1
|
Abate F, Ajal C, Debanne D. cAMP reduces action potential amplitude and conduction velocity over long axonal distance. J Physiol 2024. [PMID: 39153192 DOI: 10.1113/jp287264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Affiliation(s)
- Fabrice Abate
- INSERM, UNIS, Aix-Marseille University, Marseille, France
| | - Chaima Ajal
- INSERM, UNIS, Aix-Marseille University, Marseille, France
| | | |
Collapse
|
2
|
Furukawa K, Inoshita T, Kawaguchi SY. Graded control of Purkinje cell outputs by cAMP through opposing actions on axonal action potential and transmitter release. J Physiol 2024. [PMID: 39052311 DOI: 10.1113/jp286668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
All-or-none signalling by action potentials (APs) in neuronal axons is pivotal for the precisely timed and identical size of outputs to multiple distant targets. However, technical limitations with respect to measuring the signalling in small intact axons have hindered the evaluation of high-fidelity signal propagation. Here, using direct recordings from axonal trunks and/or terminals of cerebellar Purkinje cells in slice and culture, we demonstrate that the timing and amplitude of axonal outputs are gradually modulated by cAMP depending on the length of axon. During the propagation in long axon, APs were attenuated and slowed in conduction by cAMP via specifically decreasing axonal Na+ currents. Consequently, the Ca2+ influx and transmitter release at distal boutons are reduced by cAMP, counteracting its direct facilitating effect on release machinery as observed at various CNS synapses. Together, our tour de force functional dissection has unveiled the axonal distance-dependent graded control of output timing and strength by intracellular signalling. KEY POINTS: The information processing in the nervous system has been classically thought to rely on the axonal faithful and high-speed conduction of action potentials (APs). We demonstrate that the strength and timing of axonal outputs are weakened and delayed, respectively, by cytoplasmic cAMP depending on the axonal length in cerebellar Purkinje cells (PCs). Direct axonal patch clamp recordings uncovered axon-specific attenuation of APs by cAMP through reduction of axonal Na+ currents. cAMP directly augments transmitter release at PC terminals without changing presynaptic Ca2+ influx or readily releasable pool of vesicles, although the extent is weaker compared to other CNS synapses. Two opposite actions of cAMP on PC axons, AP attenuation and release augmentation, together give rise to graded control of synaptic outputs in a manner dependent on the axonal length.
Collapse
Affiliation(s)
- Kei Furukawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takuma Inoshita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shin-Ya Kawaguchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Wang C, Derderian KD, Hamada E, Zhou X, Nelson AD, Kyoung H, Ahituv N, Bouvier G, Bender KJ. Impaired cerebellar plasticity hypersensitizes sensory reflexes in SCN2A-associated ASD. Neuron 2024; 112:1444-1455.e5. [PMID: 38412857 PMCID: PMC11065582 DOI: 10.1016/j.neuron.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify a mechanism that underlies hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss of function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one's gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded NaV1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in mice via a CRISPR-activator approach that increases Scn2a expression, demonstrating that evaluation of a simple reflex can be used to assess and quantify successful therapeutic intervention.
Collapse
Affiliation(s)
- Chenyu Wang
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberly D Derderian
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth Hamada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew D Nelson
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France.
| | - Kevin J Bender
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Mateus JC, Sousa MM, Burrone J, Aguiar P. Beyond a Transmission Cable-New Technologies to Reveal the Richness in Axonal Electrophysiology. J Neurosci 2024; 44:e1446232023. [PMID: 38479812 PMCID: PMC10941245 DOI: 10.1523/jneurosci.1446-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 03/17/2024] Open
Abstract
The axon is a neuronal structure capable of processing, encoding, and transmitting information. This assessment contrasts with a limiting, but deeply rooted, perspective where the axon functions solely as a transmission cable of somatodendritic activity, sending signals in the form of stereotypical action potentials. This perspective arose, at least partially, because of the technical difficulties in probing axons: their extreme length-to-diameter ratio and intricate growth paths preclude the study of their dynamics through traditional techniques. Recent findings are challenging this view and revealing a much larger repertoire of axonal computations. Axons display complex signaling processes and structure-function relationships, which can be modulated via diverse activity-dependent mechanisms. Additionally, axons can exhibit patterns of activity that are dramatically different from those of their corresponding soma. Not surprisingly, many of these recent discoveries have been driven by novel technology developments, which allow for in vitro axon electrophysiology with unprecedented spatiotemporal resolution and signal-to-noise ratio. In this review, we outline the state-of-the-art in vitro toolset for axonal electrophysiology and summarize the recent discoveries in axon function it has enabled. We also review the increasing repertoire of microtechnologies for controlling axon guidance which, in combination with the available cutting-edge electrophysiology and imaging approaches, have the potential for more controlled and high-throughput in vitro studies. We anticipate that a larger adoption of these new technologies by the neuroscience community will drive a new era of experimental opportunities in the study of axon physiology and consequently, neuronal function.
Collapse
Affiliation(s)
- J C Mateus
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - M M Sousa
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - J Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - P Aguiar
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
5
|
Trigo F, Kawaguchi SY. Analogue signaling of somatodendritic synaptic activity to axon enhances GABA release in young cerebellar molecular layer interneurons. eLife 2023; 12:e85971. [PMID: 37565643 PMCID: PMC10421593 DOI: 10.7554/elife.85971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are equipped with the digital signaling capacity by which they generate and faithfully propagate action potentials (APs), and also with the analogue signaling capacity by which subthreshold activity in dendrites and soma is transmitted down the axon. Despite intense work, the extent and physiological role for subthreshold synaptic activity reaching the presynaptic boutons has remained elusive because of the technical limitation to record from them. To address this issue, we made simultaneous patch-clamp recordings from the presynaptic varicosities of cerebellar GABAergic interneurons together with their parent soma or postsynaptic target cells in young rat slices and/or primary cultures. Our tour-de-force direct functional dissection indicates that the somatodendritic spontaneous excitatory synaptic potentials are transmitted down the axon for significant distances, depolarizing presynaptic boutons. These analogously transmitted excitatory synaptic potentials augment presynaptic Ca++ influx upon arrival of an immediately following AP through a mechanism that involves a voltage-dependent priming of the Ca++ channels, leading to an increase in GABA release, without any modification in the presynaptic AP waveform or residual Ca++. Our work highlights the role of the axon in synaptic integration.
Collapse
Affiliation(s)
- Federico Trigo
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
| | - Shin-ya Kawaguchi
- Department of Biophysics, Graduate School of Science, Kyoto University Oiwake-choKyotoJapan
| |
Collapse
|
6
|
Kaas T, Nerlich J, Hallermann S. What calcium channels remember. eLife 2023; 12:e90546. [PMID: 37565652 PMCID: PMC10421591 DOI: 10.7554/elife.90546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
A new mechanism involving intermediate gating states of calcium channels explains how analogue postsynaptic potentials influence neurotransmitter release.
Collapse
Affiliation(s)
- Thomas Kaas
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig UniversityLeipzigGermany
| | - Jana Nerlich
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig UniversityLeipzigGermany
| | - Stefan Hallermann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig UniversityLeipzigGermany
| |
Collapse
|
7
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
8
|
Wang C, Derderian KD, Hamada E, Zhou X, Nelson AD, Kyoung H, Ahituv N, Bouvier G, Bender KJ. Impaired cerebellar plasticity hypersensitizes sensory reflexes in SCN2A-associated ASD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543814. [PMID: 37333267 PMCID: PMC10274749 DOI: 10.1101/2023.06.05.543814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity, or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify the mechanisms that underlie hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss-of-function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one's gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded NaV1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in adolescent mice via a CRISPR-activator approach that increases Scn2a expression, highlighting how evaluation of simple reflexes can be used as quantitative readout of therapeutic interventions.
Collapse
Affiliation(s)
- Chenyu Wang
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberly D. Derderian
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth Hamada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew D. Nelson
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J Bender
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Ritzau-Jost A, Nerlich J, Kaas T, Krueger M, Tsintsadze T, Eilers J, Barbour B, Smith SM, Hallermann S. Direct whole-cell patch-clamp recordings from small boutons in rodent primary neocortical neuron cultures. STAR Protoc 2023; 4:102168. [PMID: 36920913 PMCID: PMC10026040 DOI: 10.1016/j.xpro.2023.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 02/19/2023] [Indexed: 03/16/2023] Open
Abstract
Direct electrical recordings from conventional boutons in the mammalian central nervous system have proven challenging due to their small size. Here, we provide a protocol for direct whole-cell patch-clamp recordings from small presynaptic boutons of primary dissociated cultured neurons of the rodent neocortex. We describe steps to prepare primary neocortical cultures and recording pipettes, followed by identifying boutons and establishing a whole-cell bouton recording. We then provide details on precise pipette capacitance compensation required for high-resolution current-clamp recordings from boutons. For further details on the use and execution of this protocol, please refer to Ritzau-Jost et al.1.
Collapse
Affiliation(s)
- Andreas Ritzau-Jost
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany.
| | - Jana Nerlich
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Thomas Kaas
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Timur Tsintsadze
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR 97239, USA; Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR 97239, USA
| | - Jens Eilers
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Boris Barbour
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Stephen M Smith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR 97239, USA; Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR 97239, USA
| | - Stefan Hallermann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
10
|
Midorikawa M. Developmental and activity-dependent modulation of coupling distance between release site and Ca2+ channel. Front Cell Neurosci 2022; 16:1037721. [DOI: 10.3389/fncel.2022.1037721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Synapses are junctions between a presynaptic neuron and a postsynaptic cell specialized for fast and precise information transfer. The presynaptic terminal secretes neurotransmitters via exocytosis of synaptic vesicles. Exocytosis is a tightly regulated reaction that occurs within a millisecond of the arrival of an action potential. One crucial parameter in determining the characteristics of the transmitter release kinetics is the coupling distance between the release site and the Ca2+ channel. Still, the technical limitations have hindered detailed analysis from addressing how the coupling distance is regulated depending on the development or activity of the synapse. However, recent technical advances in electrophysiology and imaging are unveiling their different configurations in different conditions. Here, I will summarize developmental- and activity-dependent changes in the coupling distances revealed by recent studies.
Collapse
|
11
|
López-Hernández T, Takenaka KI, Mori Y, Kongpracha P, Nagamori S, Haucke V, Takamori S. Clathrin-independent endocytic retrieval of SV proteins mediated by the clathrin adaptor AP-2 at mammalian central synapses. eLife 2022; 11:e71198. [PMID: 35014951 PMCID: PMC8752090 DOI: 10.7554/elife.71198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
Neurotransmission is based on the exocytic fusion of synaptic vesicles (SVs) followed by endocytic membrane retrieval and the reformation of SVs. Conflicting models have been proposed regarding the mechanisms of SV endocytosis, most notably clathrin/adaptor protein complex 2 (AP-2)-mediated endocytosis and clathrin-independent ultrafast endocytosis. Partitioning between these pathways has been suggested to be controlled by temperature and stimulus paradigm. We report on the comprehensive survey of six major SV proteins to show that SV endocytosis in mouse hippocampal neurons at physiological temperature occurs independent of clathrin while the endocytic retrieval of a subset of SV proteins including the vesicular transporters for glutamate and GABA depend on sorting by the clathrin adaptor AP-2. Our findings highlight a clathrin-independent role of the clathrin adaptor AP-2 in the endocytic retrieval of select SV cargos from the presynaptic cell surface and suggest a revised model for the endocytosis of SV membranes at mammalian central synapses.
Collapse
Affiliation(s)
| | - Koh-ichiro Takenaka
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| | - Yasunori Mori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| | - Pornparn Kongpracha
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| |
Collapse
|
12
|
Zbili M, Rama S, Benitez MJ, Fronzaroli-Molinieres L, Bialowas A, Boumedine-Guignon N, Garrido JJ, Debanne D. Homeostatic regulation of axonal Kv1.1 channels accounts for both synaptic and intrinsic modifications in the hippocampal CA3 circuit. Proc Natl Acad Sci U S A 2021; 118:e2110601118. [PMID: 34799447 PMCID: PMC8617510 DOI: 10.1073/pnas.2110601118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Homeostatic plasticity of intrinsic excitability goes hand in hand with homeostatic plasticity of synaptic transmission. However, the mechanisms linking the two forms of homeostatic regulation have not been identified so far. Using electrophysiological, imaging, and immunohistochemical techniques, we show here that blockade of excitatory synaptic receptors for 2 to 3 d induces an up-regulation of both synaptic transmission at CA3-CA3 connections and intrinsic excitability of CA3 pyramidal neurons. Intrinsic plasticity was found to be mediated by a reduction of Kv1.1 channel density at the axon initial segment. In activity-deprived circuits, CA3-CA3 synapses were found to express a high release probability, an insensitivity to dendrotoxin, and a lack of depolarization-induced presynaptic facilitation, indicating a reduction in presynaptic Kv1.1 function. Further support for the down-regulation of axonal Kv1.1 channels in activity-deprived neurons was the broadening of action potentials measured in the axon. We conclude that regulation of the axonal Kv1.1 channel constitutes a major mechanism linking intrinsic excitability and synaptic strength that accounts for the functional synergy existing between homeostatic regulation of intrinsic excitability and synaptic transmission.
Collapse
Affiliation(s)
- Mickaël Zbili
- Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR_S 1072, INSERM, Aix-Marseille Université, Marseille 13015, France
| | - Sylvain Rama
- Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR_S 1072, INSERM, Aix-Marseille Université, Marseille 13015, France
| | - Maria-José Benitez
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid 28002, Spain
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Laure Fronzaroli-Molinieres
- Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR_S 1072, INSERM, Aix-Marseille Université, Marseille 13015, France
| | - Andrzej Bialowas
- Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR_S 1072, INSERM, Aix-Marseille Université, Marseille 13015, France
| | - Norah Boumedine-Guignon
- Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR_S 1072, INSERM, Aix-Marseille Université, Marseille 13015, France
| | - Juan José Garrido
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid 28002, Spain
| | - Dominique Debanne
- Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR_S 1072, INSERM, Aix-Marseille Université, Marseille 13015, France;
| |
Collapse
|
13
|
Matsumoto A, Agbariah W, Nolte SS, Andrawos R, Levi H, Sabbah S, Yonehara K. Direction selectivity in retinal bipolar cell axon terminals. Neuron 2021; 109:2928-2942.e8. [PMID: 34390651 PMCID: PMC8478419 DOI: 10.1016/j.neuron.2021.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022]
Abstract
The ability to encode the direction of image motion is fundamental to our sense of vision. Direction selectivity along the four cardinal directions is thought to originate in direction-selective ganglion cells (DSGCs) because of directionally tuned GABAergic suppression by starburst cells. Here, by utilizing two-photon glutamate imaging to measure synaptic release, we reveal that direction selectivity along all four directions arises earlier than expected at bipolar cell outputs. Individual bipolar cells contained four distinct populations of axon terminal boutons with different preferred directions. We further show that this bouton-specific tuning relies on cholinergic excitation from starburst cells and GABAergic inhibition from wide-field amacrine cells. DSGCs received both tuned directionally aligned inputs and untuned inputs from among heterogeneously tuned glutamatergic bouton populations. Thus, directional tuning in the excitatory visual pathway is incrementally refined at the bipolar cell axon terminals and their recipient DSGC dendrites by two different neurotransmitters co-released from starburst cells.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
| | - Weaam Agbariah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Stella Solveig Nolte
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
| | - Rawan Andrawos
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hadara Levi
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark.
| |
Collapse
|
14
|
Liu W, Liu Q, Crozier RA, Davis RL. Analog Transmission of Action Potential Fine Structure in Spiral Ganglion Axons. J Neurophysiol 2021; 126:888-905. [PMID: 34346782 DOI: 10.1152/jn.00237.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action potential waveforms generated at the axon initial segment (AIS) are specialized between and within neuronal classes. But is the fine structure of each electrical event retained when transmitted along myelinated axons or is it rapidly and uniformly transmitted to be modified again at the axon terminal? To address this issue action potential axonal transmission was evaluated in a class of primary sensory afferents that possess numerous types of voltage-gated ion channels underlying a complex repertoire of endogenous firing patterns. In addition to their signature intrinsic electrophysiological heterogeneity, spiral ganglion neurons are uniquely designed. The bipolar, myelinated somata of type I neurons are located within the conduction pathway, requiring that action potentials generated at the first heminode must be conducted through their electrically excitable membrane. We utilized this unusual axonal-like morphology to serve as a window into action potential transmission to compare locally-evoked action potential profiles to those generated peripherally at their glutamatergic synaptic connections with hair cell receptors. These comparisons showed that the distinctively-shaped somatic action potentials were highly correlated with the nodally-generated, invading ones for each neuron. This result indicates that the fine structure of the action potential waveform is maintained axonally, thus supporting the concept that analog signaling is incorporated into each digitally-transmitted action potential in the specialized primary auditory afferents.
Collapse
Affiliation(s)
- Wenke Liu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Institute for System Genetics, New York University School of Medicine, New York, NY, United States
| | - Qing Liu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Inscopix, Inc., Palo Alto, California, United States
| | - Robert A Crozier
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Synergy Pharmaceuticals Inc., New York, NY, United States
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
15
|
Oláh VJ, Tarcsay G, Brunner J. Small Size of Recorded Neuronal Structures Confines the Accuracy in Direct Axonal Voltage Measurements. eNeuro 2021; 8:ENEURO.0059-21.2021. [PMID: 34257077 PMCID: PMC8342265 DOI: 10.1523/eneuro.0059-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Patch-clamp instruments including amplifier circuits and pipettes affect the recorded voltage signals. We hypothesized that realistic and complete in silico representation of recording instruments together with detailed morphology and biophysics of small recorded structures will reveal signal distortions and provide a tool that predicts native, instrument-free electrical signals from distorted voltage recordings. Therefore, we built a model that was verified by small axonal recordings. The model accurately recreated actual action potential (AP) measurements with typical recording artefacts and predicted the native electrical behavior. The simulations verified that recording instruments substantially filter voltage recordings. Moreover, we revealed that instrumentation directly interferes with local signal generation depending on the size of the recorded structures, which complicates the interpretation of recordings from smaller structures, such as axons. However, our model offers a straightforward approach that predicts the native waveforms of fast voltage signals and the underlying conductances even from the smallest neuronal structures.
Collapse
Affiliation(s)
- Viktor János Oláh
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, H-1085, Budapest, Hungary
| | - Gergely Tarcsay
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - János Brunner
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| |
Collapse
|
16
|
Gonzalez Sabater V, Rigby M, Burrone J. Voltage-Gated Potassium Channels Ensure Action Potential Shape Fidelity in Distal Axons. J Neurosci 2021; 41:5372-5385. [PMID: 34001627 PMCID: PMC8221596 DOI: 10.1523/jneurosci.2765-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
The initiation and propagation of the action potential (AP) along an axon allows neurons to convey information rapidly and across distant sites. Although AP properties have typically been characterized at the soma and proximal axon, knowledge of the propagation of APs toward distal axonal domains of mammalian CNS neurons remains limited. We used genetically encoded voltage indicators (GEVIs) to image APs with submillisecond temporal resolution simultaneously at different locations along the long axons of dissociated hippocampal neurons from rat embryos of either sex. We found that APs became sharper and showed remarkable fidelity as they traveled toward distal axons, even during a high-frequency train. Blocking voltage-gated potassium channels (Kv) with 4-AP resulted in an increase in AP width in all compartments, which was stronger at distal locations and exacerbated during AP trains. We conclude that the higher levels of Kv channel activity in distal axons serve to sustain AP fidelity, conveying a reliable digital signal to presynaptic boutons.SIGNIFICANCE STATEMENT The AP represents the electrical signal carried along axons toward distant presynaptic boutons where it culminates in the release of neurotransmitters. The nonlinearities involved in this process are such that small changes in AP shape can result in large changes in neurotransmitter release. Since axons are remarkably long structures, any distortions that APs suffer along the way have the potential to translate into a significant modulation of synaptic transmission, particularly in distal domains. To avoid these issues, distal axons have ensured that signals are kept remarkably constant and insensitive to modulation during a train, despite the long distances traveled. Here, we uncover the mechanisms that allow distal axonal domains to provide a reliable and faithful digital signal to presynaptic terminals.
Collapse
Affiliation(s)
- Victoria Gonzalez Sabater
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - Mark Rigby
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - Juan Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
17
|
Lipkin AM, Cunniff MM, Spratt PWE, Lemke SM, Bender KJ. Functional Microstructure of Ca V-Mediated Calcium Signaling in the Axon Initial Segment. J Neurosci 2021; 41:3764-3776. [PMID: 33731449 PMCID: PMC8084313 DOI: 10.1523/jneurosci.2843-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 01/12/2023] Open
Abstract
The axon initial segment (AIS) is a specialized neuronal compartment in which synaptic input is converted into action potential (AP) output. This process is supported by a diverse complement of sodium, potassium, and calcium channels (CaV). Different classes of sodium and potassium channels are scaffolded at specific sites within the AIS, conferring unique functions, but how calcium channels are functionally distributed within the AIS is unclear. Here, we use conventional two-photon laser scanning and diffraction-limited, high-speed spot two-photon imaging to resolve AP-evoked calcium dynamics in the AIS with high spatiotemporal resolution. In mouse layer 5 prefrontal pyramidal neurons, calcium influx was mediated by a mix of CaV2 and CaV3 channels that differentially localized to discrete regions. CaV3 functionally localized to produce nanodomain hotspots of calcium influx that coupled to ryanodine-sensitive stores, whereas CaV2 localized to non-hotspot regions. Thus, different pools of CaVs appear to play distinct roles in AIS function.SIGNIFICANCE STATEMENT The axon initial segment (AIS) is the site where synaptic input is transformed into action potential (AP) output. It achieves this function through a diverse complement of sodium, potassium, and calcium channels (CaV). While the localization and function of sodium channels and potassium channels at the AIS is well described, less is known about the functional distribution of CaVs. We used high-speed two-photon imaging to understand activity-dependent calcium dynamics in the AIS of mouse neocortical pyramidal neurons. Surprisingly, we found that calcium influx occurred in two distinct domains: CaV3 generates hotspot regions of calcium influx coupled to calcium stores, whereas CaV2 channels underlie diffuse calcium influx between hotspots. Therefore, different CaV classes localize to distinct AIS subdomains, possibly regulating distinct cellular processes.
Collapse
Affiliation(s)
- Anna M Lipkin
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
| | - Margaret M Cunniff
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
| | - Perry W E Spratt
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
| | - Stefan M Lemke
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
| | - Kevin J Bender
- Neuroscience Graduate Program, University of California, San Francisco, California 94158
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, California 94158
| |
Collapse
|
18
|
Ritzau-Jost A, Tsintsadze T, Krueger M, Ader J, Bechmann I, Eilers J, Barbour B, Smith SM, Hallermann S. Large, Stable Spikes Exhibit Differential Broadening in Excitatory and Inhibitory Neocortical Boutons. Cell Rep 2021; 34:108612. [PMID: 33440142 PMCID: PMC7809622 DOI: 10.1016/j.celrep.2020.108612] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/19/2020] [Accepted: 12/06/2020] [Indexed: 01/09/2023] Open
Abstract
Presynaptic action potential spikes control neurotransmitter release and thus interneuronal communication. However, the properties and the dynamics of presynaptic spikes in the neocortex remain enigmatic because boutons in the neocortex are small and direct patch-clamp recordings have not been performed. Here, we report direct recordings from boutons of neocortical pyramidal neurons and interneurons. Our data reveal rapid and large presynaptic action potentials in layer 5 neurons and fast-spiking interneurons reliably propagating into axon collaterals. For in-depth analyses, we establish boutons of mature cultured neurons as models for excitatory neocortical boutons, demonstrating that the presynaptic spike amplitude is unaffected by potassium channels, homeostatic long-term plasticity, and high-frequency firing. In contrast to the stable amplitude, presynaptic spikes profoundly broaden during high-frequency firing in layer 5 pyramidal neurons, but not in fast-spiking interneurons. Thus, our data demonstrate large presynaptic spikes and fundamental differences between excitatory and inhibitory boutons in the neocortex.
Collapse
Affiliation(s)
- Andreas Ritzau-Jost
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Timur Tsintsadze
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR 97239, USA; Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR 97239, USA
| | - Martin Krueger
- Institute of Anatomy, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Jonas Ader
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Boris Barbour
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Stephen M Smith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR 97239, USA; Section of Pulmonary and Critical Care Medicine, VA Portland Health Care System, Portland, OR 97239, USA.
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
19
|
Xiao Y, Yang J, Ji W, He Q, Mao L, Shu Y. A- and D-type potassium currents regulate axonal action potential repolarization in midbrain dopamine neurons. Neuropharmacology 2021; 185:108399. [PMID: 33400937 DOI: 10.1016/j.neuropharm.2020.108399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/11/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Midbrain dopamine neurons (DANs) regulate various brain functions such as motor control and motivation. Alteration of spiking activities of these neurons could contribute to severe brain disorders including Parkinson's disease and depression. Previous studies showed important roles of somatodendritic voltage-gated K+ channels (Kv) of DANs in governing neuronal excitability and dopamine release. However, it remains largely unclear about the biophysical properties and the function of Kv channels distributed at DAN axons. We performed whole-cell recordings from the axons of DANs in acute mouse midbrain and striatal slices. We detected both rapidly activating/inactivating Kv current (i.e. A-current) and rapidly activating but slowly inactivating current (i.e. D-current) in DAN axons. Pharmacological experiments with channel blockers revealed that these currents are predominantly mediated by Kv1.4 and Kv1.2 subunits, respectively. Blocking these currents could substantially prolong axonal action potentials (APs) via a reduction of their repolarization slope. Together, our results show that Kv channels mediating A- and D-currents shape AP waveforms in midbrain DAN axons, through this regulation they may control dopamine release at the axonal terminals. Therefore, these axonal Kv channels could be drug targets for brain disorders with abnormal dopamine release.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jun Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Wenliang Ji
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Quansheng He
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Kamiya H, Debanne D. Editorial: Axon Neurobiology: Fine-Scale Dynamics of Microstructure and Function. Front Cell Neurosci 2020; 14:594361. [PMID: 33173470 PMCID: PMC7538658 DOI: 10.3389/fncel.2020.594361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
- Haruyuki Kamiya
- Department of Neurobiology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Dominique Debanne
- Unité de Neurobiologie des canaux Ioniques et de la Synapse, UMR1072, INSERM, Aix-Marseille Université, Marseille, France
| |
Collapse
|
21
|
The potassium channel subunit K vβ1 serves as a major control point for synaptic facilitation. Proc Natl Acad Sci U S A 2020; 117:29937-29947. [PMID: 33168717 PMCID: PMC7703594 DOI: 10.1073/pnas.2000790117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nerve terminals generally engage in two opposite and essential forms of synaptic plasticity (facilitation or depression) that play critical roles in learning and memory. While the molecular components of both types of terminals are similar with regards to vesicle fusion, much less is known about their molecular control of electrical signaling. Measurements of the electrical impulses (action potentials) underlying these two forms of plasticity have been difficult in small nerve terminals due to their size. In this study we deployed optical physiology measurements to overcome this size barrier. Here, we identify a unique mechanism (Kvβ1 subunit) that enables broadening of the presynaptic action potentials that selectively supports synaptic facilitation, but does not alter any other aspects of nerve terminal function. Analysis of the presynaptic action potential’s (APsyn) role in synaptic facilitation in hippocampal pyramidal neurons has been difficult due to size limitations of axons. We overcame these size barriers by combining high-resolution optical recordings of membrane potential, exocytosis, and Ca2+ in cultured hippocampal neurons. These recordings revealed a critical and selective role for Kv1 channel inactivation in synaptic facilitation of excitatory hippocampal neurons. Presynaptic Kv1 channel inactivation was mediated by the Kvβ1 subunit and had a surprisingly rapid onset that was readily apparent even in brief physiological stimulation paradigms including paired-pulse stimulation. Genetic depletion of Kvβ1 blocked all broadening of the APsyn during high-frequency stimulation and eliminated synaptic facilitation without altering the initial probability of vesicle release. Thus, using all quantitative optical measurements of presynaptic physiology, we reveal a critical role for presynaptic Kv channels in synaptic facilitation at presynaptic terminals of the hippocampus upstream of the exocytic machinery.
Collapse
|
22
|
Dolphin AC. Functions of Presynaptic Voltage-gated Calcium Channels. FUNCTION (OXFORD, ENGLAND) 2020; 2:zqaa027. [PMID: 33313507 PMCID: PMC7709543 DOI: 10.1093/function/zqaa027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023]
Abstract
Voltage-gated calcium channels are the principal conduits for depolarization-mediated Ca2+ entry into excitable cells. In this review, the biophysical properties of the relevant members of this family of channels, those that are present in presynaptic terminals, will be discussed in relation to their function in mediating neurotransmitter release. Voltage-gated calcium channels have properties that ensure they are specialized for particular roles, for example, differences in their activation voltage threshold, their various kinetic properties, and their voltage-dependence of inactivation. All these attributes play into the ability of the various voltage-gated calcium channels to participate in different patterns of presynaptic vesicular release. These include synaptic transmission resulting from single action potentials, and longer-term changes mediated by bursts or trains of action potentials, as well as release resulting from graded changes in membrane potential in specialized sensory synapses.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT, UK,Address correspondence to A.C.D. (e-mail: )
| |
Collapse
|
23
|
Rajaram E, Pagella S, Grothe B, Kopp-Scheinpflug C. Physiological and anatomical development of glycinergic inhibition in the mouse superior paraolivary nucleus following hearing onset. J Neurophysiol 2020; 124:471-483. [PMID: 32667247 DOI: 10.1152/jn.00053.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neural circuits require balanced synaptic excitation and inhibition to ensure accurate neural computation. Our knowledge about the development and maturation of inhibitory synaptic inputs is less well developed than that concerning excitation. Here we describe the maturation of an inhibitory circuit within the mammalian auditory brainstem where counterintuitively, inhibition drives action potential firing of principal neurons. With the use of combined anatomical tracing and electrophysiological recordings from mice, neurons of the superior paraolivary nucleus (SPN) are shown to receive converging glycinergic input from at least four neurons of the medial nucleus of the trapezoid body (MNTB). These four axons formed 30.71 ± 2.72 (means ± SE) synaptic boutons onto each SPN neuronal soma, generating a total inhibitory conductance of 80 nS. Such strong inhibition drives the underlying postinhibitory rebound firing mechanism, which is a hallmark of SPN physiology. In contrast to inhibitory projections to the medial and lateral superior olives, the inhibitory projection to the SPN does not exhibit experience-dependent synaptic refinement following the onset of hearing. These findings emphasize that the development and function of neural circuits cannot be inferred from one synaptic target to another, even if both originate from the same neuron.NEW & NOTEWORTHY Neuronal activity regulates development and maturation of neural circuits. This activity can include spontaneous burst firing or firing elicited by sensory input during early development. For example, auditory brainstem circuits involved in sound localization require acoustically evoked activity to form properly. Here we show, that an inhibitory circuit, involved in processing sound offsets, gaps, and rhythmically modulated vocal communication signals, matures before the onset of acoustically evoked activity.
Collapse
Affiliation(s)
- Ezhilarasan Rajaram
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Sara Pagella
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Benedikt Grothe
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Conny Kopp-Scheinpflug
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
24
|
Zbili M, Rama S, Yger P, Inglebert Y, Boumedine-Guignon N, Fronzaroli-Moliniere L, Brette R, Russier M, Debanne D. Axonal Na + channels detect and transmit levels of input synchrony in local brain circuits. SCIENCE ADVANCES 2020; 6:eaay4313. [PMID: 32494697 PMCID: PMC7202877 DOI: 10.1126/sciadv.aay4313] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Sensory processing requires mechanisms of fast coincidence detection to discriminate synchronous from asynchronous inputs. Spike threshold adaptation enables such a discrimination but is ineffective in transmitting this information to the network. We show here that presynaptic axonal sodium channels read and transmit precise levels of input synchrony to the postsynaptic cell by modulating the presynaptic action potential (AP) amplitude. As a consequence, synaptic transmission is facilitated at cortical synapses when the presynaptic spike is produced by synchronous inputs. Using dual soma-axon recordings, imaging, and modeling, we show that this facilitation results from enhanced AP amplitude in the axon due to minimized inactivation of axonal sodium channels. Quantifying local circuit activity and using network modeling, we found that spikes induced by synchronous inputs produced a larger effect on network activity than spikes induced by asynchronous inputs. Therefore, this input synchrony-dependent facilitation may constitute a powerful mechanism, regulating synaptic transmission at proximal synapses.
Collapse
Affiliation(s)
- Mickaël Zbili
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015, Marseille, France
| | - Sylvain Rama
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015, Marseille, France
| | - Pierre Yger
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Yanis Inglebert
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015, Marseille, France
| | | | | | - Romain Brette
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Michaël Russier
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015, Marseille, France
| | - Dominique Debanne
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015, Marseille, France
| |
Collapse
|
25
|
Enhanced Thalamocortical Synaptic Transmission and Dysregulation of the Excitatory-Inhibitory Balance at the Thalamocortical Feedforward Inhibitory Microcircuit in a Genetic Mouse Model of Migraine. J Neurosci 2019; 39:9841-9851. [PMID: 31645463 DOI: 10.1523/jneurosci.1840-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/22/2019] [Indexed: 12/22/2022] Open
Abstract
Migraine is a complex brain disorder, characterized by attacks of unilateral headache and global dysfunction in multisensory information processing, whose underlying cellular and circuit mechanisms remain unknown. The finding of enhanced excitatory, but unaltered inhibitory, neurotransmission at intracortical synapses in mouse models of familial hemiplegic migraine (FHM) suggested the hypothesis that dysregulation of the excitatory-inhibitory balance in specific circuits is a key pathogenic mechanism. Here, we investigated the thalamocortical (TC) feedforward inhibitory microcircuit in FHM1 mice of both sexes carrying a gain-of-function mutation in CaV2.1. We show that TC synaptic transmission in somatosensory cortex is enhanced in FHM1 mice. Due to similar gain of function of TC excitation of layer 4 excitatory and fast-spiking inhibitory neurons elicited by single thalamic stimulations, neither the excitatory-inhibitory balance nor the integration time window set by the TC feedforward inhibitory microcircuit was altered in FHM1 mice. However, during repetitive thalamic stimulation, the typical shift of the excitatory-inhibitory balance toward excitation and the widening of the integration time window were both smaller in FHM1 compared with WT mice, revealing a dysregulation of the excitatory-inhibitory balance, whereby the balance is relatively skewed toward inhibition. This is due to an unexpected differential effect of the FHM1 mutation on short-term synaptic plasticity at TC synapses on cortical excitatory and fast-spiking inhibitory neurons. Our findings point to enhanced transmission of sensory, including trigeminovascular nociceptive, signals from thalamic nuclei to cortex and TC excitatory-inhibitory imbalance as mechanisms that may contribute to headache, increased sensory gain, and sensory processing dysfunctions in migraine.SIGNIFICANCE STATEMENT Migraine is a complex brain disorder, characterized by attacks of unilateral headache and by global dysfunction in multisensory information processing, whose underlying cellular and circuit mechanisms remain unknown. Here we provide insights into these mechanisms by investigating thalamocortical (TC) synaptic transmission and the function of the TC feedforward inhibitory microcircuit in a mouse model of a rare monogenic migraine. This microcircuit is critical for gating information flow to cortex and for sensory processing. We reveal increased TC transmission and dysregulation of the cortical excitatory-inhibitory balance set by the TC feedforward inhibitory microcircuit, whereby the balance is relatively skewed toward inhibition during repetitive thalamic activity. These alterations may contribute to headache, increased sensory gain, and sensory processing dysfunctions in migraine.
Collapse
|
26
|
Nakamura Y. EGTA Can Inhibit Vesicular Release in the Nanodomain of Single Ca 2+ Channels. Front Synaptic Neurosci 2019; 11:26. [PMID: 31632263 PMCID: PMC6779814 DOI: 10.3389/fnsyn.2019.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/02/2019] [Indexed: 01/21/2023] Open
Abstract
The exogenous Ca2+ chelator EGTA (ethylene glycol tetraacetic acid) has been widely used to probe the coupling distance between Ca2+ channels and vesicular Ca2+ sensors for neurotransmitter release. Because of its slow forward rate for binding, EGTA is thought to not capture calcium ions in very proximity to a channel, whereas it does capture calcium ions at the remote distance. However, in this study, our reaction diffusion simulations (RDSs) of Ca2+ combined with a release calculation using vesicular sensor models indicate that a high concentration of EGTA decreases Ca2+ and vesicular release in the nanodomain of single channels. We found that a key determinant of the effect of EGTA on neurotransmitter release is the saturation of the vesicular sensor. When the sensor is saturated, the reduction in the Ca2+ concentration by EGTA is masked. By contrast, when the sensor is in a linear range, even a small reduction in Ca2+ by EGTA can decrease vesicular release. In proximity to a channel, the vesicular sensor is often saturated for a long voltage step, but not for a brief Ca2+ influx typically evoked by an action potential. Therefore, when EGTA is used as a diagnostic tool to probe the coupling distance, care must be taken regarding the presynaptic Ca2+ entry duration as well as the property of the vesicular Ca2+ sensor.
Collapse
Affiliation(s)
- Yukihiro Nakamura
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Plasticity in striatal dopamine release is governed by release-independent depression and the dopamine transporter. Nat Commun 2019; 10:4263. [PMID: 31537790 PMCID: PMC6753151 DOI: 10.1038/s41467-019-12264-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/13/2019] [Indexed: 01/19/2023] Open
Abstract
Mesostriatal dopaminergic neurons possess extensively branched axonal arbours. Whether action potentials are converted to dopamine output in the striatum will be influenced dynamically and critically by axonal properties and mechanisms that are poorly understood. Here, we address the roles for mechanisms governing release probability and axonal activity in determining short‐term plasticity of dopamine release, using fast‐scan cyclic voltammetry in the ex vivo mouse striatum. We show that brief short‐term facilitation and longer short term depression are only weakly dependent on the level of initial release, i.e. are release insensitive. Rather, short-term plasticity is strongly determined by mechanisms which govern axonal activation, including K+‐gated excitability and the dopamine transporter, particularly in the dorsal striatum. We identify the dopamine transporter as a master regulator of dopamine short‐term plasticity, governing the balance between release‐dependent and independent mechanisms that also show region‐specific gating. Dopamine release in the striatum has important roles in action selection and in disorders such as Parkinson’s disease. The authors here show that short-term plasticity of dopamine release is strongly determined by axonal activation and dopamine transporters.
Collapse
|
28
|
Abstract
Axons functionally link the somato-dendritic compartment to synaptic terminals. Structurally and functionally diverse, they accomplish a central role in determining the delays and reliability with which neuronal ensembles communicate. By combining their active and passive biophysical properties, they ensure a plethora of physiological computations. In this review, we revisit the biophysics of generation and propagation of electrical signals in the axon and their dynamics. We further place the computational abilities of axons in the context of intracellular and intercellular coupling. We discuss how, by means of sophisticated biophysical mechanisms, axons expand the repertoire of axonal computation, and thereby, of neural computation.
Collapse
Affiliation(s)
- Pepe Alcami
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet Muenchen, Martinsried, Germany
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Ahmed El Hady
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
29
|
Yamashita M, Kawaguchi SY, Hori T, Takahashi T. Vesicular GABA Uptake Can Be Rate Limiting for Recovery of IPSCs from Synaptic Depression. Cell Rep 2019; 22:3134-3141. [PMID: 29562170 DOI: 10.1016/j.celrep.2018.02.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 11/16/2022] Open
Abstract
Synaptic efficacy plays crucial roles in neuronal circuit operation and synaptic plasticity. Presynaptic determinants of synaptic efficacy are neurotransmitter content in synaptic vesicles and the number of vesicles undergoing exocytosis at a time. Bursts of presynaptic firings depress synaptic efficacy, mainly due to depletion of releasable vesicles, whereas recovery from strong depression is initiated by endocytic vesicle retrieval followed by refilling of vesicles with neurotransmitter. We washed out presynaptic cytosolic GABA to induce a rundown of IPSCs at cerebellar inhibitory cell pairs in slices from rats and then allowed fast recovery by elevating GABA concentration using photo-uncaging. The time course of this recovery coincided with that of IPSCs from activity-dependent depression induced by a train of high-frequency stimulation. We conclude that vesicular GABA uptake can be a limiting step for the recovery of inhibitory neurotransmission from synaptic depression.
Collapse
Affiliation(s)
- Manami Yamashita
- Laboratory of Molecular Synaptic Function, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan; Department of Physiology, Faculty of Medicine, Osaka Medical College, Osaka 569-8686, Japan
| | - Shin-Ya Kawaguchi
- Society-Academia Collaboration for Innovation, Kyoto University, Kyoto 606-8501, Japan
| | - Tetsuya Hori
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa 904-0495, Japan.
| |
Collapse
|
30
|
Abstract
Analog signaling describes the use of graded voltage changes as signals in the axonal compartment. Analog signaling has been described originally in invertebrates but more recent work has established its presence in the mammalian brain (Alle and Geiger, 2006; Shu et al., 2006). In recent years, many different groups have contributed to the understanding of the physiological significance of analog signaling from a cellular perspective (for a recent review the reader may take a look at the work by Zbili and Debanne, 2019 in this Frontiers in Neuroscience Special Issue). The great majority of the experimental work related to analog signaling, however, concerns the propagation of subthreshold voltage changes from the soma to the axon. Much less attention has been paid to the propagation of subthreshold voltage changes in the opposite direction, from the axon to the soma, or to the propagation of local signals within the axon. In this mini review we will describe these other variants of analog signaling that we call here “antidromic” coupling and “local” coupling.
Collapse
Affiliation(s)
- Federico F Trigo
- CNRS UMR8003, SPPIN Laboratory, Cerebellar Neurophysiology Group, Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, Paris, France.,Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
31
|
Glasgow SD, McPhedrain R, Madranges JF, Kennedy TE, Ruthazer ES. Approaches and Limitations in the Investigation of Synaptic Transmission and Plasticity. Front Synaptic Neurosci 2019; 11:20. [PMID: 31396073 PMCID: PMC6667546 DOI: 10.3389/fnsyn.2019.00020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
The numbers and strengths of synapses in the brain change throughout development, and even into adulthood, as synaptic inputs are added, eliminated, and refined in response to ongoing neural activity. A number of experimental techniques can assess these changes, including single-cell electrophysiological recording which offers measurements of synaptic inputs with high temporal resolution. Coupled with electrical stimulation, photoactivatable opsins, and caged compounds, to facilitate fine spatiotemporal control over release of neurotransmitters, electrophysiological recordings allow for precise dissection of presynaptic and postsynaptic mechanisms of action. Here, we discuss the strengths and pitfalls of various techniques commonly used to analyze synapses, including miniature excitatory/inhibitory (E/I) postsynaptic currents, evoked release, and optogenetic stimulation. Together, these techniques can provide multiple lines of convergent evidence to generate meaningful insight into the emergence of circuit connectivity and maturation. A full understanding of potential caveats and alternative explanations for findings is essential to avoid data misinterpretation.
Collapse
Affiliation(s)
| | | | | | | | - Edward S. Ruthazer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Kawaguchi SY. Dynamic Factors for Transmitter Release at Small Presynaptic Boutons Revealed by Direct Patch-Clamp Recordings. Front Cell Neurosci 2019; 13:269. [PMID: 31249514 PMCID: PMC6582627 DOI: 10.3389/fncel.2019.00269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022] Open
Abstract
Small size of an axon and presynaptic structures have hindered direct functional analysis of axonal signaling and transmitter release at presynaptic boutons in the central nervous system. However, recent technical advances in subcellular patch-clamp recordings and in fluorescent imagings are shedding light on the dynamic nature of axonal and presynaptic mechanisms. Here I summarize the functional design of an axon and presynaptic boutons, such as diversity and activity-dependent changes of action potential (AP) waveforms, Ca2+ influx, and kinetics of transmitter release, revealed by the technical tour de force of direct patch-clamp recordings and the leading-edge fluorescent imagings. I highlight the critical factors for dynamic modulation of transmitter release and presynaptic short-term plasticity.
Collapse
Affiliation(s)
- Shin-Ya Kawaguchi
- Society-Academia Collaboration for Innovation, Kyoto University, Kyoto, Japan.,Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Burke KJ, Bender KJ. Modulation of Ion Channels in the Axon: Mechanisms and Function. Front Cell Neurosci 2019; 13:221. [PMID: 31156397 PMCID: PMC6533529 DOI: 10.3389/fncel.2019.00221] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
The axon is responsible for integrating synaptic signals, generating action potentials (APs), propagating those APs to downstream synapses and converting them into patterns of neurotransmitter vesicle release. This process is mediated by a rich assortment of voltage-gated ion channels whose function can be affected on short and long time scales by activity. Moreover, neuromodulators control the activity of these proteins through G-protein coupled receptor signaling cascades. Here, we review cellular mechanisms and signaling pathways involved in axonal ion channel modulation and examine how changes to ion channel function affect AP initiation, AP propagation, and the release of neurotransmitter. We then examine how these mechanisms could modulate synaptic function by focusing on three key features of synaptic information transmission: synaptic strength, synaptic variability, and short-term plasticity. Viewing these cellular mechanisms of neuromodulation from a functional perspective may assist in extending these findings to theories of neural circuit function and its neuromodulation.
Collapse
Affiliation(s)
| | - Kevin J. Bender
- Neuroscience Graduate Program and Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
34
|
Emmenegger V, Obien MEJ, Franke F, Hierlemann A. Technologies to Study Action Potential Propagation With a Focus on HD-MEAs. Front Cell Neurosci 2019; 13:159. [PMID: 31118887 PMCID: PMC6504789 DOI: 10.3389/fncel.2019.00159] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022] Open
Abstract
Axons convey information in neuronal circuits via reliable conduction of action potentials (APs) from the axon initial segment (AIS) to the presynaptic terminals. Recent experimental findings increasingly evidence that the axonal function is not limited to the simple transmission of APs. Advances in subcellular-resolution recording techniques have shown that axons display activity-dependent modulation in spike shape and conduction velocity, which influence synaptic strength and latency. We briefly review here, how recent methodological developments facilitate the understanding of the axon physiology. We included the three most common methods, i.e., genetically encoded voltage imaging (GEVI), subcellular patch-clamp and high-density microelectrode arrays (HD-MEAs). We then describe the potential of using HD-MEAs in studying axonal physiology in more detail. Due to their robustness, amenability to high-throughput and high spatiotemporal resolution, HD-MEAs can provide a direct functional electrical readout of single cells and cellular ensembles at subcellular resolution. HD-MEAs can, therefore, be employed in investigating axonal pathologies, the effects of large-scale genomic interventions (e.g., with RNAi or CRISPR) or in compound screenings. A combination of extracellular microelectrode arrays (MEAs), intracellular microelectrodes and optical imaging may potentially reveal yet unexplored repertoires of axonal functions.
Collapse
Affiliation(s)
- Vishalini Emmenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Marie Engelene J. Obien
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- MaxWell Biosystems AG, Basel, Switzerland
| | - Felix Franke
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
35
|
Martinello K, Giacalone E, Migliore M, Brown DA, Shah MM. The subthreshold-active K V7 current regulates neurotransmission by limiting spike-induced Ca 2+ influx in hippocampal mossy fiber synaptic terminals. Commun Biol 2019; 2:145. [PMID: 31044170 PMCID: PMC6486593 DOI: 10.1038/s42003-019-0408-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/29/2019] [Indexed: 12/23/2022] Open
Abstract
Little is known about the properties and function of ion channels that affect synaptic terminal-resting properties. One particular subthreshold-active ion channel, the Kv7 potassium channel, is highly localized to axons, but its role in regulating synaptic terminal intrinsic excitability and release is largely unexplored. Using electrophysiological recordings together with computational modeling, we found that the KV7 current was active at rest in adult hippocampal mossy fiber synaptic terminals and enhanced their membrane conductance. The current also restrained action potential-induced Ca2+ influx via N- and P/Q-type Ca2+ channels in boutons. This was associated with a substantial reduction in the spike half-width and afterdepolarization following presynaptic spikes. Further, by constraining spike-induced Ca2+ influx, the presynaptic KV7 current decreased neurotransmission onto CA3 pyramidal neurons and short-term synaptic plasticity at the mossy fiber-CA3 synapse. This is a distinctive mechanism by which KV7 channels influence hippocampal neuronal excitability and synaptic plasticity.
Collapse
Affiliation(s)
| | | | - Michele Migliore
- Institute of Biophysics, National Research Council, 90146 Palermo, Italy
| | - David A. Brown
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT UK
| | - Mala M. Shah
- UCL School of Pharmacy University College London, London, WC1N 1AX UK
| |
Collapse
|
36
|
Zbili M, Debanne D. Past and Future of Analog-Digital Modulation of Synaptic Transmission. Front Cell Neurosci 2019; 13:160. [PMID: 31105529 PMCID: PMC6492051 DOI: 10.3389/fncel.2019.00160] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 01/12/2023] Open
Abstract
Action potentials (APs) are generally produced in response to complex summation of excitatory and inhibitory synaptic inputs. While it is usually considered as a digital event, both the amplitude and width of the AP are significantly impacted by the context of its emission. In particular, the analog variations in subthreshold membrane potential determine the spike waveform and subsequently affect synaptic strength, leading to the so-called analog-digital modulation of synaptic transmission. We review here the numerous evidence suggesting context-dependent modulation of spike waveform, the discovery analog-digital modulation of synaptic transmission in invertebrates and its recent validation in mammals. We discuss the potential roles of analog-digital transmission in the physiology of neural networks.
Collapse
Affiliation(s)
- Mickael Zbili
- UNIS, UMR 1072, INSERM AMU, Marseille, France.,CRNL, INSERM U1028-CNRS UMR5292-Université Claude Bernard Lyon1, Lyon, France
| | | |
Collapse
|
37
|
Brockhaus J, Brüggen B, Missler M. Imaging and Analysis of Presynaptic Calcium Influx in Cultured Neurons Using synGCaMP6f. Front Synaptic Neurosci 2019; 11:12. [PMID: 31057389 PMCID: PMC6477507 DOI: 10.3389/fnsyn.2019.00012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Presynaptic Ca2+ influx through voltage-gated calcium channels (VGCCs) is a key step in synaptic transmission that links action potential (AP)-derived depolarization to vesicle release. However, investigation of presynaptic Ca2+ influx by patch clamp recordings is difficult due to the small size of the majority of synaptic boutons along thin axons that hamper clamp control. Genetically encoded calcium indicators (GECIs) in combination with live cell imaging provide an alternative method to study Ca2+ transients in individual presynaptic terminals. The indicator GCaMP6f was developed for fast speed and high sensitivity in detecting Ca2+ transients even in subcellular compartments. We fused GCaMP6f to synaptophysin (synGCaMP6f) to enrich the calcium indicator in presynaptic boutons of transfected primary hippocampal neurons to study presynaptic Ca2+ changes in response to individual APs or short bursts. Changes in fluorescence intensity were evaluated by normalization to control level or, alternatively, by normalization to maximal fluorescence using the calcium ionophore ionomycin. Measurements revealed robust Ca2+ transients with amplitudes that depend on parameters like the number of APs, stimulation frequency or external calcium concentration. Our findings indicate an appropriate sensitivity of synGCaMP6f for studying total presynaptic Ca2+ transients induced by single APs or short bursts that showed little rundown of the response after repeated bursts. Moreover, these recordings are fast enough to even study short-term plasticity like paired pulse facilitation (PPF) and frequency dependence of Ca2+ transients. In addition, synGCaMP6f could be used to dissect the contribution of different subtypes of VGCCs to presynaptic Ca2+ influx. Our results demonstrate that synGCaMP6f allows the reliable analysis of changes in presynaptic calcium concentration at many individual synaptic boutons in parallel and provides the possibility to study the regulation of this important step in synaptic transmission.
Collapse
Affiliation(s)
- Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Bianca Brüggen
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| |
Collapse
|
38
|
Panzera LC, Hoppa MB. Genetically Encoded Voltage Indicators Are Illuminating Subcellular Physiology of the Axon. Front Cell Neurosci 2019; 13:52. [PMID: 30881287 PMCID: PMC6406964 DOI: 10.3389/fncel.2019.00052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Everything we see and do is regulated by electrical signals in our nerves and muscle. Ion channels are crucial for sensing and generating electrical signals. Two voltage-dependent conductances, Na+ and K+, form the bedrock of the electrical impulse in the brain known as the action potential. Several classes of mammalian neurons express combinations of nearly 100 different varieties of these two voltage-dependent channels and their subunits. Not surprisingly, this variability orchestrates a diversity of action potential shapes and firing patterns that have been studied in detail at neural somata. A remarkably understudied phenomena exists in subcellular compartments of the axon, where action potentials initiate synaptic transmission. Ion channel research was catalyzed by the invention of glass electrodes to measure electrical signals in cell membranes, however, progress in the field of neurobiology has been stymied by the fact that most axons in the mammalian CNS are far too small and delicate for measuring ion channel function with electrodes. These quantitative measurements of membrane voltage can be achieved within the axon using light. A revolution of optical voltage sensors has enabled exploring important questions of how ion channels regulate axon physiology and synaptic transmission. In this review we will consider advantages and disadvantages of different fluorescent voltage indicators and discuss particularly relevant questions that these indicators can elucidate for understanding the crucial relationship between action potentials and synaptic transmission.
Collapse
Affiliation(s)
| | - Michael B. Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
39
|
Alpizar SA, Cho IH, Hoppa MB. Subcellular control of membrane excitability in the axon. Curr Opin Neurobiol 2019; 57:117-125. [PMID: 30784979 DOI: 10.1016/j.conb.2019.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Ion channels are microscopic pore proteins in the membrane that open and close in response to chemical and electrical stimuli. This simple concept underlies rapid electrical signaling in the brain as well as several important aspects of neural plasticity. Although the soma accounts for less than 1% of many neurons by membrane area, it has been the major site of measuring ion channel function. However, the axon is one of the longest processes found in cellular biology and hosts a multitude of critical signaling functions in the brain. Not only does the axon initiate and rapidly propagate action potentials (APs) across the brain but it also forms the presynaptic terminals that convert these electrical inputs into chemical outputs. Here, we review recent advances in the physiological role of ion channels within the diverse landscape of the axon and presynaptic terminals.
Collapse
Affiliation(s)
- Scott A Alpizar
- Dartmouth College, Department of Biological Sciences, Hanover, NH, United States
| | - In Ha Cho
- Dartmouth College, Department of Biological Sciences, Hanover, NH, United States
| | - Michael B Hoppa
- Dartmouth College, Department of Biological Sciences, Hanover, NH, United States.
| |
Collapse
|
40
|
|
41
|
Edamatsu M, Miyano R, Fujikawa A, Fujii F, Hori T, Sakaba T, Oohashi T. Hapln4/Bral2 is a selective regulator for formation and transmission of GABAergic synapses between Purkinje and deep cerebellar nuclei neurons. J Neurochem 2018; 147:748-763. [PMID: 30125937 DOI: 10.1111/jnc.14571] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022]
Abstract
Purkinje cells (PCs) convey the sole output of the cerebellar cortex to the deep cerebellar nuclei (DCN). DCN neurons are enwrapped in densely organized extracellular matrix structures, known as perineuronal nets (PNNs). PNNs are typically found around fast-spiking GABAergic interneurons expressing parvalbumin but interestingly also exist surrounding other neurons, such as the neurons in the DCN and medial nucleus of the trapezoid body, which are the post-synaptic neurons of large axo-somatic synapses adapted for fast signaling. This characteristic localization prompted the hypothesis that PNNs might play a role in the maintenance and formation of large fast-signaling synapses. To elucidate the role of the PNN at these synapses, we investigated the electrophysiological and morphological properties of DCN synapses in hyaluronan and proteoglycan binding link protein 4 (Hapln4/Bral2) knockout (KO) mice around postnatal day (P)14. Hapln4/Bral2 is important for PNN structure, as it stabilizes the interaction between hyaluronan and proteoglycan. Here, using immunohistochemistry we show that Hapln4/Bral2 localized closely with GABAergic terminals. In DCN neurons of Hapln4/Bral2 KO mice, inhibitory synaptic strengths were reduced as compared to those in wild-type mice, whereas the properties of excitatory synapses were unaffected. The reduced IPSC amplitudes were mainly because of reduced numbers of releasable vesicles. Moreover, Hapln4/Bral2 deficiency reduced the number of PC GABAergic terminals in the DCN. These results demonstrate that Hapln4/Bral2 is a PNN component that selectively contributes to formation and transmission of PC-DCN synapses in the cerebellum. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Midori Edamatsu
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Rinako Miyano
- Graduate School of Brain Science, Doshisha University, Kyo-Tanabe, Kyoto, Japan
| | - Atsushi Fujikawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Fuminari Fujii
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Tetsuya Hori
- Faculty of Life and Medical Sciences, Department of Neurophysiology, Doshisha University, Kyo-Tanabe, Kyoto, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyo-Tanabe, Kyoto, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| |
Collapse
|
42
|
Kawaguchi SY, Sakaba T. Fast Ca 2+ Buffer-Dependent Reliable but Plastic Transmission at Small CNS Synapses Revealed by Direct Bouton Recording. Cell Rep 2018; 21:3338-3345. [PMID: 29262314 DOI: 10.1016/j.celrep.2017.11.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/17/2017] [Accepted: 11/18/2017] [Indexed: 01/07/2023] Open
Abstract
The small size of presynaptic structures and their rapid function have obscured the mechanisms underlying neurotransmission and plasticity. To dissect the function of conventional small presynaptic boutons, we performed direct recording using axon varicosities of cerebellar granule cells (GCs), a parallel-fiber bouton, in dissociated culture, in which pre- and postsynaptic paired recordings are feasible. Identification and accessibility of EGFP-labeled GC boutons allowed us to patch-clamp record presynaptic voltage-gated Ca2+ currents and membrane capacitances, together with excitatory postsynaptic currents. We find that GC boutons have 20 readily releasable vesicles, which are loosely coupled to Ca2+ channels and rapidly replenished, and that synaptic strength and short-term plasticity are tightly regulated by intracellular Ca2+ buffering. Our functional dissection of small boutons thus reveals the sophisticated design of small synapses capable of reliable but plastic outputs with limited resources.
Collapse
Affiliation(s)
- Shin-Ya Kawaguchi
- Graduate School of Brain Science, Doshisha University, Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan; Society-Academia Collaboration for Innovation, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan; Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
43
|
Abstract
Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing.
Collapse
Affiliation(s)
- Sylvain Rama
- UNIS, UMR_S 1072, INSERM, Aix-Marseille Université, 13015 Marseille, France; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Mickaël Zbili
- UNIS, UMR_S 1072, INSERM, Aix-Marseille Université, 13015 Marseille, France
| | - Dominique Debanne
- UNIS, UMR_S 1072, INSERM, Aix-Marseille Université, 13015 Marseille, France.
| |
Collapse
|
44
|
Short-Term Depression of Axonal Spikes at the Mouse Hippocampal Mossy Fibers and Sodium Channel-Dependent Modulation. eNeuro 2018; 5:eN-NWR-0415-17. [PMID: 29468192 PMCID: PMC5820996 DOI: 10.1523/eneuro.0415-17.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 12/20/2022] Open
Abstract
Axonal spike is an important upstream process of transmitter release, which directly impacts on release probability from the presynaptic terminals. Despite the functional significance, possible activity-dependent modulation of axonal spikes has not been studied extensively, partly due to inaccessibility of the small structures of axons for electrophysiological recordings. In this study, we tested the possibility of use-dependent changes in axonal spikes at the hippocampal mossy fibers, where direct recordings from the axon terminals are readily feasible. Hippocampal slices were made from mice of either sex, and loose-patch clamp recordings were obtained from the visually identified giant mossy fiber boutons located in the stratum lucidum of the CA3 region. Stimulation of the granule cell layer of the dentate gyrus elicited axonal spikes at the single bouton which occurred in all or none fashion. Unexpected from the digital nature of spike signaling, the peak amplitude of the second spikes in response to paired stimuli at a 50-ms interval was slightly but reproducibly smaller than the first spikes. Repetitive stimuli at 20 or 100 Hz also caused progressive use-dependent depression during the train. Notably, veratridine, an inhibitor of inactivation of sodium channels, significantly accelerated the depression with minimal effect on the initial spikes. These results suggest that sodium channels contribute to use-dependent depression of axonal spikes at the hippocampal mossy fibers, possibly by shaping the afterdepolarization (ADP) following axonal spikes. Prolonged depolarization during ADP may inactivate a fraction of sodium channels and thereby suppresses the subsequent spikes at the hippocampal mossy fibers.
Collapse
|
45
|
SAKABA T. Kinetics of transmitter release at the calyx of Held synapse. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:139-152. [PMID: 29526973 PMCID: PMC5909059 DOI: 10.2183/pjab.94.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 08/01/2023]
Abstract
Synaptic contacts mediate information transfer between neurons. The calyx of Held, a large synapse in the mammalian auditory brainstem, has been used as a model system for the mechanism of transmitter release from the presynaptic terminal for the last 20 years. By applying simultaneous recordings from pre- and postsynaptic compartments, the calcium-dependence of the kinetics of transmitter release has been quantified. A single pool of readily releasable vesicles cannot explain the time course of release during repetitive activity. Rather, multiple pools of vesicles have to be postulated that are replenished with distinct kinetics after depletion. The physical identity of vesicle replenishment has been unknown. Recently, it has become possible to apply total internal reflection fluorescent microscopy to the calyx terminal. This technique allowed the visualization of the dynamics of individual synaptic vesicles. Rather than recruitment of vesicles to the transmitter release sites, priming of tethered vesicles in the total internal reflection fluorescent field limited the number of readily releasable vesicles during sustained activity.
Collapse
Affiliation(s)
- Takeshi SAKABA
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
46
|
Rowan MJM, Christie JM. Rapid State-Dependent Alteration in K v3 Channel Availability Drives Flexible Synaptic Signaling Dependent on Somatic Subthreshold Depolarization. Cell Rep 2017; 18:2018-2029. [PMID: 28228266 DOI: 10.1016/j.celrep.2017.01.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022] Open
Abstract
In many neurons, subthreshold depolarization in the soma can transiently increase action-potential (AP)-evoked neurotransmission via analog-to-digital facilitation. The mechanisms underlying this form of short-term synaptic plasticity are unclear, in part, due to the relative inaccessibility of the axon to direct physiological interrogation. Using voltage imaging and patch-clamp recording from presynaptic boutons of cerebellar stellate interneurons, we observed that depolarizing somatic potentials readily spread into the axon, resulting in AP broadening, increased spike-evoked Ca2+ entry, and enhanced neurotransmission strength. Kv3 channels, which drive AP repolarization, rapidly inactivated upon incorporation of Kv3.4 subunits. This leads to fast susceptibility to depolarization-induced spike broadening and analog facilitation independent of Ca2+-dependent protein kinase C signaling. The spread of depolarization into the axon was attenuated by hyperpolarization-activated currents (Ih currents) in the maturing cerebellum, precluding analog facilitation. These results suggest that analog-to-digital facilitation is tempered by development or experience in stellate cells.
Collapse
Affiliation(s)
- Matthew J M Rowan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| |
Collapse
|
47
|
Zorrilla de San Martin J, Trigo FF, Kawaguchi SY. Axonal GABA A receptors depolarize presynaptic terminals and facilitate transmitter release in cerebellar Purkinje cells. J Physiol 2017; 595:7477-7493. [PMID: 29072780 DOI: 10.1113/jp275369] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/20/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS GABAA receptors have been described in the axonal compartment of neurons; contrary to dendritic GABAA receptors, axonal GABAA receptors usually induce depolarizing responses. In this study we describe the presence of functional axonal GABAA receptors in cerebellar Purkinje cells by using a combination of direct patch-clamp recordings from the axon terminals and laser GABA photolysis. In Purkinje cells, axonal GABAA receptors are depolarizing and induce an increase in neurotransmitter release that results in a change of short-term synaptic plasticity. These results contribute to our understanding of the cellular mechanisms of action of axonal GABAA receptors and highlight the importance of the presynaptic compartment in neuronal computation. ABSTRACT In neurons of the adult brain, somatodendritic GABAA receptors (GABAA Rs) mediate fast synaptic inhibition and play a crucial role in synaptic integration. GABAA Rs are not only present in the somatodendritic compartment, but also in the axonal compartment where they modulate action potential (AP) propagation and transmitter release. Although presynaptic GABAA Rs have been reported in various brain regions, their mechanisms of action and physiological roles remain obscure, particularly at GABAergic boutons. Here, using a combination of direct whole-bouton or perforated patch-clamp recordings and local GABA photolysis in single axonal varicosities of cerebellar Purkinje cells, we investigate the subcellular localization and functional role of axonal GABAA Rs both in primary cultures and acute slices. Our results indicate that presynaptic terminals of PCs carry GABAA Rs that behave as auto-receptors; their activation leads to a depolarization of the terminal membrane after an AP due to the relatively high cytoplasmic Cl- concentration in the axon, but they do not modulate the AP itself. Paired recordings from different terminals of the same axon show that the GABAA R-mediated local depolarizations propagate substantially to neighbouring varicosities. Finally, the depolarization mediated by presynaptic GABAA R activation augmented Ca2+ influx and transmitter release, resulting in a marked effect on short-term plasticity. Altogether, our results reveal a mechanism by which presynaptic GABAA Rs influence neuronal computation.
Collapse
Affiliation(s)
- Javier Zorrilla de San Martin
- Laboratoire de Physiologie Cérébrale, Université Paris Descartes and Centre National de la Recherche Scientifique, CNRS UMR8118, Paris, France.,Current affiliation: INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Federico F Trigo
- Laboratoire de Physiologie Cérébrale, Université Paris Descartes and Centre National de la Recherche Scientifique, CNRS UMR8118, Paris, France
| | - Shin-Ya Kawaguchi
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan.,Society-Academia Collaboration for Innovation, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
48
|
Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points. J Neurosci 2017; 37:9519-9533. [PMID: 28871036 DOI: 10.1523/jneurosci.0891-17.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Neurotransmitter release depends on voltage-gated Na+ channels (Navs) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na+ channels. Using optical recordings of Ca2+ and membrane voltage, we demonstrate here that Na+ channel β2 subunits (Navβ2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Navβ2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Navβ2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons.SIGNIFICANCE STATEMENT Voltage-gated Ca2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na+ channel β2 subunits modulate AP-evoked Ca2+-influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the brain.
Collapse
|
49
|
Doussau F, Dupont JL, Neel D, Schneider A, Poulain B, Bossu JL. Organotypic cultures of cerebellar slices as a model to investigate demyelinating disorders. Expert Opin Drug Discov 2017; 12:1011-1022. [PMID: 28712329 DOI: 10.1080/17460441.2017.1356285] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Demyelinating disorders, characterized by a chronic or episodic destruction of the myelin sheath, are a leading cause of neurological disability in young adults in western countries. Studying the complex mechanisms involved in axon myelination, demyelination and remyelination requires an experimental model preserving the neuronal networks and neuro-glial interactions. Organotypic cerebellar slice cultures appear to be the best alternative to in vivo experiments and the most commonly used model for investigating etiology or novel therapeutic strategies in multiple sclerosis. Areas covered: This review gives an overview of slice culture techniques and focuses on the use of organotypic cerebellar slice cultures on semi-permeable membranes for studying many aspects of axon myelination and cerebellar functions. Expert opinion: Cerebellar slice cultures are probably the easiest way to faithfully reproduce all stages of axon myelination/demyelination/remyelination in a three-dimensional neuronal network. However, in the cerebellum, neurological disability in multiple sclerosis also results from channelopathies which induce changes in Purkinje cell excitability. Cerebellar cultures offer easy access to electrophysiological approaches which are largely untapped and we believe that these cultures might be of great interest when studying changes in neuronal excitability, axonal conduction or synaptic properties that likely occur during multiple sclerosis.
Collapse
Affiliation(s)
- Frédéric Doussau
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Jean-Luc Dupont
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Dorine Neel
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Aline Schneider
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Bernard Poulain
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| | - Jean Louis Bossu
- a Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 , Université de Strasbourg , Strasbourg , France
| |
Collapse
|
50
|
Turecek J, Jackman SL, Regehr WG. Synaptic Specializations Support Frequency-Independent Purkinje Cell Output from the Cerebellar Cortex. Cell Rep 2016; 17:3256-3268. [PMID: 28009294 PMCID: PMC5870134 DOI: 10.1016/j.celrep.2016.11.081] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 11/23/2022] Open
Abstract
The output of the cerebellar cortex is conveyed to the deep cerebellar nuclei (DCN) by Purkinje cells (PCs). Here, we characterize the properties of the PC-DCN synapse in juvenile and adult mice and find that prolonged high-frequency stimulation leads to steady-state responses that become increasingly frequency independent within the physiological firing range of PCs in older animals, resulting in a linear relationship between charge transfer and activation frequency. We used a low-affinity antagonist to show that GABAA-receptor saturation occurs at this synapse but does not underlie frequency-invariant transmission. We propose that PC-DCN synapses have two components of release: one prominent early in trains and another specialized to maintain transmission during prolonged activation. Short-term facilitation offsets partial vesicle depletion to produce frequency-independent transmission.
Collapse
Affiliation(s)
- Josef Turecek
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Skyler L Jackman
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|