1
|
Battaglia Parodi M, Arrigo A, Aragona E, Pina A, Bandello F. Linear streaks associated with retinitis pigmentosa. Eur J Ophthalmol 2024; 34:1975-1978. [PMID: 38332612 DOI: 10.1177/11206721241232450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
PURPOSE To describe a phenotypical manifestation characterized by the identification of peripheral linear streaks associated with retinitis pigmentosa (RP). METHODS Study design is a prospective observational case series. All consecutive patients affected by RP underwent a complete ophthalmological examination. The diagnosis of peripheral linear streaks was based on the identification of curvilinear atrophic streaks in the periphery of the retina. RESULTS Overall, six out of 140 patients (4.2%) were affected by peripheral linear streaks associated with RP. A single patient showed also punched out chorioretinal lesions at the posterior pole, with macular neovascularization development over the follow-up, treated with ranibizumab injections. CONCLUSIONS RP phenotypical manifestation characterized by peripheral linear streaks is infrequent and may provide additional evidence to support the contribution of inflammation in the pathogenesis of RP.
Collapse
Affiliation(s)
- Maurizio Battaglia Parodi
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, via Olgettina, 60, 20132, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, via Olgettina, 60, 20132, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, via Olgettina, 60, 20132, Milan, Italy
| | - Adelaide Pina
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, via Olgettina, 60, 20132, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
2
|
Kwok JC, Sato Y, Niggel JK, Ozdogan E, Murgiano L, Miyadera K. Delayed-onset cord1 progressive retinal atrophy in English Springer Spaniels genetically affected with the RPGRIP1 variant. Vet Ophthalmol 2024. [PMID: 39428496 DOI: 10.1111/vop.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Cone-rod dystrophy (cord1) is a form of progressive retinal atrophy. It is linked to an RPGRIP1 genetic variant which is the third most common canine disease variant thus far. While the variant affects various breeds, it is highly prevalent in English Springer Spaniels (ESSs). Yet its clinical and pathological implications remain equivocal. Herein, we study the retinal phenotype in ESSs genetically affected with the RPGRIP1 variant. ANIMAL STUDIED Over 4 years, 494 ESSs (123 affected) were enrolled. PROCEDURE(S) Owner-perceived vision was collected via a questionnaire. Ophthalmic examination included fundus photography. In selected ESSs, retinal function and structure were assessed using electroretinography (ERG, 148 dogs) and optical coherence tomography (OCT, 4 dogs). RESULTS Ophthalmoscopic changes included peripheral hypo-reflective lesions often with distinct borders progressing centripetally culminating in generalized retinal atrophy. Cross-sectional study revealed declining photopic ERG amplitudes with age in the affected group but not in controls. OCT indicated progressive photoreceptor loss. Despite ophthalmoscopic, ERG, or OCT abnormalities, most affected dogs were not visually impaired per their owners. In a fraction of afflicted ESSs, vision/globe-threatening complications were documented including cataracts, lens luxation, and glaucoma. CONCLUSIONS In ESSs, the RPGRIP1 variant is associated with insidious pathology with delayed-onset visual defects. The subtle phenotype without apparent visual deficit until the final years of life, if at all, may have caused underdiagnosis of cord1. Still, DNA testing remains informative, and ERG and OCT indicate progressive pathology. Peripheral fundus examination and photopic ERG are particularly useful for early detection and monitoring of cord1.
Collapse
Affiliation(s)
- Jennifer C Kwok
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu Sato
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica K Niggel
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma Ozdogan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leonardo Murgiano
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2024:101306. [PMID: 39433211 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
4
|
Ayten M, Díaz-Lezama N, Ghanawi H, Haffelder FC, Kajtna J, Straub T, Borso M, Imhof A, Hauck SM, Koch SF. Metabolic plasticity in a Pde6b STOP/STOP retinitis pigmentosa mouse model following rescue. Mol Metab 2024; 88:101994. [PMID: 39032643 PMCID: PMC11362769 DOI: 10.1016/j.molmet.2024.101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVE Retinitis pigmentosa (RP) is a hereditary retinal disease characterized by progressive photoreceptor degeneration, leading to vision loss. The best hope for a cure for RP lies in gene therapy. However, given that RP patients are most often diagnosed in the midst of ongoing photoreceptor degeneration, it is unknown how the retinal proteome changes as RP disease progresses, and which changes can be prevented, halted, or reversed by gene therapy. METHODS Here, we used a Pde6b-deficient RP gene therapy mouse model and performed untargeted proteomic analysis to identify changes in protein expression during degeneration and after treatment. RESULTS We demonstrated that Pde6b gene restoration led to a novel form of homeostatic plasticity in rod phototransduction which functionally compensates for the decreased number of rods. By profiling protein levels of metabolic genes and measuring metabolites, we observed an upregulation of proteins associated with oxidative phosphorylation in mutant and treated photoreceptors. CONCLUSION In conclusion, the metabolic demands of the retina differ in our Pde6b-deficient RP mouse model and are not rescued by gene therapy treatment. These findings provide novel insights into features of both RP disease progression and long-term rescue with gene therapy.
Collapse
Affiliation(s)
- Monika Ayten
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nundehui Díaz-Lezama
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hanaa Ghanawi
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Felia C Haffelder
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacqueline Kajtna
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Borso
- Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Axel Imhof
- Molecular Biology, Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne F Koch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
5
|
Abramowicz S, Kamgang Semeu P, Nubourgh I, Postelmans L, Willermain F. Tocilizumab for cystoid macular edema secondary to retinitis pigmentosa. J Ophthalmic Inflamm Infect 2024; 14:47. [PMID: 39349884 PMCID: PMC11442707 DOI: 10.1186/s12348-024-00430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
PURPOSE To describe the effect of tocilizumab (TCZ) on cystoid macular edema (CME) and retinal vascular leakage (RVL) in retinitis pigmentosa (RP). METHODS Retrospective case series. RESULTS We present 2 cases of RP with marked inflammatory features in the form of CME and RVL. There was initial diagnostic uncertainty with posterior uveitis. Both patients were treated with corticosteroids, conventional disease-modifying antirheumatic drugs (cDMARDs), and biological DMARDs (bDMARDs) for the inflammatory features with partial and inconsistent treatment response. When treatment was switched to intravenous (IV) TCZ, dramatic reduction in CME and RVL were observed in both patients. Diagnosis of RP was eventually made based on findings of ancillary tests (macular spectral-domain optical coherence tomography, visual fields, full-field electroretinogram). Genetic testing led to a molecular diagnosis of EYS-related autosomal recessive RP in patient 1, while patient 2 had negative gene panel results. CONCLUSIONS IV TCZ can be an effective treatment option in RP-related CME and RVL. Whether this treatment strategy has an effect on prognosis remains to be established, but it is possible considering chronic CME-related retinal damage is a major driver of central vision loss in RP.
Collapse
Affiliation(s)
- Stéphane Abramowicz
- Department of Ophthalmology, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium.
- Department of Ophthalmology, Brugmann University Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | - Prochore Kamgang Semeu
- Department of Internal Medicine, Brugmann University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Nubourgh
- Department of Internal Medicine, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Postelmans
- Department of Ophthalmology, Brugmann University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - François Willermain
- Department of Ophthalmology, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
- Department of Ophthalmology, Brugmann University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Sudharsan R, Kwok J, Swider M, Sumaroka A, Aguirre GD, Cideciyan AV, Beltran WA. Retinal prolactin isoform PRLΔE1 sustains rod disease in inherited retinal degenerations. Cell Death Dis 2024; 15:682. [PMID: 39294136 PMCID: PMC11410941 DOI: 10.1038/s41419-024-07070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
PRLΔE1, a retina-specific isoform of prolactin, is expressed in multiple and diverse forms of canine inherited retinal degeneration (IRD). We find that while PRLΔE1 expression in rods is not associated with the initial phase of disease characterized by acute photoreceptor cell death, it is associated with the protracted phase of slow cell loss. Restoration of photoreceptors to a healthy state by gene-specific replacement therapy of individual IRDs successfully suppresses PRLΔE1 expression. Moreover, short-term PRLΔE1 silencing using shRNA results in preservation of outer nuclear layer thickness, suggesting PRLΔE1 drives retinal disease. However, longer-term observations reveal off-target toxic effects of the PRLΔE1 shRNA, precluding determination of its full therapeutic potential. Future research efforts aimed at enhancing the safety and specificity of PRLΔE1-targeting strategies may identify a potential universal intervention strategy for sustaining photoreceptors during the prolonged phase of multiple IRDs.
Collapse
Affiliation(s)
- Raghavi Sudharsan
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jennifer Kwok
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malgorzata Swider
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Artur V Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Tao Y, Fukushima M, Shimokawa S, Zhao H, Okita A, Fujiwara K, Takeda A, Mukai S, Sonoda KH, Murakami Y. Ocular and Serum Profiles of Inflammatory Molecules Associated With Retinitis Pigmentosa. Transl Vis Sci Technol 2024; 13:18. [PMID: 39120884 PMCID: PMC11318359 DOI: 10.1167/tvst.13.8.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/30/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose To investigate the profiles and correlations between local and systemic inflammatory molecules in patients with retinitis pigmentosa (RP). Methods The paired samples of aqueous humor and serum were collected from 36 eyes of 36 typical patients with RP and 25 eyes of age-matched patients with cataracts. The concentration of cytokines/chemokines was evaluated by a multiplexed immunoarray (Q-Plex). The correlations between ocular and serum inflammatory molecules and their association with visual function were analyzed. Results The aqueous levels of IL-6, Eotaxin, GROα, I-309, IL-8, IP-10, MCP-1, MCP-2, RANTES, and TARC were significantly elevated in patients with RP compared to controls (all P < 0.05). The detection rate of aqueous IL-23 was higher in patients with RP (27.8%) compared with controls (0%). In patients with RP, Spearman correlation test demonstrated positive correlations for IL-23, I-309, IL-8, and RANTES between aqueous and serum expression levels (IL-23: ⍴ = 0.8604, P < 0.0001; I-309: ρ = 0.4172, P = 0.0113; IL-8: ρ = 0.3325, P = 0.0476; RANTES: ρ = 0.6685, P < 0.0001). In addition, higher aqueous IL-23 was associated with faster visual acuity loss in 10 patients with RP with detected aqueous IL-23 (ρ = 0.4119 and P = 0.0264). Multiple factor analysis confirmed that aqueous and serum IL-23 were associated with visual acuity loss in patients with RP. Conclusions These findings suggest that ocular and systemic inflammatory responses have a close interaction in patients with RP. Further longitudinal studies with larger cohorts are needed to explore the correlation between specific inflammatory pathways and the progression of RP. Translational Relevance This study demonstrates the local-systemic interaction of immune responses in patients with RP.
Collapse
Affiliation(s)
- Yan Tao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Fukushima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sakurako Shimokawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Huanyu Zhao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayako Okita
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ophthalmology, Faculty of Medicine, Oita University, Oita, Japan
| | - Shizuo Mukai
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Liao C, Chen S, Chen X, Yi W, Fan Y, Chen Y, Ye T, Chen Y. Inhibition of JNK ameliorates rod photoreceptor degeneration in a mouse model of retinitis pigmentosa. FEBS Lett 2024. [PMID: 39010325 DOI: 10.1002/1873-3468.14978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 07/17/2024]
Abstract
Retinitis pigmentosa (RP) is an inherited eye disease that causes progressive vision loss. Microglial activation and inflammation play essential roles in photoreceptor degeneration in RP, although the underlying mechanisms remain unclear. Here, we examined the progressive degeneration of photoreceptors in rd1 mice, a mouse model of RP. We investigated the molecular changes in various retinal cells in rd1 mice using single-cell RNA sequencing and found that potentiation of JNK signaling is associated with photoreceptor degeneration in RP. Moreover, inflammation-related molecules, which function downstream of JNK, are elevated in RP. Furthermore, inhibiting JNK alleviates microglial activation and rescues photoreceptor degeneration in rd1 mice. Thus, our findings suggest that targeting JNK is a promising approach for slowing RP progression.
Collapse
Affiliation(s)
- Chunyan Liao
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Shuai Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuxu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wanying Yi
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, China
| | - Yingying Fan
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, China
| | - Tao Ye
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, China
| |
Collapse
|
9
|
Nakamura S, Fujiwara K, Fukushima M, Shimokawa S, Shimokawa S, Koyanagi Y, Hisatomi T, Takeda A, Yasuhiro I, Murakami Y, Sonoda KH. Relationships between causative genes and epiretinal membrane formation in Japanese patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 2024:10.1007/s00417-024-06534-6. [PMID: 38836943 DOI: 10.1007/s00417-024-06534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/09/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
PURPOSE To investigate the relationships between macular complications and causative genes frequently found in Japanese patients with retinitis pigmentosa (RP). METHODS In the retrospective and observational study, we analyzed the data of 75 patients with RP (EYS-RP: 42 patients; USH2A-RP: 19 patients; RHO-RP: 14 patients) who were followed-up at Kyushu University Hospital and whose causative genes had been identified. Macular complications including epiretinal membrane (ERM), macular edema (ME), and macular hole (MH) were evaluated using optical coherence tomography and fundus photography. Main outcome was the proportion of macular complications. RESULTS The proportion of ERM was 35.7% in the EYS group, 10.5% in the USH2A group and 14.3% in the RHO group. The proportion of ME was 7.1% in the EYS group, 5.3% in the USH2A group and 14.3% in the RHO group, and that of MH was 2.4% in the EYS group, 5.3% in the USH2A group and 0% in the RHO group. In the EYS group, the proportion of ERM was relatively higher (p = 0.06), and the presence of EYS was significantly associated with a higher age- and sex-adjusted OR for ERM (OR = 5.67, 95% CI = 1.59-25.20). There was no significant difference in the proportion of MH or ME among causative genes. CONCLUSIONS EYS causative gene may be associated with higher rate of ERM complication in RP.
Collapse
Affiliation(s)
- Shun Nakamura
- Department of Ophthalmology,Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-0054, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology,Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-0054, Japan.
| | - Masatoshi Fukushima
- Department of Ophthalmology,Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-0054, Japan
| | - Sakurako Shimokawa
- Department of Ophthalmology,Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-0054, Japan
| | - Shotaro Shimokawa
- Department of Ophthalmology,Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-0054, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology,Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-0054, Japan
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Atsunobu Takeda
- Department of Ophthalmology,Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-0054, Japan
| | - Ikeda Yasuhiro
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yusuke Murakami
- Department of Ophthalmology,Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-0054, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology,Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-0054, Japan
| |
Collapse
|
10
|
Pan S, Yuan J, Jin Y, Liu X, Wu S, Wang Y, Yao H, Cheng L. Innate immune responsive inflammation in development of progressive myopia. Eye (Lond) 2024; 38:1542-1548. [PMID: 38287111 PMCID: PMC11126664 DOI: 10.1038/s41433-024-02947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
PURPOSE Inflammation has been implicated for development of myopia. It is not clear when inflammation is kicked in during the course of myopia, and what characteristics of the inflammation. In this study, we tested for cytokines from aqueous humour of eyes with wide spectrum of refractive status for profiling the inflammation. METHODS Aqueous humour of 142 patient eyes were tested for soluble intercellular adhesion molecule 1 (sICAM-1), monocyte chemoattractant protein-1 (MCP-1), and transforming growth factor-beta 2 (TGF-β2) using an enzyme-linked immunosorbent assay (ELISA). Eye globe axial length of these patients ranged from emmetropia to high myopia. RESULTS Of 142 patients, an average axial length is 25.51 ± 3.31 mm, with a range of 21.56-34.37 mm. There are 36 cases in lower 25 percentile, 37 cases in upper 25 percentile, and 69 case in the middle 50 percentile. sICAM-1 and MCP-1 were significantly higher in the eyes with staphyloma (407.48 pg/mL, 312.31 pg/mL, n = 33) or macular schisis (445.86 pg/mL,345.33 pg/mL, n = 19) than that in the eyes without these changes (206.44 pg/mL, 244.76 pg/mL, n = 107). All three cytokines level was significantly associated with eye globe axial in a positive mode while adjusting for the age and sex. Strength of the association was the greatest for sICAM-1 and the weakest for TGF- β2. MCP-1 was in between. CONCLUSION sICAM-1 and MCP-1 in ocular fluid may be indicative biomarkers for progressive high myopia and the underneath autoimmune inflammation. sICAM-1 may be used as a monitoring biomarker for development of pathologic myopia.
Collapse
Affiliation(s)
- Suqi Pan
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Jianshu Yuan
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Yuanhui Jin
- Department of Ophthalmology, Dongyang People's Hospital, Dongyang, China
| | - Xiaotian Liu
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Shanjun Wu
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Yuwen Wang
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Hongyan Yao
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Lingyun Cheng
- Jacob's Retina Center at Shiley Eye Institute, Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Ghosh S, Finnemann SC, Vollrath D, Rothlin CV. In the Eyes of the Beholder-New Mertk Knockout Mouse and Re-Evaluation of Phagocytosis versus Anti-Inflammatory Functions of MERTK. Int J Mol Sci 2024; 25:5299. [PMID: 38791338 PMCID: PMC11121519 DOI: 10.3390/ijms25105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Greg Lemke's laboratory was one of the pioneers of research into the TAM family of receptor tyrosine kinases (RTKs). Not only was Tyro3 cloned in his laboratory, but his group also extensively studied mice knocked out for individual or various combinations of the TAM RTKs Tyro3, Axl, and Mertk. Here we primarily focus on one of the paralogs-MERTK. We provide a historical perspective on rodent models of loss of Mertk function and their association with retinal degeneration and blindness. We describe later studies employing mouse genetics and the generation of newer knockout models that point out incongruencies with the inference that loss of MERTK-dependent phagocytosis is sufficient for severe, early-onset photoreceptor degeneration in mice. This discussion is meant to raise awareness with regards to the limitations of the original Mertk knockout mouse model generated using 129 derived embryonic stem cells and carrying 129 derived alleles and the role of these alleles in modifying Mertk knockout phenotypes or even displaying Mertk-independent phenotypes. We also suggest molecular approaches that can further Greg Lemke's scintillating legacy of dissecting the molecular functions of MERTK-a protein that has been described to function in phagocytosis as well as in the negative regulation of inflammation.
Collapse
Affiliation(s)
- Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, New Haven, CT 06520, USA
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Silvia C. Finnemann
- Center for Cancer, Genetic Diseases and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA;
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Carla V. Rothlin
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Méndez-Martínez S, Pardiñas Barón N, Bartol-Puyal FDA, Arias Del Peso B, Ruiz Del Tiempo MP, Lesta Arnal Á, Ruiz Moreno O, Manero Ruiz J, Pablo Júlvez L. TOCILIZUMAB RESOLVES REFRACTORY MACULAR EDEMA ASSOCIATED TO RETINITIS PIGMENTOSA. Retin Cases Brief Rep 2024; 18:387-392. [PMID: 36730111 DOI: 10.1097/icb.0000000000001389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/30/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE The aim of this report is to describe the resolution of refractory cystoid macular edema (CME) associated to retinitis pigmentosa (RP) with IV tocilizumab in three patients. METHODS Retrospective study of a series of consecutive cases of patients treated with off-label IV tocilizumab (anti IL6) for CME refractory to acetazolamide 250 mg for 3 months. Patients were diagnosed with RP by fundus appearance, electrophysiology, visual fields, and genetic testing. A complete ophthalmic examination including spectral-domain optical coherence tomography was performed. RESULTS Three patients with RP and CME refractory to acetazolamide 250 mg for 3 months were treated with monthly IV tocilizumab for at least six months.All patients resolved CME and improved visual acuity after the third month of IV tocilizumab, resolving systemic and ocular adverse events related to previous treatments for CME. Tocilizumab was well tolerated with no other adverse events. DISCUSSION CME causes visual impairment in RP, but current treatments are usually deficient. Tocilizumab has been successfully used as treatment for refractory CME in uveitis, retinal dystrophies, and autoimmune retinopathies. This article reports, for the first time, the long-term resolution of refractory CME in RP with IV tocilizumab.
Collapse
Affiliation(s)
- Silvia Méndez-Martínez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Spain; and
| | - Nieves Pardiñas Barón
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Spain; and
| | - Francisco de Asís Bartol-Puyal
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Spain; and
| | - Borja Arias Del Peso
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Spain; and
| | - María Pilar Ruiz Del Tiempo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Spain; and
| | - Álvaro Lesta Arnal
- Department of Rheumatology, Miguel Servet University Hospital, Zaragoza, Spain
| | - Oscar Ruiz Moreno
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Spain; and
| | - Javier Manero Ruiz
- University of Zaragoza, Spain; and
- Department of Rheumatology, Miguel Servet University Hospital, Zaragoza, Spain
| | - Luis Pablo Júlvez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Spain; and
| |
Collapse
|
13
|
Mead AJ, Ahluwalia K, Ebright B, Zhang Z, Dave P, Li Z, Zhou E, Naik AA, Ngu R, Chester C, Lu A, Asante I, Pollalis D, Martinez JC, Humayun M, Louie S. Loss of 15-Lipoxygenase in Retinodegenerative RCS Rats. Int J Mol Sci 2024; 25:2309. [PMID: 38396985 PMCID: PMC10889776 DOI: 10.3390/ijms25042309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Retinitis pigmentosa (RP) is a retinal degenerative disease associated with a diversity of genetic mutations. In a natural progression study (NPS) evaluating the molecular changes in Royal College of Surgeons (RCS) rats using lipidomic profiling, RNA sequencing, and gene expression analyses, changes associated with retinal degeneration from p21 to p60 were evaluated, where reductions in retinal ALOX15 expression corresponded with disease progression. This important enzyme catalyzes the formation of specialized pro-resolving mediators (SPMs) such as lipoxins (LXs), resolvins (RvDs), and docosapentaenoic acid resolvins (DPA RvDs), where reduced ALOX15 corresponded with reduced SPMs. Retinal DPA RvD2 levels were found to correlate with retinal structural and functional decline. Retinal RNA sequencing comparing p21 with p60 showed an upregulation of microglial inflammatory pathways accompanied by impaired damage-associated molecular pattern (DAMP) clearance pathways. This analysis suggests that ALXR/FPR2 activation can ameliorate disease progression, which was supported by treatment with an LXA4 analog, NAP1051, which was able to promote the upregulation of ALOX12 and ALOX15. This study showed that retinal inflammation from activated microglia and dysregulation of lipid metabolism were central to the pathogenesis of retinal degeneration in RP, where ALXR/FPR2 activation was able to preserve retinal structure and function.
Collapse
Affiliation(s)
- Andrew James Mead
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Brandon Ebright
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Zeyu Zhang
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Priyal Dave
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Zeyang Li
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Eugene Zhou
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Aditya Anil Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Rachael Ngu
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Catherine Chester
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Angela Lu
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Isaac Asante
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Juan Carlos Martinez
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark Humayun
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Esteban-Medina M, Loucera C, Rian K, Velasco S, Olivares-González L, Rodrigo R, Dopazo J, Peña-Chilet M. The mechanistic functional landscape of retinitis pigmentosa: a machine learning-driven approach to therapeutic target discovery. J Transl Med 2024; 22:139. [PMID: 38321543 PMCID: PMC10848380 DOI: 10.1186/s12967-024-04911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa is the prevailing genetic cause of blindness in developed nations with no effective treatments. In the pursuit of unraveling the intricate dynamics underlying this complex disease, mechanistic models emerge as a tool of proven efficiency rooted in systems biology, to elucidate the interplay between RP genes and their mechanisms. The integration of mechanistic models and drug-target interactions under the umbrella of machine learning methodologies provides a multifaceted approach that can boost the discovery of novel therapeutic targets, facilitating further drug repurposing in RP. METHODS By mapping Retinitis Pigmentosa-related genes (obtained from Orphanet, OMIM and HPO databases) onto KEGG signaling pathways, a collection of signaling functional circuits encompassing Retinitis Pigmentosa molecular mechanisms was defined. Next, a mechanistic model of the so-defined disease map, where the effects of interventions can be simulated, was built. Then, an explainable multi-output random forest regressor was trained using normal tissue transcriptomic data to learn causal connections between targets of approved drugs from DrugBank and the functional circuits of the mechanistic disease map. Selected target genes involvement were validated on rd10 mice, a murine model of Retinitis Pigmentosa. RESULTS A mechanistic functional map of Retinitis Pigmentosa was constructed resulting in 226 functional circuits belonging to 40 KEGG signaling pathways. The method predicted 109 targets of approved drugs in use with a potential effect over circuits corresponding to nine hallmarks identified. Five of those targets were selected and experimentally validated in rd10 mice: Gabre, Gabra1 (GABARα1 protein), Slc12a5 (KCC2 protein), Grin1 (NR1 protein) and Glr2a. As a result, we provide a resource to evaluate the potential impact of drug target genes in Retinitis Pigmentosa. CONCLUSIONS The possibility of building actionable disease models in combination with machine learning algorithms to learn causal drug-disease interactions opens new avenues for boosting drug discovery. Such mechanistically-based hypotheses can guide and accelerate the experimental validations prioritizing drug target candidates. In this work, a mechanistic model describing the functional disease map of Retinitis Pigmentosa was developed, identifying five promising therapeutic candidates targeted by approved drug. Further experimental validation will demonstrate the efficiency of this approach for a systematic application to other rare diseases.
Collapse
Affiliation(s)
- Marina Esteban-Medina
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Carlos Loucera
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Kinza Rian
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Sheyla Velasco
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Lorena Olivares-González
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Regina Rodrigo
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012, Valencia, Spain
- Biomedical Research Networking Center in Rare Diseases (CIBERER), Health Institute Carlos III, 28029, Madrid, Spain
- Department of Physiology, University of Valencia (UV), 46100, Burjassot, Spain
- Department of Anatomy and Physiology, Catholic University of Valencia San Vicente Mártir, 46001, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics UV-IIS La Fe, 46026, Valencia, Spain
| | - Joaquin Dopazo
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.
- Biomedical Research Networking Center in Rare Diseases (CIBERER), Health Institute Carlos III, 28029, Madrid, Spain.
| | - Maria Peña-Chilet
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.
- Biomedical Research Networking Center in Rare Diseases (CIBERER), Health Institute Carlos III, 28029, Madrid, Spain.
- BigData, AI, Biostatistics & Bioinformatics Platform, Health Research Institute La Fe (IISLaFe), 46026, Valencia, Spain.
| |
Collapse
|
15
|
Scalabrino ML, Thapa M, Wang T, Sampath AP, Chen J, Field GD. Late gene therapy limits the restoration of retinal function in a mouse model of retinitis pigmentosa. Nat Commun 2023; 14:8256. [PMID: 38086857 PMCID: PMC10716155 DOI: 10.1038/s41467-023-44063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Retinitis pigmentosa is an inherited photoreceptor degeneration that begins with rod loss followed by cone loss. This cell loss greatly diminishes vision, with most patients becoming legally blind. Gene therapies are being developed, but it is unknown how retinal function depends on the time of intervention. To uncover this dependence, we utilize a mouse model of retinitis pigmentosa capable of artificial genetic rescue. This model enables a benchmark of best-case gene therapy by removing variables that complicate answering this question. Complete genetic rescue was performed at 25%, 50%, and 70% rod loss (early, mid and late, respectively). Early and mid treatment restore retinal output to near wild-type levels. Late treatment retinas exhibit continued, albeit slowed, loss of sensitivity and signal fidelity among retinal ganglion cells, as well as persistent gliosis. We conclude that gene replacement therapies delivered after 50% rod loss are unlikely to restore visual function to normal. This is critical information for administering gene therapies to rescue vision.
Collapse
Affiliation(s)
- Miranda L Scalabrino
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Mishek Thapa
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Tian Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Greg D Field
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
16
|
Patel A, Cui R, Odom JV, Leys M. Case Series on Autosomal Recessive Non-Syndromic Retinitis Pigmentosa Caused by POMGNT1 Mutations with a Report of a New Variant. J Clin Med 2023; 12:7549. [PMID: 38137617 PMCID: PMC10743436 DOI: 10.3390/jcm12247549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Recessive Protein O-linked-mannose beta-1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) mutations can cause early onset muscle-eye-brain disease but have also more recently been associated with non-syndromic Retinitis Pigmentosa. In this case series, we describe three sisters affected by non-syndromic autosomal recessive POMGNT1 retinopathy with a report of a new variant. The three patients received care at West Virginia University Eye Institute, including full ophthalmic examination with additional fundus imaging, optical coherence tomography (OCT), electroretinogram (ERG), and visual field testing. Diagnostic panel testing of 330 genes was also obtained. The proband was seen for cataract evaluation at age 42, and her fundus examination was suggestive of retinitis pigmentosa. Her oldest sister had been treated for acute anterior uveitis with retinal vasculitis. Another sister was diagnosed with multiple sclerosis (MS) and peripheral retinal degeneration. Posterior subcapsular cataracts were diagnosed between age 42 and 55 in all three sisters, each with constricted fields with preserved central vision. We identified one pathogenic POMGNT1 variant (c.751 + 1G > A) and one likely pathogenic variant (c.1010T > C p.Ile337Thr) in all three sisters. A thorough family history and examination of the siblings with genotyping might have led to an earlier diagnosis of retinal inherited disease and avoidance of immunomodulatory treatment in the oldest sibling.
Collapse
Affiliation(s)
- Ami Patel
- Department of Ophthalmology and Visual Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (R.C.); (J.V.O.); (M.L.)
| | | | | | | |
Collapse
|
17
|
Moekotte L, Kuiper JJW, Hiddingh S, Nguyen XTA, Boon CJF, van den Born LI, de Boer JH, van Genderen MM. CRB1-Associated Retinal Dystrophy Patients Have Expanded Lewis Glycoantigen-Positive T Cells. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 37792335 PMCID: PMC10565706 DOI: 10.1167/iovs.64.13.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose Eye inflammation may occur in patients with inherited retinal dystrophies (IRDs) and is seen frequently in IRDs associated with mutations in the CRB1 gene. The purpose of this study was to determine the types of inflammatory cells involved in IRDs, by deep profiling the composition of peripheral blood mononuclear cells of patients with a CRB1-associated IRD. Methods This study included 33 patients with an IRD with confirmed CRB1 mutations and 32 healthy controls. A 43-parameter flow cytometry analysis was performed on peripheral blood mononuclear cells isolated from venous blood. FlowSOM and manual Boolean combination gating were used to identify and quantify immune cell subsets. Results Comparing patients with controls revealed a significant increase in patients in the abundance of circulating CD4+ T cells and CD8+ T cells that express sialyl Lewis X antigen. Furthermore, we detected a decrease in plasmacytoid dendritic cells and an IgA+CD24+CD38+ transitional B-cell subset in patients with an IRD. Conclusions Patients with a CRB1-associated IRD show marked changes in blood leukocyte composition, affecting lymphocyte and dendritic cell populations. These results implicate inflammatory pathways in the disease manifestations of IRDs.
Collapse
Affiliation(s)
- Lude Moekotte
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jonas J. W. Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sanne Hiddingh
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Camiel J. F. Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Joke H. de Boer
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maria M. van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
- Bartiméus, Diagnostic Center for complex visual disorders, Zeist, the Netherlands
| |
Collapse
|
18
|
Díaz-Lezama N, Kajtna J, Wu J, Ayten M, Koch SF. Microglial and macroglial dynamics in a model of retinitis pigmentosa. Vision Res 2023; 210:108268. [PMID: 37295269 DOI: 10.1016/j.visres.2023.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
In retinal degenerative diseases, such as retinitis pigmentosa (RP), the characteristic photoreceptor cell death is associated with changes of microglia and macroglia cells. Gene therapy, a promising treatment option for RP, is based on the premise that glial cell remodeling does not impact vision rescue. However, the dynamics of glial cells after treatment at late disease stages are not well understood. Here, we tested the reversibility of specific RP glia phenotypes in a Pde6b-deficient RP gene therapy mouse model. We demonstrated an increased number of activated microglia, retraction of microglial processes, reactive gliosis of Müller cells, astrocyte remodelling and an upregulation of glial fibrillary acidic protein (GFAP) in response to photoreceptor degeneration. Importantly, these changes returned to normal following rod rescue at late disease stages. These results suggest that therapeutic approaches restore the homeostasis between photoreceptors and glial cells.
Collapse
Affiliation(s)
- Nundehui Díaz-Lezama
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jacqueline Kajtna
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jiou Wu
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Monika Ayten
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Susanne F Koch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
19
|
Nouralishahi A, Fazlinejad N, Pecho RDC, Zaidan HK, Kheradjoo H, Amin AH, Mohammadzadehsaliani S. Pathological role of inflammation in ocular disease progress and its targeting by mesenchymal stem cells (MSCs) and their exosome; current status and prospect. Pathol Res Pract 2023; 248:154619. [PMID: 37406377 DOI: 10.1016/j.prp.2023.154619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Because of their unique capacity for differentiation to a diversity of cell lineages and immunosuppressive properties, mesenchymal stem cells (MSC) are being looked at as a potential new treatment option in ophthalmology. The MSCs derived from all tissue sources possess immunomodulatory attributes through cell-to-cell contact and releasing a myriad of immunomodulatory factors (IL-10, TGF-β, growth-related oncogene (GRO), indoleamine 2,3 dioxygenase (IDO), nitric oxide (NO), interleukin 1 receptor antagonist (IL-1Ra), prostaglandin E2 (PGE2)). Such mediators, in turn, alter both the phenotype and action of all immune cells that serve a pathogenic role in the progression of inflammation in eye diseases. Exosomes from MSCs, as natural nano-particles, contain the majority of the bioactive components of parental MSCs and can easily by-pass all biological barriers to reach the target epithelial and immune cells in the eye without interfering with nearby parenchymal cells, thus having no serious side effects. We outlined the most recent research on the molecular mechanisms underlying the therapeutic benefits of MSC and MSC-exosome in the treatment of inflammatory eye diseases in the current article.
Collapse
Affiliation(s)
- Alireza Nouralishahi
- Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; KIMS Hospital, Oman
| | | | | | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | |
Collapse
|
20
|
Iovino C, Rosolia A, Damiano L, Iodice CM, Di Iorio V, Testa F, Simonelli F. Pars Plana Vitrectomy in Inherited Retinal Diseases: A Comprehensive Review of the Literature. Life (Basel) 2023; 13:1241. [PMID: 37374028 DOI: 10.3390/life13061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a group of clinically and genetically heterogeneous disorders that may be complicated by several vitreoretinal conditions requiring a surgical approach. Pars plana vitrectomy (PPV) stands as a valuable treatment option in these cases, but its application in eyes with such severely impaired chorioretinal architectures remains controversial. Furthermore, the spreading of gene therapy and the increasing use of retinal prostheses will end up in a marked increase in demand for PPV surgery for IRD patients. The retinal degeneration that typically affects patients with hereditary retinal disorders may influence the execution of the surgery and the expected results. Considering the importance of PPV application in IRD-related complications, it is fundamental to try to understand from the literature what is adequate and safe in posterior eye segment surgery. Use of dyes, light toxicity, and risk of wounding scar development have always been themes that discourage the execution of vitreoretinal surgery in already impaired eyes. Therefore, this review aims to comprehensively summarize all PPV applications in different IRDs, highlighting the favorable results as well as the potential precautions to consider when performing vitreoretinal surgery in these eyes.
Collapse
Affiliation(s)
- Claudio Iovino
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Andrea Rosolia
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Luciana Damiano
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Clemente Maria Iodice
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| |
Collapse
|
21
|
Nguyen XTA, Moekotte L, Plomp AS, Bergen AA, van Genderen MM, Boon CJF. Retinitis Pigmentosa: Current Clinical Management and Emerging Therapies. Int J Mol Sci 2023; 24:ijms24087481. [PMID: 37108642 PMCID: PMC10139437 DOI: 10.3390/ijms24087481] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Retinitis pigmentosa (RP) comprises a group of inherited retinal dystrophies characterized by the degeneration of rod photoreceptors, followed by the degeneration of cone photoreceptors. As a result of photoreceptor degeneration, affected individuals experience gradual loss of visual function, with primary symptoms of progressive nyctalopia, constricted visual fields and, ultimately, central vision loss. The onset, severity and clinical course of RP shows great variability and unpredictability, with most patients already experiencing some degree of visual disability in childhood. While RP is currently untreatable for the majority of patients, significant efforts have been made in the development of genetic therapies, which offer new hope for treatment for patients affected by inherited retinal dystrophies. In this exciting era of emerging gene therapies, it remains imperative to continue supporting patients with RP using all available options to manage their condition. Patients with RP experience a wide variety of physical, mental and social-emotional difficulties during their lifetime, of which some require timely intervention. This review aims to familiarize readers with clinical management options that are currently available for patients with RP.
Collapse
Affiliation(s)
- Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lude Moekotte
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Bartiméus, Diagnostic Center for Complex Visual Disorders, 3703 AJ Zeist, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
22
|
Scalabrino ML, Thapa M, Wang T, Sampath AP, Chen J, Field GD. Late gene therapy limits the restoration of retinal function in a mouse model of retinitis pigmentosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536035. [PMID: 37066264 PMCID: PMC10104154 DOI: 10.1101/2023.04.07.536035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Retinitis pigmentosa is an inherited photoreceptor degeneration that begins with rod loss followed by cone loss and eventual blindness. Gene therapies are being developed, but it is unknown how retinal function depends on the time of intervention. To uncover this dependence, we utilized a mouse model of retinitis pigmentosa capable of artificial genetic rescue. This model enables a benchmark of best-case gene therapy by removing the variables that complicate the ability to answer this vital question. Complete genetic rescue was performed at 25%, 50%, and 70% rod loss (early, mid and late, respectively). Early and mid treatment restored retinal function to near wild-type levels, specifically the sensitivity and signal fidelity of retinal ganglion cells (RGCs), the 'output' neurons of the retina. However, some anatomical defects persisted. Late treatment retinas exhibited continued, albeit slowed, loss of sensitivity and signal fidelity among RGCs, as well as persistent gliosis. We conclude that gene replacement therapies delivered after 50% rod loss are unlikely to restore visual function to normal. This is critical information for administering gene therapies to rescue vision.
Collapse
Affiliation(s)
- Miranda L Scalabrino
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles CA
- Department of Neurobiology, Duke University School of Medicine, Durham NC
| | - Mishek Thapa
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles CA
- Department of Neurobiology, Duke University School of Medicine, Durham NC
| | - Tian Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles CA
| | - Alapakkam P Sampath
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles CA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles CA
| | - Greg D Field
- Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles CA
- Department of Neurobiology, Duke University School of Medicine, Durham NC
| |
Collapse
|
23
|
Tellioglu A, Aydin R. Choroidal vascular index in cystoid macular edema associated with retinitis pigmentosa. Photodiagnosis Photodyn Ther 2023; 42:103492. [PMID: 36863430 DOI: 10.1016/j.pdpdt.2023.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND Retinitis pigmentosa (RP) is an inherited degenerative disease characterized by night blindness (nyctalopia), visual field defects, and varying degrees of vision loss. Choroid tissue has an essential role in the pathophysiology of many chorioretinal diseases. The choroidal vascularity index (CVI) is a choroidal parameter obtained as the ratio of the luminal choroidal area to the total choroidal area. The study aimed to compare the CVI of RP patients with and without CME with each other and with healthy individualsAU: Please confirm that the provided email ''ademoztel@hotmail.com" is the correct address for official communication, else provide an alternate e-mail address to replace the existing one.. METHODS A retrospective, comparative study of 76 eyes of 76 RP patients and 60 right eyes of 60 healthy subjects was conducted. The patients were divided into two groups: those with and those without cystoid macular edema (CME). The images were obtained using enhanced depth imaging optical coherence tomography (EDI-OCT). CVI was calculated by using the binarization method with ImageJ software. RESULTS The mean CVI was significantly lower in RP patients compared to the control group (0.61±0.05 and 0.65±0.02, respectively, p<0.01). The mean CVI in RP patients with CME was significantly lower than in those without CME (0.60±0.54 and 0.63±0.35, respectively, p=0.01) The CVI was positively correlated with subfoveal choroidal thickness (r=0.74, p=0.001), central macular thickness (r=0.27, p<0.001) and visual acuity (logMAR) (r=-0.23 p=0.03) in RP patients. CONCLUSIONS The CVI is lower in RP patients with CME than in patients without CME and in RP patients compared to healthy subjects, indicating an ocular vascular involvement in the pathophysiology of the disease and the pathogenesis of RP-associated cystoid macular edema.
Collapse
Affiliation(s)
- Adem Tellioglu
- University of Health Sciences; Beyoglu Eye Training and Research Hospital, Turkey.
| | - Rukiye Aydin
- University of Health Sciences; Beyoglu Eye Training and Research Hospital, Turkey.
| |
Collapse
|
24
|
Khojasteh H, Riazi-Esfahani H, Mirghorbani M, Khalili Pour E, Mahmoudi A, Mahdizad Z, Akhavanrezayat A, Ghoraba H, Do DV, Nguyen QD. Cataract surgery in patients with retinitis pigmentosa: systematic review. J Cataract Refract Surg 2023; 49:312-320. [PMID: 36730350 PMCID: PMC9981325 DOI: 10.1097/j.jcrs.0000000000001101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 02/03/2023]
Abstract
Retinitis pigmentosa (RP) is an inherited bilateral retinal degenerative disease with an incidence of 1 in 4000 people. RP affects more than 1 million individuals worldwide. Although night blindness and restricted visual field are the most typical symptoms of these individuals, generalized vision loss due to cataracts can be expected in the latter stages of the disease. It has been demonstrated that posterior subcapsular cataract is the most prevalent cataract in younger individuals with RP, as opposed to age-related cataracts. Although most ophthalmologists may have a negative view of cataract surgery in patients with RP, it appears that it can play an important role in the visual restoration of patients with RP. However, there are concerns about performing cataract surgery for patients with RP. Herein, a systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses on databases of MEDLINE and Scopus.
Collapse
Affiliation(s)
- Hassan Khojasteh
- From the Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California (Khojasteh, Akhavanrezayat, Ghoraba, Do, Nguyen); Farabi Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran (Khojasteh, Riazi-Esfahani, Mirghorbani, Pour, Mahmoudi, Mahdizad)
| | - Hamid Riazi-Esfahani
- From the Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California (Khojasteh, Akhavanrezayat, Ghoraba, Do, Nguyen); Farabi Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran (Khojasteh, Riazi-Esfahani, Mirghorbani, Pour, Mahmoudi, Mahdizad)
| | - Masoud Mirghorbani
- From the Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California (Khojasteh, Akhavanrezayat, Ghoraba, Do, Nguyen); Farabi Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran (Khojasteh, Riazi-Esfahani, Mirghorbani, Pour, Mahmoudi, Mahdizad)
| | - Elias Khalili Pour
- From the Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California (Khojasteh, Akhavanrezayat, Ghoraba, Do, Nguyen); Farabi Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran (Khojasteh, Riazi-Esfahani, Mirghorbani, Pour, Mahmoudi, Mahdizad)
| | - Alireza Mahmoudi
- From the Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California (Khojasteh, Akhavanrezayat, Ghoraba, Do, Nguyen); Farabi Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran (Khojasteh, Riazi-Esfahani, Mirghorbani, Pour, Mahmoudi, Mahdizad)
| | - Zahra Mahdizad
- From the Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California (Khojasteh, Akhavanrezayat, Ghoraba, Do, Nguyen); Farabi Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran (Khojasteh, Riazi-Esfahani, Mirghorbani, Pour, Mahmoudi, Mahdizad)
| | - Amir Akhavanrezayat
- From the Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California (Khojasteh, Akhavanrezayat, Ghoraba, Do, Nguyen); Farabi Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran (Khojasteh, Riazi-Esfahani, Mirghorbani, Pour, Mahmoudi, Mahdizad)
| | - Hashem Ghoraba
- From the Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California (Khojasteh, Akhavanrezayat, Ghoraba, Do, Nguyen); Farabi Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran (Khojasteh, Riazi-Esfahani, Mirghorbani, Pour, Mahmoudi, Mahdizad)
| | - Diana V. Do
- From the Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California (Khojasteh, Akhavanrezayat, Ghoraba, Do, Nguyen); Farabi Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran (Khojasteh, Riazi-Esfahani, Mirghorbani, Pour, Mahmoudi, Mahdizad)
| | - Quan Dong Nguyen
- From the Byers Eye Institute, Stanford University School of Medicine, Palo Alto, California (Khojasteh, Akhavanrezayat, Ghoraba, Do, Nguyen); Farabi Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran (Khojasteh, Riazi-Esfahani, Mirghorbani, Pour, Mahmoudi, Mahdizad)
| |
Collapse
|
25
|
Nguyen XTA, Thiadens AAHJ, Fiocco M, Tan W, McKibbin M, Klaver CCW, Meester-Smoor MA, Van Cauwenbergh C, Strubbe I, Vergaro A, Pott JWR, Hoyng CB, Leroy BP, Zemaitiene R, Khan KN, Boon CJF. Outcome of Cataract Surgery in Patients With Retinitis Pigmentosa. Am J Ophthalmol 2023; 246:1-9. [PMID: 36252678 DOI: 10.1016/j.ajo.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE To assess the visual outcome of cataract surgery in patients with retinitis pigmentosa (RP). DESIGN Retrospective, noncomparative clinical study. METHODS Preoperative, intraoperative, and postoperative data of patients with RP who were undergoing cataract surgery were collected from several expertise centers across Europe. RESULTS In total, 295 eyes of 226 patients were included in the study. The mean age at surgery of the first eye was 56.1 ± 17.9 years. Following surgery, best-corrected visual acuity (BCVA) improved significantly from 1.03 to 0.81 logMAR (ie, 20/214 to 20/129 Snellen) in the first treated eye (-0.22 logMAR; 95% CI = -0.31 to -0.13; P < .001) and from 0.80 to 0.56 logMAR (ie, 20/126 to 20/73 Snellen) in the second treated eye (-0.24 logMAR; 95% CI = -0.32 to -0.15; P < .001). Marked BCVA improvements (postoperative change in BCVA of ≥0.3 logMAR) were observed in 87 of 226 patients (39%). Greater odds for marked visual improvements were observed in patients with moderate visual impairment or worse. The most common complications were zonular dialysis (n = 15; 5%) and (exacerbation of) cystoid macular edema (n = 14; 5%), respectively. Postoperative posterior capsular opacifications were present in 111 of 295 eyes (38%). CONCLUSION Significant improvements in BCVA are observed in most patients with RP following cataract surgery. Baseline BCVA is a predictor of visual outcome. Preoperative evaluation should include the assessment of potential zonular insufficiency and the presence of CME, as they are relatively common and may increase the risk of complications.
Collapse
Affiliation(s)
- Xuan-Thanh-An Nguyen
- From the Department of Ophthalmology (X.N., C.J.F.B.), Leiden University Medical Center, Leiden, Netherlands
| | - Alberta A H J Thiadens
- Department of Ophthalmology (A.A.H.J.T., C.C.W.K., M.A.M.), Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marta Fiocco
- Mathematical Institute (M.F.), Leiden University, Leiden, the Netherlands; Department of Biomedical Data Sciences (M.F.), Leiden University Medical Center, Leiden, Netherlands
| | - Weijen Tan
- Department of Ophthalmology (W.T., M.M.), Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Martin McKibbin
- Department of Ophthalmology (W.T., M.M.), Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Caroline C W Klaver
- Department of Ophthalmology (A.A.H.J.T., C.C.W.K., M.A.M.), Erasmus University Medical Center, Rotterdam, Netherlands; Department of Epidemiology (C.C.W.K., M.A.M.), Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands; Department of Ophthalmology (C.C.W.K., C.B.H.), Radboud University Medical Center, Nijmegen, Netherlands; Institute of Molecular and Clinical Ophthalmology (C.C.W.K.), University of Basel, Basel, Switzerland
| | - Magda A Meester-Smoor
- Department of Ophthalmology (A.A.H.J.T., C.C.W.K., M.A.M.), Erasmus University Medical Center, Rotterdam, Netherlands; Department of Epidemiology (C.C.W.K., M.A.M.), Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Caroline Van Cauwenbergh
- Department of Ophthalmology, Ghent (C.V., I.S., B.P.L.) University and Ghent University Hospital, Ghent, Belgium; Center for Medical Genetics (C.V., B.P.L.), Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Ine Strubbe
- Department of Ophthalmology, Ghent (C.V., I.S., B.P.L.) University and Ghent University Hospital, Ghent, Belgium
| | - Andrea Vergaro
- Department of Pediatrics and Inherited Metabolic Disorders (A.V.), Charles University and General University Hospital, Prague, Czech Republic
| | - Jan-Willem R Pott
- Department of Ophthalmology (J.R.P.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology (C.C.W.K., C.B.H.), Radboud University Medical Center, Nijmegen, Netherlands
| | - Bart P Leroy
- Department of Ophthalmology, Ghent (C.V., I.S., B.P.L.) University and Ghent University Hospital, Ghent, Belgium; Center for Medical Genetics (C.V., B.P.L.), Ghent University and Ghent University Hospital, Ghent, Belgium; Division of Ophthalmology (B.P.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Centre for Cellular & Molecular Therapeutics (B.P.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Reda Zemaitiene
- Department of Ophthalmology (R.Z.), Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kamron N Khan
- Novartis Institute of BioMedical Research (K.N.K.), Cambridge, Massachusetts, USA; Department of Ophthalmology (K.N.K.), Harvard Medical School, Boston, Massachusetts, USA
| | - Camiel J F Boon
- From the Department of Ophthalmology (X.N., C.J.F.B.), Leiden University Medical Center, Leiden, Netherlands; Department of Ophthalmology (C.J.F.B.), Amsterdam University Medical Centers, Amsterdam, Netherlands.
| |
Collapse
|
26
|
John MC, Quinn J, Hu ML, Cehajic-Kapetanovic J, Xue K. Gene-agnostic therapeutic approaches for inherited retinal degenerations. Front Mol Neurosci 2023; 15:1068185. [PMID: 36710928 PMCID: PMC9881597 DOI: 10.3389/fnmol.2022.1068185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Inherited retinal diseases (IRDs) are associated with mutations in over 250 genes and represent a major cause of irreversible blindness worldwide. While gene augmentation or gene editing therapies could address the underlying genetic mutations in a small subset of patients, their utility remains limited by the great genetic heterogeneity of IRDs and the costs of developing individualised therapies. Gene-agnostic therapeutic approaches target common pathogenic pathways that drive retinal degeneration or provide functional rescue of vision independent of the genetic cause, thus offering potential clinical benefits to all IRD patients. Here, we review the key gene-agnostic approaches, including retinal cell reprogramming and replacement, neurotrophic support, immune modulation and optogenetics. The relative benefits and limitations of these strategies and the timing of clinical interventions are discussed.
Collapse
Affiliation(s)
- Molly C. John
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Joel Quinn
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Monica L. Hu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
27
|
Olivares-González L, Velasco S, Campillo I, Millán JM, Rodrigo R. Redox Status in Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:443-448. [PMID: 37440070 DOI: 10.1007/978-3-031-27681-1_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy characterized by the progressive loss of vision. It is a rare disease. Despite being a genetic disease, its progression is influenced by oxidative damage and chemokines and cytokines released by the activated immune cells (e.g., macrophages or microglia). The role of oxidative stress is very important in the retina. Rods are the main consumers of oxygen (O2), so they are constantly exposed to oxidative stress and lipid peroxidation. According to the oxidative hypothesis, after rod death in the early stages of the disease, O2 would accumulate in large quantities in the retina, producing hyperoxia and favoring the accumulation of reactive oxygen species and reactive nitrogen species that would cause oxidative damage to lipids, proteins, and DNA, exacerbating the process of retinal degeneration. Evidence shows alterations in the antioxidant-oxidant state in patients and in animal models of RP. In recent years, therapeutic approaches aimed at reducing oxidative stress have emerged as useful therapies to slow down the progression of RP. We focus this review on oxidative stress and its relationship with the progression of RP.
Collapse
Affiliation(s)
- L Olivares-González
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), Valencia, Spain
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain
| | - S Velasco
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), Valencia, Spain
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain
| | - I Campillo
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), Valencia, Spain
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain
| | - J M Millán
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Madrid, Spain
- Molecular, Cellular and Genomic Biomedicine, Health Research Institute La Fe, Valencia, Spain
| | - R Rodrigo
- Pathophysiology and Therapies for Vision Disorders, Principe Felipe Research Center (CIPF), Valencia, Spain.
- Joint Unit on Rare Diseases CIPF-La Fe, Valencia, Spain.
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Madrid, Spain.
| |
Collapse
|
28
|
Hirji SH. Clinical Evaluation of Patients with Retinitis Pigmentosa. Methods Mol Biol 2023; 2560:31-39. [PMID: 36481881 DOI: 10.1007/978-1-0716-2651-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter describes the clinical evaluation process of patients with retinitis pigmentosa (RP). The clinical evaluation consists of a complete history and ophthalmic examination. Here, we outline the aspects of the history and ophthalmic exam that are most important for the evaluation of RP patients. In addition, the expected findings of RP patients and the etiology of these findings are discussed.
Collapse
Affiliation(s)
- Sitara H Hirji
- Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
29
|
Babalola YO, Shah MS, Padhy SK, Behera UC. Bilateral astrocytic hamartoma with vasoproliferative tumour in retinitis pigmentosa. Niger Postgrad Med J 2023; 30:81-84. [PMID: 36814168 DOI: 10.4103/npmj.npmj_265_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We report a rare case of a 32-year-old Indian male who presented to the retina outpatient department with a history of sudden worsening of vision in the left eye. There was a background history of poor vision and deficient night vision since childhood. At the first presentation, the best corrected visual acuity was 6/36 and 6/60 in the right and left eye, respectively. Ocular examination revealed waxy pale disc, bone spicule pigmentation, attenuated vessels and epiretinal membrane in the right eye in keeping with retinitis pigmentosa. An astrocytic harmatoma was also present in the right eye. Vitreous haemorrhage in the left eye precluded a view of the fundus. He subsequently had a left pars plana vitrectomy, and intravitreal bevacizumab on account of non-resolving vitreous haemorrhage and a vasoproliferative tumour and astrocytic hamartoma were noticed intraoperatively. He had a good immediate post-operative outcome post-left vitrectomy but subsequently developed left neovascular glaucoma 2 years after. Neovascular glaucoma may be a sequela of vasoproliferative tumour; hence, regular follow-up and monitoring are essential in these patients.
Collapse
Affiliation(s)
- Yewande O Babalola
- Retina and Vitreous Services, LV Prasad Eye Institute, Mithu Tulsi Chanri Campus, Bhubaneshwar, India; Department of Ophthalmology, University College Hospital, Ibadan, Nigeria
| | - Miloni S Shah
- Retina and Vitreous Services, LV Prasad Eye Institute, Mithu Tulsi Chanri Campus, Bhubaneshwar, India
| | - Srikant K Padhy
- Retina and Vitreous Services, LV Prasad Eye Institute, Mithu Tulsi Chanri Campus, Bhubaneshwar, India
| | - Umesh C Behera
- Retina and Vitreous Services, LV Prasad Eye Institute, Mithu Tulsi Chanri Campus, Bhubaneshwar, India
| |
Collapse
|
30
|
Therapeutic Potential of d-MAPPS™ for Ocular Inflammatory Diseases and Regeneration of Injured Corneal and Retinal Tissue. Int J Mol Sci 2022; 23:ijms232113528. [DOI: 10.3390/ijms232113528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
The invasion of microbial pathogens and/or sterile inflammation caused by physical/chemical injuries, increased ocular pressure, oxidative stress, and ischemia could lead to the generation of detrimental immune responses in the eyes, which result in excessive tissue injury and vision loss. The bioavailability of eye drops that are enriched with immunoregulatory and trophic factors which may concurrently suppress intraocular inflammation and promote tissue repair and regeneration is generally low. We recently developed “derived- Multiple Allogeneic Proteins Paracrine Signaling regenerative biologics platform technology d-MAPPS™”, a bioengineered biological product which is enriched with immunomodulatory and trophic factors that can efficiently suppress detrimental immune responses in the eye and promote the repair and regeneration of injured corneal and retinal tissues. The results obtained in preclinical and clinical studies showed that d-MAPPS™ increased the viability of injured corneal cells, inhibited the production of inflammatory cytokines in immune cells, alleviated inflammation, and restored vision loss in patients suffering from meibomian gland dysfunction and dry eye disease. Herewith, we emphasized molecular mechanisms responsible for the therapeutic efficacy of d-MAPPS™ and we presented the main beneficial effects of d-MAPPS™ in clinical settings, indicating that the topical administration of d-MAPPS™ could be considered a new therapeutic approach for the treatment of ocular inflammatory diseases and for the repair and regeneration of injured corneal and retinal tissues.
Collapse
|
31
|
Zhao L, Hou C, Yan N. Neuroinflammation in retinitis pigmentosa: Therapies targeting the innate immune system. Front Immunol 2022; 13:1059947. [PMID: 36389729 PMCID: PMC9647059 DOI: 10.3389/fimmu.2022.1059947] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is an important cause of irreversible blindness worldwide and lacks effective treatment strategies. Although mutations are the primary cause of RP, research over the past decades has shown that neuroinflammation is an important cause of RP progression. Due to the abnormal activation of immunity, continuous sterile inflammation results in neuron loss and structural destruction. Therapies targeting inflammation have shown their potential to attenuate photoreceptor degeneration in preclinical models. Regardless of variations in genetic background, inflammatory modulation is emerging as an important role in the treatment of RP. We summarize the evidence for the role of inflammation in RP and mention therapeutic strategies where available, focusing on the modulation of innate immune signals, including TNFα signaling, TLR signaling, NLRP3 inflammasome activation, chemokine signaling and JAK/STAT signaling. In addition, we describe epigenetic regulation, the gut microbiome and herbal agents as prospective treatment strategies for RP in recent advances.
Collapse
Affiliation(s)
- Ling Zhao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Hou
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Naihong Yan,
| |
Collapse
|
32
|
Immunological consequences of compromised ocular immune privilege accelerate retinal degeneration in retinitis pigmentosa. Orphanet J Rare Dis 2022; 17:378. [PMID: 36253797 PMCID: PMC9575261 DOI: 10.1186/s13023-022-02528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is a hereditary retinal disease which leads to visual impairment. The onset and progression of RP has physiological consequences that affects the ocular environment. Some of the key non-genetic factors which hasten the retinal degeneration in RP include oxidative stress, hypoxia and ocular inflammation. In this study, we investigated the status of the ocular immune privilege during retinal degeneration and the effect of ocular immune changes on the peripheral immune system in RP. We assessed the peripheral blood mononuclear cell stimulation by retinal antigens and their immune response status in RP patients. Subsequently, we examined alterations in ocular immune privilege machineries which may contribute to ocular inflammation and disease progression in rd1 mouse model. Results In RP patients, we observed a suppressed anti-inflammatory response to self-retinal antigens, thereby indicating a deviated response to self-antigens. The ocular milieu in rd1 mouse model indicated a significant decrease in immune suppressive ligands and cytokine TGF-B1, and higher pro-inflammatory ocular protein levels. Further, blood–retinal-barrier breakdown due to decrease in the expression of tight junction proteins was observed. The retinal breach potentiated pro-inflammatory peripheral immune activation against retinal antigens and caused infiltration of the peripheral immune cells into the ocular tissue. Conclusions Our studies with RP patients and rd1 mouse model suggest that immunological consequences in RP is a contributing factor in the progression of retinal degeneration. The ocular inflammation in the RP alters the ocular immune privilege mechanisms and peripheral immune response. These aberrations in turn create an auto-reactive immune environment and accelerate retinal degeneration.
Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02528-x.
Collapse
|
33
|
Martínez-Gil N, Maneu V, Kutsyr O, Fernández-Sánchez L, Sánchez-Sáez X, Sánchez-Castillo C, Campello L, Lax P, Pinilla I, Cuenca N. Cellular and molecular alterations in neurons and glial cells in inherited retinal degeneration. Front Neuroanat 2022; 16:984052. [PMID: 36225228 PMCID: PMC9548552 DOI: 10.3389/fnana.2022.984052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple gene mutations have been associated with inherited retinal dystrophies (IRDs). Despite the spectrum of phenotypes caused by the distinct mutations, IRDs display common physiopathology features. Cell death is accompanied by inflammation and oxidative stress. The vertebrate retina has several attributes that make this tissue vulnerable to oxidative and nitrosative imbalance. The high energy demands and active metabolism in retinal cells, as well as their continuous exposure to high oxygen levels and light-induced stress, reveal the importance of tightly regulated homeostatic processes to maintain retinal function, which are compromised in pathological conditions. In addition, the subsequent microglial activation and gliosis, which triggers the secretion of pro-inflammatory cytokines, chemokines, trophic factors, and other molecules, further worsen the degenerative process. As the disease evolves, retinal cells change their morphology and function. In disease stages where photoreceptors are lost, the remaining neurons of the retina to preserve their function seek out for new synaptic partners, which leads to a cascade of morphological alterations in retinal cells that results in a complete remodeling of the tissue. In this review, we describe important molecular and morphological changes in retinal cells that occur in response to oxidative stress and the inflammatory processes underlying IRDs.
Collapse
Affiliation(s)
- Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | | | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Isabel Pinilla
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza, Spain
- Department of Surgery, University of Zaragoza, Zaragoza, Spain
- Isabel Pinilla,
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Institute Ramón Margalef, University of Alicante, Alicante, Spain
- *Correspondence: Nicolás Cuenca,
| |
Collapse
|
34
|
Hottin C, Perron M, Roger JE. GSK3 Is a Central Player in Retinal Degenerative Diseases but a Challenging Therapeutic Target. Cells 2022; 11:cells11182898. [PMID: 36139472 PMCID: PMC9496697 DOI: 10.3390/cells11182898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a key regulator of many cellular signaling processes and performs a wide range of biological functions in the nervous system. Due to its central role in numerous cellular processes involved in cell degeneration, a rising number of studies have highlighted the interest in developing therapeutics targeting GSK3 to treat neurodegenerative diseases. Although recent works strongly suggest that inhibiting GSK3 might also be a promising therapeutic approach for retinal degenerative diseases, its full potential is still under-evaluated. In this review, we summarize the literature on the role of GSK3 on the main cellular functions reported as deregulated during retinal degeneration, such as glucose homeostasis which is critical for photoreceptor survival, or oxidative stress, a major component of retinal degeneration. We also discuss the interest in targeting GSK3 for its beneficial effects on inflammation, for reducing neovascularization that occurs in some retinal dystrophies, or for cell-based therapy by enhancing Müller glia cell proliferation in diseased retina. Together, although GSK3 inhibitors hold promise as therapeutic agents, we highlight the complexity of targeting such a multitasked kinase and the need to increase our knowledge of the impact of reducing GSK3 activity on these multiple cellular pathways and biological processes.
Collapse
Affiliation(s)
- Catherine Hottin
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400 Saclay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400 Saclay, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400 Saclay, France
| |
Collapse
|
35
|
Tao Y, Murakami Y, Vavvas DG, Sonoda KH. Necroptosis and Neuroinflammation in Retinal Degeneration. Front Neurosci 2022; 16:911430. [PMID: 35844208 PMCID: PMC9277228 DOI: 10.3389/fnins.2022.911430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
Necroptosis mediates the chronic inflammatory phenotype in neurodegeneration. Receptor-interacting protein kinase (RIPK) plays a pivotal role in the induction of necroptosis in various cell types, including microglia, and it is implicated in diverse neurodegenerative diseases in the central nervous system and the retina. Targeting RIPK has been proven beneficial for alleviating both neuroinflammation and degeneration in basic/preclinical studies. In this review, we discuss the role of necroptosis in retinal degeneration, including (1) the molecular pathways involving RIPK, (2) RIPK-dependent microglial activation and necroptosis, and (3) the interactions between necroptosis and retinal neuroinflammation/degeneration. This review will contribute to a renewed focus on neuroinflammation induced by necroptosis and to the development of anti-RIPK drugs against retinal degeneration.
Collapse
Affiliation(s)
- Yan Tao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Demetrios G Vavvas
- Ines and Frederick Yeatts Retinal Research Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Deletion of the Pedf gene leads to inflammation, photoreceptor loss and vascular disturbances in the retina. Exp Eye Res 2022; 222:109171. [PMID: 35809620 DOI: 10.1016/j.exer.2022.109171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022]
Abstract
Retinal diseases are often accompanied by inflammation, vascular abnormalities, and neurodegeneration that decrease vision. Treatment with exogenous PEDF is widely shown to alleviate these conditions leading us to hypothesize that loss of function of the PEDF gene disrupts these pathways and leads to visual loss. Measurements were carried out by detailed phenotyping of PEDF null mice to assess expression of immunomodulators, glia activation, systemic inflammation, vascular disturbances, and visual sensitivity often associated with retinal pathologies. With a deletion of the Pedf gene, there was increased expression of several immune modulators in Pedf-/- retinas and serum with IL-2 and GM-CSF upregulated in both. Increases in retina glia activation and macrophage infiltration, levels of serum c-reactive protein (CRP), numbers of white and red blood cells and platelets and decreased blood glucose levels were all features associated with PEDF null mice. With PEDF gene deletion, there was also a notable increase in apoptosis in early developing retinas (PN3), reduced thickness of the photoreceptor layer, swelling of the inner plexiform layer, reduced retinal sensitivity and steady-state reduced activation of Erk and Akt, two signaling pathways used by PEDF. There is a substantial body of animal data emphasizing utility of PEDF treatment in homeostatic regulation of retinal diseases, including diabetic retinopathy and age-related macular degeneration but there is little agreement or evidence on the role of endogenous PEDF in retinal diseases. Our findings strongly support the concept that a deletion of the PEDF gene makes the retina vulnerable to diseases, and argue that endogenous PEDF plays a critical role in limiting pathological events in the retina.
Collapse
|
37
|
Rosa RH, Xie W, Zhao M, Tsai SH, Roddy GW, Su MG, Potts LB, Hein TW, Kuo L. Intravitreal Administration of Stanniocalcin-1 Rescues Photoreceptor Degeneration with Reduced Oxidative Stress and Inflammation in a Porcine Model of Retinitis Pigmentosa. Am J Ophthalmol 2022; 239:230-243. [PMID: 35307380 DOI: 10.1016/j.ajo.2022.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE To investigate the effect of stanniocalcin-1 (STC-1), a secreted polypeptide exhibiting multiple functions in cell survival and death, on photoreceptor degeneration in a porcine model of retinitis pigmentosa (RP). METHODS P23H transgenic pigs (TG P23H) and wild-type hybrid littermates were obtained from the National Swine Resource and Research Center. Human recombinant STC-1 was injected intravitreally every 2 weeks from postnatal day 15 (P15) to P75. The contralateral eye was injected with balanced salt solution as a control. Electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT) were performed to evaluate retinal function and morphology in vivo at P90. Retinal tissue was collected for histologic analysis and molecular assays to evaluate the antioxidative and anti-inflammatory mechanisms by which STC-1 may rescue photoreceptor degeneration. RESULTS Intravitreal injection of STC-1 improved retinal function in TG P23H pigs with increased photopic and flicker ERG a- and b-wave amplitudes. Greater integrity of the ellipsoid zone (EZ) band on SD-OCT and morphologic rescue with preservation of cone photoreceptors were observed in STC-1-treated TG P23H pigs. STC-1 altered gene expression in TG P23H pig retina on microarray analysis and increased photoreceptor specific gene expression by reverse transcription-polymerase chain reaction analysis. STC-1 significantly decreased oxidative stress and the expressions of NLRP3 inflammasome, cleaved caspase-1, and IL-1β in TG P23H pig retina. CONCLUSIONS Intravitreal administration of STC-1 enhances cone photoreceptor function, improves EZ integrity, and reduces retinal degeneration through antioxidative and anti-inflammatory effects in a large animal (pig) model of the most common form of autosomal dominant RP in the United States.
Collapse
Affiliation(s)
- Robert H Rosa
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK).
| | - Wankun Xie
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK)
| | - Min Zhao
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK)
| | - Shu-Huai Tsai
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK)
| | - Gavin W Roddy
- Department of Ophthalmology, Mayo Clinic, Rochester, MN (GR)
| | - Maxwell G Su
- Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK)
| | - Luke B Potts
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK)
| | - Travis W Hein
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK)
| | - Lih Kuo
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA (RR, WX, MZ, ST, LP, TH, LK); Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX, USA (RR, WX, MZ, MS, LP, TH, LK)
| |
Collapse
|
38
|
Chen C, Liu X, Peng X. Management of Cystoid Macular Edema in Retinitis Pigmentosa: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:895208. [PMID: 35652079 PMCID: PMC9149278 DOI: 10.3389/fmed.2022.895208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background To date, various treatments for cystoid macular edema (CME) in retinitis pigmentosa (RP) have been reported. We performed a systematic review and meta-analysis to evaluate the efficacy and safety of current treatments for RP-CME. Methods PubMed, Embase and the Cochrane library were searched from inception to August 2021. ClinicalTrials.gov, WHO ICTRP and ISRCTN were also searched for relevant studies. Only studies published in English were included. The RoB 2 tool was used to evaluate the risk of bias of randomized controlled trials (RCTs), and the MINORS scale was used to assess the methodological quality of non-RCTs. Review manager (Revman) was used to pool the data. The primary outcomes included the change of central macular thickness (CMT) and best-corrected visual acuity (BCVA) from baseline. The secondary outcomes included fluorescein angiography (FA) leakage, rebound of CME and adverse effects. Results Thirty-two studies were included in the current systematic review and 7 studies were used for meta-analysis. Treatments for RP-CME included oral and topical carbonic anhydrase inhibitors (CAIs), systematic and local steroids, anti-VEGF therapy, NSAIDS, grid LASER photocoagulation, subliminal micropulse LASER, vitrectomy, lutein supplement and oral minocycline. CAIs and local steroids were proved to be effective in reducing CMT. The effects of anti-VEGF reagents varied among studies. Regarding other treatments, only one study for each method fitted the inclusion criteria, so the evidence was very limited. Conclusion Topical CAIs, oral CAIs and local steroids are effective in treating RP-CME. However, due to the overall inferior design and small patient number of the included studies, the quality of evidence was poor. Systematic steroids, LASER, NSAIDS and vitrectomy may also be effective, nevertheless, considering the limited number of studies, no conclusion could be drawn regarding these treatments. More well-designed and conducted studies are needed in this field. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021273979, identifier CRD42021273979.
Collapse
Affiliation(s)
- Chen Chen
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Affiliated Hospital of Yunnan University, Fourth Affiliated Hospital of Kunming Medical University), Kunming, China.,Yunnan Clinical Medicine Center for Ocular Disease, Yunnan Eye Institute, Kunming, China.,Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmic Diseases, Yunnan Eye Institute, Kunming, China
| | - Xia Liu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Affiliated Hospital of Yunnan University, Fourth Affiliated Hospital of Kunming Medical University), Kunming, China.,Yunnan Clinical Medicine Center for Ocular Disease, Yunnan Eye Institute, Kunming, China.,Key Laboratory of Yunnan Province for the Prevention and Treatment of Ophthalmic Diseases, Yunnan Eye Institute, Kunming, China
| | - Xiaoyan Peng
- Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Institute of Ophthalmology, Beijing, China.,Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
CRB1-associated retinal dystrophy presenting as self-resolving opsoclonus and posterior uveitis. Am J Ophthalmol Case Rep 2022; 26:101444. [PMID: 35243176 PMCID: PMC8881377 DOI: 10.1016/j.ajoc.2022.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose To describe the unusual case of inflammatory CRB1-associated retinal dystrophy that initially presented with self-resolving opsoclonus. Observations We report the case of a now 2-year-old female who developed opsoclonus without myoclonus at the age of 4 months. An extensive workup for neuroblastoma and other systemic diseases was unremarkable, and all unusual eye movements self-resolved at age 10 months. Twenty-one months after initial presentation, she began having reduced visual behaviors, and comprehensive ophthalmic exam at that time revealed recurrent saccadic intrusions as well as severe, chronic retinal inflammation and dystrophic changes. An extensive infectious and inflammatory workup was negative. Genetic sequencing revealed two variants in CRB1: a heterozygous missense mutation and a heterozygous novel deletion involving exon 12. The patient was treated with monthly infliximab and methylprednisolone infusions with improvement in her optic disc and macular capillary leakage. The patient's 8-month-old sister also harbored the same variants in CRB1 and had early signs of retinal dystrophy and peripheral vascular leakage on exam. Conclusion Saccadic intrusions may be the first sign of a retinal dystrophy, and infants and children with this presentation should undergo a complete eye exam. We further highlight the link between CRB1-associated retinal dystrophy and inflammation, and how systemic steroids and tumor necrosis factor alpha (TNF-α) inhibitors may be effective therapies. Finally, we report a novel deletion in CRB1 that is likely highly penetrant.
Collapse
|
40
|
Nashine S, Cohen P, Wan J, Kenney C. Effect of Humanin G (HNG) on inflammation in age-related macular degeneration (AMD). Aging (Albany NY) 2022; 14:4247-4269. [PMID: 35576057 PMCID: PMC9186758 DOI: 10.18632/aging.204074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Inflammation plays a crucial role in the etiology and pathogenesis of AMD (Age-related Macular Degeneration). Humanin G (HNG) is a Mitochondrial Derived Peptide (MDP) that is cytoprotective in AMD and can protect against mitochondrial and cellular stress induced by damaged AMD mitochondria. The goal of this study was to test our hypothesis that inflammation-associated marker protein levels are increased in AMD and treatment with HNG leads to reduction in their protein levels. Humanin protein levels were measured in the plasma of AMD patients and normal subjects using ELISA assay. Humanin G was added to AMD and normal (control) cybrids which had identical nuclei from mitochondria-deficient ARPE-19 cells but differed in mitochondrial DNA (mtDNA) content derived from clinically characterized AMD patients and normal (control) subjects. Cell lysates were extracted from untreated and HNG-treated AMD and normal cybrids, and the Luminex XMAP multiplex assay was used to measure the levels of inflammatory proteins. AMD plasma showed reduced Humanin protein levels, but higher protein levels of inflammation markers compared to control plasma samples. In AMD RPE cybrid cells, Humanin G reduced the CD62E/ E-Selectin, CD62P/ P-Selectin, ICAM-1, TNF-α, MIP-1α, IFN–γ, IL-1β, IL-13, and IL-17A protein levels, thereby suggesting that Humanin G may rescue from mtDNA-mediated inflammation in AMD cybrids. In conclusion, we present novel findings that: A) show reduced Humanin protein levels in AMD plasma vs. normal plasma; B) suggest the role of inflammatory markers in AMD pathogenesis, and C) highlight the positive effects of Humanin G in reducing inflammation in AMD.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Pinchas Cohen
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Junxiang Wan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA.,Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
41
|
Aboumanei MH, Mahmoud AF. Development of Tamoxifen In Situ Gel Nanoemulsion for Ocular Delivery in Photoreceptor Degeneration Disorder: In Vitro Characterization, 131I-Radiolabeling, and In Vivo Biodistribution Studies. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose
The aim of our work is to develop an in situ ocular gellan gum–based nanoemulsion (NE) of tamoxifen TAM as an alternative drug delivery system to the oral route for the treatment of photoreceptor degeneration disorder.
Method
Six pseudoternary phase diagrams were developed using oil (oleic acid), surfactants (Tween 80 or Tween 20), a co-surfactant (polyethylene glycol 400), and water. The particle size, polydispersity index, and zeta potential of the developed systems were all measured. The safety of ocular application of the optimum system was established via in vivo histopathological investigation. To track the biodistribution of the optimum gel, iodine-131 (131I) was incorporated into the gel via coupling with TAM via direct electrophilic substitution reaction.
Results
Based on the obtained results, TAMNE-1 was chosen as the optimal system, with PS = 140.20 ± 1.50 nm, ZP = − 27.86 ± 1.13 mV, and PDI = 0.20 ± 0.00%. In vitro release displayed a prolonged and sustained release of TAMNE-1 gel compared to TAM solution (plain eye drop). Transparent in situ TAMNE-1 gel was developed after the incorporation of the TAMNE-1 system into gellan gum aqueous solution (0.3% w/w). In this study, TAM was successfully radiolabeled with 131I for subsequent evaluation of the efficacy of the developed in situ gel system (TAMNE-1 gel) in vivo. The developed TAMNE-1 gel system was nonirritant and safe and the biodistribution studies showed better retention of TAMNE-1 gel than plain TAM eye drops.
Conclusion
The developed TAMNE-1 gel is able to enhance the ocular bioavailability of TAM and can go further with clinical evaluation.
Graphic Abstract
Collapse
|
42
|
Hwang JH, Nah SK, Lew YJ, Kim CG, Kim JW, Kim JH. Clinical Characteristics at Initial Diagnosis of Korean Patients with Retinitis Pigmentosa. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2022. [DOI: 10.3341/jkos.2022.63.4.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose: To evaluate the clinical characteristics of Korean patients diagnosed with retinitis pigmentosa.Methods: We retrospectively reviewed the medical records of patients diagnosed with retinitis pigmentosa from January 2014 to December 2019. We evaluated age, gender, the chief complaints, posterior subcapsular cataract status, abnormalities on optical coherence tomography, visual field test results, and electrooculograms.Results: A total of 492 eyes of 246 patients were included. The mean patient age was 48.0 ± 16.0 years and the chief complaints were decreased vision and night blindness. The mean logarithm of the minimal angle of resolution (logMAR) best‐corrected visual acuity (BCVA) was 0.31 ± 0.50. The BCVA was 0.5 or better in 368 eyes (74.8%). A total of 328 (71.0%) of 462 eyes that underwent visual field testing exhibited visual field defects within 10º. The mean Arden ratio was 1.28 ± 0.28 for the 242 eyes that underwent electro‐oculography. Optical coherence tomography revealed vitreomacular traction/an epiretinal membrane, cystoid macular edema, and retinal thinning in 135 (27.4%), 48 (9.8%), and 112 (22.8%) eyes, respectively. The ellipsoid zone was intact in 222 eyes (45.1%), disrupted in 220 (44.7%), and absent in 50 (10.2%).Conclusions: Most patients with retinitis pigmentosa exhibited visual acuity of 0.5 or better, but also had central visual field defects. Various abnormalities were noted on optical coherence tomography of most patients.
Collapse
|
43
|
Funatsu J, Murakami Y, Shimokawa S, Nakatake S, Fujiwara K, Okita A, Fukushima M, Shibata K, Yoshida N, Koyanagi Y, Akiyama M, Notomi S, Nakao S, Hisatomi T, Takeda A, Paschalis EI, Vavvas DG, Ikeda Y, Sonoda KH. Circulating inflammatory monocytes oppose microglia and contribute to cone cell death in retinitis pigmentosa. PNAS NEXUS 2022; 1. [PMID: 35529318 DOI: 10.1093/pnasnexus/pgac003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Retinitis pigmentosa (RP) is an intractable inherited disease that primarily affects the rods through gene mutations followed by secondary cone degeneration. This cone-related dysfunction can lead to impairment of daily life activities, and ultimately blindness in patients with RP. Paradoxically, microglial neuroinflammation contributes to both protection against and progression of RP, but it is unclear which population(s) - tissue-resident microglia and/or peripheral monocyte-derived macrophages (mφ) - are implicated in the progression of the disease. Here we show that circulating blood inflammatory monocytes (IMo) are key effector cells that mediate cone cell death in RP. Attenuation of IMo and peripherally engrafted mφ by Ccl2 deficiency or immune modulation via intravenous nano-particle treatment suppressed cone cell death in rd10 mice, an animal model of RP. In contrast, the depletion of resident microglia by a colony-stimulating factor 1 receptor inhibitor exacerbated cone cell death in the same model. In human patients with RP, IMo was increased and correlated with disease progression. These results suggest that peripheral IMo is a potential target to delay cone cell death and prevent blindness in RP.
Collapse
Affiliation(s)
- Jun Funatsu
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shotaro Shimokawa
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shunji Nakatake
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Ayako Okita
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Masatoshi Fukushima
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Kensuke Shibata
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.,Department of Genomics and Molecular Analysis, Yamaguchi University School of Medicine, Yamaguchi 755-8505, Japan
| | - Noriko Yoshida
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.,Department of Ophthalmology, Fukuoka Dental College Medical and Dental Hospital, Fukuoka 814-0193, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Masato Akiyama
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.,Department of Ocular Pathology and Imaging Science, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Chikushi Hospital, Fukuoka University, Fukuoka 818-8502, Japan
| | - Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Eleftherios I Paschalis
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.,Boston Keratoprosthesis Laboratory, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.,Disruptive Technology Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.,Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.,Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
44
|
Wang SK, Cepko CL. Targeting Microglia to Treat Degenerative Eye Diseases. Front Immunol 2022; 13:843558. [PMID: 35251042 PMCID: PMC8891158 DOI: 10.3389/fimmu.2022.843558] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Microglia have been implicated in many degenerative eye disorders, including retinitis pigmentosa, age-related macular degeneration, glaucoma, diabetic retinopathy, uveitis, and retinal detachment. While the exact roles of microglia in these conditions are still being discovered, evidence from animal models suggests that they can modulate the course of disease. In this review, we highlight current strategies to target microglia in the eye and their potential as treatments for both rare and common ocular disorders. These approaches include depleting microglia with chemicals or radiation, reprogramming microglia using homeostatic signals or other small molecules, and inhibiting the downstream effects of microglia such as by blocking cytokine activity or phagocytosis. Finally, we describe areas of future research needed to fully exploit the therapeutic value of microglia in eye diseases.
Collapse
Affiliation(s)
- Sean K. Wang
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Constance L. Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
- *Correspondence: Constance L. Cepko,
| |
Collapse
|
45
|
Alfarhan M, Liu F, Shan S, Pichavaram P, Somanath PR, Narayanan SP. Pharmacological Inhibition of Spermine Oxidase Suppresses Excitotoxicity Induced Neuroinflammation in Mouse Retina. Int J Mol Sci 2022; 23:2133. [PMID: 35216248 PMCID: PMC8875684 DOI: 10.3390/ijms23042133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Polyamine oxidation plays a major role in neurodegenerative diseases. Previous studies from our laboratory demonstrated that spermine oxidase (SMOX, a member of the polyamine oxidase family) inhibition using MDL 72527 reduced neurodegeneration in models of retinal excitotoxicity and diabetic retinopathy. However, the mechanisms behind the neuroprotection offered by SMOX inhibition are not completely studied. Utilizing the experimental model of retinal excitotoxicity, the present study determined the impact of SMOX blockade in retinal neuroinflammation. Our results demonstrated upregulation in the number of cells positive for Iba-1 (ionized calcium-binding adaptor molecule 1), CD (Cluster Differentiation) 68, and CD16/32 in excitotoxicity-induced retinas, while MDL 72527 treatment reduced these changes, along with increases in the number of cells positive for Arginase1 and CD206. When retinal excitotoxicity upregulated several pro-inflammatory genes, MDL 72527 treatment reduced many of them and increased anti-inflammatory genes. Furthermore, SMOX inhibition upregulated antioxidant signaling (indicated by elevated Nrf2 and HO-1 levels) and reduced protein-conjugated acrolein in excitotoxic retinas. In vitro studies using C8-B4 cells showed changes in cellular morphology and increased reactive oxygen species formation in response to acrolein (a product of SMOX activity) treatment. Overall, our findings indicate that the inhibition SMOX pathway reduced neuroinflammation and upregulated antioxidant signaling in the retina.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | | | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
46
|
Cho H, Jeong M, Lee S, Yoo S. Comparison of the qualitative and quantitative optical coherence tomographic features between sudden acquired retinal degeneration syndrome and normal eyes in dogs. Vet Ophthalmol 2022; 25 Suppl 1:144-163. [PMID: 35144323 DOI: 10.1111/vop.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/03/2022] [Accepted: 01/23/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To quantitatively and qualitatively characterize the retinal optical coherence tomographic features of sudden acquired retinal degeneration syndrome (SARDS) and SARDS suspect dogs. ANIMALS STUDIED Fourteen SARDS affected dogs, 11 age-, breed-, and sex-matched control dogs, and two SARDS suspect dogs. PROCEDURES Spectral-domain optical coherence tomography (OCT) images were used to evaluate the quantitative features, including thickness, intereye asymmetry, and longitudinal changes in retinal layer thickness and the qualitative features, including retinal architecture and vitreous haze. RESULTS Mean outer retinal layer thickness (ORT), outer nuclear layer thickness (ONL), and photoreceptor layer thickness (PRL) were significantly lower in the SARDS group, whereas mean inner retinal layer thickness was significantly higher in the SARDS group than in the control group. While thickness values of all retinal layers did not differ significantly between paired eyes in each group, the absolute intereye asymmetries in the ORT (p < .0001), ONL (p = .008), and PRL (p < .0001) were significantly higher in the SARDS group than in the control group. Some SARDS patients and SARDS suspects had a greater PRL than the control group, and serial OCT evaluation showed an increase in PRL in one SARDS suspect. Vitreous haze severity was greater in the SARDS group than in the control group (vitreous relative intensity, p = .030). CONCLUSIONS We described the OCT features of SARDS patients and suspects. In particular, PRL thickening in the SARDS suspects might indicate an early change in SARDS. Although further studies are needed, this finding might provide new insights into the pathogenesis of SARDS.
Collapse
|
47
|
He M, Wu T, Zhang L, Ye W, Ma J, Zhao C, Liu J, Zhou J. Correlation between neutrophil-to-lymphocyte ratio and clinical manifestations and complications of retinitis pigmentosa. Acta Ophthalmol 2022; 100:e278-e287. [PMID: 34080305 DOI: 10.1111/aos.14880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE The role of inflammation in retinitis pigmentosa (RP) has been receiving additional attention. However, the association between inflammation and the clinical manifestations and complications of RP is still unclear. This study aimed to evaluate the neutrophil-to-lymphocyte ratio (NLR) of RP complicated with cataract and explore the correlations between the NLR and specific clinical features of RP. METHODS This retrospective study included 79 RP patients complicated with cataract (125 eyes) and 63 age- and sex-matched patients (63 eyes) with age-related cataract (ARC). Patients' ocular examination results were collected and complete blood count results were used to calculate NLRs. The correlations between the NLR of RP patients and the parameters of ocular examinations were analysed. RESULTS The NLRs of RP patients with cataracts were significantly higher than those of ARC (1.93 ± 0.83 versus 1.65 ± 0.59, p = 0.029). The NLRs increased with the severity of posterior subcapsular cataract (PSC), zonular deficiency, poor preoperative best-corrected visual acuity (LogMAR>1), and visual field defects. Analysis of receiver operating characteristic curves suggested that NLR > 1.36 could predict higher degrees (PSC area >3%, >P1) of PSC (p = 0.002, 95% CI, 0.672-0.934), and that NLR > 2.12 could predict zonular weakness (p = 0.002, 95% CI, 0.665-0.928) in RP. CONCLUSION The NLRs in RP patients with cataract are not only higher but also associated with several clinical manifestations of RP. The NLR can be a predictive biomarker of higher degrees of PSC (>P1) and zonular weakness in RP before cataract surgery. These results suggest that systemic inflammation may play a role in the pathogenesis of RP.
Collapse
Affiliation(s)
- Mengmei He
- Department of Ophthalmology Xijing Hospital Eye Institute of Chinese PLA Fourth Military Medical University Xi’an China
| | - Tong Wu
- Department of Ophthalmology Xijing Hospital Eye Institute of Chinese PLA Fourth Military Medical University Xi’an China
| | - Luning Zhang
- Department of Ophthalmology Xijing Hospital Eye Institute of Chinese PLA Fourth Military Medical University Xi’an China
| | - Wei Ye
- Department of Ophthalmology Xijing Hospital Eye Institute of Chinese PLA Fourth Military Medical University Xi’an China
| | - Jiyuan Ma
- Department of Ophthalmology Xijing Hospital Eye Institute of Chinese PLA Fourth Military Medical University Xi’an China
| | - Chao Zhao
- Department of Ophthalmology Xijing Hospital Eye Institute of Chinese PLA Fourth Military Medical University Xi’an China
| | - Jiahua Liu
- Department of Ophthalmology Xijing Hospital Eye Institute of Chinese PLA Fourth Military Medical University Xi’an China
| | - Jian Zhou
- Department of Ophthalmology Xijing Hospital Eye Institute of Chinese PLA Fourth Military Medical University Xi’an China
| |
Collapse
|
48
|
Kaur G, Singh NK. The Role of Inflammation in Retinal Neurodegeneration and Degenerative Diseases. Int J Mol Sci 2021; 23:ijms23010386. [PMID: 35008812 PMCID: PMC8745623 DOI: 10.3390/ijms23010386] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Retinal neurodegeneration is predominantly reported as the apoptosis or impaired function of the photoreceptors. Retinal degeneration is a major causative factor of irreversible vision loss leading to blindness. In recent years, retinal degenerative diseases have been investigated and many genes and genetic defects have been elucidated by many of the causative factors. An enormous amount of research has been performed to determine the pathogenesis of retinal degenerative conditions and to formulate the treatment modalities that are the critical requirements in this current scenario. Encouraging results have been obtained using gene therapy. We provide a narrative review of the various studies performed to date on the role of inflammation in human retinal degenerative diseases such as age-related macular degeneration, inherited retinal dystrophies, retinitis pigmentosa, Stargardt macular dystrophy, and Leber congenital amaurosis. In addition, we have highlighted the pivotal role of various inflammatory mechanisms in the progress of retinal degeneration. This review also offers an assessment of various therapeutic approaches, including gene-therapies and stem-cell-based therapies, for degenerative retinal diseases.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Correspondence:
| |
Collapse
|
49
|
Adamus G. Importance of Autoimmune Responses in Progression of Retinal Degeneration Initiated by Gene Mutations. Front Med (Lausanne) 2021; 8:672444. [PMID: 34926479 PMCID: PMC8674421 DOI: 10.3389/fmed.2021.672444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous rare disorders associated with retinal dysfunction and death of retinal photoreceptor cells, leading to blindness. Among the most frequent and severe forms of those retinopathies is retinitis pigmentosa (RP) that affects 1:4,000 individuals worldwide. The genes that have been implicated in RP are associated with the proteins present in photoreceptor cells or retinal pigment epithelium (RPE). Asymmetric presentation or sudden progression in retinal disease suggests that a gene mutation alone might not be responsible for retinal degeneration. Immune responses could directly target the retina or be site effect of immunity as a bystander deterioration. Autoantibodies against retinal autoantigens have been found in RP, which led to a hypothesis that autoimmunity could be responsible for the progression of photoreceptor cell death initiated by a genetic mutation. The other contributory factor to retinal degeneration is inflammation that activates the innate immune mechanisms, such as complement. If autoimmune responses contribute to the progression of retinopathy, this could have an implication on treatment, such as gene replacement therapy. In this review, we provide a perspective on the current role of autoimmunity/immunity in RP pathophysiology.
Collapse
Affiliation(s)
- Grazyna Adamus
- Ocular Immunology Laboratory, Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
50
|
Varin J, Morival C, Maillard N, Adjali O, Cronin T. Risk Mitigation of Immunogenicity: A Key to Personalized Retinal Gene Therapy. Int J Mol Sci 2021; 22:12818. [PMID: 34884622 PMCID: PMC8658027 DOI: 10.3390/ijms222312818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy (GT) for ocular disorders has advanced the most among adeno-associated virus (AAV)-mediated therapies, with one product already approved in the market. The bank of retinal gene mutations carefully compiled over 30 years, the small retinal surface that does not require high clinical vector stocks, and the relatively immune-privileged environment of the eye explain such success. However, adverse effects due to AAV-delivery, though rare in the retina have led to the interruption of clinical trials. Risk mitigation, as the key to safe and efficient GT, has become the focus of 'bedside-back-to-bench' studies. Herein, we overview the inflammatory adverse events described in retinal GT trials and analyze which components of the retinal immunological environment might be the most involved in these immune responses, with a focus on the innate immune system composed of microglial surveillance. We consider the factors that can influence inflammation in the retina after GT such as viral sensors in the retinal tissue and CpG content in promoters or transgene sequences. Finally, we consider options to reduce the immunological risk, including dose, modified capsids or exclusion criteria for clinical trials. A better understanding and mitigation of immune risk factors inducing host immunity in AAV-mediated retinal GT is the key to achieving safe and efficient GT.
Collapse
Affiliation(s)
| | | | | | - Oumeya Adjali
- CHU de Nantes, INSERM UMR1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, F-44200 Nantes, France; (J.V.); (C.M.); (N.M.)
| | - Therese Cronin
- CHU de Nantes, INSERM UMR1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, F-44200 Nantes, France; (J.V.); (C.M.); (N.M.)
| |
Collapse
|