1
|
Shi W, Zhao Q, Gao H, Yang Y, Tan Z, Li N, Wang H, Ji Y, Zhou Y. Exploring the bioactive ingredients of three traditional Chinese medicine formulas against age-related hearing loss through network pharmacology and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03464-2. [PMID: 39356317 DOI: 10.1007/s00210-024-03464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
Traditional Chinese medicine (TCM) formulas, including the Er-Long-Zuo-Ci pill, Tong-Qiao-Er-Long pill, and Er-Long pill, have long been utilized in China for managing age-related hearing loss (ARHL). However, the specific bioactive compounds, pharmacological targets, and underlying mechanisms remain elusive. This study aims to find the shared bioactive ingredients among these three formulas, uncover the molecular pathways they regulate, and identify potential therapeutic targets for ARHL. Furthermore, it seeks to validate the efficacy of these major components through both in vivo and in vitro experiments. Common bioactive ingredients were extracted from the TCMSP database, and their putative target proteins were predicted using the Swiss Target Prediction database. ARHL-related target proteins were collected from GeneCards and OMIM databases. Our approach involved constructing drug-target networks and drug-disease-specific protein-protein interaction networks and conducting clustering, topological property analyses, and functional annotation through GO and KEGG enrichment analysis. Molecular docking analysis was utilized to delineate interaction mechanisms between major bioactive ingredients and key target proteins. Finally, in vivo and in vitro experiments involving ABR recording, immunofluorescent staining, HE staining, and quantitative PCR were conducted to validate the treatment effects of flavonoids on the declining auditory function in DBA/2 J mice. We identified 11 common chemical compounds across the three formulas and their associated 276 putative targets. Additionally, 3350 ARHL-related targets were compiled. As an intersection of the putative targets of the common compounds and ARHL-related proteins, 145 shared targets were determined. Functional enrichment analysis indicated that these compounds may modulate various biological processes, including cell proliferation, apoptosis, inflammatory response, and synaptic connections. Notably, potential targets such as TNFα, MAPK1, SRC, AKT, EGFR, ESR1, and AR were implicated. Flavonoids emerged as major bioactive components against ARHL based on target numbers, with molecular docking demonstrating diverse interaction models between these flavonoids and protein targets. Furthermore, baicalin could mitigate the age-related cochlear damage and hearing loss of DBA/2 J mice through its multi-target and multi-pathway mechanism, involving anti-inflammation, modulation of sex hormone-related pathways, and activation of potassium channels. This study offers an integrated network pharmacology approach, validated by in vivo and in vitro experiments, shedding light on the potential mechanisms, major active components, and therapeutic targets of TCM formulas for treating ARHL.
Collapse
Affiliation(s)
- Wenying Shi
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Qi Zhao
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Hongwei Gao
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Yaxin Yang
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Zhiyong Tan
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Na Li
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Yonghua Ji
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - You Zhou
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China.
| |
Collapse
|
2
|
Hu S, Sun Q, Xu F, Jiang N, Gao J. Age-related hearing loss and its potential drug candidates: a systematic review. Chin Med 2023; 18:121. [PMID: 37730634 PMCID: PMC10512576 DOI: 10.1186/s13020-023-00825-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Age-related hearing loss (ARHL) is one of the main illnesses afflicting the aged population and has a significant negative impact on society, economy, and health. However, there is presently no appropriate therapeutic treatment of ARHL due to the absence of comprehensive trials. OBJECTIVES The goal of this review is to systematically evaluate and analyze recent statistics on the pathologic classifications, risk factors, treatment strategies, and drug candidates of ARHL, including that from traditional Chinese medicine (TCM), to provide potential new approaches for preventing and treating ARHL. METHODS Literature related to ARHL was conducted in databases such as PubMed, WOS, China National Knowledge Infrastructure (CNKI), and Wanfang from the establishment of the database to Jan, 2023. The pathology, causal factor, pathophysiological mechanism, treatment strategy, and the drug candidate of ARHL were extracted and pooled for synthesis. RESULTS Many hypotheses about the etiology of ARHL are based on genetic and environmental elements. Most of the current research on the pathology of ARHL focuses on oxidative damage, mitochondrial dysfunction, inflammation, cochlear blood flow, ion homeostasis, etc. In TCM, herbs belonging to the kidney, lung, and liver meridians exhibit good hearing protection. Seven herbs belonging to the kidney meridian, 9 belonging to the lung meridian, and 4 belonging to the liver meridian were ultimately retrieved in this review, such as Polygonum multiflorum Thunb., Panax ginseng C.A. Mey, and Pueraria lobata (Willd.) Ohwi. Their active compounds, 2,3,4',5-Tetrahydroxystilbene-2-O-D-glucoside, ginsenoside Rb1, and puerarin, may act as the molecular substance for their anti-ARHL efficacy, and show anti-oxidative, neuroprotective, anti-inflammatory, anti-apoptotic, or mitochondrial protective effects. CONCLUSION Anti-oxidants, modulators of mitochondrial function, anti-inflammation agents, vasodilators, K+ channel openers, Ca2+ channel blockers, JNK inhibitors, and nerve growth factors/neurotrophic factors all contribute to hearing protection, and herbs are an important source of potential anti-ARHL drugs.
Collapse
Affiliation(s)
- Shiyu Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Qingru Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Fei Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Ninghua Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
The role of calcium, Akt and ERK signaling in cadmium-induced hair cell death. Mol Cell Neurosci 2023; 124:103815. [PMID: 36634791 DOI: 10.1016/j.mcn.2023.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Exposure to heavy metals has been shown to cause damage to a variety of different tissues and cell types including hair cells, the sensory cells of our inner ears responsible for hearing and balance. Elevated levels of one such metal, cadmium, have been associated with hearing loss and shown to cause hair cell death in multiple experimental models. While the mechanisms of cadmium-induced cell death have been extensively studied in other cell types they remain relatively unknown in hair cells. We have found that calcium signaling, which is known to play a role in cadmium-induced cell death in other cell types through calmodulin and CaMKII activation as well as IP3 receptor and mitochondrial calcium uniporter mediated calcium flow, does not appear to play a significant role in cadmium-induced hair cell death. While calmodulin inhibition can partially protect hair cells this may be due to impacts on mechanotransduction activity. Removal of extracellular calcium, and inhibiting CaMKII, the IP3 receptor and the mitochondrial calcium uniporter all failed to protect against cadmium-induced hair cell death. We also found cadmium treatment increased pAkt levels in hair cells and pERK levels in supporting cells. This activation may be protective as inhibiting these pathways enhances cadmium-induced hair cell death rather than protecting cells. Thus cadmium-induced hair cell death appears distinct from cadmium-induced cell death in other cell types where calcium, Akt and ERK signaling all promote cell death.
Collapse
|
4
|
Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia-like supporting cells in the organ of Corti: Membrane proteins and their roles in hearing. Glia 2022; 70:1799-1825. [PMID: 35713516 DOI: 10.1002/glia.24229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
The organ of Corti, located in the cochlea in the inner ear, is one of the major sensory organs involved in hearing. The organ of Corti consists of hair cells, glia-like supporting cells, and the cochlear nerve, which work in harmony to receive sound from the outer ear and transmit auditory signals to the cochlear nucleus in the auditory ascending pathway. In this process, maintenance of the endocochlear potential, with a high potassium gradient and clearance of electrolytes and biochemicals in the inner ear, is critical for normal sound transduction. There is an emerging need for a thorough understanding of each cell type involved in this process to understand the sophisticated mechanisms of the organ of Corti. Hair cells have long been thought to be active, playing a primary role in the cochlea in actively detecting and transmitting signals. In contrast, supporting cells are thought to be silent and function to support hair cells. However, growing lines of evidence regarding the membrane proteins that mediate ionic movement in supporting cells have demonstrated that supporting cells are not silent, but actively play important roles in normal signal transduction. In this review, we summarize studies that characterize diverse membrane proteins according to the supporting cell subtypes involved in cochlear physiology and hearing. This review contributes to a better understanding of supporting cell functions and facilitates the development of potential therapeutic tools for hearing loss.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
5
|
Bieniussa L, Kahraman B, Skornicka J, Schulte A, Voelker J, Jablonka S, Hagen R, Rak K. Pegylated Insulin-Like Growth Factor 1 attenuates Hair Cell Loss and promotes Presynaptic Maintenance of Medial Olivocochlear Cholinergic Fibers in the Cochlea of the Progressive Motor Neuropathy Mouse. Front Neurol 2022; 13:885026. [PMID: 35720065 PMCID: PMC9203726 DOI: 10.3389/fneur.2022.885026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The progressive motor neuropathy (PMN) mouse is a model of an inherited motor neuropathy disease with progressive neurodegeneration. Axon degeneration associates with homozygous mutations of the TBCE gene encoding the tubulin chaperone E protein. TBCE is responsible for the correct dimerization of alpha and beta-tubulin. Strikingly, the PMN mouse also develops a progressive hearing loss after normal hearing onset, characterized by degeneration of the auditory nerve and outer hair cell (OHC) loss. However, the development of this neuronal and cochlear pathology is not fully understood yet. Previous studies with pegylated insulin-like growth factor 1 (peg-IGF-1) treatment in this mouse model have been shown to expand lifespan, weight, muscle strength, and motor coordination. Accordingly, peg-IGF-1 was evaluated for an otoprotective effect. We investigated the effect of peg-IGF-1 on the auditory system by treatment starting at postnatal day 15 (p15). Histological analysis revealed positive effects on OHC synapses of medial olivocochlear (MOC) neuronal fibers and a short-term attenuation of OHC loss. Peg-IGF-1 was able to conditionally restore the disorganization of OHC synapses and maintain the provision of cholinergic acetyltransferase in presynapses. To assess auditory function, frequency-specific auditory brainstem responses and distortion product otoacoustic emissions were recorded in animals on p21 and p28. However, despite the positive effect on MOC fibers and OHC, no restoration of hearing could be achieved. The present work demonstrates that the synaptic pathology of efferent MOC fibers in PMN mice represents a particular form of “efferent auditory neuropathy.” Peg-IGF-1 showed an otoprotective effect by preventing the degeneration of OHCs and efferent synapses. However, enhanced efforts are needed to optimize the treatment to obtain detectable improvements in hearing performances.
Collapse
Affiliation(s)
- Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Baran Kahraman
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Skornicka
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Annemarie Schulte
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Kristen Rak
| |
Collapse
|
6
|
|
7
|
Liu Q, Li N, Yang Y, Yan X, Dong Y, Peng Y, Shi J. Prediction of the Molecular Mechanisms Underlying Erlong Zuoci Treatment of Age-Related Hearing Loss via Network Pharmacology-Based Analyses Combined with Experimental Validation. Front Pharmacol 2021; 12:719267. [PMID: 34887749 PMCID: PMC8650627 DOI: 10.3389/fphar.2021.719267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The traditional Chinese medicine formula ErLong ZuoCi (ELZC) has been extensively used to treat age-related hearing loss (ARHL) in clinical practice in China for centuries. However, the underlying molecular mechanisms are still poorly understood. Objective: Combine network pharmacology with experimental validation to explore the potential molecular mechanisms underlying ELZC with a systematic viewpoint. Methods: The chemical components of ELZC were collected from the Traditional Chinese Medicine System Pharmacology database, and their possible target proteins were predicted using the SwissTargetPrediction database. The putative ARHL-related target proteins were identified from the database: GeneCards and OMIM. We constructed the drug-target network as well as drug-disease specific protein-protein interaction networks and performed clustering and topological property analyses. Functional annotation and signaling pathways were performed by gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Finally, in vitro experiments were also performed to validate ELZC’s key target proteins and treatment effects on ARHL. Results: In total, 63 chemical compounds from ELZC and 365 putative ARHL-related targets were identified, and 1860 ARHL-related targets were collected from the OMIM and GeneCards. A total of 145 shared targets of ELZC and ARHL were acquired by Venn diagram analysis. Functional enrichment analysis suggested that ELZC might exert its pharmacological effects in multiple biological processes, such as cell proliferation, apoptosis, inflammatory response, and synaptic connections, and the potential targets might be associated with AKT, ERK, and STAT3, as well as other proteins. In vitro experiments revealed that ELZC pretreatment could decrease senescence-associated β-galactosidase activity in hydrogen peroxide-induced auditory hair cells, eliminate DNA damage, and reduce cellular senescence protein p21 and p53. Finally, Western blot analysis confirmed that ELZC could upregulate the predicted target ERK phosphorylation. Conclusion: We provide an integrative network pharmacology approach, in combination with in vitro experiments to explore the underlying molecular mechanisms governing ELZC treatment of ARHL. The protective effects of ELZC against ARHL were predicted to be associated with cellular senescence, inflammatory response, and synaptic connections which might be linked to various pathways such as JNK/STAT3 and ERK cascade signaling pathways. As a prosperous possibility, our experimental data suggest phosphorylation ERK is essential for ELZC to prevent degeneration of cochlear.
Collapse
Affiliation(s)
- Qing Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifang Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xirui Yan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Dong
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinting Peng
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianrong Shi
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
García-Mato Á, Cervantes B, Murillo-Cuesta S, Rodríguez-de la Rosa L, Varela-Nieto I. Insulin-like Growth Factor 1 Signaling in Mammalian Hearing. Genes (Basel) 2021; 12:genes12101553. [PMID: 34680948 PMCID: PMC8535591 DOI: 10.3390/genes12101553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a peptide hormone belonging to the insulin family of proteins. Almost all of the biological effects of IGF-1 are mediated through binding to its high-affinity tyrosine kinase receptor (IGF1R), a transmembrane receptor belonging to the insulin receptor family. Factors, receptors and IGF-binding proteins form the IGF system, which has multiple roles in mammalian development, adult tissue homeostasis, and aging. Consequently, mutations in genes of the IGF system, including downstream intracellular targets, underlie multiple common pathologies and are associated with multiple rare human diseases. Here we review the contribution of the IGF system to our understanding of the molecular and genetic basis of human hearing loss by describing, (i) the expression patterns of the IGF system in the mammalian inner ear; (ii) downstream signaling of IGF-1 in the hearing organ; (iii) mouse mutations in the IGF system, including upstream regulators and downstream targets of IGF-1 that inform cochlear pathophysiology; and (iv) human mutations in these genes causing hearing loss.
Collapse
Affiliation(s)
- Ángela García-Mato
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Blanca Cervantes
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
9
|
Key Signaling Pathways Regulate the Development and Survival of Auditory Hair Cells. Neural Plast 2021; 2021:5522717. [PMID: 34194486 PMCID: PMC8214483 DOI: 10.1155/2021/5522717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/01/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
The loss of auditory sensory hair cells (HCs) is the most common cause of sensorineural hearing loss (SNHL). As the main sound transmission structure in the cochlea, it is necessary to maintain the normal shape and survival of HCs. In this review, we described and summarized the signaling pathways that regulate the development and survival of auditory HCs in SNHL. The role of the mitogen-activated protein kinase (MAPK), phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Notch/Wnt/Atoh1, calcium channels, and oxidative stress/reactive oxygen species (ROS) signaling pathways are the most relevant. The molecular interactions of these signaling pathways play an important role in the survival of HCs, which may provide a theoretical basis and possible therapeutic interventions for the treatment of hearing loss.
Collapse
|
10
|
Zhang Y, Zhang Y, Wang Z, Sun Y, Jiang X, Xue M, Yu Y, Tao J. Suppression of delayed rectifier K + channels by gentamicin induces membrane hyperexcitability through JNK and PKA signaling pathways in vestibular ganglion neurons. Biomed Pharmacother 2021; 135:111185. [PMID: 33422932 DOI: 10.1016/j.biopha.2020.111185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/20/2020] [Accepted: 12/26/2020] [Indexed: 01/11/2023] Open
Abstract
Aminoglycoside antibiotics, such as gentamicin, are known to have vestibulotoxic effects, including ataxia and disequilibrium. To date, however, the underlying cellular and molecular mechanisms are still unclear. In this study, we determined the role of gentamicin in regulating the sustained delayed rectifier K+ current (IDR) and membrane excitability in vestibular ganglion (VG) neurons in mice. Our results showed that the application of gentamicin to VG neurons decreased the IDR in a concentration-dependent manner, while the transient outward A-type K+ current (IA) remained unaffected. The decrease in IDR induced by gentamicin was independent of G-protein activity and led to a hyperpolarizing shift of the inactivation Vhalf. The analysis of phospho-c-Jun N-terminal kinase (p-JNK) revealed that gentamicin significantly stimulated JNK, while p-ERK and p-p38 remained unaffected. Blocking Kv1 channels with α-dendrotoxin or pretreating VG neurons with the JNK inhibitor II abrogated the gentamicin-induced decrease in IDR. Antagonism of JNK signaling attenuated the gentamicin-induced stimulation of PKA activity, whereas PKA inhibition prevented the IDR response induced by gentamicin. Moreover, gentamicin significantly increased the number of action potentials fired in both phasic and tonic firing type neurons; pretreating VG neurons with the JNK inhibitor II and the blockade of the IDR abolished this effect. Taken together, our results demonstrate that gentamicin decreases the IDR through a G-protein-independent but JNK and PKA-mediated signaling pathways. This gentamicin-induced IDR response mediates VG neuronal hyperexcitability and might contribute to its pharmacological vestibular effects.
Collapse
Affiliation(s)
- Yunmei Zhang
- Department of Otolaryngology, the First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, PR China
| | - Yuan Zhang
- Department of Geriatrics & Institute of Neuroscience, the Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China; Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, PR China
| | - Zizhang Wang
- Department of Head and Neck Surgery, Shaanxi Provincial Tumor Hospital, the Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yufang Sun
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, PR China
| | - Xinghong Jiang
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, PR China
| | - Man Xue
- Suzhou Institute for Drug Control, Suzhou 215000, PR China
| | - Yafeng Yu
- Department of Otolaryngology, the First Affiliated Hospital of Soochow University, Suzhou 215006, PR China.
| | - Jin Tao
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, PR China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
11
|
Cortada M, Wei E, Jain N, Levano S, Bodmer D. Telmisartan Protects Auditory Hair Cells from Gentamicin-Induced Toxicity in vitro. Audiol Neurootol 2020; 25:297-308. [PMID: 32369826 DOI: 10.1159/000506796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Telmisartan is an angiotensin II receptor blocker that has pleiotropic effects and protective properties in different cell types. Moreover, telmisartan has also shown partial agonism on the peroxisome proliferator-activated receptor γ (PPAR-γ). Auditory hair cells (HCs) express PPAR-γ, and the protective role of PPAR-γ agonists on HCs has been shown. OBJECTIVES The objective of this study was to investigate the effects of telmisartan on gentamicin-induced ototoxicity in vitro. METHODS Cochlear explants were exposed to gentamicin with or without telmisartan, and/or GW9662, an irreversible PPAR-γ antagonist. RESULTS Telmisartan protected auditory HCs against gentamicin-induced ototoxicity. GW9662 completely blocked this protective effect, suggesting that it was mediated by PPAR-γ signaling. Exposure to GW9662 or telmisartan alone was not toxic to auditory HCs. CONCLUSIONS We found that telmisartan, via PPAR-γ signaling, protects auditory HCs from gentamicin-induced ototoxicity. Therefore, telmisartan could potentially be used in the future to prevent or treat sensorineural hearing loss.
Collapse
Affiliation(s)
- Maurizio Cortada
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Eric Wei
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Neha Jain
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Soledad Levano
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel Bodmer
- Clinic for Otolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland,
| |
Collapse
|
12
|
Castañeda R, Natarajan S, Jeong SY, Hong BN, Kang TH. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery? JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:409-428. [PMID: 30439402 DOI: 10.1016/j.jep.2018.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Traditional Oriental Medicine (TOM), the development of hearing pathologies is related to an inadequate nourishment of the ears by the kidney and other organs involved in regulation of bodily fluids and nutrients. Several herbal species have historically been prescribed for promoting the production of bodily fluids or as antiaging agents to treat deficiencies in hearing. AIM OF REVIEW The prevalence of hearing loss has been increasing in the last decade and is projected to grow considerably in the coming years. Recently, several herbal-derived products prescribed in TOM have demonstrated a therapeutic potential for acquired sensorineural hearing loss and tinnitus. Therefore, the aims of this review are to provide a comprehensive overview of the current known efficacy of the herbs used in TOM for preventing different forms of acquired sensorineural hearing loss and tinnitus, and associate the traditional principle with the demonstrated pharmacological mechanisms to establish a solid foundation for directing future research. METHODS The present review collected the literature related to herbs used in TOM or related compounds on hearing from Chinese, Korean, and Japanese herbal classics; library catalogs; and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct). RESULTS This review shows that approximately 25 herbal species and 40 active compounds prescribed in TOM for hearing loss and tinnitus have shown in vitro or in vivo beneficial effects for acquired sensorineural hearing loss produced by noise, aging, ototoxic drugs or diabetes. The inner ear is highly vulnerable to ischemia and oxidative damage, where several TOM agents have revealed a direct effect on the auditory system by normalizing the blood supply to the cochlea and increasing the antioxidant defense in sensory hair cells. These strategies have shown a positive impact on maintaining the inner ear potential, sustaining the production of endolymph, reducing the accumulation of toxic and inflammatory substances, preventing sensory cell death and preserving sensory transmission. There are still several herbal species with demonstrated therapeutic efficacy whose mechanisms have not been deeply studied and others that have been traditionally used in hearing loss but have not been tested experimentally. In clinical studies, Ginkgo biloba, Panax ginseng, and Astragalus propinquus have demonstrated to improve hearing thresholds in patients with sensorineural hearing loss and alleviated the symptoms of tinnitus. However, some of these clinical studies have been limited by small sample sizes, lack of an adequate control group or contradictory results. CONCLUSIONS Current therapeutic strategies have proven that the goal of the traditional oriental medicine principle of increasing bodily fluids is a relevant approach for reducing the development of hearing loss by improving microcirculation in the blood-labyrinth barrier and increasing cochlear blood flow. The potential benefits of TOM agents expand to a multi-target approach on different auditory structures of the inner ear related to increased cochlear blood flow, antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, more research is required, given the evidence is very limited in terms of the mechanism of action at the preclinical in vivo level and the scarce number of clinical studies published.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Sathishkumar Natarajan
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Seo Yule Jeong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Bin Na Hong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea.
| | - Tong Ho Kang
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| |
Collapse
|
13
|
Zhou M, Sun G, Zhang L, Zhang G, Yang Q, Yin H, Li H, Liu W, Bai X, Li J, Wang H. STK33 alleviates gentamicin-induced ototoxicity in cochlear hair cells and House Ear Institute-Organ of Corti 1 cells. J Cell Mol Med 2018; 22:5286-5299. [PMID: 30256516 PMCID: PMC6201369 DOI: 10.1111/jcmm.13792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
Serine/threonine kinase 33 (STK33), a member of the calcium/calmodulin‐dependent kinase (CAMK), plays vital roles in a wide spectrum of cell processes. The present study was designed to investigate whether STK33 expressed in the mammalian cochlea and, if so, what effect STK33 exerted on aminoglycoside‐induced ototoxicity in House Ear Institute‐Organ of Corti 1 (HEI‐OC1) cells. Immunofluorescence staining and western blotting were performed to investigate STK33 expression in cochlear hair cells (HCs) and HEI‐OC1 cells with or without gentamicin treatment. CCK8, flow cytometry, immunofluorescence staining and western blotting were employed to detect the effects of STK33 knockdown, and/or U0126, and/or N‐acetyl‐L‐cysteine (NAC) on the sensitivity to gentamicin‐induced ototoxicity in HEI‐OC1 cells. We found that STK33 was expressed in both mice cochlear HCs and HEI‐OC1 cells, and the expression of STK33 was significantly decreased in cochlear HCs and HEI‐OC1 cells after gentamicin exposure. STK33 knockdown resulted in an increase in the cleaved caspase‐3 and Bax expressions as well as cell apoptosis after gentamicin damage in HEI‐OC1 cells. Mechanistic studies revealed that knockdown of STK33 led to activated mitochondrial apoptosis pathway as well as augmented reactive oxygen species (ROS) accumulation after gentamicin damage. Moreover, STK33 was involved in extracellular signal‐regulated kinase 1/2 pathway in primary culture of HCs and HEI‐OC1 cells in response to gentamicin insult. The findings from this work indicate that STK33 decreases the sensitivity to the apoptosis dependent on mitochondrial apoptotic pathway by regulating ROS generation after gentamicin treatment, which provides a new potential target for protection from the aminoglycoside‐induced ototoxicity.
Collapse
Affiliation(s)
- Meijuan Zhou
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Gaoying Sun
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Lili Zhang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Guodong Zhang
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Qianqian Yang
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Haiyan Yin
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Hongrui Li
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Wenwen Liu
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Xiaohui Bai
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Jianfeng Li
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Haibo Wang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| |
Collapse
|
14
|
Lim HW, Pak K, Ryan AF, Kurabi A. Screening Mammalian Cochlear Hair Cells to Identify Critical Processes in Aminoglycoside-Mediated Damage. Front Cell Neurosci 2018; 12:179. [PMID: 30013464 PMCID: PMC6036173 DOI: 10.3389/fncel.2018.00179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
There is considerable interest in discovering drugs with the potential to protect inner ear hair cells (HCs) from damage. One means of discovery is to screen compound libraries. Excellent screening protocols have been developed employing cell lines derived from the cochlea and zebrafish larvae. However, these do not address the differentiated mammalian hair cell. We have developed a screening method employing micro-explants of the mammalian organ of Corti (oC) to identify compounds with the ability to influence aminoglycoside-induced HC loss. The assay is based on short segments of the neonatal mouse oC, containing ~80 HCs which selectively express green fluorescent protein (GFP). This allows the screening of hundreds of potential protectants in an assay that includes both inner and outer HCs. This review article describes various screening methods, including the micro-explant assay. In addition, two micro-explant screening studies in which antioxidant and kinase inhibitor libraries were evaluated are reviewed. The results from these screens are related to current models of HC damage and protection.
Collapse
Affiliation(s)
- Hyun Woo Lim
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States.,Department of Otolaryngology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Kwang Pak
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States.,San Diego VA Healthcare System, La Jolla, CA, United States
| | - Allen F Ryan
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States.,San Diego VA Healthcare System, La Jolla, CA, United States.,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
15
|
Neuronal erythropoietin overexpression is protective against kanamycin-induced hearing loss in mice. Toxicol Lett 2018; 291:121-128. [PMID: 29654830 DOI: 10.1016/j.toxlet.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/10/2023]
Abstract
Aminoglycosides have detrimental effects on the hair cells of the inner ear, yet these agents indisputably are one of the cornerstones in antibiotic therapy. Hence, there is a demand for strategies to prevent aminoglycoside-induced ototoxicity, which are not available today. In vitro data suggests that the pleiotropic growth factor erythropoietin (EPO) is neuroprotective against aminoglycoside-induced hair cell loss. Here, we use a mouse model with EPO-overexpression in neuronal tissue to evaluate whether EPO could also in vivo protect from aminoglycoside-induced hearing loss. Auditory brainstem response (ABR) thresholds were measured in 12-weeks-old mice before and after treatment with kanamycin for 15 days, which resulted in both C57BL/6 and EPO-transgenic animals in a high-frequency hearing loss. However, ABR threshold shifts in EPO-transgenic mice were significantly lower than in C57BL/6 mice (mean difference in ABR threshold shift 13.6 dB at 32 kHz, 95% CI 3.8-23.4 dB, p = 0.003). Correspondingly, quantification of hair cells and spiral ganglion neurons by immunofluorescence revealed that EPO-transgenic mice had a significantly lower hair cell and spiral ganglion neuron loss than C57BL/6 mice. In conclusion, neuronal overexpression of EPO is protective against aminoglycoside-induce hearing loss, which is in accordance with its known neuroprotective effects in other organs, such as the eye or the brain.
Collapse
|
16
|
Demir MG, Aydin S. The Effect of the Cholesterol Levels on Noise-Induced Hearing Loss. Int Arch Otorhinolaryngol 2018; 22:19-22. [PMID: 29371894 PMCID: PMC5783686 DOI: 10.1055/s-0037-1602774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/23/2017] [Indexed: 11/02/2022] Open
Abstract
Introduction Noise-induced hearing loss (NIHL), which is one of the most common occupational diseases among industrialized populations, is associated with longstanding exposure to high levels of noise. The pathogenesis of NIHL is not clear, but some genes and their activity at the tissue level have been investigated. Hypercholesterolemia, which can disturb the microcirculation, can be one of the underlying pathologies in hearing loss. Objective To investigate the relationship between NIHL and hypercholesterolemia. Methods The study group was selected among workers who had an occupational exposure of 85 dB of noise for at least 10 years. The audiologic assessment was recorded at seven frequencies (500 Hz, 1,000 Hz, 2,000 Hz, 3,000 Hz, 4,000 Hz, 6,000 Hz and 8,000 Hz). A total of 456 workers were included in the study and divided into two groups: the control group (252 patients) and the NIHL group (204 patients). After the audiologic measurement, blood samples were taken and investigated for blood cholesterol levels. According to these results, the groups were compared. Results Both groups were similarly distributed regarding age and occupational exposure time ( p > 0.05). We could not detect any association between cholesterol levels and noise-induced hearing loss ( p < 0.05). According to logistic regression analyses, the odds ratios are not significant for both hypercholesterolemia and hypertriglyceridemia ( p > 0.05). Conclusion Noise-induced hearing loss is still a common occupational problem that can be prevented by hearing conservation programs and occupational health and safety training. Still, we know little about the relationship between NIHL and hypercholesterolemia. According to our findings, we cannot detect any relationship. Controlled studies and studies with human individuals can be made possible in the future with diagnostic innovations in tissue imaging and tissue microcircular sampling.
Collapse
Affiliation(s)
| | - Sedat Aydin
- Department of ENT, Dr. Lutfi Kirdar Kartal Training and Researh State Hospital, Istanbul, Turkey
| |
Collapse
|
17
|
Ryals M, Pak K, Jalota R, Kurabi A, Ryan AF. A kinase inhibitor library screen identifies novel enzymes involved in ototoxic damage to the murine organ of Corti. PLoS One 2017; 12:e0186001. [PMID: 29049311 PMCID: PMC5648133 DOI: 10.1371/journal.pone.0186001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022] Open
Abstract
Ototoxicity is a significant side effect of a number of drugs, including the aminoglycoside antibiotics and platinum-based chemotherapeutic agents that are used to treat life-threatening illnesses. Although much progress has been made, the mechanisms that lead to ototoxic loss of inner ear sensory hair cells (HCs) remains incompletely understood. Given the critical role of protein phosphorylation in intracellular processes, including both damage and survival signaling, we screened a library of kinase inhibitors targeting members of all the major families in the kinome. Micro-explants from the organ of Corti of mice in which only the sensory cells express GFP were exposed to 200 μM of the ototoxic aminoglycoside gentamicin with or without three dosages of each kinase inhibitor. The loss of sensory cells was compared to that seen with gentamicin alone, or without treatment. Of the 160 inhibitors, 15 exhibited a statistically significant protective effect, while 3 significantly enhanced HC loss. The results confirm some previous studies of kinase involvement in HC damage and survival, and also highlight several novel potential kinase pathway contributions to ototoxicity.
Collapse
Affiliation(s)
- Matthew Ryals
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Kwang Pak
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Rahul Jalota
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
- Research Service, Veterans Administration Medical Center, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Cortada M, Levano S, Bodmer D. Brimonidine Protects Auditory Hair Cells from in vitro-Induced Toxicity of Gentamicin. Audiol Neurootol 2017; 22:125-134. [PMID: 28889125 DOI: 10.1159/000479218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Brimonidine, an alpha-2 adrenergic receptor (α2-AR) agonist, has neuroprotective effects in the visual system and in spiral ganglion neurons. Auditory hair cells (HCs) express all 3 α2-AR subtypes, but their roles in HCs remain unknown. This study investigated the effects of brimonidine on auditory HCs that were also exposed to gentamicin, which is toxic to HCs. Organ of Corti explants were exposed to gentamicin in the presence or absence of brimonidine, and the α2-AR protein expression levels and Erk1/2 and Akt phosphorylation levels were determined. Brimonidine had a protective effect on auditory HCs against gentamicin-induced toxicity that was blocked by yohimbine. This suggested that the protective effect of brimonidine on HCs was mediated by the α2-AR. None of the treatments altered α2-AR protein expression levels, and brimonidine did not significantly change the activation levels of the Erk1/2 and Akt proteins. These observations indicated that brimonidine, acting directly via α2-AR, protects HCs from gentamicin-induced toxicity. Therefore, brimonidine shows potential for preventing or treating sensorineural hearing loss.
Collapse
Affiliation(s)
- Maurizio Cortada
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
19
|
Bodmer D. An update on drug design strategies to prevent acquired sensorineural hearing loss. Expert Opin Drug Discov 2017; 12:1161-1167. [PMID: 28838250 DOI: 10.1080/17460441.2017.1372744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acute sensorineural hearing loss is a dramatic event for the patient. Different pathologies might result in acute sensorineural hearing loss, such as sudden hearing loss, exposure to medications/drugs or loud sound. Current therapeutic approaches include steroids and hyperbaric oxygen in addition to other methods. Research activities of the past have shed light on the molecular mechanisms involved in damage to hair cells, the synapses at the hair cell spiral ganglion junction and the stria vascularis. Molecular events and signaling pathways which underlie damage to these structures have been discovered. Areas covered: This paper summarizes current research efforts involved in investigating the molecular mechanisms involved in acute sensorineural hearing loss. Expert opinion: While progress has been made in unraveling basic mechanisms involved in acute sensorineural hearing loss, it is difficult to translate basic concepts to the clinic. There are often conflicting data in animal and human studies on the effect of a given intervention. There is also a lack of high quality clinical trials (double blind, placebo controlled and high powered). However, this author is confident that research efforts will pay out and that some of these efforts will translate into new therapeutic options for patients with acute hearing loss.
Collapse
Affiliation(s)
- Daniel Bodmer
- a Department of Biomedicine, Head and Neck Surgery , University of Basel Hospital , Basel , Switzerland.,b Department of Otolaryngology, Head and Neck Surgery , University of Basel Hospital , Basel , Switzerland
| |
Collapse
|
20
|
Yamahara K, Nakagawa T, Ito J, Kinoshita K, Omori K, Yamamoto N. Netrin 1 mediates protective effects exerted by insulin-like growth factor 1 on cochlear hair cells. Neuropharmacology 2017; 119:26-39. [PMID: 28373074 DOI: 10.1016/j.neuropharm.2017.03.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/15/2017] [Accepted: 03/29/2017] [Indexed: 01/17/2023]
Abstract
Sensorineural hearing loss (SNHL) is mainly caused by the damage of cochlear hair cells (HCs). As HCs and supporting cells (SCs) do not proliferate in postnatal mammals, the loss of HCs and SCs is irreversible, emphasizing the importance of preserving their numbers to prevent SNHL. It is known that insulin-like growth factor 1 (IGF1) is instrumental in the treatment of SNHL. Our previous study indicates that IGF1 protects HCs against aminoglycoside by activating IGF1 receptor and its two major downstream pathways, PI3K/AKT and MEK/ERK, in SCs, which results in the upregulation of the expression of the Netrin1-encoding gene (Ntn1). However, the mechanisms underlying IGF1-induced protection of HCs via SC activation as well as the role of NTN1 in this process have not been elucidated. Here, we demonstrated that NTN1, similar to IGF1, promoted HC survival. NTN1 blocking antibody attenuated IGF1-induced HC protection from aminoglycoside, indicating that NTN1 is the effector molecule of IGF1 signaling during HC protection. In situ hybridization demonstrated that IGF1 potently induced Ntn1 expression in SCs. NTN1 receptors were abundantly expressed in the cochlea; among them, UNC5B mediated IGF1 protective effects on HCs, as NTN1 binding to UNC5B inhibited HC apoptosis. These results provide new insights into the mechanisms underlying IGF1 protection of cochlear HCs, suggesting a possibility of using NTN1 as a new treatment for SNHL.
Collapse
Affiliation(s)
- Kohei Yamahara
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Juichi Ito
- Shiga Medical Center Research Institute, Moriyama, Shiga 524-8523, Japan
| | - Kazuo Kinoshita
- Shiga Medical Center Research Institute, Moriyama, Shiga 524-8523, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8507, Japan.
| |
Collapse
|
21
|
Bao B, He Y, Tang D, Li W, Li H. Inhibition of H3K27me3 Histone Demethylase Activity Prevents the Proliferative Regeneration of Zebrafish Lateral Line Neuromasts. Front Mol Neurosci 2017; 10:51. [PMID: 28348517 PMCID: PMC5346882 DOI: 10.3389/fnmol.2017.00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/14/2017] [Indexed: 01/01/2023] Open
Abstract
The H3K27 demethylases are involved in a variety of biological processes, including cell differentiation, proliferation, and cell death by regulating transcriptional activity. However, the function of H3K27 demethylation in the field of hearing research is poorly understood. Here, we investigated the role of H3K27me3 histone demethylase activity in hair cell regeneration using an in vivo animal model. Our data showed that pharmacologic inhibition of H3K27 demethylase activity with the specific small-molecule inhibitor GSK-J4 decreased the number of regenerated hair cells in response to neomycin damage. Furthermore, inhibition of H3K27me3 histone demethylase activity dramatically suppressed cell proliferation and activated caspase-3 levels in the regenerating neuromasts of the zebrafish lateral line. GSK-J4 administration also increased the expression of p21 and p27 in neuromast cells and inhibited the ERK signaling pathway. Collectively, our findings indicate that H3K27me3 demethylation is a key epigenetic regulator in the process of hair cell regeneration in zebrafish and suggest that H3K27me3 histone demethylase activity might be a novel therapeutic target for the treatment of hearing loss.
Collapse
Affiliation(s)
- Beier Bao
- State Key Laboratory of Medical Neurobiology, Medical College of Fudan University Shanghai, China
| | - Yingzi He
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China; Key Laboratory of Hearing Medicine of National Health and Family Planning CommissionShanghai, China
| | - Dongmei Tang
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China; Key Laboratory of Hearing Medicine of National Health and Family Planning CommissionShanghai, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China; Key Laboratory of Hearing Medicine of National Health and Family Planning CommissionShanghai, China
| | - Huawei Li
- State Key Laboratory of Medical Neurobiology, Medical College of Fudan UniversityShanghai, China; ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China; Key Laboratory of Hearing Medicine of National Health and Family Planning CommissionShanghai, China; Institutes of Biomedical Science, Fudan UniversityShanghai, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan UniversityShanghai, China
| |
Collapse
|
22
|
Chan DK, Rouse SL. Sound-Induced Intracellular Ca2+ Dynamics in the Adult Hearing Cochlea. PLoS One 2016; 11:e0167850. [PMID: 27959894 PMCID: PMC5154517 DOI: 10.1371/journal.pone.0167850] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/21/2016] [Indexed: 01/21/2023] Open
Abstract
Ca2+ signaling has been implicated in the initial pathophysiologic mechanisms underlying the cochlea's response to acoustic overstimulation. Intracellular Ca2+ signaling (ICS) waves, which occur in glia and retinal cells in response to injury to activate cell regulatory pathways, have been proposed as an early event in cochlear injury. Disruption of ICS activity is thought to underlie Connexin 26-associated hearing loss, the most common genetic form of deafness, and downstream sequelae of ICS wave activity, such as MAP kinase pathway activation, have been implicated in noise-induced hearing loss. However, ICS waves have only been observed in neonatal cochlear cultures and are thought to be quiescent after the onset of hearing. In this study, we employ an acute explant model of an adult, hearing cochlea that retains many in vivo physiologic features to investigate Ca2+ changes in response to sound. We find that both slow monotonic changes in intracellular Ca2+ concentration as well as discrete ICS waves occur with acoustic overstimulation. The ICS waves share many intrinsic features with their better-described neonatal counterparts, including ATP and gap-junction dependence, and propagation velocity and distance. This identification of ICS wave activity in the adult, hearing cochlea thus confirms and characterizes an important early detection mechanism for cochlear trauma and provides a target for interventions for noise-induced and Connexin 26-associated hearing loss.
Collapse
Affiliation(s)
- Dylan K. Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, United States of America
- * E-mail:
| | - Stephanie L. Rouse
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, United States of America
| |
Collapse
|
23
|
Kurabi A, Keithley EM, Housley GD, Ryan AF, Wong ACY. Cellular mechanisms of noise-induced hearing loss. Hear Res 2016; 349:129-137. [PMID: 27916698 PMCID: PMC6750278 DOI: 10.1016/j.heares.2016.11.013] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Exposure to intense sound or noise can result in purely temporary threshold shift (TTS), or leave a residual permanent threshold shift (PTS) along with alterations in growth functions of auditory nerve output. Recent research has revealed a number of mechanisms that contribute to noise-induced hearing loss (NIHL). The principle cause of NIHL is damage to cochlear hair cells and associated synaptopathy. Contributions to TTS include reversible damage to hair cell (HC) stereocilia or synapses, while moderate TTS reflects protective purinergic hearing adaptation. PTS represents permanent damage to or loss of HCs and synapses. While the substrates of HC damage are complex, they include the accumulation of reactive oxygen species and the active stimulation of intracellular stress pathways, leading to programmed and/or necrotic cell death. Permanent damage to cochlear neurons can also contribute to the effects of NIHL, in addition to HC damage. These mechanisms have translational potential for pharmacological intervention and provide multiple opportunities to prevent HC damage or to rescue HCs and spiral ganglion neurons that have suffered injury. This paper reviews advances in our understanding of cellular mechanisms that contribute to NIHL and their potential for therapeutic manipulation.
Collapse
Affiliation(s)
- Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Elizabeth M Keithley
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Gary D Housley
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Allen F Ryan
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States.
| | - Ann C-Y Wong
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| |
Collapse
|
24
|
Groth JB, Kao SY, Briët MC, Stankovic KM. Hepatocyte nuclear factor-4 alpha in noise-induced cochlear neuropathy. Dev Neurobiol 2016; 76:1374-1386. [PMID: 27112738 DOI: 10.1002/dneu.22399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/14/2016] [Accepted: 04/22/2016] [Indexed: 01/12/2023]
Abstract
Noise-induced hearing loss (NIHL) is a problem of profound clinical significance and growing magnitude. Alarmingly, even moderate noise levels, previously assumed to cause only temporary shifts in auditory thresholds ("temporary" NIHL), are now known to cause cochlear synaptopathy and subsequent neuropathy. To uncover molecular mechanisms of this neuropathy, a network analysis of genes reported to have significantly altered expression after temporary threshold shift-inducing noise exposure was performed. The transcription factor Hepatocyte Nuclear Factor-4 alpha (HNF4α), which had not previously been studied in the context of cochlear response to noise, was identified as a hub of a top-ranking network. Hnf4α expression and localization using quantitative RT-PCR and in situ hybridization, respectively, were described in adolescent and adult mice exposed to neuropathic noise levels in adolescence. Isoforms α3 and α12 in the cochlea were also identified. At every age examined, Hnf4α mRNA expression in the cochlear apex was similar to expression in the base. Hnf4α expression was evident in select cochlear cells, including spiral ganglion neurons (SGNs) and hair cells, and was significantly upregulated from 6 to 70 weeks of age, especially in SGNs. This age-related Hnf4α upregulation was inhibited by neuropathic noise exposure in adolescence. Hnf4α silencing with shRNA transfection into auditory neuroblast cells (VOT-33) reduced cell viability, as measured with the MTT assay, suggesting that Hnf4α may be involved in SGN survival. Our results motivate future studies of HNF4α in cochlear pathophysiology, especially because HNF4α mutations and polymorphisms are associated with human diseases that may include hearing loss. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1374-1386, 2016.
Collapse
Affiliation(s)
- Jane Bjerg Groth
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114.,Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, 02115.,Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Shyan-Yuan Kao
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114
| | - Martijn C Briët
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114.,Department of Otorhinolaryngology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Konstantina M Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114.,Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, 02115.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, 02115
| |
Collapse
|
25
|
Protective effects of the seaweed phlorotannin polyphenolic compound dieckol on gentamicin-induced damage in auditory hair cells. Int J Pediatr Otorhinolaryngol 2016; 83:31-6. [PMID: 26968049 DOI: 10.1016/j.ijporl.2016.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/06/2016] [Accepted: 01/15/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Drug-induced ototoxicity from compounds such as aminoglycosides and platinum can damage the inner ear resulting in hearing loss, tinnitus or balance problems and may be caused by the formation of reactive oxygen species (ROS). Dieckol is a phlorotannin polyphenolic compound with strong antioxidant effects found in edible brown algae. This study investigated the protective effects of dieckol on drug-induced ototoxicity in cochlear cultures obtained from neonatal mice. METHODS Cochlear explants were pretreated with dieckol and exposed to gentamicin for 48h. The explants were then fixed and stained with fluorescein isothiocyanate-phalloidin and the intact hair cells counted. The free radical scavenging activity of dieckol was assessed using a 1,1-diphenyl-2-picrylhydrazyl assay. E. coli (Escherichia coli) cultures were used to evaluate the effect of dieckol on the antibiotic activity of gentamicin. RESULTS Gentamicin treatment resulted in dose-dependent hair cell loss that was partially protected by dieckol. Moreover, at concentrations >67μM dieckol had significant radical scavenging activity. Dieckol did not compromise the antibiotic effect of gentamicin. CONCLUSIONS These findings suggest that dieckol can be used as a therapeutic agent that reduces the damage caused by drug-induced ototoxicity.
Collapse
|
26
|
ERK2 mediates inner hair cell survival and decreases susceptibility to noise-induced hearing loss. Sci Rep 2015; 5:16839. [PMID: 26577290 PMCID: PMC4649542 DOI: 10.1038/srep16839] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/12/2015] [Indexed: 11/16/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK) is a member of the family of mitogen-activated protein kinases (MAPKs) and coordinately regulates a multitude of cellular processes. In response to a variety of extracellular stimuli, phosphorylation of both threonine and tyrosine residues activates ERK. Recent evidence indicates that ERK is activated in response to cellular stress such as acoustic trauma. However, the specific role of ERK isoforms in auditory function is not fully understood. Here, we show that the isoform ERK2 plays an important role in regulating hair cell (HC) survival and noise-induced hearing loss (NIHL) in mice (C57BL/6J). We found that conditional knockout mice deficient for Erk2 in the inner ear HCs had hearing comparable to control mice and exhibited no HC loss under normal conditions. However, we found that these knockout mice were more vulnerable to noise and had blunted recovery from NIHL compared to control mice. Furthermore, we observed a significantly lower survival rate of inner hair cells in these mice compared to control mice. Our results indicate that ERK2 plays important roles in the survival of HC in NIHL.
Collapse
|
27
|
Gentamicin alters Akt-expression and its activation in the guinea pig cochlea. Neuroscience 2015; 311:490-8. [PMID: 26528886 DOI: 10.1016/j.neuroscience.2015.10.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 01/11/2023]
Abstract
Gentamicin treatment induces hair cell death or survival in the inner ear. Besides the well-known toxic effects, the phosphatidylinositol-3 kinase/Akt (PI3K/Akt) pathway was found to be involved in cell protection. After gentamicin application, the spatiotemporal expression patterns of Akt and its activated form (p-Akt) were determined in male guinea pigs. A single dose of 0.1 mL gentamicin (4 mg/ear/animal) was intratympanically injected. The auditory brainstem responses (ABRs) were recorded prior to application and 1, 2 and 7 days afterward. At these three time points the cochleae (n=10 in each case) were removed, transferred to fixative and embedded in paraffin. Seven ears were used as untreated controls. Gentamicin, Akt and p-Akt were identified immunohistochemically in various regions of the cochlea and their staining intensities were quantified on sections using digital image analysis. The application of gentamicin resulted in hearing loss with a concomitant up-regulation of Akt-expression in the organ of Corti and spiral ganglion cells and an additional activation in spiral ganglion cells. At the level of individual ears, clear intracellular correlations were found between Akt- and p-Akt-expression in the stria vascularis and interdental cells and, to a minor extent, in the spiral ligament and the organ of Corti. Furthermore, statistical evidence for the connection between gentamicin up-take and hearing loss was detected. The increase in Akt- and p-Akt-expression in the organ of Corti and spiral ganglion cells indicates a selected response of the cochlea against gentamicin toxicity.
Collapse
|
28
|
Glutz A, Leitmeyer K, Setz C, Brand Y, Bodmer D. Metformin Protects Auditory Hair Cells from Gentamicin-Induced Toxicity in vitro. Audiol Neurootol 2015; 20:360-9. [PMID: 26372952 DOI: 10.1159/000438918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 07/23/2015] [Indexed: 11/19/2022] Open
Abstract
Metformin is a commonly used antidiabetic drug. It has been shown that this drug activates the AMP-activated protein kinase, which inhibits downstream the mammalian target of rapamycin. In addition, several studies indicate that metformin reduces intracellular reactive oxygen species. Our data, using an in vitro rat model, indicate that metformin is able to protect auditory hair cells (HCs) from gentamicin-induced apoptotic cell death. Moreover, metformin has no toxic effect on spiral ganglion neuronal survival or outgrowth in vitro. These results suggest a protective effect of metformin on auditory HC survival in gentamicin-induced HC loss in vitro.
Collapse
Affiliation(s)
- Andrea Glutz
- Department of Biomedicine, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Wong ACY, Ryan AF. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front Aging Neurosci 2015; 7:58. [PMID: 25954196 PMCID: PMC4404918 DOI: 10.3389/fnagi.2015.00058] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/05/2015] [Indexed: 12/20/2022] Open
Abstract
The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss (ARHL). Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed.
Collapse
Affiliation(s)
- Ann C Y Wong
- Department of Surgery/Division of Otolaryngology, University of California, San Diego School of Medicine La Jolla, CA, USA ; Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Allen F Ryan
- Department of Surgery/Division of Otolaryngology, University of California, San Diego School of Medicine La Jolla, CA, USA ; Veterans Administration Medical Center La Jolla, CA, USA ; Department of Neurosciences, University of California, San Diego School of Medicine La Jolla, CA, USA
| |
Collapse
|
30
|
Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro. BIOMED RESEARCH INTERNATIONAL 2015; 2015:925890. [PMID: 25918725 PMCID: PMC4395993 DOI: 10.1155/2015/925890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/21/2022]
Abstract
Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation.
Collapse
|
31
|
Abstract
Fibroblast growth factors (Fgfs) play important roles in developmental processes of the inner ear, including the ontogeny of the statoacoustic ganglia (SAG) and hair cells. However, the detailed genetic mechanism(s) underlying Fgf/Fgfr-dependent otic neural development remains elusive. Using conditional genetic approaches and inhibitory small molecules, we have revealed that Fgfr-PI3K/Akt signaling is mainly responsible for zebrafish SAG development and have determined that Sox9a and Atoh1a act downstream of Fgfr-Akt signaling to specify and/or maintain the otic neuron fate during the early segmentation stage. Sox9a and Atoh1a coregulate numerous downstream factors identified through our ChIP-seq analyses, including Tlx2 and Eya2. Fgfr-Erk1/2 signaling contributes to ultricular hair cell development during a critical period between 9 and 15 hours postfertilization. Our work reveals that a genetic network of the previously known sensory determinant Atoh1 and the neural crest determinant Sox9 plays critical roles in SAG development. These newly uncovered roles for Atoh1and Sox9 in zebrafish otic development may be relevant to study in other species.
Collapse
|
32
|
Role of somatostatin receptor-2 in gentamicin-induced auditory hair cell loss in the Mammalian inner ear. PLoS One 2014; 9:e108146. [PMID: 25268135 PMCID: PMC4182454 DOI: 10.1371/journal.pone.0108146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023] Open
Abstract
Hair cells and spiral ganglion neurons of the mammalian auditory system do not regenerate, and their loss leads to irreversible hearing loss. Aminoglycosides induce auditory hair cell death in vitro, and evidence suggests that phosphatidylinositol-3-kinase/Akt signaling opposes gentamicin toxicity via its downstream target, the protein kinase Akt. We previously demonstrated that somatostatin-a peptide with hormone/neurotransmitter properties-can protect hair cells from gentamicin-induced hair cell death in vitro, and that somatostatin receptors are expressed in the mammalian inner ear. However, it remains unknown how this protective effect is mediated. In the present study, we show a highly significant protective effect of octreotide (a drug that mimics and is more potent than somatostatin) on gentamicin-induced hair cell death, and increased Akt phosphorylation in octreotide-treated organ of Corti explants in vitro. Moreover, we demonstrate that somatostatin receptor-1 knockout mice overexpress somatostatin receptor-2 in the organ of Corti, and are less susceptible to gentamicin-induced hair cell loss than wild-type or somatostatin-1/somatostatin-2 double-knockout mice. Finally, we show that octreotide affects auditory hair cells, enhances spiral ganglion neurite number, and decreases spiral ganglion neurite length.
Collapse
|
33
|
Yamamoto N, Nakagawa T, Ito J. Application of insulin-like growth factor-1 in the treatment of inner ear disorders. Front Pharmacol 2014; 5:208. [PMID: 25309440 PMCID: PMC4159992 DOI: 10.3389/fphar.2014.00208] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/22/2014] [Indexed: 01/10/2023] Open
Abstract
Sensorineural hearing loss (SNHL) is considered an intractable disease, given that hair and supporting cells (HCs and SCs) of the postnatal mammalian cochlea are unable to regenerate. However, with progress in regenerative medicine in the 21st century, several innovative approaches for achieving regeneration of inner ear HCs and SCs have become available. These methods include stem cell transplantation, overexpression of specific genes, and treatment with growth factors. Insulin-like growth factor-1 (IGF-1) is one of the growth factors that are involved in the development of the inner ear. Treatment with IGF-1 maintains HC numbers in the postnatal mammalian cochlea after various types of HC injuries, with activation of two major pathways downstream of IGF-1 signaling. In the aminoglycoside-treated neonatal mouse cochlear explant culture, promotion of the cell-cycle in SCs as well as inhibition of HC apoptosis was observed in the IGF-1-treated group. Activation of downstream molecules was observed in SCs and, in turn, SCs contribute to the maintenance of HC numbers. Using comprehensive analysis of the gene expression, the candidate effector molecules of the IGF-1 signaling pathway in the protection of HCs were identified as Netrin1 and Gap43. Based on these studies, a clinical trial has sought to investigate the effects of IGF-1 on SNHL. Sudden SNHL (SSHL) that was refractory to systemic steroids was treated with IGF-1 in a gelatin hydrogel and the outcome was compared with a historical control of hyperbaric oxygen therapy. The proportion of patients showing hearing improvement was significantly higher in the IGF-1-treatment group at 24 weeks after treatment than in the control group. A randomized clinical trial is ongoing to compare the effect of IGF-1 treatment with that of intra-tympanic steroids for SSHL that is refractory to systemic steroids.
Collapse
Affiliation(s)
- Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University Kyoto Japan
| | - Juichi Ito
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University Kyoto Japan
| |
Collapse
|
34
|
Abstract
HYPOTHESIS Different pharmacotherapies for sensorineural hearing loss (SNHL) are interconnected in metabolic networks with molecular hubs. BACKGROUND Sensorineural hearing loss is the most common sensory deficit worldwide. Dozens of drugs have shown efficacy against SNHL in animal studies and a few in human studies. Analyzing metabolic networks that interconnect these drugs will point to and prioritize development of new pharmacotherapies for human SNHL. METHODS Drugs that have shown efficacy in treating mammalian SNHL were identified through PubMed literature searches. The drugs were analyzed using the metabolomic analysis and the "grow-tool function" in ingenuity pathway analysis (IPA). The top 3 most interconnected molecules and drugs (i.e., the hubs) within the generated networks were considered important targets for the treatment of SNHL. RESULTS A total of 70 drugs were investigated with IPA. The metabolomic analysis revealed 2 statistically significant networks (Networks 1 and 2). A network analysis using the "grow-tool function" generated one statistically significant network (Network 3). Hubs of these networks were as follows: P38 mitogen-activated protein kinases (P38 MAPK), p42/p44 MAP kinase (ERK1/2) and glutathione for Network 1; protein kinase B (Akt), nuclear factor kappa B (NFkB) and ERK for Network 2; and dexamethasone, tretinoin, and cyclosporin A for Network 3. CONCLUSION Metabolomic and network analysis of the existing pharmacotherapies for SNHL has pointed to and prioritized a number of potential novel targets for treatment of SNHL.
Collapse
|
35
|
Thomas PV, Cheng AL, Colby CC, Liu L, Patel CK, Josephs L, Duncan RK. Localization and proteomic characterization of cholesterol-rich membrane microdomains in the inner ear. J Proteomics 2014; 103:178-93. [PMID: 24713161 DOI: 10.1016/j.jprot.2014.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Biological membranes organize and compartmentalize cell signaling into discrete microdomains, a process that often involves stable, cholesterol-rich platforms that facilitate protein-protein interactions. Polarized cells with distinct apical and basolateral cell processes rely on such compartmentalization to maintain proper function. In the cochlea, a variety of highly polarized sensory and non-sensory cells are responsible for the early stages of sound processing in the ear, yet little is known about the mechanisms that traffic and organize signaling complexes within these cells. We sought to determine the prevalence, localization, and protein composition of cholesterol-rich lipid microdomains in the cochlea. Lipid raft components, including the scaffolding protein caveolin and the ganglioside GM1, were found in sensory, neural, and glial cells. Mass spectrometry of detergent-resistant membrane (DRM) fractions revealed over 600 putative raft proteins associated with subcellular localization, trafficking, and metabolism. Among the DRM constituents were several proteins involved in human forms of deafness including those involved in ion homeostasis, such as the potassium channel KCNQ1, the co-transporter SLC12A2, and gap junction proteins GJA1 and GJB6. The presence of caveolin in the cochlea and the abundance of proteins in cholesterol-rich DRM suggest that lipid microdomains play a significant role in cochlear physiology. BIOLOGICAL SIGNIFICANCE Although mechanisms underlying cholesterol synthesis, homeostasis, and compartmentalization in the ear are poorly understood, there are several lines of evidence indicating that cholesterol is a key modulator of cochlear function. Depletion of cholesterol in mature sensory cells alters calcium signaling, changes excitability during development, and affects the biomechanical processes in outer hair cells that are responsible for hearing acuity. More recently, we have established that the cholesterol-modulator beta-cyclodextrin is capable of inducing significant and permanent hearing loss when delivered subcutaneously at high doses. We hypothesize that proteins involved in cochlear homeostasis and otopathology are partitioned into cholesterol-rich domains. The results of a large-scale proteomic analysis point to metabolic processes, scaffolding/trafficking, and ion homeostasis as particularly associated with cholesterol microdomains. These data offer insight into the proteins and protein families that may underlie cholesterol-mediated effects in sensory cell excitability and cyclodextrin ototoxicity.
Collapse
Affiliation(s)
- Paul V Thomas
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Andrew L Cheng
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Candice C Colby
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Liqian Liu
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Chintan K Patel
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Lydia Josephs
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - R Keith Duncan
- Kresge Hearing Research Institute, 5323 Medical Science Building I, 1150 West Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5616, USA.
| |
Collapse
|
36
|
Abstract
OBJECTIVE To perform comprehensive network and pathway analyses of the genes known to cause genetic hearing loss. STUDY DESIGN In silico analysis of deafness genes using ingenuity pathway analysis (IPA). METHODS Genes relevant for hearing and deafness were identified through PubMed literature searches and the Hereditary Hearing Loss Homepage. The genes were assembled into 3 groups: 63 genes that cause nonsyndromic deafness, 107 genes that cause nonsyndromic or syndromic sensorineural deafness, and 112 genes associated with otic capsule development and malformations. Each group of genes was analyzed using IPA to discover the most interconnected, that is, "nodal" molecules, within the most statistically significant networks (p < 10). RESULTS The number of networks that met our criterion for significance was 1 for Group 1 and 2 for Groups 2 and 3. Nodal molecules of these networks were as follows: transforming growth factor beta1 (TGFB1) for Group 1, MAPK3/MAPK1 MAP kinase (ERK 1/2) and the G protein coupled receptors (GPCR) for Group 2, and TGFB1 and hepatocyte nuclear factor 4 alpha (HNF4A) for Group 3. The nodal molecules included not only those known to be associated with deafness (GPCR), or with predisposition to otosclerosis (TGFB1), but also novel genes that have not been described in the cochlea (HNF4A) and signaling kinases (ERK 1/2). CONCLUSION A number of molecules that are likely to be key mediators of genetic hearing loss were identified through three different network and pathway analyses. The molecules included new candidate genes for deafness. Therapies targeting these molecules may be useful to treat deafness.
Collapse
|
37
|
Hayashi Y, Yamamoto N, Nakagawa T, Ito J. Insulin-like growth factor 1 inhibits hair cell apoptosis and promotes the cell cycle of supporting cells by activating different downstream cascades after pharmacological hair cell injury in neonatal mice. Mol Cell Neurosci 2013; 56:29-38. [DOI: 10.1016/j.mcn.2013.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022] Open
|
38
|
Schacht J, Talaska AE, Rybak LP. Cisplatin and aminoglycoside antibiotics: hearing loss and its prevention. Anat Rec (Hoboken) 2012; 295:1837-50. [PMID: 23045231 DOI: 10.1002/ar.22578] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 07/24/2012] [Indexed: 12/19/2022]
Abstract
This review introduces the pathology of aminoglycoside antibiotic and the cisplatin chemotherapy classes of drugs, discusses oxidative stress in the inner ear as a primary trigger for cell damage, and delineates the ensuing cell death pathways. Among potentially ototoxic (damaging the inner ear) therapeutics, the platinum-based anticancer drugs and the aminoglycoside antibiotics are of critical clinical importance. Both drugs cause sensorineural hearing loss in patients, a side effect that can be reproduced in experimental animals. Hearing loss is reflected primarily in damage to outer hair cells, beginning in the basal turn of the cochlea. In addition, aminoglycosides might affect the vestibular system while cisplatin seems to have a much lower likelihood to do so. Finally, based on an understanding the mechanisms of ototoxicity pharmaceutical ways of protection of the cochlea are presented.
Collapse
Affiliation(s)
- Jochen Schacht
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109-5616, USA.
| | | | | |
Collapse
|
39
|
Brand Y, Setz C, Levano S, Listyo A, Chavez E, Pak K, Sung M, Radojevic V, Ryan AF, Bodmer D. Simvastatin protects auditory hair cells from gentamicin-induced toxicity and activates Akt signaling in vitro. BMC Neurosci 2011; 12:114. [PMID: 22082490 PMCID: PMC3250952 DOI: 10.1186/1471-2202-12-114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/14/2011] [Indexed: 01/11/2023] Open
Abstract
Background Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, known as statins, are commonly used as cholesterol-lowering drugs. During the past decade, evidence has emerged that statins also have neuroprotective effects. Research in the retina has shown that simvastatin, a commonly used statin, increases Akt phosphorylation in vivo, indicating that the PI3K/Akt pathway contributes to the protective effects achieved. While research about neuroprotective effects have been conducted in several systems, the effects of statins on the inner ear are largely unknown. Results We evaluated whether the 3-hydroxy-3-methylglutaryl-coenzyme A reductase is present within the rat cochlea and whether simvastatin is able to protect auditory hair cells from gentamicin-induced apoptotic cell death in a in vitro mouse model. Furthermore, we evaluated whether simvastatin increases Akt phosphorylation in the organ of Corti. We detected 3-hydroxy-3-methylglutaryl-coenzyme A reductase mRNA in organ of Corti, spiral ganglion, and stria vascularis by reverse transcriptase-polymerase chain reaction (RT-PCR). Moreover, we observed a dose-dependent and significant reduction of hair cell loss in organs of Corti treated with simvastatin in addition to gentamicin, as compared to samples treated with gentamicin alone. The protective effect of simvastatin was reversed by addition of mevalonate, a downstream metabolite blocked by simvastatin, demonstrating the specificity of protection. Finally, Western blotting showed an increase in organ of Corti Akt phosphorylation after simvastatin treatment in vitro. Conclusion These results suggest a neuroprotective effect of statins in the inner ear, mediated by reduced 3-hydroxy-3-methylglutaryl-coenzyme A reductase metabolism and Akt activation.
Collapse
Affiliation(s)
- Yves Brand
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xie J, Talaska AE, Schacht J. New developments in aminoglycoside therapy and ototoxicity. Hear Res 2011; 281:28-37. [PMID: 21640178 DOI: 10.1016/j.heares.2011.05.008] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/26/2011] [Accepted: 05/11/2011] [Indexed: 01/13/2023]
Abstract
After almost seven decades in clinical use, aminoglycoside antibiotics still remain indispensible drugs for acute infections and specific indications such as tuberculosis or the containment of pseudomonas bacteria in patients with cystic fibrosis. The review will describe the pathology and pathophysiology of aminoglycoside-induced auditory and vestibular toxicity in humans and experimental animals and explore contemporary views of the mechanisms of cell death. It will also outline the current state of protective therapy and recent advances in the development of aminoglycoside derivatives with low toxicity profiles for antimicrobial treatment and for stop-codon suppression in the attenuation of genetic disorders.
Collapse
Affiliation(s)
- Jing Xie
- Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, USA
| | | | | |
Collapse
|
41
|
Hydrogen peroxide toxicity induces Ras signaling in human neuroblastoma SH-SY5Y cultured cells. J Biomed Biotechnol 2010; 2010. [PMID: 20871828 PMCID: PMC2943129 DOI: 10.1155/2010/803815] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/18/2010] [Indexed: 12/31/2022] Open
Abstract
It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.
Collapse
|
42
|
Zhao XD, Zhou YT, Wu Y, Zhuang Z, Huang RQ, Song ZJ, Yin HX, Shi JX. Potential role of Ras in cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. J Clin Neurosci 2010; 17:1407-11. [PMID: 20729088 DOI: 10.1016/j.jocn.2010.03.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Previous studies have demonstrated that mitogen-activated protein kinase (MAPK) is involved in the pathogenesis of cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). Ras, an upstream regulator of MAPK, may be activated following SAH. The aim of this study was to investigate the role of Ras in cerebral vasospasm in a rabbit model of SAH. We first investigated the time course of Ras and ERK1/2 activation in the basilar artery after SAH. Next, for the time point at which Ras was maximally activated, we assessed the effect of FTI-277 (a Ras farnesyltransferase inhibitor) on cerebral vasospasm. SAH was induced by injecting autologous blood into the cisterna magna on both day 0 and day 2. FTI-277 was injected into the cisterna magna every 24 hours, beginning 30 minutes after blood injection to the last day of the experiment. Elevated expression of Ras-GTP and phosphorylated ERK1/2 was detected in the basilar artery after SAH and expression peaked on day 3. FTI-277 administration resulted in lower Ras-GTP and phosphorylated ERK1/2 levels and markedly attenuated vasospasm in the basilar arteries relative to animals that did not receive FTI-277. Our results suggest that Ras protein is activated in the arterial wall after SAH and contributes to vasospasm development.
Collapse
Affiliation(s)
- Xu Dong Zhao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Caelers A, Monge A, Brand Y, Bodmer D. Somatostatin and gentamicin-induced auditory hair cell loss. Laryngoscope 2009; 119:933-7. [PMID: 19294753 DOI: 10.1002/lary.20058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE/HYPOTHESIS Hair cells of the mammalian auditory system do not regenerate, and therefore their loss leads to irreversible hearing loss. Aminoglycosides, among other substances, can irreversibly damage hair cells. Somatostatin, a peptide with hormone/neurotransmitter properties, has neuroprotective effects by binding to its receptor. In this study, we tested whether somatostatin can protect hair cells from gentamicin-induced damage in vitro. STUDY DESIGN This study confirmed the expression of somatostatin receptor mRNA within the cochlea and analyzed the effect of somatostatin on gentamicin-induced hair cell damage and death in vitro. METHODS Expression of somatostatin receptor mRNA in the rat cochlea was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR). Protection of auditory hair cells from gentamicin was tested using two different concentrations (1 microM and 5 microM, respectively) of somatostatin. RESULTS We detected somatostatin receptor-1 and -2 mRNA and in the organ of Corti (OC), spiral ganglion, and stria vascularis by RT-PCR. Moreover, we could see significantly less hair cell loss in the OCs that were pretreated with either 1 microM or 5 microM of somatostatin as compared with samples treated with gentamicin alone. CONCLUSIONS Decreased hair cell loss in somatostatin-treated samples that had been exposed to gentamicin provides evidence for a protective effect of somatostatin in aminoglycoside-induced hair cell death in vitro.
Collapse
Affiliation(s)
- Antje Caelers
- Department of Biomedicine University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | | | | | | |
Collapse
|
44
|
Choung YH, Taura A, Pak K, Choi SJ, Masuda M, Ryan AF. Generation of highly-reactive oxygen species is closely related to hair cell damage in rat organ of Corti treated with gentamicin. Neuroscience 2009; 161:214-26. [PMID: 19318119 DOI: 10.1016/j.neuroscience.2009.02.085] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 02/13/2009] [Accepted: 02/14/2009] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) have been suggested to play a major role in aminoglycoside-induced hair cell (HC) loss, but are difficult to detect. Moreover, ROS can occur normally in cells where they have roles in metabolism, cell signaling and other processes. Two new probes, aminophenyl fluorescein (APF) and hydroxyphenyl fluorescein (HPF) are dyes which selectively detect highly-reactive oxygen species (hROS), those most associated with cellular damage. We assessed the presence of hROS in the neonatal rat organ of Corti during chronic exposure to 50 microM gentamicin in vitro, to examine the relationship between cell damage and hROS across HC type and across the three cochlear turns. hROS were initially detected at 48 hours (h), with an increase at 72 h and persistence until at least 96 h. At 48 h, hROS were restricted to outer HCs and occurred prior to loss of stereocilia. At 72 h, outer HCs showed both hROS and stereocilia loss, and hROS were noted in a few inner HCs. Basal turn HCs showed more hROS than middle turn HCs. Very little hROS accumulation or stereocilia loss was observed in the apical turn, even at 72 h. First row outer HCs were most vulnerable to gentamicin-induced hROS, followed by second and then third row outer HCs. Inner HCs behaved similarly to third row outer HCs. By 96 h stereocilia damage was extensive, but surviving HCs showed persisting fluorescence. APF consistently showed more fluorescence than HPF. The results suggest that hROS accumulation is an important initial step in gentamicin-induced HC damage, and that the differential sensitivity of HCs in the organ of Corti is closely related to differences in hROS accumulation.
Collapse
Affiliation(s)
- Y H Choung
- Department of Surgery Otolaryngology, UCSD School of Medicine and VA Medical Center, 9500 Gilman Drive 0666, La Jolla, CA 92093-0666, USA
| | | | | | | | | | | |
Collapse
|
45
|
Owens KN, Coffin AB, Hong LS, Bennett KO, Rubel EW, Raible DW. Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways. Hear Res 2009; 253:32-41. [PMID: 19285126 DOI: 10.1016/j.heares.2009.03.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/15/2009] [Accepted: 03/04/2009] [Indexed: 01/01/2023]
Abstract
We report a series of experiments investigating the kinetics of hair cell loss in lateral line neuromasts of zebrafish larvae following exposure to aminoglycoside antibiotics. Comparisons of the rate of hair cell loss and the differential effects of acute versus chronic exposure to gentamicin and neomycin revealed markedly different results. Neomycin induced rapid and dramatic concentration-dependent hair cell loss that is essentially complete within 90 min, regardless of concentration or exposure time. Gentamicin-induced loss of half of the hair cells within 90 min and substantial additional loss, which was prolonged and cumulative over exposure times up to at least 24h. Small molecules and genetic mutations that inhibit neomycin-induced hair cell loss were ineffective against prolonged gentamicin exposure supporting the hypothesis that these two drugs are revealing at least two cellular pathways. The mechanosensory channel blocker amiloride blocked both neomycin and gentamicin-induced hair cell death acutely and chronically indicating that these aminoglycosides share a common entry route. Further tests with additional aminoglycosides revealed a spectrum of differential responses to acute and chronic exposure. The distinctions between the times of action of these aminoglycosides indicate that these drugs induce multiple cell death pathways.
Collapse
Affiliation(s)
- Kelly N Owens
- Department of Biological Structure, V.M. Bloedel Hearing Research Center, University of Washington, Box 357420, Seattle, WA 98195-7420, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Damage-induced activation of ERK1/2 in cochlear supporting cells is a hair cell death-promoting signal that depends on extracellular ATP and calcium. J Neurosci 2008; 28:4918-28. [PMID: 18463245 DOI: 10.1523/jneurosci.4914-07.2008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acoustic overstimulation and ototoxic drugs can cause permanent hearing loss as a result of the damage and death of cochlear hair cells. Relatively little is known about the signaling pathways triggered by such trauma, although a significant role has been described for the c-Jun N-terminal kinase [one of the mitogen-activated protein kinases (MAPKs)] pathway. We investigated the role of another MAPK family, the extracellularly regulated kinases 1 and 2 (ERK1/2) during hair cell damage in neonatal cochlear explants. Within minutes of subjecting explants to mechanical damage, ERK1/2 were transiently activated in Deiters' and phalangeal cells but not in hair cells. The activation of ERK1/2 spread along the length of the cochlea, reaching its peak 5-10 min after damage onset. Release of extracellular ATP and the presence of functional connexin proteins were critical for the activation and spread of ERK1/2. Damage elicited an intercellular Ca(2+) wave in the hair cell region in the first seconds after damage. In the absence of Ca(2+) influx, the intercellular Ca(2+) wave and the magnitude and spread of ERK1/2 activation were reduced. Treatment with the aminoglycoside neomycin produced a similar pattern of ERK1/2 activation in supporting cells surrounding pyknotic hair cells. When ERK1/2 activation was prevented, there was a reduction in the number of pyknotic hair cells. Thus, activation of ERK1/2 in cochlear supporting cells in vitro is a common damage signaling mechanism that acts to promote hair cell death, indicating a direct role for supporting cells in regulating hair cell death.
Collapse
|
47
|
Tabuchi K, Pak K, Chavez E, Ryan AF. Role of inhibitor of apoptosis protein in gentamicin-induced cochlear hair cell damage. Neuroscience 2007; 149:213-22. [PMID: 17869439 DOI: 10.1016/j.neuroscience.2007.06.061] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/01/2007] [Accepted: 07/16/2007] [Indexed: 10/23/2022]
Abstract
Apoptotic cell death is considered to play a key role in gentamicin-induced cochlear hair cell loss. Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptosis that can prevent activation of effector caspases. This study was designed to investigate the possible involvement of X-linked inhibitor of apoptosis protein (XIAP) in hair cell death due to gentamicin. Basal turn organ of Corti explants from postnatal day (p) p3 or p4 rats were maintained in tissue culture and were exposed to 35 muM gentamicin for up to 48 h. Effects of specific XIAP inhibitors on gentamicin-induced hair cell loss and caspase-3 activation were examined. XIAP inhibitors increased gentamicin-induced hair cell loss but an inactive analog had no effect. Caspase-3 activation was primarily observed at 36 or 48 h in gentamicin-treated hair cells, whereas caspase-3 activation peaked at 24-36 h when explants were treated with gentamicin and an XIAP inhibitor. The inhibitors alone had no effect on hair cells. Finally, a caspase-3 inhibitor decreased caspase-3 activation and hair cell loss induced by gentamicin and an XIAP inhibitor, but caspase-8 and -9 inhibitors did not. The results indicate that XIAP normally acts to decrease caspase-3 activation and hair cell loss during gentamicin ototoxicity, as part of a protective response to potentially damaging stimuli.
Collapse
Affiliation(s)
- K Tabuchi
- Department of Surgery, Division Otolaryngology and Neurosciences, University of California, San Diego School of Medicine, 9500 Gilman Drive #0666, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
48
|
Owens KN, Cunningham DE, MacDonald G, Rubel EW, Raible DW, Pujol R. Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response. J Comp Neurol 2007; 502:522-43. [PMID: 17394157 DOI: 10.1002/cne.21345] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Loss of the mechanosensory hair cells in the auditory and vestibular organs leads to hearing and balance deficits. To investigate initial, in vivo events in aminoglycoside-induced hair cell damage, we examined hair cells from the lateral line of the zebrafish, Danio rerio. The mechanosensory lateral line is located externally on the animal and therefore allows direct manipulation and observation of hair cells. Labeling with vital dyes revealed a rapid response of hair cells to the aminoglycoside neomycin. Similarly, ultrastructural analysis revealed structural alteration among hair cells within 15 minutes of neomycin exposure. Animals exposed to a low, 25-microM concentration of neomycin exhibited hair cells with swollen mitochondria, but little other damage. Animals treated with higher concentrations of neomycin (50-200 microM) had more severe and heterogeneous cellular changes, as well as fewer hair cells. Both necrotic-like and apoptotic-like cellular damage were observed. Quantitation of the types of alterations observed indicated that mitochondrial defects appear earlier and more predominantly than other structural alterations. In vivo monitoring demonstrated that mitochondrial potential decreased following neomycin treatment. These results indicate that perturbation of the mitochondrion is an early, central event in aminoglycoside-induced damage.
Collapse
Affiliation(s)
- Kelly N Owens
- VM Bloedel Hearing Research Center, Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Previati M, Corbacella E, Astolfi L, Catozzi M, Khan MTH, Lampronti I, Gambari R, Capitani S, Martini A. Ethanolic extract from Hemidesmus indicus (Linn) displays otoprotectant activities on organotypic cultures without interfering on gentamicin uptake. J Chem Neuroanat 2007; 34:128-33. [PMID: 17640851 DOI: 10.1016/j.jchemneu.2007.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/23/2007] [Accepted: 05/23/2007] [Indexed: 11/20/2022]
Abstract
The ethanolic extract from Hemidesmus indicus (Linn) (Apocynaceae) (Hie) was studied for its otoprotective effects in ex vivo rat organotypic model of gentamicin (GM) toxicity. In organ of Corti organotypic cultures (OC), GM can induce a fast dose-dependent apoptosis of hair cells (HC), both external and internal. We found that, after coadministration of GM and Hie to organotypic cultures, the extract was able to significantly counteract this toxic effect on HC, at the concentration of 25 and 50microg/ml. Interestingly, at these concentrations the extract was present in the cell medium at a concentration 1.6- and 3.3-fold lower than GM, suggesting its otoprotective activity could not merely due to an aspecific inhibition of GM entry. To support this hypothesis, we evaluated the amount of GM present in organotypic cultures after the coadministration of 1.5mg/ml GM and Hie, and found no significant reduction of GM uptake in the presence of 100microg/ml Hie. These data suggest the otoprotective action of Hie derives from specific inhibition of the apoptotic routine induced by GM treatment.
Collapse
Affiliation(s)
- Maurizio Previati
- Department of Morphology and Embryology, Human Anatomy Division, University of Ferrara, via Fossato di Mortara 66, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kashio A, Sakamoto T, Suzukawa K, Asoh S, Ohta S, Yamasoba T. A protein derived from the fusion of TAT peptide and FNK, a Bcl-xL derivative, prevents cochlear hair cell death from aminoglycoside ototoxicity in vivo. J Neurosci Res 2007; 85:1403-12. [PMID: 17387707 DOI: 10.1002/jnr.21260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We constructed a powerful artificial cytoprotective protein, FNK, from an antiapoptotic member of the BCL-2 family, Bcl-x(L). To test the efficacy of FNK in protecting cochlear hair cells (HCs) from aminoglycoside-induced cell death in vivo, we fused FNK with protein transduction domain, TAT, of the HIV/Tat protein to construct a fusion protein of TAT-FNK. We demonstrated that, after an intraperitoneal administration to guinea pigs, TAT-myc-FNK protein was diffusely distributed in the cochlea, most prominently in the HCs and supporting cells, followed by the spiral ganglion cells, 3 hr after the injection. We next demonstrated that TAT-FNK attenuated cochlear damage induced by an ototoxic combination of kanamycin sulfate (KM) and ethacrynic acid (EA) administered at 2 different dosages: 400 mg/kg KM + 50 mg/kg EA and 200 mg/kg KM + 40 mg/kg EA. TAT-FNK or vehicle was intraperitoneally injected from 3 hr before through 5 hr after inducing the ototoxic insults, 14 days after which auditory brainstem response (ABR) and HC loss were evaluated. In comparison with vehicle-administered controls, the TAT-FNK protein significantly attenuated ototoxic drug-induced ABR threshold shifts and the extent of HC death at either dosage. The TAT-FNK protein also significantly reduced the amount of cleaved poly-(ADP-ribose) polymerase-positive HCs 8 hr after the ototoxic insults compared with that in the vehicle-administered controls. These findings indicate that systemically administered TAT-FNK was successfully delivered to the guinea pig cochlea and effectively prevented apoptotic cell death of the cochlear HCs induced by KM and EA.
Collapse
Affiliation(s)
- Akinori Kashio
- Department of Otolaryngology and Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|