factors.
Collapse
Affiliation(s)
- Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Andreu Matamoros-Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sussane Caroline Meister
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
2
|
Rao A, Chen N, Kim MJ, Blumenfeld J, Yip O, Liang Z, Shostak D, Hao Y, Nelson MR, Koutsodendris N, Grone B, Ding L, Yoon SY, Arriola P, Zilberter M, Huang Y. Microglia depletion reduces human neuronal APOE4-related pathologies in a chimeric Alzheimer's disease model. Cell Stem Cell 2024:S1934-5909(24)00367-9. [PMID: 39500314 DOI: 10.1016/j.stem.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/17/2024] [Accepted: 10/04/2024] [Indexed: 11/13/2024]
Abstract
Despite strong evidence supporting the important roles of both apolipoprotein E4 (APOE4) and microglia in Alzheimer's disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-related AD pathogenesis remain elusive. To examine such effects, we utilized microglial depletion in a chimeric model with induced pluripotent stem cell (iPSC)-derived human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) iPSC-derived human neurons into the hippocampus of human APOE3 or APOE4 knockin mice and then depleted microglia in half of the chimeric mice. We found that both neuronal APOE and microglial presence were important for the formation of Aβ and tau pathologies in an APOE isoform-dependent manner (APOE4 > APOE3). Single-cell RNA sequencing analysis identified two pro-inflammatory microglial subtypes with elevated MHC-II gene expression enriched in chimeric mice with human APOE4 neuron transplants. These findings highlight the concerted roles of neuronal APOE, especially APOE4, and microglia in AD pathogenesis.
Collapse
Affiliation(s)
- Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nuo Chen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Zherui Liang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - David Shostak
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Maxine R Nelson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Grone
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Leo Ding
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Patrick Arriola
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Lu W, Shue F, Kurti A, Jeevaratnam S, Macyczko JR, Roy B, Izhar T, Wang N, Bu G, Kanekiyo T, Li Y. Amyloid pathology and cognitive impairment in hAβ-KI and APP SAA-KI mouse models of Alzheimer's disease. Neurobiol Aging 2024; 145:13-23. [PMID: 39447490 DOI: 10.1016/j.neurobiolaging.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The hAβ-KI and APPSAA-KI are two amyloid models that harbor mutations in the endogenous mouse App gene. Both hAβ-KI and APPSAA-KI mice contain a humanized Aβ sequence, and APPSAA-KI mice carry three additional familial AD mutations. We herein report that the Aβ levels and Aβ42/Aβ40 ratio in APPSAA-KI homozygotes are dramatically higher than those in hAβ-KI homozygotes at 14 months of age. In addition, APPSAA-KI mice display a widespread distribution of amyloid plaques in the brain, whereas the plaques are undetectable in hAβ-KI mice. Moreover, there are no sex differences in amyloid pathology in APPSAA-KI mice. Both APPSAA-KI and hAβ-KI mice exhibit cognitive impairments, wherein no significant differences are found between these two models, although APPSAA KI mice show a trend towards worse cognitive function. Notably, female hAβ-KI and APPSAA-KI mice have a more pronounced cognitive impairments compared to their respective males. Our findings suggest that Aβ humanization contributes to cognitive deficits in APPSAA-KI mice, and that amyloid deposition might not be closely associated with cognitive impairments in APPSAA-KI mice.
Collapse
Affiliation(s)
- Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Suren Jeevaratnam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jesse R Macyczko
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bhaskar Roy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Taha Izhar
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ni Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
4
|
Liu Z, Cheng L, Cao W, Shen C, Qiu Y, Li C, Xiong Y, Yang SB, Chen Z, Yin X, Zhang X. Present and future use of exosomes containing proteins and RNAs in neurodegenerative diseases for synaptic function regulation: A comprehensive review. Int J Biol Macromol 2024; 280:135826. [PMID: 39322147 DOI: 10.1016/j.ijbiomac.2024.135826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Neurodegenerative diseases (NDDs) are increasingly prevalent with global aging, demanding effective treatments. Exosomes, which contain biological macromolecules such as RNA (including miRNAs) and proteins like α-synuclein, tau, and amyloid-beta, are gaining attention as innovative therapeutics. This comprehensive review systematically explores the potential roles of exosomes in NDDs, with a particular focus on their role in synaptic dysfunction. We present the synaptic pathophysiology of NDDs and discuss the mechanisms of exosome formation, secretion, and action. Subsequently, we review the roles of exosomes in different types of NDDs, such as Alzheimer's disease and Parkinson's disease, with a special focus on their regulation of synaptic function. In addition, we explore the potential use of exosomes as biomarkers, as well as the challenges and opportunities in their clinical application. We provide perspectives on future research directions and development trends to provide a more comprehensive understanding of and guidance for the application of exosomes in the treatment of NDDs. In conclusion, exosomes rich in biological macromolecules, as a novel therapeutic strategy, have opened up new possibilities for the treatment of NDDs and brought new hope to patients.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wa Cao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Respiratory Medicine, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Chunxiao Shen
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yuemin Qiu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Chuan Li
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Rehabilitation, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Seung Bum Yang
- Department of Medical Non-commissioned Officer, Wonkwang Health Science University Iksan-si, Jeollabuk-do 54538, South Korea
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaorong Zhang
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
5
|
Lee JC, Ray RM, Scott TA. Prospects and challenges of tissue-derived extracellular vesicles. Mol Ther 2024; 32:2950-2978. [PMID: 38910325 PMCID: PMC11403234 DOI: 10.1016/j.ymthe.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
Extracellular vesicles (EVs) are considered a vital component of cell-to-cell communication and represent a new frontier in diagnostics and a means to identify pathways for therapeutic intervention. Recently, studies have revealed the importance of tissue-derived EVs (Ti-EVs), which are EVs present in the interstitial spaces between cells, as they better represent the underlying physiology of complex, multicellular tissue microenvironments in biology and disease. EVs are native, lipid bilayer membraned nano-sized particles produced by all cells that are packaged with varied functional biomolecules including proteins, lipids, and nucleic acids. They are implicated in short- and long-range cellular communication and may elicit functional responses in recipient cells. To date, studies have often utilized cultured cells or biological fluids as a source for EVs that do not capture local molecular signatures of the tissue microenvironment. Recent work utilizing Ti-EVs has elucidated novel biomarkers for disease and provided insights into disease mechanisms that may lead to the development of novel therapeutic agents. Still, there are considerable challenges facing current studies. This review explores the vast potential and unique challenges for Ti-EV research and provides considerations for future studies that seek to advance this exciting field.
Collapse
Affiliation(s)
- Justin C Lee
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roslyn M Ray
- Gene Therapy Research, CSL Behring, Pasadena, CA 91106, USA
| | - Tristan A Scott
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute, Duarte, CA 91010, USA.
| |
Collapse
|
6
|
Fang X, Zhou D, Wang X, Ma Y, Zhong G, Jing S, Huang S, Wang Q. Exosomes: A Cellular Communication Medium That Has Multiple Effects On Brain Diseases. Mol Neurobiol 2024; 61:6864-6892. [PMID: 38356095 DOI: 10.1007/s12035-024-03957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research. As a result, a thorough knowledge of the interaction between exosomes and brain diseases may lead to the development of more effective therapeutic techniques that may be implemented in the clinic. The potential role of exosomes in brain diseases and the crosstalk between exosomes and other pathogenic processes were discussed in this paper. Simultaneously, we noted the delicate events in which exosomes as a media allow the brain to communicate with other tissues and organs in physiology and disease, and compiled a list of natural compounds that modulate exosomes, in order to further improve our understanding of exosomes and propose new ideas for treating brain disorders.
Collapse
Affiliation(s)
- Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Dishu Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510405, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510405, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shangwen Jing
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
7
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Lee E, Park H, Kim S. Transcellular transmission and molecular heterogeneity of aggregation-prone proteins in neurodegenerative diseases. Mol Cells 2024; 47:100089. [PMID: 38971320 PMCID: PMC11286998 DOI: 10.1016/j.mocell.2024.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
The accumulation of aggregation-prone proteins in a specific neuronal population is a common feature of neurodegenerative diseases, which is correlated with the development of pathological lesions in diseased brains. The formation and progression of pathological protein aggregates in susceptible neurons induce cellular dysfunction, resulting in progressive degeneration. Moreover, recent evidence supports the notion that the cell-to-cell transmission of pathological protein aggregates may be involved in the onset and progression of many neurodegenerative diseases. Indeed, several studies have identified different pathological aggregate strains. Although how these different aggregate strains form remains unclear, a variety of biomolecular compositions or cross-seeding events promoted by the presence of other protein aggregates in the cellular environment may affect the formation of different strains of pathological aggregates, which in turn can influence complex pathologies in diseased brains. In this review, we summarize the recent results regarding cell-to-cell transmission and the molecular heterogeneity of pathological aggregate strains, raising key questions for future research directions.
Collapse
Affiliation(s)
- Eunmin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Hyeonwoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
9
|
Shakerian N, Darzi-Eslam E, Afsharnoori F, Bana N, Noorabad Ghahroodi F, Tarin M, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Therapeutic and diagnostic applications of exosomes in colorectal cancer. Med Oncol 2024; 41:203. [PMID: 39031221 DOI: 10.1007/s12032-024-02440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Exosomes play a key role in colorectal cancer (CRC) related processes. This review explores the various functions of exosomes in CRC and their potential as diagnostic markers, therapeutic targets, and drug delivery vehicles. Exosomal long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) significantly influence CRC progression. Specific exosomal lncRNAs are linked to drug resistance and tumor growth, respectively, highlighting their therapeutic potential. Similarly, miRNAs like miR-21, miR-10b, and miR-92a-3p, carried by exosomes, contribute to chemotherapy resistance by altering signaling pathways and gene expression in CRC cells. The review also discusses exosomes' utility in CRC diagnosis. Exosomes from cancer cells have distinct molecular signatures compared to healthy cells, making them reliable biomarkers. Specific exosomal lncRNAs (e.g., CRNDE-h) and miRNAs (e.g., miR-17-92a) have shown effectiveness in early CRC detection and monitoring of treatment responses. Furthermore, exosomes show promise as vehicles for targeted drug delivery. The potential of mesenchymal stem cell (MSC)-derived exosomes in CRC treatment is also noted, with their role varying from promoting to inhibiting tumor progression. The application of multi-omics approaches to exosome research is highlighted, emphasizing the potential for discovering novel CRC biomarkers through comprehensive genomic, transcriptomic, proteomic, and metabolomic analyses. The review also explores the emerging field of exosome-based vaccines, which utilize exosomes' natural properties to elicit strong immune responses. In conclusion, exosomes represent a promising frontier in CRC research, offering new avenues for diagnosis, treatment, and prevention. Their unique properties and versatile functions underscore the need for continued investigation into their clinical applications and underlying mechanisms.
Collapse
Affiliation(s)
- Neda Shakerian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Darzi-Eslam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Afsharnoori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nikoo Bana
- Kish International Campus, University of Teheran, Tehran, Iran
| | - Faezeh Noorabad Ghahroodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
10
|
Chen Z, Li W, Meng B, Xu C, Huang Y, Li G, Wen Z, Liu J, Mao Z. Neuronal-enriched small extracellular vesicles trigger a PD-L1-mediated broad suppression of T cells in Parkinson's disease. iScience 2024; 27:110243. [PMID: 39006478 PMCID: PMC11246066 DOI: 10.1016/j.isci.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
Many clinical studies indicate a significant decrease of peripheral T cells in Parkinson's disease (PD). There is currently no mechanistic explanation for this important observation. Here, we found that small extracellular vesicles (sEVs) derived from in vitro and in vivo PD models suppressed IL-4 and INF-γ production from both purified CD4+ and CD8+ T cells and inhibited their activation and proliferation. Furthermore, neuronal-enriched sEVs (NEEVs) isolated from plasma of A53T-syn mice and culture media of human dopaminergic neurons carrying A53T-syn mutation also suppressed Th1 and Th2 differentiation of naive CD4+ T cells. Mechanistically, the suppressed phenotype induced by NEEVs was associated with altered programmed death ligand 1 (PD-L1) level in T cells. Blocking PD-L1 with an anti-PD-L1 antibody or a small molecule inhibitor BMS-1166 reversed T cell suppression. Our study provides the basis for exploring peripheral T cells in PD pathogenesis and as biomarkers or therapeutic targets for the disease.
Collapse
Affiliation(s)
- Zhichun Chen
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Wenming Li
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bo Meng
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chongchong Xu
- Departments of Psychiatry and Behavioral Sciences and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yiqi Huang
- The Graduate Program in Neuroscience, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Guanglu Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zixu Mao
- Departments of Pharmacology & Chemical Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Johansson L, Reyes JF, Ali T, Schätzl H, Gilch S, Hallbeck M. Lack of cellular prion protein causes Amyloid β accumulation, increased extracellular vesicle abundance, and changes to exosome biogenesis proteins. Mol Cell Biochem 2024:10.1007/s11010-024-05059-0. [PMID: 38970706 DOI: 10.1007/s11010-024-05059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Alzheimer's disease (AD) progression is closely linked to the propagation of pathological Amyloid β (Aβ), a process increasingly understood to involve extracellular vesicles (EVs), namely exosomes. The specifics of Aβ packaging into exosomes remain elusive, although evidence suggests an ESCRT (Endosomal Sorting Complex Required for Transport)-independent origin to be responsible in spreading of AD pathogenesis. Intriguingly, PrPC, known to influence exosome abundance and bind oligomeric Aβ (oAβ), can be released in exosomes via both ESCRT-dependent and ESCRT-independent pathways, raising questions about its role in oAβ trafficking. Thus, we quantified Aβ levels within EVs, cell medium, and intracellularly, alongside exosome biogenesis-related proteins, following deletion or overexpression of PrPC. The same parameters were also evaluated in the presence of specific exosome inhibitors, namely Manumycin A and GW4869. Our results revealed that deletion of PrPC increases intracellular Aβ accumulation and amplifies EV abundance, alongside significant changes in cellular levels of exosome biogenesis-related proteins Vps25, Chmp2a, and Rab31. In contrast, cellular expression of PrPC did not alter exosomal Aβ levels. This highlights PrPC's influence on exosome biogenesis, albeit not in direct Aβ packaging. Additionally, our data confirm the ESCRT-independent exosome release of Aβ and we show a direct reduction in Chmp2a levels upon oAβ challenge. Furthermore, inhibition of opposite exosome biogenesis pathway resulted in opposite cellular PrPC levels. In conclusion, our findings highlight the intricate relationship between PrPC, exosome biogenesis, and Aβ release. Specifically, they underscore PrPC's critical role in modulating exosome-associated proteins, EV abundance, and cellular Aβ levels, thereby reinforcing its involvement in AD pathogenesis.
Collapse
Affiliation(s)
- Lovisa Johansson
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden.
| | - Juan F Reyes
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Tahir Ali
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Hermann Schätzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden.
| |
Collapse
|
12
|
Chen Y, Kleeff J, Sunami Y. Pancreatic cancer cell- and cancer-associated fibroblast-derived exosomes in disease progression, metastasis, and therapy. Discov Oncol 2024; 15:253. [PMID: 38954230 PMCID: PMC11220035 DOI: 10.1007/s12672-024-01111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Exosomes play a crucial role in the progression and spread of pancreatic cancer, serving not only as promoters of tumor growth and organ-specific metastasis but also as promising biomarkers and targets for treatment. These nano vesicles enhance intercellular communication by transferring bioactive molecules, such as proteins and RNAs, between cells. This process significantly affects cancer cell dynamics, including their proliferation, migration, and invasion, while also contributing to drug resistance. Our review focuses on the crucial interactions between cancer cells and fibroblasts mediated by exosomes within the pancreatic cancer microenvironment. We delve into how exosomes from both cancer-associated fibroblasts and the cancer cells themselves drive tumor progression through various mechanisms, such as epithelial-mesenchymal transition and facilitating metastasis to specific organs like the lungs and liver. The potential of leveraging exosomes for therapeutic interventions is also explored, highlighting the importance of understanding their role in cell communication as a step forward in developing more effective pancreatic cancer treatments.
Collapse
Affiliation(s)
- Yijun Chen
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
13
|
Fernandes T, Melo T, Conde T, Neves B, Domingues P, Resende R, Pereira CF, Moreira PI, Domingues MR. Mapping the lipidome in mitochondria-associated membranes (MAMs) in an in vitro model of Alzheimer's disease. J Neurochem 2024; 168:1237-1253. [PMID: 38327008 DOI: 10.1111/jnc.16072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/06/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) plays a relevant role in Alzheimer's disease (AD). MAMs have been implicated in neuronal dysfunction and death since it is associated with impairment of functions regulated in this subcellular domain, including lipid synthesis and trafficking, mitochondria dysfunction, ER stress-induced unfolded protein response (UPR), apoptosis, and inflammation. Since MAMs play an important role in lipid metabolism, in this study we characterized and investigated the lipidome alterations at MAMs in comparison with other subcellular fractions, namely microsomes and mitochondria, using an in vitro model of AD, namely the mouse neuroblastoma cell line (N2A) over-expressing the APP familial Swedish mutation (APPswe) and the respective control (WT) cells. Phospholipids (PLs) and fatty acids (FAs) were isolated from the different subcellular fractions and analyzed by HILIC-LC-MS/MS and GC-MS, respectively. In this in vitro AD model, we observed a down-regulation in relative abundance of some phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE) species with PUFA and few PC with saturated and long-chain FA. We also found an up-regulation of CL, and antioxidant alkyl acyl PL. Moreover, multivariate analysis indicated that each organelle has a specific lipid profile adaptation in N2A APPswe cells. In the FAs profile, we found an up-regulation of C16:0 in all subcellular fractions, a decrease of C18:0 levels in total fraction (TF) and microsomes fraction, and a down-regulation of 9-C18:1 was also found in mitochondria fraction in the AD model. Together, these results suggest that the over-expression of the familial APP Swedish mutation affects lipid homeostasis in MAMs and other subcellular fractions and supports the important role of lipids in AD physiopathology.
Collapse
Affiliation(s)
- Tânia Fernandes
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Cláudia F Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
14
|
Quadri Z, Elsherbini A, Crivelli SM, El‐Amouri SS, Tripathi P, Zhu Z, Ren X, Zhang L, Spassieva SD, Nikolova‐Karakashian M, Bieberich E. Ceramide-mediated orchestration of oxidative stress response through filopodia-derived small extracellular vesicles. J Extracell Vesicles 2024; 13:e12477. [PMID: 38988257 PMCID: PMC11237349 DOI: 10.1002/jev2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
Extracellular vesicles (EVs) are shed from the plasma membrane, but the regulation and function of these EVs remain unclear. We found that oxidative stress induced by H2O2 in Hela cells stimulated filopodia formation and the secretion of EVs. EVs were small (150 nm) and labeled for CD44, indicating that they were derived from filopodia. Filopodia-derived small EVs (sEVs) were enriched with the sphingolipid ceramide, consistent with increased ceramide in the plasma membrane of filopodia. Ceramide was colocalized with neutral sphingomyelinase 2 (nSMase2) and acid sphingomyelinase (ASM), two sphingomyelinases generating ceramide at the plasma membrane. Inhibition of nSMase2 and ASM prevented oxidative stress-induced sEV shedding but only nSMase2 inhibition prevented filopodia formation. nSMase2 was S-palmitoylated and interacted with ASM in filopodia to generate ceramide for sEV shedding. sEVs contained nSMase2 and ASM and decreased the level of these two enzymes in oxidatively stressed Hela cells. A novel metabolic labeling technique for EVs showed that oxidative stress induced secretion of fluorescent sEVs labeled with NBD-ceramide. NBD-ceramide-labeled sEVs transported ceramide to mitochondria, ultimately inducing cell death in a proportion of neuronal (N2a) cells. In conclusion, using Hela cells we provide evidence that oxidative stress induces interaction of nSMase2 and ASM at filopodia, which leads to shedding of ceramide-rich sEVs that target mitochondria and propagate cell death.
Collapse
Affiliation(s)
- Zainuddin Quadri
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Ahmed Elsherbini
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Simone M. Crivelli
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Salim S. El‐Amouri
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Priyanka Tripathi
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Zhihui Zhu
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Xiaojia Ren
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Liping Zhang
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Stefka D. Spassieva
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | | | - Erhard Bieberich
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Veterans Affairs Medical CenterLexingtonKentuckyUSA
| |
Collapse
|
15
|
Park C, Weerakkody JS, Schneider R, Miao S, Pitt D. CNS cell-derived exosome signatures as blood-based biomarkers of neurodegenerative diseases. Front Neurosci 2024; 18:1426700. [PMID: 38966760 PMCID: PMC11222337 DOI: 10.3389/fnins.2024.1426700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
Molecular biomarkers require the reproducible capture of disease-associated changes and are ideally sensitive, specific and accessible with minimal invasiveness to patients. Exosomes are a subtype of extracellular vesicles that have gained attention as potential biomarkers. They are released by all cell types and carry molecular cargo that reflects the functional state of the cells of origin. These characteristics make them an attractive means of measuring disease-related processes within the central nervous system (CNS), as they cross the blood-brain barrier (BBB) and can be captured in peripheral blood. In this review, we discuss recent progress made toward identifying blood-based protein and RNA biomarkers of several neurodegenerative diseases from circulating, CNS cell-derived exosomes. Given the lack of standardized methodology for exosome isolation and characterization, we discuss the challenges of capturing and quantifying the molecular content of exosome populations from blood for translation to clinical use.
Collapse
Affiliation(s)
- Calvin Park
- Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | | | | | - Sheng Miao
- Yale School of Medicine, Yale University, New Haven, CT, United States
| | - David Pitt
- Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
16
|
Zhu Y, Wang F, Xia Y, Wang L, Lin H, Zhong T, Wang X. Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases. Rev Neurosci 2024; 0:revneuro-2024-0043. [PMID: 38889403 DOI: 10.1515/revneuro-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), pose significant global health risks and represent a substantial public health concern in the contemporary era. A primary factor in the pathophysiology of these disorders is aberrant accumulation and aggregation of pathogenic proteins within the brain and spinal cord. Recent investigations have identified extracellular vesicles (EVs) in the central nervous system (CNS) as potential carriers for intercellular transport of misfolded proteins associated with neurodegenerative diseases. EVs are involved in pathological processes that contribute to various brain disorders including neurodegenerative disorders. Proteins linked to neurodegenerative disorders are secreted and distributed from cell to cell via EVs, serving as a mechanism for direct intercellular communication through the transfer of biomolecules. Astrocytes, as active participants in CNS intercellular communication, release astrocyte-derived extracellular vesicles (ADEVs) that are capable of interacting with diverse target cells. This review primarily focuses on the involvement of ADEVs in the development of neurological disorders and explores their potential dual roles - both advantageous and disadvantageous in the context of neurological disorders. Furthermore, this review examines the current studies investigating ADEVs as potential biomarkers for the diagnosis and treatment of neurodegenerative diseases. The prospects and challenges associated with the application of ADEVs in clinical settings were also comprehensively reviewed.
Collapse
Affiliation(s)
- Yifan Zhu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Fangsheng Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yu Xia
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Haihong Lin
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
17
|
Carata E, Muci M, Di Giulio S, Di Giulio T, Mariano S, Panzarini E. The Neuromuscular Disorder Mediated by Extracellular Vesicles in Amyotrophic Lateral Sclerosis. Curr Issues Mol Biol 2024; 46:5999-6017. [PMID: 38921029 PMCID: PMC11202069 DOI: 10.3390/cimb46060358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) represents a neurodegenerative disorder characterized by the progressive loss of both upper and lower motor neurons, resulting in muscular atrophy and eventual paralysis. While much research has concentrated on investigating the impact of major mutations associated with ALS on motor neurons and central nervous system (CNS) cells, recent studies have unveiled that ALS pathogenesis extends beyond CNS imbalances, encompassing dysregulation in other tissues such as skeletal muscle. Evidence from animal models and patients supports this broader perspective. Skeletal muscle, once considered solely as an effector organ, is now recognized as possessing significant secretory activity capable of influencing motor neuron survival. However, the precise cellular and molecular mechanisms underlying the detrimental effects observed in muscle and its associated structures in ALS remain poorly understood. Additionally, emerging data suggest that extracellular vesicles (EVs) may play a role in the establishment and function of the neuromuscular junction (NMJ) under both physiological and pathological conditions and in wasting and regeneration of skeletal muscles, particularly in neurodegenerative diseases like ALS. This review aims to explore the key findings about skeletal muscle involvement in ALS, shedding light on the potential underlying mechanisms and contributions of EVs and their possible application for the design of biosensors.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Marco Muci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Simona Di Giulio
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy;
| | - Tiziano Di Giulio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (E.C.); (M.M.); (T.D.G.); (S.M.)
| |
Collapse
|
18
|
Liao HJ, Yang YP, Liu YH, Tseng HC, Huo TI, Chiou SH, Chang CH. Harnessing the potential of mesenchymal stem cells-derived exosomes in degenerative diseases. Regen Ther 2024; 26:599-610. [PMID: 39253597 PMCID: PMC11382214 DOI: 10.1016/j.reth.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have gained attention as a promising therapeutic approach in both preclinical and clinical osteoarthritis (OA) settings. Various joint cell types, such as chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and release extracellular vesicles (EVs), which subsequently influence the biological activities of recipient cells. Recently, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have shown the potential to modulate various physiological and pathological processes through the modulation of cellular differentiation, immune responses, and tissue repair. This review explores the roles and therapeutic potential of MSC-EVs in OA and rheumatoid arthritis, cardiovascular disease, age-related macular degeneration, Alzheimer's disease, and other degenerative diseases. Notably, we provide a comprehensive summary of exosome biogenesis, microRNA composition, mechanisms of intercellular transfer, and their evolving role in the highlight of exosome-based treatments in both preclinical and clinical avenues.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Huan-Chin Tseng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Teh-Ia Huo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, Taiwan
| |
Collapse
|
19
|
Caller T, Rotem I, Shaihov-Teper O, Lendengolts D, Schary Y, Shai R, Glick-Saar E, Dominissini D, Motiei M, Katzir I, Popovtzer R, Nahmoud M, Boomgarden A, D'Souza-Schorey C, Naftali-Shani N, Leor J. Small Extracellular Vesicles From Infarcted and Failing Heart Accelerate Tumor Growth. Circulation 2024; 149:1729-1748. [PMID: 38487879 PMCID: PMC11220912 DOI: 10.1161/circulationaha.123.066911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/20/2024] [Indexed: 05/24/2024]
Abstract
BACKGROUND Myocardial infarction (MI) and heart failure are associated with an increased incidence of cancer. However, the mechanism is complex and unclear. Here, we aimed to test our hypothesis that cardiac small extracellular vesicles (sEVs), particularly cardiac mesenchymal stromal cell-derived sEVs (cMSC-sEVs), contribute to the link between post-MI left ventricular dysfunction (LVD) and cancer. METHODS We purified and characterized sEVs from post-MI hearts and cultured cMSCs. Then, we analyzed cMSC-EV cargo and proneoplastic effects on several lines of cancer cells, macrophages, and endothelial cells. Next, we modeled heterotopic and orthotopic lung and breast cancer tumors in mice with post-MI LVD. We transferred cMSC-sEVs to assess sEV biodistribution and its effect on tumor growth. Finally, we tested the effects of sEV depletion and spironolactone treatment on cMSC-EV release and tumor growth. RESULTS Post-MI hearts, particularly cMSCs, produced more sEVs with proneoplastic cargo than nonfailing hearts did. Proteomic analysis revealed unique protein profiles and higher quantities of tumor-promoting cytokines, proteins, and microRNAs in cMSC-sEVs from post-MI hearts. The proneoplastic effects of cMSC-sEVs varied with different types of cancer, with lung and colon cancers being more affected than melanoma and breast cancer cell lines. Post-MI cMSC-sEVs also activated resting macrophages into proangiogenic and protumorigenic states in vitro. At 28-day follow-up, mice with post-MI LVD developed larger heterotopic and orthotopic lung tumors than did sham-MI mice. Adoptive transfer of cMSC-sEVs from post-MI hearts accelerated the growth of heterotopic and orthotopic lung tumors, and biodistribution analysis revealed accumulating cMSC-sEVs in tumor cells along with accelerated tumor cell proliferation. sEV depletion reduced the tumor-promoting effects of MI, and adoptive transfer of cMSC-sEVs from post-MI hearts partially restored these effects. Finally, spironolactone treatment reduced the number of cMSC-sEVs and suppressed tumor growth during post-MI LVD. CONCLUSIONS Cardiac sEVs, specifically cMSC-sEVs from post-MI hearts, carry multiple protumorigenic factors. Uptake of cMSC-sEVs by cancer cells accelerates tumor growth. Treatment with spironolactone significantly reduces accelerated tumor growth after MI. Our results provide new insight into the mechanism connecting post-MI LVD to cancer and propose a translational option to mitigate this deadly association.
Collapse
Affiliation(s)
- Tal Caller
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Itai Rotem
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Olga Shaihov-Teper
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Daria Lendengolts
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Yeshai Schary
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Ruty Shai
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital, Cancer Research Center (R.S.), Sheba Medical Center, Tel Hashomer, Israel
| | - Efrat Glick-Saar
- Cancer Research Center and Wohl Centre for Translational Medicine (E.G.-S., D.D.), Sheba Medical Center, Tel Hashomer, Israel
| | - Dan Dominissini
- Cancer Research Center and Wohl Centre for Translational Medicine (E.G.-S., D.D.), Sheba Medical Center, Tel Hashomer, Israel
| | - Menachem Motiei
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel (M.M., I.K., R.P.)
| | - Idan Katzir
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel (M.M., I.K., R.P.)
| | - Rachela Popovtzer
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel (M.M., I.K., R.P.)
| | | | - Alex Boomgarden
- Department of Biological Sciences, University of Notre Dame, IN (A.B., C.D'S.-S.)
| | | | - Nili Naftali-Shani
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| | - Jonathan Leor
- Neufeld and Tamman Cardiovascular Research Institutes, School of Medicine, Tel Aviv University, Israel (T.C., I.R., O.S.-T., D.L., Y.S., R.S., M.N., N.N.-S., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center (T.C., I.R., O.S.-T., D.L., Y.S., N.N.-S., J.L.), Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
20
|
Liang Z, Zhuang H, Cao X, Ma G, Shen L. Subcellular proteomics insights into Alzheimer's disease development. Proteomics Clin Appl 2024; 18:e2200112. [PMID: 37650321 DOI: 10.1002/prca.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.
Collapse
Affiliation(s)
- Zhiyuan Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Hongbin Zhuang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Xueshan Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, P. R. China
| |
Collapse
|
21
|
Liu S, Geng D. Key developments and hotspots of exosomes in Alzheimer's disease: a bibliometric study spanning 2003 to 2023. Front Aging Neurosci 2024; 16:1377672. [PMID: 38752210 PMCID: PMC11094344 DOI: 10.3389/fnagi.2024.1377672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Background Alzheimer's disease (AD) is a degenerative illness of the central nervous system that is irreversible and is characterized by gradual behavioral impairment and cognitive dysfunction. Researches on exosomes in AD have gradually gained the attention of scholars in recent years. However, the literatures in this research area do not yet have a comprehensive visualization analysis. The aim of this work is to use bibliometrics to identify the knowledge constructs and investigate the research frontiers and hotspots related to exosomes in AD. Methods From January 2003 until June 2023, we searched the Web of Science Core Collection for literature on exosomes in AD. We found 585 papers total. The bibliometric study was completed using VOSviewer, the R package "bibliometrix," and CiteSpace. The analysis covered nations, institutions, authors, journals, and keywords. Results Following 2019, the articles on exosomes in AD increased significantly year by year. The vast majority of publications came from China and the US. The University of California System, the National Institutes of Health, and the NIH National Institute on Aging in the US were the primary research institutions. Goetzl Edward J. was frequently co-cited, while Kapogiannis Dimitrios was the most prolific author in this discipline with the greatest number of articles. Lee Mijung et al. have been prominent in the last two years in exosomes in AD. The Journal of Alzheimer's Disease was the most widely read publication, and Alzheimers & Dementia had the highest impact factor. The Journal of Biological Chemistry, Proceedings of the National Academy of Sciences of the United States of America, and Journal of Alzheimer's Disease were the three journals with more than 1,000 citations. The primary emphasis of this field was Alzheimer's disease, exosomes, and extracellular vesicles; since 2017, the number of phrases pertaining to the role of exosomes in AD pathogenesis has increased annually. "Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study" was the reference with the greatest citing power, indicating the future steered direction in this field. Conclusion Using bibliometrics, we have compiled the research progress and tendencies on exosomes in Alzheimer's disease for the first time. This helps determine the objectives and paths for future study.
Collapse
Affiliation(s)
- Siyu Liu
- Radiology Department, Huashan Hospital, Affiliated with Fudan University, Shanghai, China
| | - Daoying Geng
- Radiology Department, Huashan Hospital, Affiliated with Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
23
|
Cyr B, Cabrera Ranaldi EDLRM, Hadad R, Dietrich WD, Keane RW, de Rivero Vaccari JP. Extracellular vesicles mediate inflammasome signaling in the brain and heart of Alzheimer's disease mice. Front Mol Neurosci 2024; 17:1369781. [PMID: 38660388 PMCID: PMC11039928 DOI: 10.3389/fnmol.2024.1369781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is an inflammatory neurodegenerative disease characterized by memory loss and cognitive impairment that worsens over time. AD is associated with many comorbidities, including cardiovascular disease that are associated with poorer outcomes. Comorbidities, especially heart disease and stroke, play a significant role in the demise of AD patients. Thus, it is important to understand how comorbidities are linked to AD. We have previously shown that extracellular vesicle (EV)-mediated inflammasome signaling plays an important role in the pathogenesis of brain injury and acute lung injury after traumatic brain injury. Methods We analyzed the cortical, hippocampal, ventricular, and atrial protein lysates from APP/PS1 mice and their respective controls for inflammasome signaling activation. Additionally, we analyzed serum-derived EV for size, concentration, and content of inflammasome proteins as well as the EV marker CD63. Finally, we performed conditioned media experiments of EV from AD patients and healthy age-matched controls delivered to cardiovascular cells in culture to assess EV-induced inflammation. Results We show a significant increase in Pyrin, NLRP1, caspase-1, and ASC in the brain cortex whereas caspase-8, ASC, and IL-1β were significantly elevated in the heart ventricles of AD mice when compared to controls. We did not find significant differences in the size or concentration of EV between groups, but there was a significant increase of caspase-1 and IL-1β in EV from AD mice compared to controls. In addition, conditioned media experiments of serum-derived EV from AD patients and age-matched controls delivered to cardiovascular cells in culture resulted in inflammasome activation, and significant increases in TNF-α and IL-2. Conclusion These results indicate that EV-mediated inflammasome signaling in the heart may play a role in the development of cardiovascular diseases in AD patients.
Collapse
Affiliation(s)
- Brianna Cyr
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Erika D. L. R. M. Cabrera Ranaldi
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - W. Dalton Dietrich
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Robert W. Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
24
|
Herman M, Randall GW, Spiegel JL, Maldonado DJ, Simoes S. Endo-lysosomal dysfunction in neurodegenerative diseases: opinion on current progress and future direction in the use of exosomes as biomarkers. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220387. [PMID: 38368936 PMCID: PMC10874701 DOI: 10.1098/rstb.2022.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024] Open
Abstract
Over the past two decades, increased research has highlighted the connection between endosomal trafficking defects and neurodegeneration. The endo-lysosomal network is an important, complex cellular system specialized in the transport of proteins, lipids, and other metabolites, essential for cell homeostasis. Disruption of this pathway is linked to a wide range of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and frontotemporal dementia. Furthermore, there is strong evidence that defects in this pathway create opportunities for diagnostic and therapeutic intervention. In this Opinion piece, we concisely address the role of endo-lysosomal dysfunction in five neurodegenerative diseases and discuss how future research can investigate this intracellular pathway, including extracellular vesicles with a specific focus on exosomes for the identification of novel disease biomarkers. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Mathieu Herman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Grace W. Randall
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia L. Spiegel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Delphina J. Maldonado
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
25
|
Li X, Chen J, Yang Y, Cai H, Ao Z, Xing Y, Li K, Yang K, Wallace A, Friend J, Lee LP, Wang N, Guo F. Extracellular vesicles-based point-of-care testing for the diagnosis and monitoring of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587511. [PMID: 38617279 PMCID: PMC11014472 DOI: 10.1101/2024.03.31.587511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) is a debilitating condition that affects millions of people worldwide. One promising strategy for detecting and monitoring AD early on is using extracellular vesicles (EVs)-based point-of-care testing; however, diagnosing AD using EVs poses a challenge due to the low abundance of EV-biomarkers. Here, we present a fully integrated organic electrochemical transistor (OECT) that enables high accuracy, speed, and convenience in the detection of EVs from AD patients. We incorporated self-aligned acoustoelectric enhancement of EVs on a chip that rapidly propels, enriches, and specifically binds EVs to the OECT detection area. With our enhancement of pre-concentration, we increased the sensitivity to a limit of detection of 500 EV particles/μL and reduced the required detection time to just two minutes. We also tested the sensor on an AD mouse model to monitor AD progression, examined mouse Aβ EVs at different time courses, and compared them with intraneuronal Aβ cumulation using MRI. This innovative technology has the potential to diagnose Alzheimer's and other neurodegenerative diseases accurately and quickly, enabling monitoring of disease progression and treatment response.
Collapse
|
26
|
Padinharayil H, Varghese J, Wilson C, George A. Mesenchymal stem cell-derived exosomes: Characteristics and applications in disease pathology and management. Life Sci 2024; 342:122542. [PMID: 38428567 DOI: 10.1016/j.lfs.2024.122542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Mesenchymal stem cells (MSCs) possess a role in tissue regeneration and homeostasis because of inherent immunomodulatory capacity and the production of factors that encourage healing. There is substantial evidence that MSCs' therapeutic efficacy is primarily determined by their paracrine function including in cancers. Extracellular vesicles (EVs) are basic paracrine effectors of MSCs that reside in numerous bodily fluids and cell homogenates and play an important role in bidirectional communication. MSC-derived EVs (MSC-EVs) offer a wide range of potential therapeutic uses that exceed cell treatment, while maintaining protocell function and having less immunogenicity. We describe characteristics and isolation methods of MSC-EVs, and focus on their therapeutic potential describing its roles in tissue repair, anti-fibrosis, and cancer with an emphasis on the molecular mechanism and immune modulation and clinical trials. We also explain current understanding and challenges in the clinical applications of MSC-EVs as a cell free therapy.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India; PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Jinsu Varghese
- PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Cornelia Wilson
- Canterbury Christ Church University, Natural Applied Sciences, Life Science Industry Liaison Lab, Discovery Park, Sandwich CT139FF, United Kingdom.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India.
| |
Collapse
|
27
|
Coughlan C, Lindenberger J, Jacot JG, Johnson NR, Anton P, Bevers S, Welty R, Graner MW, Potter H. Specific Binding of Alzheimer's Aβ Peptides to Extracellular Vesicles. Int J Mol Sci 2024; 25:3703. [PMID: 38612514 PMCID: PMC11011551 DOI: 10.3390/ijms25073703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) is the fifth leading cause of death among adults aged 65 and older, yet the onset and progression of the disease is poorly understood. What is known is that the presence of amyloid, particularly polymerized Aβ42, defines when people are on the AD continuum. Interestingly, as AD progresses, less Aβ42 is detectable in the plasma, a phenomenon thought to result from Aβ becoming more aggregated in the brain and less Aβ42 and Aβ40 being transported from the brain to the plasma via the CSF. We propose that extracellular vesicles (EVs) play a role in this transport. EVs are found in bodily fluids such as blood, urine, and cerebrospinal fluid and carry diverse "cargos" of bioactive molecules (e.g., proteins, nucleic acids, lipids, metabolites) that dynamically reflect changes in the cells from which they are secreted. While Aβ42 and Aβ40 have been reported to be present in EVs, it is not known whether this interaction is specific for these peptides and thus whether amyloid-carrying EVs play a role in AD and/or serve as brain-specific biomarkers of the AD process. To determine if there is a specific interaction between Aβ and EVs, we used isothermal titration calorimetry (ITC) and discovered that Aβ42 and Aβ40 bind to EVs in a manner that is sequence specific, saturable, and endothermic. In addition, Aβ incubation with EVs overnight yielded larger amounts of bound Aβ peptide that was fibrillar in structure. These findings point to a specific amyloid-EV interaction, a potential role for EVs in the transport of amyloid from the brain to the blood, and a role for this amyloid pool in the AD process.
Collapse
Affiliation(s)
- Christina Coughlan
- University of Colorado Alzheimer’s and Cognition Center (CUACC), Linda Crnic Institute for Down Syndrome (LCI), Department of Neurology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl, Aurora, CO 80045, USA (H.P.)
| | - Jared Lindenberger
- Structural Biology and Biophysics Core, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (R.W.)
- Duke Human Vaccine Institute, Duke University, 2 Genome Ct., Durham, NC 27710, USA
| | - Jeffrey G. Jacot
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl, Aurora, CO 80045, USA
| | - Noah R. Johnson
- University of Colorado Alzheimer’s and Cognition Center (CUACC), Linda Crnic Institute for Down Syndrome (LCI), Department of Neurology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl, Aurora, CO 80045, USA (H.P.)
| | - Paige Anton
- University of Colorado Alzheimer’s and Cognition Center (CUACC), Linda Crnic Institute for Down Syndrome (LCI), Department of Neurology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl, Aurora, CO 80045, USA (H.P.)
| | - Shaun Bevers
- Structural Biology and Biophysics Core, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (R.W.)
| | - Robb Welty
- Structural Biology and Biophysics Core, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (R.W.)
| | - Michael W. Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl, Aurora, CO 80045, USA
| | - Huntington Potter
- University of Colorado Alzheimer’s and Cognition Center (CUACC), Linda Crnic Institute for Down Syndrome (LCI), Department of Neurology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl, Aurora, CO 80045, USA (H.P.)
| |
Collapse
|
28
|
Liu X, Jin Y, Cheng X, Song Q, Wang Y, He L, Chen T. The relevance between abnormally elevated serum ceramide and cognitive impairment in Alzheimer's disease model mice and its mechanism. Psychopharmacology (Berl) 2024; 241:525-542. [PMID: 38277004 DOI: 10.1007/s00213-024-06530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
RATIONALE The plasma ceramide levels in Alzheimer's disease (AD) patients are found abnormally elevated, which is related to cognitive decline. OBJECTIVES This research was aimed to investigate the mechanisms of aberrant elevated ceramides in the pathogenesis of AD. RESULTS The ICR mice intracerebroventricularly injected with Aβ1-42 and APP/PS1 transgenic mice were employed as AD mice. The cognitive deficiency, impaired episodic and spatial memory were observed without altered spontaneous ability. The serum levels of p-tau and ceramide were evidently elevated. The modified expressions and activities of glycogen synthase kinase-3β (GSK-3β) and protein phosphatase 2A (PP2A) influenced the serum content of p-tau. The levels of ceramide synthesis-related genes including sptlc1, sptlc2, cers2, and cers6 in the liver of AD mice were increased, while the ceramide degradation-related gene asah2 did not significantly change. The regulations of these genes were conducted by activated nuclear factor kappa-B (NF-κB) signaling. NF-κB, promoted by free fatty acid (FFA), also increased the hepatic concentrations of proinflammatory cytokines. The FFA amount was modulated by fatty acid synthesis-related genes acc1 and srebp-1c. Besides, the decreased levels of pre-proopiomelanocortin (pomc) mRNA and increased agouti-related protein (agrp) mRNA were found in the hypothalamus without significant alteration of melanocortin receptor 4 (MC4R) mRNA. The bioinformatic analyses proved the results using GEO datasets and AlzData. CONCLUSIONS Ceramide was positively related to the increased p-tau and impaired cognitive function. The increased generation of ceramide and endoplasmic reticulum stress in the hypothalamus was positively related to fatty acid synthesis and NF-κB signaling via brain-liver axis.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yongzeng Jin
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xinyi Cheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Qinghua Song
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yanan Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| | - Tong Chen
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
29
|
Schneider N, Hermann PC, Eiseler T, Seufferlein T. Emerging Roles of Small Extracellular Vesicles in Gastrointestinal Cancer Research and Therapy. Cancers (Basel) 2024; 16:567. [PMID: 38339318 PMCID: PMC10854789 DOI: 10.3390/cancers16030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Discovered in the late eighties, sEVs are small extracellular nanovesicles (30-150 nm diameter) that gained increasing attention due to their profound roles in cancer, immunology, and therapeutic approaches. They were initially described as cellular waste bins; however, in recent years, sEVs have become known as important mediators of intercellular communication. They are secreted from cells in substantial amounts and exert their influence on recipient cells by signaling through cell surface receptors or transferring cargos, such as proteins, RNAs, miRNAs, or lipids. A key role of sEVs in cancer is immune modulation, as well as pro-invasive signaling and formation of pre-metastatic niches. sEVs are ideal biomarker platforms, and can be engineered as drug carriers or anti-cancer vaccines. Thus, sEVs further provide novel avenues for cancer diagnosis and treatment. This review will focus on the role of sEVs in GI-oncology and delineate their functions in cancer progression, diagnosis, and therapeutic use.
Collapse
Affiliation(s)
- Nora Schneider
- Department for Internal Medicine 1, University Clinic Ulm, 89081 Ulm, Germany; (P.C.H.); (T.S.)
| | | | - Tim Eiseler
- Correspondence: (N.S.); (T.E.); Tel.: +49-731-500-44678 (N.S.); +49-731-500-44523 (T.E.)
| | | |
Collapse
|
30
|
Ye Y, Gao M, Shi W, Gao Y, Li Y, Yang W, Zheng X, Lu X. The immunomodulatory effects of mesenchymal stem cell-derived extracellular vesicles in Alzheimer's disease. Front Immunol 2024; 14:1325530. [PMID: 38259476 PMCID: PMC10800421 DOI: 10.3389/fimmu.2023.1325530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neuroinflammation has been identified as another significant pathogenic factor in Alzheimer's disease following Aβ amyloid deposition and tau protein hyperphosphorylation, activated in the central nervous system by glial cells in response to injury-related and pathogen-related molecular patterns. Moderate glial cell activity can be neuroprotective; however, excessive glial cell activation advances the pathology of Alzheimer's disease and is accompanied by structural changes in the brain interface, with peripheral immune cells entering the brain through the blood-brain barrier, creating a vicious circle. The immunomodulatory properties of mesenchymal stem cells (MSCs) are primarily conveyed through extracellular vesicles (EVs). MSC-EVs participate in chronic inflammatory and immune processes by transferring nucleic acids, proteins and lipids from the parent cell to the recipient cell, thus MSC-EVs retain their immunomodulatory capacity while avoiding the safety issues associated with living cell therapy, making them a promising focus for immunomodulatory therapy. In this review, we discuss the modulatory effects of MSC-EVs on Alzheimer's disease-associated immune cells and the mechanisms involved in their treatment of the condition. We have found a clinical trial of MSC-EVs in Alzheimer's disease treatment and outlined the challenges of this approach. Overall, MSC-EVs have the potential to provide a safe and effective treatment option for Alzheimer's disease by targeting neuroinflammation.
Collapse
Affiliation(s)
- Yang Ye
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mingzhu Gao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Central Hospital of Jiangnan University, Wuxi No.2 People’s Hospital, Wuxi, China
| | - Wentao Shi
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yan Gao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yilu Li
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenhui Yang
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaomin Zheng
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaojie Lu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Central Hospital of Jiangnan University, Wuxi No.2 People’s Hospital, Wuxi, China
| |
Collapse
|
31
|
Sutter PA, Lavoie ER, Lombardo ET, Pinter MK, Crocker SJ. Emerging Role of Astrocyte-Derived Extracellular Vesicles as Active Participants in CNS Neuroimmune Responses. Immunol Invest 2024; 53:26-39. [PMID: 37981468 PMCID: PMC11472422 DOI: 10.1080/08820139.2023.2281621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Astrocyte-derived extracellular vesicles (ADEVs) have garnered attention as a fundamental mechanism of intercellular communication in health and disease. In the context of neurological diseases, for which prodromal diagnosis would be advantageous, ADEVs are also being explored for their potential utility as biomarkers. In this review, we provide the current state of data supporting our understanding on the manifold roles of ADEVs in several common neurological disorders. We also discuss these findings from a unique emerging perspective that ADEVs represent a means by which the central nervous system may broadcast influence over other systems in the body to affect neuroinflammatory processes, with both dual potential to either propagate illness or restore health and homeostasis.
Collapse
Affiliation(s)
- Pearl A. Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Erica R. Lavoie
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Evan T. Lombardo
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Meghan K. Pinter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030
| |
Collapse
|
32
|
Pappolla MA, Wu P, Fang X, Poeggeler B, Sambamurti K, Wisniewski T, Perry G. Stem Cell Interventions in Neurology: From Bench to Bedside. J Alzheimers Dis 2024; 101:S395-S416. [PMID: 39422938 DOI: 10.3233/jad-230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Stem cell therapies are progressively redefining the treatment landscape for a spectrum of neurological and age-related disorders. This review discusses the molecular and functional attributes of stem cells, emphasizing the roles of neural stem cells and mesenchymal stem cells in the context of neurological diseases such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and Alzheimer's disease. The review also explores the potential of stem cells in addressing the aging process. The paper analyzes stem cells' intrinsic properties of self-renewal, differentiation, and paracrine effects, alongside the importance of laboratory-modified stem cells like induced pluripotent stem cells and transgenic stem cells. Insights into disease-specific stem cell treatments are offered, reviewing both successes and challenges in the field. This includes the translational difficulties from rodent studies to human trials. The review concludes by acknowledging the uncharted territories that warrant further investigation, emphasizing the potential roles of stem cell-derived exosomes and indole-related molecules, and aiming at providing a basic understanding of stem cell therapies.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Wu
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg August University Göttingen, Gütersloh, Germany
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology, and Psychiatry, New York University Alzheimer's Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
33
|
Eisenbaum M, Pearson A, Ortiz C, Mullan M, Crawford F, Ojo J, Bachmeier C. ApoE4 expression disrupts tau uptake, trafficking, and clearance in astrocytes. Glia 2024; 72:184-205. [PMID: 37668005 DOI: 10.1002/glia.24469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
Tauopathies are a collection of neurodegenerative diseases characterized by the accumulation of pathogenic aggregates of the microtubule-associated protein tau. Despite the prevalence and diversity of tau astrogliopathy in tauopathies, the interactions between astrocytes and tau in the brain, and the influence of neurodegenerative genetic risk factors like the apolipoprotein E4 (apoE4) isoform, are largely unknown. Here, we leveraged primary and immortalized astrocytes expressing humanized apoE isoforms to characterize the mechanisms by which astrocytes interact with and eliminate extracellular tau, and the influence of apoE genotype on these processes. Our work indicates that astrocytes rapidly internalize, process, and release tau via an exosomal secretory mechanism under physiological conditions. However, we found that apoE4 disrupted these processes in comparison to apoE3, resulting in an astrocytic phenotype prone to intracellular tau accumulation. Furthermore, exposure to repetitive mild traumatic brain injuries exacerbated the apoE4-induced impairments in tau processing and elimination by astrocytes in apoE4 targeted-replacement mice. The diminished ability of apoE4 astrocytes to eliminate extracellular tau can lead to an accumulation of pathogenic tau, which induces mitochondrial dysfunction, as demonstrated by our studies. In total, our findings suggest that the apoE4 isoform lowers the threshold of astrocytic resilience to pathogenic tau, rendering them susceptible to bioenergetic deficits in the early stages of neurodegenerative diseases such as traumatic brain injury, potentially contributing to neurological decline.
Collapse
Affiliation(s)
| | | | | | | | - Fiona Crawford
- The Roskamp Institute, Sarasota, Florida, USA
- James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Joseph Ojo
- The Roskamp Institute, Sarasota, Florida, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, Florida, USA
- Bay Pines VA Healthcare System, Bay Pines, Florida, USA
| |
Collapse
|
34
|
Chen Y, Hao T, Wang J, Chen Y, Wang X, Wei W, Zhao J, Qian Y. A Near-Infrared Fluorogenic Probe for Rapid, Specific, and Ultrasensitive Detection of Sphingosine in Living Cells and In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307598. [PMID: 38032131 PMCID: PMC10787105 DOI: 10.1002/advs.202307598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Sphingosine (Sph) plays important roles in various complex biological processes. Abnormalities in Sph metabolism can result in various diseases, including neurodegenerative disorders. However, due to the lack of rapid and accurate detection methods, understanding sph metabolic in related diseases is limited. Herein, a series of near-infrared fluorogenic probes DMS-X (X = 2F, F, Cl, Br, and I) are designed and synthesized. The fast oxazolidinone ring formation enables the DMS-2F to detect Sph selectively and ultrasensitively, and the detection limit reaches 9.33 ± 0.41 nm. Moreover, it is demonstrated that DMS-2F exhibited a dose- and time-dependent response to Sph and can detect sph in living cells. Importantly, for the first time, the changes in Sph levels induced by Aβ42 oligomers and H2 O2 are assessed through a fluorescent imaging approach, and further validated the physiological processes by which Aβ42 oligomers and reactive oxygen species (ROS)-induce changes in intracellular Sph levels. Additionally, the distribution of Sph in living zebrafish is successfully mapped by in vivo imaging of a zebrafish model. This work provides a simple and efficient method for probing Sph in living cells and in vivo, which will facilitate investigation into the metabolic process of Sph and the connection between Sph and disease pathologies.
Collapse
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Tingting Hao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Jing Wang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Yiming Chen
- School of EngineeringVanderbilt UniversityNashville37235USA
| | - Xiuxiu Wang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Wei Wei
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjing210023China
| | - Jing Zhao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| |
Collapse
|
35
|
Abidi SMS, Sharma C, Randhawa S, Shukla AK, Acharya A. A review on nanotechnological perspective of "the amyloid cascade hypothesis" for neurodegenerative diseases. Int J Biol Macromol 2023; 253:126821. [PMID: 37690655 DOI: 10.1016/j.ijbiomac.2023.126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration of neurons which deteriorates the brain functions. An early detection of the onset of NDs is utmost important, as it will provide the fast treatment strategies to prevent further progression of the disease. Conventionally, accurate diagnosis of the brain related disorders is difficult in their early phase. To solve this problem, nanotechnology based neurofunctional imaging and biomarker detection techniques have been developed which allows high specificity and sensitivity towards screening and diagnosis of NDs. Another challenge to treat the brain related disorders is to overcome the complex integrity of blood-brain-barrier (BBB) for the delivery of theranostic agents. Fortunately, utilization of nanomaterials has been pursued as promising strategy to address this challenge. Herein, we critically highlighted the recent improvements in the field of neurodiagnostic and therapeutic approaches involving innovative strategies for diagnosis, and inhibition of protein aggregates. We have provided particular emphasis on the use of nanotechnology which can push forward the blooming research growth in this field to win the battle against devastating NDs.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
36
|
Bodart-Santos V, Pinheiro LS, da Silva-Junior AJ, Froza RL, Ahrens R, Gonçalves RA, Andrade MM, Chen Y, Alcantara CDL, Grinberg LT, Leite REP, Ferreira ST, Fraser PE, De Felice FG. Alzheimer's disease brain-derived extracellular vesicles reveal altered synapse-related proteome and induce cognitive impairment in mice. Alzheimers Dement 2023; 19:5418-5436. [PMID: 37204850 DOI: 10.1002/alz.13134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Extracellular vesicles (EVs) have been implicated in the spread of neuropathology in Alzheimer's disease (AD), but their involvement in behavioral outcomes linked to AD remains to be determined. METHODS EVs isolated from post mortem brain tissue from control, AD, or frontotemporal dementia (FTD) donors, as well as from APP/PS1 mice, were injected into the hippocampi of wild-type (WT) or a humanized Tau mouse model (hTau/mTauKO). Memory tests were carried out. Differentially expressed proteins in EVs were assessed by proteomics. RESULTS Both AD-EVs and APP/PS1-EVs trigger memory impairment in WT mice. We further demonstrate that AD-EVs and FTD-EVs carry Tau protein, present altered protein composition associated with synapse regulation and transmission, and trigger memory impairment in hTau/mTauKO mice. DISCUSSION Results demonstrate that AD-EVs and FTD-EVs have negative impacts on memory in mice and suggest that, in addition to spreading pathology, EVs may contribute to memory impairment in AD and FTD. HIGHLIGHTS Aβ was detected in EVs from post mortem AD brain tissue and APP/PS1 mice. Tau was enriched in EVs from post mortem AD, PSP and FTD brain tissue. AD-derived EVs and APP/PS1-EVs induce cognitive impairment in wild-type (WT) mice. AD- and FTD-derived EVs induce cognitive impairment in humanized Tau mice. Proteomics findings associate EVs with synapse dysregulation in tauopathies.
Collapse
Affiliation(s)
- Victor Bodart-Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Lisandra S Pinheiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Almir J da Silva-Junior
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rudimar L Froza
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Rosemary Ahrens
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Rafaella A Gonçalves
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences and Department of Psychiatry, Queen's University, Kingston, Canada
| | - Mayara M Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yan Chen
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Carolina de Lima Alcantara
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lea T Grinberg
- Department of Pathology, University of São Paulo Medical School, Sao Paulo, Brazil
- Memory and Aging Center, Department of Neurology and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Renata E P Leite
- Department of Pathology, University of São Paulo Medical School, Sao Paulo, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences and Department of Psychiatry, Queen's University, Kingston, Canada
- D'OR Institute for Research and Education, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Li Y, Ji G, Lian M, Liu X, Xu Y, Gui Y. Effect of PLA2G6 and SMPD1 Variants on the Lipid Metabolism in the Cerebrospinal Fluid of Patients with Parkinson's Disease: A Non-targeted Lipidomics Study. Neurol Ther 2023; 12:2021-2040. [PMID: 37707705 PMCID: PMC10630267 DOI: 10.1007/s40120-023-00542-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
INTRODUCTION Sleep patterns are more frequently interrupted in patients with Parkinson's disease (PD), and it is still unclear whether genetic factors are involved in PD-related sleep disorders. In this study, we hypothesize that PD-associated genetic risk affects lipid metabolism, which in turn contributes to different types of sleep disorders. METHODS We used a non-targeted lipidomics to explore the lipid composition of cerebrospinal fluid (CSF) exosomes derived from patients with PD carrying phospholipase A2 Group VI (PLA2G6) and sphingomyelin phosphodiesterase 1 (SMPD1) mutations. RESULTS PLA2G6 mutations (c.1966C > G, Leu656Val; c.2077C > G, Leu693Val; c.1791delC, His597fx69) significantly increase the exosomal content of glycerophospholipids and lysophospholipids, specifically phosphatidylcholine (PC) and lysophosphatidylcholine (LPC). Exosome surface presence of melatomin receptor 1A (MTNR1A) was detectable only in patients with PLA2G6 mutations. We have further shown that, in patients with PD carrying PLA2G6 mutations, sleep latency was significantly longer compared to those carrying WT PLA2G6, and we speculate that functional PLA2G6 mutations lead to structural changes and lipid deregulation of exosomes, which in turn alters exosomal cargo and affects PD-related sleep disorders. In SMPD1, G508R variant-carrying patients with PD abundance of sphingomyelins was significantly higher and had significantly shorter rapid eye movement sleep. CONCLUSIONS Our study demonstrated that the disturbed composition and function of CSF-derived exosome lipidome during the pathological stage of PD may affect different types of sleep disorder in PD.
Collapse
Affiliation(s)
- Yongang Li
- Department of Neurology, The First People's Hospital of Wenling, Wenling, China
| | - GuiKai Ji
- Shanghai FuXing Senior High School, Shanghai, 200434, China
| | - Mengjia Lian
- Department of Neurology, The First People's Hospital of Wenling, Wenling, China
| | - Xuan Liu
- Department of Neurology, The First People's Hospital of Wenling, Wenling, China
| | - Ying Xu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, China
| | - Yaxing Gui
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, China.
| |
Collapse
|
38
|
Zhao S, Zhang J, Chen Y, Cui X, Liu H, Yan Y, Sun Y, Qi Y, Liu Y. The comprehensive mechanism underlying Schisandra polysaccharide in AD-like symptoms of Aβ25-35-induced rats based on hippocampal metabolomics and serum lipidomics techniques. J Pharm Biomed Anal 2023; 236:115717. [PMID: 37716276 DOI: 10.1016/j.jpba.2023.115717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
As is well documented, Alzheimer's disease (AD) is the most prevalent neurodegenerative disease. Meanwhile, Schisandra polysaccharide (SCP) has been reported to exert a protective effect on the nervous system and can regulate metabolic disorders in AD-like symptoms of amyloid β-peptide (Aβ) 25-35-induced rats. Nevertheless, the underlying mechanisms and metabolic markers for the diagnosis of AD are yet to be determined. This study aimed to explore the neuroprotective effect and potential mechanism of action of SCP in AD-like symptoms of Aβ25-35-induced rats by combining pharmacodynamics, metabolomics, and lipidomics. The pharmacodynamic results revealed that SCP significantly improved the spatial learning and long-term memory function and the morphology of neurons in the hippocampal CA1 region, alleviated inflammatory damage and oxidative stress, inhibited the activation of microglia and astrocytes, and increased the proportion of mature neurons of AD-like symptoms of Aβ25-35-induced rats. The results of hippocampal metabolomics and serum lipidomics showed 46 and 48 potential biomarkers were identified for the SCP treatment of AD, respectively. The involved pathways principally comprised lipid metabolism, amino acid metabolism, and energy metabolism. This study elucidates the neuroprotective effect of SCP in AD and its mechanism from the perspective of metabolomics and lipidomics and provides a theoretical basis for the therapeutic effect of SCP in AD.
Collapse
Affiliation(s)
- Shuo Zhao
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Jinpeng Zhang
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Yufeng Chen
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Xinyuan Cui
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Haiqing Liu
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Ying Yan
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Yuexiang Sun
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Yongxiu Qi
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China
| | - Yuanyuan Liu
- Pharmaceutical Analysis Teaching Experimental Center, School of Pharmacy, Shandong First Medical University, Taian 271000, China.
| |
Collapse
|
39
|
Rao A, Chen N, Kim MJ, Blumenfeld J, Yip O, Hao Y, Liang Z, Nelson MR, Koutsodendris N, Grone B, Ding L, Yoon SY, Arriola P, Huang Y. Microglia Depletion Reduces Human Neuronal APOE4-Driven Pathologies in a Chimeric Alzheimer's Disease Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566510. [PMID: 38014339 PMCID: PMC10680610 DOI: 10.1101/2023.11.10.566510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Despite strong evidence supporting the involvement of both apolipoprotein E4 (APOE4) and microglia in Alzheimer's Disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-driven AD pathogenesis remain elusive. Here, we examined such effects utilizing microglial depletion in a chimeric model with human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) induced pluripotent stem cell (iPSC)-derived human neurons into the hippocampus of human APOE3 or APOE4 knock-in mice, and depleted microglia in half the chimeric mice. We found that both neuronal APOE and microglial presence were important for the formation of Aβ and tau pathologies in an APOE isoform-dependent manner (APOE4 > APOE3). Single-cell RNA-sequencing analysis identified two pro-inflammatory microglial subtypes with high MHC-II gene expression that are enriched in chimeric mice with human APOE4 neuron transplants. These findings highlight the concerted roles of neuronal APOE, especially APOE4, and microglia in AD pathogenesis.
Collapse
Affiliation(s)
- Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
| | - Nuo Chen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Zherui Liang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Maxine R. Nelson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
| | - Brian Grone
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Leo Ding
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Patrick Arriola
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
40
|
Guo M, Wang L, Yin Z, Chen F, Lei P. Small extracellular vesicles as potential theranostic tools in central nervous system disorders. Biomed Pharmacother 2023; 167:115407. [PMID: 37683594 DOI: 10.1016/j.biopha.2023.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Small extracellular vesicles(sEVs), a subset of extracellular vesicles with a bilateral membrane structure, contain biological cargoes, such as lipids, nucleic acids, and proteins. sEVs are crucial mediators of intercellular communications in the physiological and pathological processes of the central nervous system. Because of the special structure and complex pathogenesis of the brain, central nervous system disorders are characterized by high mortality and morbidity. Increasing evidence has focused on the potential of sEVs in clinical application for central nervous system disorders. sEVs are emerging as a promising diagnostic and therapeutic tool with high sensitivity, low immunogenicity, superior safety profile, and high transfer efficiency. This review highlighted the development of sEVs in central nervous system disorder clinical application. We also outlined the role of sEVs in central nervous system disorders and discussed the limitations of sEVs in clinical translation.
Collapse
Affiliation(s)
- Mengtian Guo
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lu Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
41
|
Risner ML, Ribeiro M, McGrady NR, Kagitapalli BS, Chamling X, Zack DJ, Calkins DJ. Neutral sphingomyelinase inhibition promotes local and network degeneration in vitro and in vivo. Cell Commun Signal 2023; 21:305. [PMID: 37904133 PMCID: PMC10614343 DOI: 10.1186/s12964-023-01291-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/22/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Cell-to-cell communication is vital for tissues to respond, adapt, and thrive in the prevailing milieu. Several mechanisms mediate intercellular signaling, including tunneling nanotubes, gap junctions, and extracellular vesicles (EV). Depending on local and systemic conditions, EVs may contain cargoes that promote survival, neuroprotection, or pathology. Our understanding of pathologic intercellular signaling has been bolstered by disease models using neurons derived from human pluripotent stems cells (hPSC). METHODS Here, we used hPSC-derived retinal ganglion cells (hRGC) and the mouse visual system to investigate the influence of modulating EV generation on intercellular trafficking and cell survival. We probed the impact of EV modulation on cell survival by decreasing the catabolism of sphingomyelin into ceramide through inhibition of neutral sphingomyelinase (nSMase), using GW4869. We assayed for cell survival in vitro by probing for annexin A5, phosphatidylserine, viable mitochondria, and mitochondrial reactive oxygen species. In vivo, we performed intraocular injections of GW4869 and measured RGC and superior colliculus neuron density and RGC anterograde axon transport. RESULTS Following twenty-four hours of dosing hRGCs with GW4869, we found that inhibition of nSMase decreased ceramide and enhanced GM1 ganglioside accumulation. This inhibition also reduced the density of small EVs, increased the density of large EVs, and enriched the pro-apoptotic protein, annexin A5. Reducing nSMase activity increased hRGC apoptosis initiation due to enhanced density and uptake of apoptotic particles, as identified by the annexin A5 binding phospholipid, phosphatidylserine. We assayed intercellular trafficking of mitochondria by developing a coculture system of GW4869-treated and naïve hRGCs. In treated cells, inhibition of nSMase reduced the number of viable mitochondria, while driving mitochondrial reactive oxygen species not only in treated, but also in naive hRGCs added in coculture. In mice, 20 days following a single intravitreal injection of GW4869, we found a significant loss of RGCs and their axonal recipient neurons in the superior colliculus. This followed a more dramatic reduction in anterograde RGC axon transport to the colliculus. CONCLUSION Overall, our data suggest that perturbing the physiologic catabolism of sphingomyelin by inhibiting nSMase reorganizes plasma membrane associated sphingolipids, alters the profile of neuron-generated EVs, and promotes neurodegeneration in vitro and in vivo by shifting the balance of pro-survival versus -degenerative EVs. Video Abstract.
Collapse
Affiliation(s)
- Michael L Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA.
- Department of Foundational Medical Studies, Eye Research Center, Oakland University William Beaumont School of Medicine, 369 Dodge Hall, 118 Library Dr., Rochester, MI, 48309, USA.
| | - Marcio Ribeiro
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA
| | - Nolan R McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA
| | - Bhanu S Kagitapalli
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave S., Nashville, TN, 37232, USA.
| |
Collapse
|
42
|
Tang N. Exosomes in multiple sclerosis and Alzheimer's disease - Adversary and ally. Biomed J 2023; 47:100665. [PMID: 37778696 PMCID: PMC11401191 DOI: 10.1016/j.bj.2023.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
Neuroinflammation and the resulting neurodegeneration is a big challenge for the healthcare system, especially with the aging population. Neuroinflammation can result from a variety of insults to the central nervous system leading to an interplay between immune and brain cells that sustains chronic inflammation and injures neural cells. One facilitator of this toxic interplay are exosomes. Exosomes are nano-sized, bilayer lipid vesicles secreted by cells containing proteins, nucleic acids and lipids. Because exosomes can be internalized by other cells, their contents can elicit inflammatory responses and trigger toxicities in recipient cells. On the flip side, exosomes can act as therapeutic vehicles carrying protective cargo to maintain homeostasis. This review discusses exosome biogenesis, composition, and its role in neuroinflammation and neurodegeneration in the context of multiple sclerosis and Alzheimer's disease. The emerging roles of exosomes as biomarkers of neurologic diseases and as therapeutic delivery vehicles are also discussed. With all of these varying roles, interest and excitement in exosomes continue to grow exponentially and their promise as brain therapeutics is only beginning to be explored and harnessed.
Collapse
Affiliation(s)
- Norina Tang
- Department of Periodontics, University of the Pacific, San Francisco, USA; Department of Laboratory Medicine, San Francisco Veterans Affairs Health Care System, San Francisco, USA.
| |
Collapse
|
43
|
Ran Q, Tian H, Lin J, Wang H, Wang B, Chen Z, Song D, Gong C. Mesenchymal Stem Cell-Derived Exosomes: A Novel Approach to Diabetes-Associated Cognitive Impairment. J Inflamm Res 2023; 16:4213-4228. [PMID: 37753267 PMCID: PMC10519429 DOI: 10.2147/jir.s429532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
The progression of diabetes frequently results in a myriad of neurological disorders, including ischemic stroke, depression, blood-brain barrier impairment, and cognitive dysfunction. Notably, diabetes-associated cognitive impairment, a prevalent comorbidity during the course of diabetes, progressively affects patients' cognitive abilities and may reciprocally influence diabetes management, thereby severely impacting patients' quality of life. Extracellular vesicles, particularly nanoscale exosomes, have garnered considerable attention in recent years. These exosomes carry and transfer various functional molecules, such as proteins, lipids, and diverse non-coding RNAs, serving as novel regulators and communicators in intercellular interactions. Of particular interest, mesenchymal stem cell-derived exosomes (MSC-Exos) have been reported to traverse the blood-brain barrier and ameliorate intracerebral pathologies. This review elucidates the role of MSC-Exos in diabetes-related cognitive impairment, with a focus on their applications as biomarkers, modulation of neuronal regeneration and synaptic plasticity, anti-inflammatory properties, antioxidative effects, and their involvement in regulating the functionality of β-amyloid proteins during the course of cognitive impairment. The immense therapeutic potential of MSC-Exos in the treatment of diabetes-induced cognitive dysfunction is emphasized.
Collapse
Affiliation(s)
- Qingsen Ran
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| | - He Tian
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| | - Jian Lin
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| | - Han Wang
- Department of Gastroenterology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| | - Bo Wang
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| | - Zhixin Chen
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| | - Da Song
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| | - Chunzhu Gong
- Department of Science and Education, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangzhou Province, 518118, People’s Republic of China
| |
Collapse
|
44
|
Li Z, Wang X, Wang X, Yi X, Wong YK, Wu J, Xie F, Hu D, Wang Q, Wang J, Zhong T. Research progress on the role of extracellular vesicles in neurodegenerative diseases. Transl Neurodegener 2023; 12:43. [PMID: 37697342 PMCID: PMC10494410 DOI: 10.1186/s40035-023-00375-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, affect millions of people worldwide. Tremendous efforts have been put into disease-related research, but few breakthroughs have been made in diagnostic and therapeutic approaches. Extracellular vesicles (EVs) are heterogeneous cell-derived membrane structures that arise from the endosomal system or are directly separated from the plasma membrane. EVs contain many biomolecules, including proteins, nucleic acids, and lipids, which can be transferred between different cells, tissues, or organs, thereby regulating cross-organ communication between cells during normal and pathological processes. Recently, EVs have been shown to participate in various aspects of neurodegenerative diseases. Abnormal secretion and levels of EVs are closely related to the pathogenesis of neurodegenerative diseases and contribute to disease progression. Numerous studies have proposed EVs as therapeutic targets or biomarkers for neurodegenerative diseases. In this review, we summarize and discuss the advanced research progress on EVs in the pathological processes of several neurodegenerative diseases. Moreover, we outline the latest research on the roles of EVs in neurodegenerative diseases and their therapeutic potential for the diseases.
Collapse
Affiliation(s)
- Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoling Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Yin Kwan Wong
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Fangfang Xie
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Die Hu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Qi Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Jigang Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
45
|
Kong X, Patel NA, Chalfant CE, Cooper DR. Ceramide synthesis regulates biogenesis and packaging of exosomal MALAT1 from adipose derived stem cells, increases dermal fibroblast migration and mitochondrial function. Cell Commun Signal 2023; 21:221. [PMID: 37620957 PMCID: PMC10463839 DOI: 10.1186/s12964-022-00900-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/17/2022] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The function of exosomes, small extracellular vesicles (sEV) secreted from human adipose-derived stem cells (ADSC), is becoming increasingly recognized as a means of transferring the regenerative power of stem cells to injured cells in wound healing. Exosomes are rich in ceramides and long noncoding RNA (lncRNA) like metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). We identified putative ceramide responsive cis-elements (CRCE) in MALAT1. We hypothesized that CRCE respond to cellular ceramide levels to regulate sEV MALAT1 packaging. MALAT1 levels by many cells exceed those of protein coding genes and it's expression is equally high in exosomes. Ceramide also regulates exosome synthesis, however, the contents of exosome cargo via sphingomyelinase and ceramide synthase pathways has not been demonstrated. METHODS ADSC were treated with an inhibitor of sphingomyelinase, GW4869, and stimulators of ceramide synthesis, C2- and C6-short chain ceramides, prior to collection of conditioned media (CM). sEV were isolated from CM, and then used to treat human dermal fibroblast (HDF) cultures in cell migration scratch assays, and mitochondrial stress tests to evaluate oxygen consumption rates (OCR). RESULTS Inhibition of sphingomyelinase by treatment of ADSC with GW4869 lowered levels of MALAT1 in small EVs. Stimulation of ceramide synthesis using C2- and C6- ceramides increased cellular, EVs levels of MALAT1. The functional role of sEV MALAT1 was evaluated in HDF by applying EVs to HDF. Control sEV increased migration of HDF, and significantly increased ATP production, basal and maximal respiration OCR. sEV from GW4869-treated ADSC inhibited cell migration and maximal respiration. However, sEV from C2- and C6-treated cells, respectively, increased both functions but not significantly above control EV except for maximal respiration. sEV were exosomes except when ADSC were treated with GW4869 and C6-ceramide, then they were larger and considered microvesicles. CONCLUSIONS Ceramide synthesis regulates MALAT1 EV content. Sphingomyelinase inhibition blocked MALAT1 from being secreted from ADSC EVs. Our report is consistent with those of MALAT1 increasing cell migration and mitochondrial MALAT1 altering maximal respiration in cells. Since MALAT1 is important for exosome function, it stands that increased exosomal MALAT1 should be beneficial for wound healing as shown with these assays. Video Abstract.
Collapse
Affiliation(s)
- Xaioyuan Kong
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
| | - Niketa A. Patel
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, USA
| | - Charles E. Chalfant
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Cellular Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33612 USA
| | - Denise R. Cooper
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, USA
| |
Collapse
|
46
|
Zou Z, Li H, Xu G, Hu Y, Zhang W, Tian K. Current Knowledge and Future Perspectives of Exosomes as Nanocarriers in Diagnosis and Treatment of Diseases. Int J Nanomedicine 2023; 18:4751-4778. [PMID: 37635911 PMCID: PMC10454833 DOI: 10.2147/ijn.s417422] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
Exosomes, as natural nanocarriers, characterized with low immunogenicity, non-cytotoxicity and targeted delivery capability, which have advantages over synthetic nanocarriers. Recently, exosomes have shown great potential as diagnostic markers for diseases and are also considered as a promising cell-free therapy. Engineered exosomes have significantly enhanced the efficacy and precision of delivering therapeutic agents, and are currently being extensively employed in targeted therapeutic investigations for various ailments, including oncology, inflammatory disorders, and degenerative conditions. Particularly, engineered exosomes enable therapeutic agent loading, targeted modification, evasion of MPS phagocytosis, intelligent control, and bioimaging, and have been developed as multifunctional nano-delivery platforms in recent years. The utilization of bioactive scaffolds that are loaded with exosome delivery has been shown to substantially augment retention, extend exosome release, and enhance efficacy. This approach has advanced from conventional hydrogels to nanocomposite hydrogels, nanofiber hydrogels, and 3D printing, resulting in superior physical and biological properties that effectively address the limitations of natural scaffolds. Additionally, plant-derived exosomes, which can participate in gut flora remodeling via oral administration, are considered as an ideal delivery platform for the treatment of intestinal diseases. Consequently, there is great interest in exosomes and exosomes as nanocarriers for therapeutic and diagnostic applications. This comprehensive review provides an overview of the biogenesis, composition, and isolation methods of exosomes. Additionally, it examines the pathological and diagnostic mechanisms of exosomes in various diseases, including tumors, degenerative disorders, and inflammatory conditions. Furthermore, this review highlights the significance of gut microbial-derived exosomes. Strategies and specific applications of engineered exosomes and bioactive scaffold-loaded exosome delivery are further summarized, especially some new techniques such as large-scale loading technique, macromolecular loading technique, development of multifunctional nano-delivery platforms and nano-scaffold-loaded exosome delivery. The potential benefits of using plant-derived exosomes for the treatment of gut-related diseases are also discussed. Additionally, the challenges, opportunities, and prospects of exosome-based nanocarriers for disease diagnosis and treatment are summarized from both preclinical and clinical viewpoints.
Collapse
Affiliation(s)
- Zaijun Zou
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Han Li
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Gang Xu
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Yunxiang Hu
- School of Graduates, Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Weiguo Zhang
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Kang Tian
- Department of Sports Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Disease, Dalian, Liaoning Province, 116011, People’s Republic of China
| |
Collapse
|
47
|
Crivelli SM, Quadri Z, Vekaria HJ, Zhu Z, Tripathi P, Elsherbini A, Zhang L, Sullivan PG, Bieberich E. Inhibition of acid sphingomyelinase reduces reactive astrocyte secretion of mitotoxic extracellular vesicles and improves Alzheimer's disease pathology in the 5xFAD mouse. Acta Neuropathol Commun 2023; 11:135. [PMID: 37605262 PMCID: PMC10440899 DOI: 10.1186/s40478-023-01633-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023] Open
Abstract
In Alzheimer's disease (AD), reactive astrocytes produce extracellular vesicles (EVs) that affect mitochondria in neurons. Here, we show that Aβ-induced generation of the sphingolipid ceramide by acid sphingomyelinase (A-SMase) triggered proinflammatory cytokine (C1q, TNF-α, IL-1α) release by microglia, which induced the reactive astrocytes phenotype and secretion of EVs enriched with ceramide. These EVs impeded the capacity of neurons to respond to energy demand. Inhibition of A-SMase with Arc39 and Imipramine reduced the secretion of cytokines from microglia, prompting us to test the effect of Imipramine on EV secretion and AD pathology in the 5xFAD mouse model. Brain derived-EVs from 5xFAD mice treated with Imipramine contained reduced levels of the astrocytic marker GFAP, ceramide, and Aβ and did not impair mitochondrial respiration when compared to EVs derived from untreated 5xFAD brain. Consistently, Imipramine-treated 5xFAD mice showed reduced AD pathology. Our study identifies A-SMase inhibitors as potential AD therapy by preventing cyotokine-elicited secretion of mitotoxic EVs from astrocytes.
Collapse
Affiliation(s)
- Simone M Crivelli
- Department of Physiology, University of Kentucky College of Medicine, 780 Rose Street MS519, Lexington, KY, 40536, USA
| | - Zainuddin Quadri
- Department of Physiology, University of Kentucky College of Medicine, 780 Rose Street MS519, Lexington, KY, 40536, USA
| | - Hemendra J Vekaria
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, USA
- Veterans Affairs Medical Center, Lexington, KY, 40502, USA
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky College of Medicine, 780 Rose Street MS519, Lexington, KY, 40536, USA
| | - Priyanka Tripathi
- Department of Physiology, University of Kentucky College of Medicine, 780 Rose Street MS519, Lexington, KY, 40536, USA
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky College of Medicine, 780 Rose Street MS519, Lexington, KY, 40536, USA
| | - Liping Zhang
- Department of Physiology, University of Kentucky College of Medicine, 780 Rose Street MS519, Lexington, KY, 40536, USA
| | - Patrick G Sullivan
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, USA
- Veterans Affairs Medical Center, Lexington, KY, 40502, USA
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, 780 Rose Street MS519, Lexington, KY, 40536, USA.
- Veterans Affairs Medical Center, Lexington, KY, 40502, USA.
| |
Collapse
|
48
|
Mowry FE, Espejo-Porras F, Jin S, Quadri Z, Wu L, Bertolio M, Jarvis R, Reynolds C, Alananzeh R, Bieberich E, Yang Y. Chronic nSMase inhibition suppresses neuronal exosome spreading and sex-specifically attenuates amyloid pathology in APP knock-in Alzheimer's disease mice. Neurobiol Dis 2023; 184:106213. [PMID: 37364689 PMCID: PMC10777534 DOI: 10.1016/j.nbd.2023.106213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
Female biased pathology and cognitive decline in Alzheimer's disease (AD) have been consistently observed with unclear underlying mechanisms. Although brain sphingolipid ceramide is elevated in AD patients, whether and how ceramide may contribute to sex-specific differences in amyloid pathology is unknown. Here we investigated the sex-specific impact of chronic pharmacological inhibition of neutral sphingomyelinase (nSMase), a key enzyme responsible for ceramide metabolism, on in vivo neuron-derived exosome dynamics, Aβ plaque load, and cognitive function in the APPNL-F/NL-F knock-in (APP NL-F) AD mouse model. Our results found sex-specific increase of cortical C20:0 ceramide and brain exosome levels only in APP NL-F but not in age-matched WT mice. Although nSMase inhibition similarly blocks exosome spreading in male and female mice, significantly reduced amyloid pathology was mostly observed in cortex and hippocampus of female APP NL-F mice with only modest effect found on male APP NL-F mice. Consistently, T maze test to examine spatial working memory revealed a female-specific reduction in spontaneous alternation rate in APP NL-F mice, which was fully reversed with chronic nSMase inhibition. Together, our results suggest that disease induced changes in ceramide and exosome pathways contribute to the progression of female-specific amyloid pathology in APP NL-F AD models.
Collapse
Affiliation(s)
- Francesca E Mowry
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Francisco Espejo-Porras
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Shijie Jin
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Zainuddin Quadri
- Department of Physiology, University of Kentucky College of Medicine, 780 Rose Street, Lexington, KY 40536, USA.
| | - Limin Wu
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | - Marcela Bertolio
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Rachel Jarvis
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Caroline Reynolds
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Rashed Alananzeh
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, 780 Rose Street, Lexington, KY 40536, USA; Veterans Affairs Medical Center, 1101 Veterans Drive, Lexington, KY 40502, United States.
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
49
|
Zhang Y, Hong L, Li X, Li Y, Zhang X, Jiang J, Shi F, Diao H. M1 macrophage-derived exosomes promote autoimmune liver injury by transferring long noncoding RNA H19 to hepatocytes. MedComm (Beijing) 2023; 4:e303. [PMID: 37398637 PMCID: PMC10310975 DOI: 10.1002/mco2.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023] Open
Abstract
Exosomes mediate intercellular communication by transmitting active molecules. The function of long noncoding RNA (lncRNA) H19 in autoimmune liver injury is unclear. Concanavalin A (ConA)-induced liver injury is well-characterized immune-mediated hepatitis. Here, we showed that lncRNA H19 expression was increased in the liver after ConA treatment, accompanied by increased exosome secretion. Moreover, injection of AAV-H19 aggravated ConA-induced hepatitis, with an increase in hepatocyte apoptosis. However, GW4869, an exosome inhibitor, alleviated ConA-induced liver injury and inhibited the upregulation of lncRNA H19. Intriguingly, lncRNA H19 expression in the liver was significantly downregulated, after macrophage depletion. Importantly, the lncRNA H19 was primarily expressed in type I macrophage (M1) and encapsulated in M1-derived exosomes. Furthermore, H19 was transported from M1 to hepatocytes via exosomes, and exosomal H19 dramatically induced hepatocytes apoptosis both in vitro and vivo. Mechanistically, H19 upregulated the transcription of hypoxia-inducible factor-1 alpha (HIF-1α), which accumulated in the cytoplasm and mediated hepatocyte apoptosis by upregulating p53. M1-derived exosomal lncRNA H19 plays a pivotal role in ConA-induced hepatitis through the HIF-1α-p53 signaling pathway. These findings identify M1 macrophage-derived exosomal H19 as a novel target for the treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
- Yongting Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Liang Hong
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Xuehui Li
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Yuyu Li
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Xujun Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Fan Shi
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Hongyan Diao
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
50
|
Li FXZ, Liu JJ, Xu F, Shan SK, Zheng MH, Lei LM, Lin X, Guo B, Li CC, Wu F, Tang KX, Cao YC, Wu YY, Duan JY, Wu YL, He SY, Chen X, Yuan LQ. Cold exposure protects against medial arterial calcification development via autophagy. J Nanobiotechnology 2023; 21:226. [PMID: 37461031 PMCID: PMC10351118 DOI: 10.1186/s12951-023-01985-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Medial arterial calcification (MAC), a systemic vascular disease different from atherosclerosis, is associated with an increased incidence of cardiovascular events. Several studies have demonstrated that ambient temperature is one of the most important factors affecting cardiovascular events. However, there has been limited research on the effect of different ambient temperatures on MAC. In the present study, we showed that cold temperature exposure (CT) in mice slowed down the formation of vitamin D (VD)-induced vascular calcification compared with room temperature exposure (RT). To investigate the mechanism involved, we isolated plasma-derived exosomes from mice subjected to CT or RT for 30 days (CT-Exo or RT-Exo, respectively). Compared with RT-Exo, CT-Exo remarkably alleviated the calcification/senescence formation of vascular smooth muscle cells (VSMCs) and promoted autophagy by activating the phosphorylation of AMP-activated protein kinase (p-AMPK) and inhibiting phosphorylation of mammalian target of rapamycin (p-mTOR). At the same time, CT-Exo promoted autophagy in β-glycerophosphate (β-GP)-induced VSMCs. The number of autophagosomes and the expression of autophagy-related proteins ATG5 and LC3B increased, while the expression of p62 decreased. Based on a microRNA chip microarray assay and real-time polymerase chain reaction, miR-320a-3p was highly enriched in CT-Exo as well as thoracic aortic vessels in CT mice. miR-320a-3p downregulation in CT-Exo using AntagomiR-320a-3p inhibited autophagy and blunted its anti-calcification protective effect on VSMCs. Moreover, we identified that programmed cell death 4 (PDCD4) is a target of miR-320a-3p, and silencing PDCD4 increased autophagy and decreased calcification in VSMCs. Treatment with CT-Exo alleviated the formation of MAC in VD-treated mice, while these effects were partially reversed by GW4869. Furthermore, the anti-arterial calcification protective effects of CT-Exo were largely abolished by AntagomiR-320a-3p in VD-induced mice. In summary, we have highlighted that prolonged cold may be a good way to reduce the incidence of MAC. Specifically, miR-320a-3p from CT-Exo could protect against the initiation and progression of MAC via the AMPK/mTOR autophagy pathway.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jun-Jie Liu
- Department of Periodontal Division, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ye-Chi Cao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yan-Lin Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Si-Yang He
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xi Chen
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|