1
|
Vásquez W, Toro CA, Cardozo CP, Cea LA, Sáez JC. Pathophysiological role of connexin and pannexin hemichannels in neuromuscular disorders. J Physiol 2024. [PMID: 39173050 DOI: 10.1113/jp286173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
A growing body of research has provided evidence that de novo expression of connexin hemichannels and upregulation of pannexin hemichannels (Cx HCs and Panx HCs, respectively) in the cytoplasmic membrane of skeletal muscle (sarcolemma) are critical steps in the pathogenesis of muscle dysfunction of many genetic and acquired muscle diseases. This review provides an overview of the current understanding of the molecular mechanisms regulating the expression of Cx and Panx HCs in skeletal muscle, as well as their roles in both muscle physiology and pathologies. Additionally, it addresses existing gaps in knowledge and outlines future challenges in the field.
Collapse
Affiliation(s)
- Walter Vásquez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Neurociencias, Centro Interdisciplinario De Neurociencia De Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos A Toro
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luis A Cea
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan C Sáez
- Instituto de Neurociencias, Centro Interdisciplinario De Neurociencia De Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
2
|
Wang J, Song W, Zhang Y, Wang J, Wang Y, Song J, Zhou Y. Electroacupuncture Alleviates Pain by Suppressing P2Y12R-Dependent Microglial Activation in Monoarthritic Rats. Neurochem Res 2024; 49:1268-1277. [PMID: 38337134 DOI: 10.1007/s11064-024-04114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/13/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Electroacupuncture (EA) effectively improves arthritis-induced hyperalgesia and allodynia by repressing spinal microglial activation, which plays a crucial role in pain hypersensitivity following tissue inflammation. However, the mechanism by which EA suppresses spinal microglial activation in monoarthritis (MA) remains unclear. In the present study, a rat model of MA was established through unilateral ankle intra-articular injection of complete Freund's adjuvant (CFA). The relationship among P2Y12 receptor (P2Y12R) expression, spinal microglial activation, and EA analgesia was investigated using quantitative real-time PCR (qRT‒PCR), western blotting, immunofluorescence (IF), and behavioral testing. The results found that EA treatment at the ipsilateral "Huantiao" (GB30) and "Yanglingquan" (GB34) acupoints markedly attenuated pain and spinal microglia M1 polarization in MA rats. In particular, P2Y12R expression was significantly increased at the mRNA and protein levels in the spinal dorsal horn in MA rats, whereas EA treatment effectively repressed the MA-induced upregulation of P2Y12R. IF analysis further revealed that most P2Y12R was expressed in microglia in the spinal dorsal horn. Pharmacological inhibition of P2Y12R by its antagonist (AR-C69931MX) decreased MA-induced spinal microglial activation and subsequent proinflammatory cytokine production. Consequently, AR-C69931MX significantly intensified the anti-pain hypersensitive function of EA in MA rats. Taken together, these results demonstrate that EA alleviates MA-induced pain by suppressing P2Y12R-dependent microglial activation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Wei Song
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Yujiao Zhang
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Jian Wang
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Yongqiang Wang
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Jiangang Song
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China.
| | - Yalan Zhou
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China.
| |
Collapse
|
3
|
Illes P, Ulrich H, Chen JF, Tang Y. Purinergic receptors in cognitive disturbances. Neurobiol Dis 2023; 185:106229. [PMID: 37453562 DOI: 10.1016/j.nbd.2023.106229] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Purinergic receptors (Rs) of the ATP/ADP, UTP/UDP (P2X, P2Y) and adenosine (A1, A2A)-sensitive classes broadly interfere with cognitive processes both under quasi normal and disease conditions. During neurodegenerative illnesses, high concentrations of ATP are released from the damaged neuronal and non-neuronal cells of the brain; then, this ATP is enzymatically degraded to adenosine. Thus, the primary injury in neurodegenerative diseases appears to be caused by various protein aggregates on which a superimposed damage mediated by especially P2X7 and A2AR activation develops; this can be efficiently prevented by small molecular antagonists in animal models of the above diseases, or are mitigated in the respective knockout mice. Dementia is a leading symptom in Alzheimer's disease (AD), and accompanies Parkinson's disease (PD) and Huntington's disease (HD), especially in the advanced states of these illnesses. Animal experimentation suggests that P2X7 and A2ARs are also involved in a number of psychiatric diseases, such as major depressive disorder (MDD), obsessive compulsive behavior, and attention deficit hyperactivity disorder. In conclusion, small molecular antagonists of purinergic receptors are expected to supply us in the future with pharmaceuticals which are able to combat in a range of neurological/psychiatric diseases the accompanying cognitive deterioration.
Collapse
Affiliation(s)
- Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Henning Ulrich
- International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Biochemistry and Molecular Biology, Chemistry Institute, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Whenzhou 325000, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
4
|
Hu QQ, He XF, Ma YQ, Ma LQ, Qu SY, Wang HZ, Kang YR, Chen LH, Li X, Liu BY, Shao XM, Fang JF, Liang Y, Fang JQ, Jiang YL. Dorsal root ganglia P2X4 and P2X7 receptors contribute to diabetes-induced hyperalgesia and the downregulation of electroacupuncture on P2X4 and P2X7. Purinergic Signal 2023; 19:29-41. [PMID: 35218450 PMCID: PMC9984662 DOI: 10.1007/s11302-022-09844-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetic neuropathic pain (DNP) is highly common in diabetes patients. P2X receptors play critical roles in pain sensitization. We previously showed that elevated P2X3 expression in dorsal root ganglion (DRG) contributes to DNP. However, the role of other P2X receptors in DNP is unclear. Here, we established the DNP model using a single high-dose streptozotocin (STZ) injection and investigated the expression of P2X genes in the DRG. Our data revealed elevated P2X2, P2X4, and P2X7 mRNA levels in DRG of DNP rats. The protein levels of P2X4 and P2X7 in DNP rats increased, but the P2X2 did not change significantly. To study the role of P2X4 and P2X7 in diabetes-induced hyperalgesia, we treated the DNP rats with TNP-ATP (2',3'-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate), a nonspecific P2X1-7 antagonist, and found that TNP-ATP alleviated thermal hyperalgesia in DNP rats. 2 Hz electroacupuncture is analgesic against DNP and could downregulate P2X4 and P2X7 expression in DRG. Our findings indicate that P2X4 and P2X7 in L4-L6 DRGs contribute to diabetes-induced hyperalgesia, and that EA reduces thermal hyperalgesia and the expression of P2X4 and P2X7.
Collapse
Affiliation(s)
- Qun-Qi Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xiao-Fen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yi-Qi Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Li-Qian Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Si-Ying Qu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Han-Zhi Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yu-Rong Kang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Lu-Hang Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xiang Li
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Bo-Yu Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xiao-Mei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Jun-Fan Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Jian-Qiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| | - Yong-Liang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| |
Collapse
|
5
|
Huang Y, Zhang X, Zou Y, Yuan Q, Xian YF, Lin ZX. Quercetin Ameliorates Neuropathic Pain after Brachial Plexus Avulsion via Suppressing Oxidative Damage through Inhibition of PKC/MAPK/ NOX Pathway. Curr Neuropharmacol 2023; 21:2343-2361. [PMID: 37533160 PMCID: PMC10556381 DOI: 10.2174/1570159x21666230802144940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Brachial plexus avulsion (BPA) animally involves the separation of spinal nerve roots themselves and the correlative spinal cord segment, leading to formidable neuropathic pain of the upper limb. METHODS The right seventh cervical (C7) ventral and dorsal roots were avulsed to establish a neuropathic pain model in rats. After operation, rats were treated with quercetin (QCN) by intragastric administration for 1 week. The effects of QCN were evaluated using mechanical allodynia tests and biochemical assay kits. RESULTS QCN treatment significantly attenuated the avulsion-provoked mechanical allodynia, elevated the levels of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and total antioxidant capacity (TAC) in the C7 spinal dorsal horn. In addition, QCN administration inhibited the activations of macrophages, microglia and astrocytes in the C6 dorsal root ganglion (DRG) and C6-8 spinal dorsal horn, as well as attenuated the release of purinergic 2X (P2X) receptors in C6 DRG. The molecular mechanism underlying the above alterations was found to be related to the suppression of the PKC/MAPK/NOX signal pathway. To further study the anti-oxidative effects of QCN, we applied QCN on the H2O2-induced BV-2 cells in vitro, and the results attested that QCN significantly ameliorated the H2O2-induced ROS production in BV-2 cells, inhibited the H2O2-induced activation of PKC/MAPK/NOX pathway. CONCLUSION Our study for the first time provided evidence that QCN was able to attenuate pain hypersensitivity following the C7 spinal root avulsion in rats, and the molecular mechanisms involve the reduction of both neuro-inflammatory infiltration and oxidative stress via suppression of P2X receptors and inhibition of the activation of PKC/MAPK/NOX pathway. The results indicate that QCN is a natural compound with great promise worthy of further development into a novel therapeutic method for the treatment of BPA-induced neuropathic pain.
Collapse
Affiliation(s)
- Yanfeng Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Xie Zhang
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong. P.R. China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong. P.R. China
| | - Yidan Zou
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qiuju Yuan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Zhou Q, Liu S, Kou Y, Yang P, Liu H, Hasegawa T, Su R, Zhu G, Li M. ATP Promotes Oral Squamous Cell Carcinoma Cell Invasion and Migration by Activating the PI3K/AKT Pathway via the P2Y2-Src-EGFR Axis. ACS OMEGA 2022; 7:39760-39771. [PMID: 36385800 PMCID: PMC9648055 DOI: 10.1021/acsomega.2c03727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Oral cancer is one of the most common malignancies of the head and neck, and approximately 90% of oral cancers are oral squamous cell carcinomas (OSCCs). The purinergic P2Y2 receptor is upregulated in breast cancer, pancreatic cancer, colorectal cancer, and liver cancer, but its role in OSCC is still unclear. Here, we examined the effects of P2Y2 on the invasion and migration of oral cancer cells (SCC15 and CAL27). The BALB/c mouse model was used to observe the involvement of P2Y2 with tumors in vivo. P2Y2, Src, and EGFR are highly expressed in OSCC tissues and cell lines. Stimulation with ATP significantly enhanced cell invasion and migration in oral cancer cells, and enhanced the activity of Src and EGFR protein kinases, which is mediated by the PI3K/AKT signaling pathway. P2Y2 knockdown attenuated the above ATP-driven events in vitro and in vivo. The PI3K/AKT signaling pathway was blocked by Src or EGFR inhibitor. Extracellular ATP activates the PI3K/AKT pathway through the P2Y2-Src-EGFR axis to promote OSCC invasion and migration, and thus, P2Y2 may be a potential novel target for antimetastasis therapy.
Collapse
Affiliation(s)
- Qin Zhou
- Department
of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College
of Medicine, Shandong University and Shandong
Key Laboratory of Oral Tissue Regeneration and Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
- Center
of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250100, China
| | - Shanshan Liu
- Department
of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College
of Medicine, Shandong University and Shandong
Key Laboratory of Oral Tissue Regeneration and Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
- Center
of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250100, China
| | - Yuying Kou
- Department
of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College
of Medicine, Shandong University and Shandong
Key Laboratory of Oral Tissue Regeneration and Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
- Center
of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250100, China
| | - Panpan Yang
- Department
of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College
of Medicine, Shandong University and Shandong
Key Laboratory of Oral Tissue Regeneration and Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
- Center
of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250100, China
| | - Hongrui Liu
- Department
of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College
of Medicine, Shandong University and Shandong
Key Laboratory of Oral Tissue Regeneration and Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
- Center
of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250100, China
| | - Tomoka Hasegawa
- Department
of Developmental Biology of Hard Tissue, Graduate School of Dental
Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Rongjian Su
- College
of Basic Medicine of Jinzhou Medical University, Cell Biology and
Genetic Department of Jinzhou Medical University, Key Lab of Molecular
and Cellular Biology of the Education Department of Liaoning Province, Life Science Institute of Jinzhou Medical University, Jinzhou 121001, China
| | - Guoxiong Zhu
- Department
of Stomatology, No.960 Hospital of PLA, No. 25 Shifan Road, Jinan 250014, China
| | - Minqi Li
- Department
of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College
of Medicine, Shandong University and Shandong
Key Laboratory of Oral Tissue Regeneration and Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
- Center
of Osteoporosis and Bone Mineral Research, Shandong University, Jinan 250100, China
| |
Collapse
|
7
|
Neuronal alarmin IL-1α evokes astrocyte-mediated protective signals: Effectiveness in chemotherapy-induced neuropathic pain. Neurobiol Dis 2022; 168:105716. [PMID: 35367629 DOI: 10.1016/j.nbd.2022.105716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
The distinction between glial painful and protective pathways is unclear and the possibility to finely modulate the system is lacking. Focusing on painful neuropathies, we studied the role of interleukin 1α (IL-1α), an alarmin belonging to the larger family of damage-associated molecular patterns endogenously secreted to restore homeostasis. The treatment of rat primary neurons with increasing dose of the neurotoxic anticancer drug oxaliplatin (0.3-100μM, 48 h) induced the release of IL-1α. The knockdown of the alarmin in neurons leads to their higher mortality when co-cultured with astrocytes. This toxicity was related to increased extracellular ATP and decreased release of transforming growth factor β1, mostly produced by astrocytes. In a rat model of neuropathy induced by oxaliplatin, the intrathecal treatment with IL-1α was able to reduce mechanical and thermal hypersensitivity both after acute injection and continuous infusion. Ex vivo analysis on spinal purified astrocyte processes (gliosomes) and nerve terminals (synaptosomes) revealed the property of IL-1α to reduce the endogenous glutamate release induced by oxaliplatin. This protective effect paralleled with an increased number of GFAP-positive cells in the spinal cord, suggesting the ability of IL-1α to evoke a positive, conservative astrocyte phenotype. Endogenous IL-1α induces protective signals in the cross-talk between neurons and astrocytes. Exogenously administered in rats, IL-1α prevents neuropathic pain in the presence of spinal glutamate decrease and astrocyte activation.
Collapse
|
8
|
Vultaggio-Poma V, Falzoni S, Salvi G, Giuliani AL, Di Virgilio F. Signalling by extracellular nucleotides in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119237. [PMID: 35150807 DOI: 10.1016/j.bbamcr.2022.119237] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023]
Abstract
Nucleotides are released from all cells through regulated pathways or as a result of plasma membrane damage or cell death. Outside the cell, nucleotides act as signalling molecules triggering multiple responses via specific plasma membrane receptors of the P2 family. In the nervous system, purinergic signalling has a key function in neurotransmission. Outside the nervous system, purinergic signalling is one of the major modulators of basal tissue homeostasis, while its dysregulation contributes to the pathogenesis of various disease, including inflammation and cancer. Pre-clinical and clinical evidence shows that selective P2 agonists or antagonists are effective treatments for many pathologies, thus highlighting the relevance of extracellular nucleotides and P2 receptors as therapeutic targets.
Collapse
Affiliation(s)
| | | | - Giada Salvi
- Department of Medical Sciences, University of Ferrara, Italy
| | | | | |
Collapse
|
9
|
Madaan P, Behl T, Sehgal A, Singh S, Sharma N, Yadav S, Kaur S, Bhatia S, Al-Harrasi A, Abdellatif AAH, Ashraf GM, Abdel-Daim MM, Dailah HG, Anwer MK, Bungau S. Exploring the Therapeutic Potential of Targeting Purinergic and Orexinergic Receptors in Alcoholic Neuropathy. Neurotox Res 2022; 40:646-669. [DOI: 10.1007/s12640-022-00477-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
|
10
|
Muñoz MF, Griffith TN, Contreras JE. Mechanisms of ATP release in pain: role of pannexin and connexin channels. Purinergic Signal 2021; 17:549-561. [PMID: 34792743 PMCID: PMC8677853 DOI: 10.1007/s11302-021-09822-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Pain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.
Collapse
Affiliation(s)
- Manuel F. Muñoz
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, USA
| |
Collapse
|
11
|
Luo Z, Liao X, Luo L, Fan Q, Zhang X, Guo Y, Wang F, Ye Z, Luo D. Extracellular ATP and cAMP signaling promote Piezo2-dependent mechanical allodynia after trigeminal nerve compression injury. J Neurochem 2021; 160:376-391. [PMID: 34757653 DOI: 10.1111/jnc.15537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022]
Abstract
Trigeminal neuralgia (TN) is a type of severe paroxysmal neuropathic pain commonly triggered by mild mechanical stimulation in the orofacial area. Piezo2, a mechanically gated ion channel that mediates tactile allodynia in neuropathic pain, can be potentiated by a cyclic adenosine monophosphate (cAMP)-dependent signaling pathway that involves the exchange protein directly activated by cAMP 1 (Epac1). To study whether Piezo2-mediated mechanotransduction contributes to peripheral sensitization in a rat model of TN after trigeminal nerve compression injury, the expression of Piezo2 and activation of cAMP signal-related molecules in the trigeminal ganglion (TG) were detected. Changes in purinergic P2 receptors in the TG were also studied by RNA-seq. The expression of Piezo2, cAMP, and Epac1 in the TG of the TN animals increased after chronic compression of the trigeminal nerve root (CCT) for 21 days, but Piezo2 knockdown by shRNA in the TG attenuated orofacial mechanical allodynia. Purinergic P2 receptors P2X4, P2X7, P2Y1, and P2Y2 were significantly up-regulated after CCT injury. In vitro, Piezo2 expression in TG neurons was significantly increased by exogenous adenosine 5'-triphosphate (ATP) and Ca2+ ionophore ionomycin. ATP pre-treated TG neurons displayed elevated [Ca2+ ]i and faster increase in responding to blockage of Na+ /Ca2+ exchanger by KB-R7943. Furthermore, mechanical stimulation of cultured TG neurons led to sustained elevation in [Ca2+ ]i in ATP pre-treated TG neurons, which is much less in naïve TG neurons, or is significantly reduced by Piezo2 inhibitor GsMTx4. These results indicated a pivotal role of Piezo2 in peripheral mechanical allodynia in the rat CCT model. Extracellular ATP, Ca2+ influx, and the cAMP-to-Epac1 signaling pathway synergistically contribute to the pathogenesis and the persistence of mechanical allodynia.
Collapse
Affiliation(s)
- Zhaoke Luo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xinyue Liao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lili Luo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qitong Fan
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaofen Zhang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuefeng Guo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Feng Wang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zucheng Ye
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Daoshu Luo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Zhang ZY, Zhang F, Weng ZJ, Wu HG, Zhou Y, Han D, Li GN, Liu HR, Cui YH. Regulatory effect of mild moxibustion on P2X3 receptors in spinal cord, anterior cingulate cortex and thalamic ventral posterolateral nucleus of rats with IBS visceral hyperalgesia. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2021. [DOI: 10.1007/s11726-021-1254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Tang W, Zhang L, Li Z. Long noncoding RNA LOC100911498 is a novel regulator of neuropathic pain in rats. Brain Behav 2021; 11:e01966. [PMID: 33949153 PMCID: PMC8413752 DOI: 10.1002/brb3.1966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Neuropathic pain (NP) is the most debilitating of all clinical pain syndromes and may be a consequence of dysfunction in the somatosensory nervous system. Unfortunately, the pathogenesis of NP is not fully understood yet and it cannot be cured totally. Long noncoding RNA (lncRNA) is a type of RNA molecule greater than 200 nucleotides, and dysregulated expression of lncRNAs play a critical role in the facilitation of NP. Previous study showed the expression level of LOC100911498 in the spinal cords of spared nerve injury (SNI) rats were increased. This research was aimed at exploring what role LOC100911498 plays in the pathophysiological process of NP. METHODS The mechanical withdrawal threshold (MWT) of rats was measured by the von Frey test. The expression levels of P2X4 receptor (P2X4R), ionized calcium-binding adaptor molecule 1 (Iba-1), p-p38 and brain-derived neurotrophic factor (BDNF) in spinal cords were detected, respectively. RESULTS Our results suggested that the level of LOC100911498 in SNI rats was markedly higher than that in the sham group; the MWT values in rats were treated with LOC100911498siRNA were increased, and the expression levels of P2X4R, Iba-1, p-p38 and BDNF in SNI+ LOC100911498siRNA group were reduced compared with those in the SNI group. CONCLUSION Our study indicated the effects lncRNA LOC100911498 siRNA exerted on NP were mediated by P2X4R on microglia in the spinal cords of rats. Further, LOC100911498 may be a novel positive regulator of NP by regulating the expression and function of the P2X4R.
Collapse
Affiliation(s)
- Wenxin Tang
- Department of Anaesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lufeng Zhang
- Department of Anaesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhisong Li
- Department of Anaesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Mehboob R, Marchenkova A, van den Maagdenberg AMJM, Nistri A. Overexpressed Na V 1.7 Channels Confer Hyperexcitability to in vitro Trigeminal Sensory Neurons of Ca V 2.1 Mutant Hemiplegic Migraine Mice. Front Cell Neurosci 2021; 15:640709. [PMID: 34113237 PMCID: PMC8185157 DOI: 10.3389/fncel.2021.640709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/09/2021] [Indexed: 11/21/2022] Open
Abstract
Trigeminal sensory neurons of transgenic knock-in (KI) mice expressing the R192Q missense mutation in the α1A subunit of neuronal voltage-gated CaV2.1 Ca2+ channels, which leads to familial hemiplegic migraine type 1 (FHM1) in patients, exhibit a hyperexcitability phenotype. Here, we show that the expression of NaV1.7 channels, linked to pain states, is upregulated in KI primary cultures of trigeminal ganglia (TG), as shown by increased expression of its α1 subunit. In the majority of TG neurons, NaV1.7 channels are co-expressed with ATP-gated P2X3 receptors (P2X3R), which are important nociceptive sensors. Reversing the trigeminal phenotype with selective CaV2.1 channel inhibitor ω-agatoxin IVA inhibited NaV1.7 overexpression. Functionally, KI neurons revealed a TTX-sensitive inward current of larger amplitude that was partially inhibited by selective NaV1.7 blocker Tp1a. Under current-clamp condition, Tp1a raised the spike threshold of both wild-type (WT) and KI neurons with decreased firing rate in KI cells. NaV1.7 activator OD1 accelerated firing in WT and KI neurons, a phenomenon blocked by Tp1a. Enhanced expression and function of NaV1.7 channels in KI TG neurons resulted in higher excitability and facilitated nociceptive signaling. Co-expression of NaV1.7 channels and P2X3Rs in TGs may explain how hypersensitivity to local stimuli can be relevant to migraine.
Collapse
Affiliation(s)
- Riffat Mehboob
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy.,Research Unit, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Anna Marchenkova
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, University Medical Center, Leiden, Netherlands
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
15
|
Shen D, Zheng YW, Zhang D, Shen XY, Wang LN. Acupuncture modulates extracellular ATP levels in peripheral sensory nervous system during analgesia of ankle arthritis in rats. Purinergic Signal 2021; 17:411-424. [PMID: 33934245 DOI: 10.1007/s11302-021-09777-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 01/28/2023] Open
Abstract
As an ancient analgesia therapy, acupuncture has been practiced worldwide nowadays. A good understanding of its mechanisms will offer a promise for its rational and wider application. As the first station of pain sensation, peripheral sensory ganglia express pain-related P2X receptors that are involved in the acupuncture analgesia mechanisms transduction pathway. While the role of their endogenous ligand, extracellular ATP (eATP), remains less studied. This work attempted to clarify whether acupuncture modulated eATP levels in the peripheral sensory nerve system during its analgesia process. Male Sprague-Dawley rats underwent acute inflammatory pain by injecting Complete Freund's Adjuvant in the unilateral ankle joint for 2 days. A twenty-minute acupuncture was applied to ipsilateral Zusanli acupoint. Thermal hyperalgesia and tactile allodynia were assessed on bilateral hind paws to evaluate the analgesic effect. eATP of bilateral isolated lumbar 4-5 dorsal root ganglia (DRGs) and sciatic nerves were determined by luminescence assay. Nucleotidases NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were measured by real-time PCR to explore eATP hydrolysis process. Our results revealed that acute inflammation induced bilateral thermal hyperalgesia and ipsilateral tactile allodynia, which were accompanied by increased eATP levels and higher mechano-sensitivity of bilateral DRGs and decreased eATP levels of bilateral sciatic nerves. Acupuncture exerted anti-nociception on bilateral hind paws, reversed the increased eATP and mechanosensitivity of bilateral DRGs, and restored the decreased eATP of bilateral sciatic nerves. NTPDase-2 and -3 in bilateral ganglia and sciatic nerves were inconsistently modulated during this period. These observations indicate that eATP metabolism of peripheral sensory nerve system was simultaneously regulated during acupuncture analgesia, which might open a new frontier for acupuncture research.
Collapse
Affiliation(s)
- Dan Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- School of Traditional Chinese Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China
| | - Ya-Wen Zheng
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Di Zhang
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, 220 Handan Road, Shanghai, 201433, China
- Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xue-Yong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| | - Li-Na Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, 201203, China.
| |
Collapse
|
16
|
Wei ZY, Qu HL, Dai YJ, Wang Q, Ling ZM, Su WF, Zhao YY, Shen WX, Chen G. Pannexin 1, a large-pore membrane channel, contributes to hypotonicity-induced ATP release in Schwann cells. Neural Regen Res 2021; 16:899-904. [PMID: 33229726 PMCID: PMC8178772 DOI: 10.4103/1673-5374.290911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pannexin 1 (Panx 1), as a large-pore membrane channel, is highly permeable to ATP and other signaling molecules. Previous studies have demonstrated the expression of Panx 1 in the nervous system, including astrocytes, microglia, and neurons. However, the distribution and function of Panx 1 in the peripheral nervous system are not clear. Blocking the function of Panx 1 pharmacologically (carbenoxolone and probenecid) or with small interfering RNA targeting pannexins can greatly reduce hypotonicity-induced ATP release. Treatment of Schwann cells with a Ras homolog family member (Rho) GTPase inhibitor and small interfering RNA targeting Rho or cytoskeleton disrupting agents, such as nocodazole or cytochalasin D, revealed that hypotonicity-induced ATP release depended on intracellular RhoA and the cytoskeleton. These findings suggest that Panx 1 participates in ATP release in Schwann cells by regulating RhoA and the cytoskeleton arrangement. This study was approved by the Animal Ethics Committee of Nantong University, China (No. S20180806-002) on August 5, 2018.
Collapse
Affiliation(s)
- Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hui-Lin Qu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Juan Dai
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Wei-Xing Shen
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University; Medical School of Nantong University; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
17
|
Li L, Zou Y, Liu B, Yang R, Yang J, Sun M, Li Z, Xu X, Li G, Liu S, Greffrath W, Treede RD, Li G, Liang S. Contribution of the P2X4 Receptor in Rat Hippocampus to the Comorbidity of Chronic Pain and Depression. ACS Chem Neurosci 2020; 11:4387-4397. [PMID: 33284579 DOI: 10.1021/acschemneuro.0c00623] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hippocampus is an important region for the interaction between depression and pain. Studies show that the P2X4 receptor plays key role in neuropathic pain. This work investigated the potential implication of the P2X4 receptor in the hippocampus in comorbidity of chronic pain and depression. The rat model induced by chronic constriction injury (CCI) plus unpredictable chronic mild stress (UCMS) was used in this study. Our data showed that CCI plus UCMS treatment resulted in abnormal changes in pain and depressive-like behaviors in the rat, accompanied by the upregulated expression of P2X4, NLRP3 (NOD-like receptor protein 3) inflammasome, and interleukin-1β and the activation of p38 MAPK in the hippocampus. The P2X4 antagonist 5-BDBD reversed these abnormal changes in the hippocampus, relieved hippocampal neuronal damage, and alleviated the abnormal pain and depressive-like behaviors in the CCI plus UCMS treated rats. These findings suggest that the P2X4 receptor in the hippocampus may mediate and significantly contribute to the pathological processes of comorbid pain and depression.
Collapse
Affiliation(s)
- Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Yuting Zou
- Medical School of Nanchang University, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Baoe Liu
- Medical School of Nanchang University, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Jingjian Yang
- Queen Marie College of Nanchang University, Medical College of Nanchang University, Nanchang, 330008, People’s Republic of China
| | - Minghao Sun
- Medical School of Nanchang University, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Zijing Li
- Medical School of Nanchang University, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Guilin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Shuangmei Liu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Wolfgang Greffrath
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Guodong Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, People’s Republic of China
| |
Collapse
|
18
|
Fei X, He X, Tai Z, Wang H, Qu S, Chen L, Hu Q, Fang J, Jiang Y. Electroacupuncture alleviates diabetic neuropathic pain in rats by suppressing P2X3 receptor expression in dorsal root ganglia. Purinergic Signal 2020; 16:491-502. [PMID: 33011961 PMCID: PMC7855163 DOI: 10.1007/s11302-020-09728-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathic pain (DNP) is a troublesome diabetes complication all over the world. P2X3 receptor (P2X3R), a purinergic receptor from dorsal root ganglion (DRG), has important roles in neuropathic pain pathology and nociceptive sensations. Here, we investigated the involvement of DRG P2X3R and the effect of 2 Hz electroacupuncture (EA) on DNP. We monitored the rats' body weight, fasting blood glucose level, paw withdrawal thresholds, and paw withdrawal latency, and evaluated P2X3R expression in DRG. We found that P2X3R expression is upregulated on DNP, while 2 Hz EA is analgesic against DNP and suppresses P2X3R expression in DRG. To evaluate P2X3R involvement in pain modulation, we then treated the animals with A317491, a P2X3R specific antagonist, or α β-me ATP, a P2X3R agonist. We found that A317491 alleviates hyperalgesia, while α β-me ATP blocks EA's analgesic effects. Our findings indicated that 2 Hz EA alleviates DNP, possibly by suppressing P2X3R upregulation in DRG.
Collapse
Affiliation(s)
- Xueyu Fei
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhaoxia Tai
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hanzhi Wang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siying Qu
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Luhang Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qunqi Hu
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
19
|
Sun L, Yao K, Zhang H, Chen W. Activation of the ATP-P2X pathway by TRPV4 in acute ocular hypertension. Int J Ophthalmol 2020; 13:1697-1704. [PMID: 33214998 DOI: 10.18240/ijo.2020.11.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/06/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To measure the expression of transient receptor potential cation channel subfamily V member 4 (TRPV4) in the rat cornea and determine whether it is related to adenosine triphosphate (ATP) generation in a rat model of acute ocular hypertension (AOH). METHODS Immunofluorescence staining of TRPV4, P2X2 receptor, P2X3 receptor, and β3-tubulin in rat corneal longitudinal sections and paved was performed to clearly display histological structures. Rat models of AOH and agonist/antagonist-treated groups were established and corneal ATP was measured using an ATP assay. The independent t-test and simple linear correlation model were adopted for statistical analyses. RESULTS Immunofluorescence staining of rat cornea sections revealed that epithelial and endothelial membranes showed strong immunoreactivity for TRPV4 and P2X2 receptor and coexpression with β3-tubulin in the rat corneal epithelial layer. Corneal ATP was significantly higher in the AOH rat model than in the control (P<0.05) and apparently lower after pretreatment by applying eyedrops of TRPV4 antagonist RN1734 with 30-40 mm Hg intraocular pressure (IOP; P<0.05). A simple linear regression model showed a positive correlation between rat corneal ATP and IOP values (R 2=0.996, P=0.0134) from the normal IOP (113 mm Hg) to 40 mm Hg. At 10-40min after anterior chamber injection of GSK1016790A (0.01 mL, 50 nmol/L in 0.9% NaCl), corneal ATP was significantly higher than in the control group (P<0.05), which peaked at 10min. The ATP concentration of the normal epithelium was higher than that of the endothelium in the AOH rat model and after anterior chamber injection of GSK1016790A (P<0.05). CONCLUSION The ATP concentration in the AOH rat cornea is increased by TRPV4 activation.
Collapse
Affiliation(s)
- Li Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Wei Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| |
Collapse
|
20
|
Zaparte A, Cappellari AR, Brandão CA, de Souza JB, Borges TJ, Kist LW, Bogo MR, Zerbini LF, Ribeiro Pinto LF, Glaser T, Gonçalves MCB, Naaldijk Y, Ulrich H, Morrone FB. P2Y 2 receptor activation promotes esophageal cancer cells proliferation via ERK1/2 pathway. Eur J Pharmacol 2020; 891:173687. [PMID: 33130276 DOI: 10.1016/j.ejphar.2020.173687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Esophageal cancer is a prominent worldwide illness that is divided into two main subtypes: esophageal squamous cell carcinoma and esophageal adenocarcinoma. Mortality rates are alarming, and the understanding of the mechanisms involved in esophageal cancer development, becomes essential. Purinergic signaling is related to many diseases and among these various types of tumors. Here we studied the effects of the P2Y2 receptor activation in different types of esophageal cancer. Esophageal tissue samples of healthy controls were used for P2Y2R expression quantification. Two human esophageal cancer cell lines Kyse-450 (squamous cell carcinoma) and OE-33 (adenocarcinoma) were used to perform in vitro analysis of cell proliferation, migration, adhesion, and the signaling pathways involved in P2Y2R activation. Data showed that P2Y2R was expressed in biopsies of patients with ESCC and adenocarcinoma, as well as in the two human esophageal cancer cell lines studied. The RT-qPCR analysis demonstrated that OE-33 cells have higher P2RY2 expression than Kyse-450 squamous cell line. Results showed that P2Y2R activation, induced by ATP or UTP, promoted esophageal cancer cells proliferation and colony formation. P2Y2R blockage with the selective antagonist, AR-C 118925XX, led to decreased proliferation, colony formation and adhesion. Treatments with ATP or UTP activated ERK 1/2 pathway in ESCC and ECA cells. The P2Y2R antagonism did not alter the migration of esophageal cancer cells. Interestingly, the esophageal cancer cell lines presented a distinct profile of nucleotide hydrolysis activity. The modulation of P2Y2 receptors may be a promising target for esophageal cancer treatment.
Collapse
Affiliation(s)
- Aline Zaparte
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690. Partenon, 90619-900, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Angélica R Cappellari
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Caroline A Brandão
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Júlia B de Souza
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Thiago J Borges
- Transplant Research Center, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Luíza W Kist
- Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Maurício R Bogo
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690. Partenon, 90619-900, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Coordenação de Pesquisa, Instituto Nacional de Cancer, Rua Andre Cavalcante, 37, Centro, Rio de Janeiro, RJ, Brazil
| | - Talita Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Maria Carolina B Gonçalves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Yahaira Naaldijk
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Prof. Lineu Prestes, 748. Butantã, 05508-000, São Paulo, SP, Brazil
| | - Fernanda B Morrone
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690. Partenon, 90619-900, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Islam MN, Maeda N, Miyasato E, Jahan MR, Tarif AMM, Ishino T, Nozaki K, Masumoto KH, Yanai A, Shinoda K. Expression of huntingtin-associated protein 1 in adult mouse dorsal root ganglia and its neurochemical characterization in reference to sensory neuron subpopulations. IBRO Rep 2020; 9:258-269. [PMID: 33089002 PMCID: PMC7560692 DOI: 10.1016/j.ibror.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
This study is the first to examine HAP1-expression in dorsal root ganglia (DRG). HAP1 is highly co-expressed with the markers of nociceptive/proprioceptive neurons. HAP1 is completely lacking in the touch-sensitive DRG neurons. HAP1 may play an important role in modulating nociceptive/proprioceptive functions. It will be of great interest to clarify the pathophysiological role of HAP1 in DRG.
Huntingtin-associated protein 1 (HAP1) is a polyglutamine (polyQ) length-dependent interactor with causal agents in several neurodegenerative diseases and has been regarded as a protective factor against neurodegeneration. In normal rodent brain and spinal cord, HAP1 is abundantly expressed in the areas that are spared from neurodegeneration while those areas with little HAP1 are frequent targets of neurodegeneration. We have recently showed that HAP1 is highly expressed in the spinal dorsal horn and may participate in modification/protection of certain sensory functions. Neurons in the dorsal root ganglia (DRG) transmits sensory stimuli from periphery to spinal cord/brain stem. Nevertheless, to date HAP1 expression in DRG remains unreported. In this study, the expression of HAP1 in cervical, thoracic, lumbar and sacral DRG in adult male mice and its relationships with different chemical markers for sensory neurons were examined using Western blot and immunohistochemistry. HAP1-immunoreactivity was detected in the cytoplasm of DRG neurons, and the percentage of HAP1-immunoreactive (ir) DRG neurons was ranged between 28–31 %. HAP1-immunoreactivity was comparatively more in the small cells (47–58 %) and medium cells (40–44 %) than that in the large cells (9–11 %). Double-immunostaining for HAP1 and markers for nociceptive or mechanoreceptive neurons showed that about 70–80 % of CGRP-, SP-, CB-, NOS-, TRPV1-, CR- and PV-ir neurons expressed HAP1. In contrast, HAP1 was completely lacking in TH-ir neurons. Our current study is the first to clarify that HAP1 is highly expressed in nociceptive/proprioceptive neurons but absent in light-touch-sensitive TH neurons, suggesting the potential importance of HAP1 in pain transduction and proprioception.
Collapse
Key Words
- CB, calbindin
- CGRP, calcitonin gene-related peptide
- CR, calretinin
- DAB, diaminobenzidine
- DRG, dorsal root ganglia
- HAP1, Huntingtin-associated protein 1
- Huntingtin-associated protein 1
- Iba1, ionized calcium-binding adapter molecule 1
- Immunohistochemistry
- LTMRs, low-threshold mechanoreceptors
- MRGPR, Mas-related G-protein-coupled receptor
- NDS, normal donkey serum
- NOS, nitric oxide synthetase
- NeuN, neuronal nuclei
- Neurodegeneration
- Neuroprotection
- PB, phosphate buffer
- PV, parvalbumin
- Peripheral nervous system
- SBMA, spinal and bulbar muscular atrophy
- SP, substance P
- STB, stigmoid body
- Sensory neurons
- TBST, Tris-buffered saline with 0.1 % Tween
- TH, tyrosine hydroxylase
- TRPV1, transient receptor potential vanilloid 1
- VGLUT, vesicular glutamate transporter
- htt, huntingtin
- polyQ, polyglutamine
Collapse
Affiliation(s)
- Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Naoki Maeda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Emi Miyasato
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan.,Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abu Md Mamun Tarif
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Taiga Ishino
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Kanako Nozaki
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Koh-Hei Masumoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan.,Department of Basic Laboratory Sciences, Faculty of Medicine and Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| |
Collapse
|
22
|
Inoue K. Nociceptive signaling of P2X receptors in chronic pain states. Purinergic Signal 2020; 17:41-47. [PMID: 33015745 DOI: 10.1007/s11302-020-09743-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/27/2020] [Indexed: 01/25/2023] Open
Abstract
P2X3 monomeric receptors (P2X3Rs) and P2X2/3 heteromeric receptors (P2X2/3Rs) in primary sensory neurons and microglial P2X4 monomeric receptors (P2X4Rs) in the spinal dorsal horn (SDH) play important roles in neuropathic pain. In particular, P2X4R in the spinal microglia during peripheral nerve injury (PNI), experimental autoimmune neuritis, and herpes models are useful to explore the potential strategies for developing new drugs to treat neuropathic pain. Recently, novel P2X4 antagonists, NP-1815-PX and NC-2600, were developed, which demonstrated potent and specific inhibition against rodent and human P2X4Rs. The phase I study of NC-2600 has been completed, and no serious side effects were reported. The roles played by purinergic receptors in evoking neuropathic pain provide crucial insights into the pathogenesis of neuropathic pain.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
23
|
Suleimanova A, Talanov M, Gafurov O, Gafarov F, Koroleva K, Virenque A, Noe FM, Mikhailov N, Nistri A, Giniatullin R. Modeling a Nociceptive Neuro-Immune Synapse Activated by ATP and 5-HT in Meninges: Novel Clues on Transduction of Chemical Signals Into Persistent or Rhythmic Neuronal Firing. Front Cell Neurosci 2020; 14:135. [PMID: 32508598 PMCID: PMC7248338 DOI: 10.3389/fncel.2020.00135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023] Open
Abstract
Extracellular ATP and serotonin (5-HT) are powerful triggers of nociceptive firing in the meninges, a process supporting headache and whose cellular mechanisms are incompletely understood. The current study aimed to develop, with the neurosimulator NEURON, a novel approach to explore in silico the molecular determinants of the long-lasting, pulsatile nature of migraine attacks. The present model included ATP and 5-HT release, ATP diffusion and hydrolysis, 5-HT uptake, differential activation of ATP P2X or 5-HT3 receptors, and receptor subtype-specific desensitization. The model also tested the role of branched meningeal fibers with multiple release sites. Spike generation and propagation were simulated using variable contribution by potassium and sodium channels in a multi-compartment fiber environment. Multiple factors appeared important to ensure prolonged nociceptive firing potentially relevant to long-lasting pain. Crucial roles were observed in: (i) co-expression of ATP P2X2 and P2X3 receptor subunits; (ii) intrinsic activation/inactivation properties of sodium Nav1.8 channels; and (iii) temporal and spatial distribution of ATP/5-HT release sites along the branches of trigeminal nerve fibers. Based on these factors we could obtain either persistent activation of nociceptive firing or its periodic bursting mimicking the pulsating nature of pain. In summary, our model proposes a novel tool for the exploration of peripheral nociception to test the contribution of clinically relevant factors to headache including migraine pain.
Collapse
Affiliation(s)
| | - Max Talanov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Oleg Gafurov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Fail' Gafarov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Ksenia Koroleva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Anaïs Virenque
- Neuroscience Center, Helsinki University, Helsinki, Finland
| | | | - Nikita Mikhailov
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies, Trieste, Italy
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
24
|
Wu B, Sheng X, Xu Z, Zhang Y, Dan Y, Guo J, Peng H, Liang S, Li G. Osthole relieves diabetics cardiac autonomic neuropathy associated with P2X3 receptor in ratstellate ganglia. Brain Res Bull 2020; 157:90-99. [PMID: 32017970 DOI: 10.1016/j.brainresbull.2020.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 01/09/2023]
Abstract
Diabetic cardiac autonomic neuropathy (DCAN) is a serious complication of diabetes mellitus, which often leads to cardiac dysfunction and even threatens patients' life. Osthole, a natural coumarin derivative, has anti-inflammatory, anti-oxidant and antihypertensive effects. The P2X3 receptor is related to DCAN. The objective of this study will investigate whether osthole relieves DCAN associated with the P2X3 receptor in the stellate ganglia of diabetic rats. A type 2 diabetes mellitus rat model was induced by a combination of diet and streptozotocin. Our results showed that osthole improved the abnormal changes of blood pressure, heart rate, and heart rate variability in diabetic rats and significantly reduced the up-regulated expression levels of the P2X3 receptor, tumor necrosis factor-α and interleukin-1β in stellate ganglia of diabetic rats. Meanwhile, osthole significantly decreased the elevated serum adrenaline concentration and phosphorylation level of extracellular regulated protein kinase 1/2. In addition, the molecular docking result indicated that osthole was a perfect fit for interacting with the P2X3 receptor. Overall, osthole alleviates the sympathetic relative excitation via inhibiting the expression of P2X3 receptors in the stellate ganglia, to achieve a balance between sympathetic and parasympathetic nerves, relieves the DCAN.
Collapse
Affiliation(s)
- Baoguo Wu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Xuan Sheng
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Zixi Xu
- Department of the First Clinical, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Yuanruohan Zhang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Yu Dan
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Jingjing Guo
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Hao Peng
- School of Basic Medicine, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
25
|
Reklow RJ, Alvares TS, Zhang Y, Miranda Tapia AP, Biancardi V, Katzell AK, Frangos SM, Hansen MA, Toohey AW, Cass CE, Young JD, Pagliardini S, Boison D, Funk GD. The Purinome and the preBötzinger Complex - A Ménage of Unexplored Mechanisms That May Modulate/Shape the Hypoxic Ventilatory Response. Front Cell Neurosci 2019; 13:365. [PMID: 31496935 PMCID: PMC6712068 DOI: 10.3389/fncel.2019.00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Exploration of purinergic signaling in brainstem homeostatic control processes is challenging the traditional view that the biphasic hypoxic ventilatory response, which comprises a rapid initial increase in breathing followed by a slower secondary depression, reflects the interaction between peripheral chemoreceptor-mediated excitation and central inhibition. While controversial, accumulating evidence supports that in addition to peripheral excitation, interactions between central excitatory and inhibitory purinergic mechanisms shape this key homeostatic reflex. The objective of this review is to present our working model of how purinergic signaling modulates the glutamatergic inspiratory synapse in the preBötzinger Complex (key site of inspiratory rhythm generation) to shape the hypoxic ventilatory response. It is based on the perspective that has emerged from decades of analysis of glutamatergic synapses in the hippocampus, where the actions of extracellular ATP are determined by a complex signaling system, the purinome. The purinome involves not only the actions of ATP and adenosine at P2 and P1 receptors, respectively, but diverse families of enzymes and transporters that collectively determine the rate of ATP degradation, adenosine accumulation and adenosine clearance. We summarize current knowledge of the roles played by these different purinergic elements in the hypoxic ventilatory response, often drawing on examples from other brain regions, and look ahead to many unanswered questions and remaining challenges.
Collapse
Affiliation(s)
- Robert J. Reklow
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tucaaue S. Alvares
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yong Zhang
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ana P. Miranda Tapia
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Vivian Biancardi
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexis K. Katzell
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sara M. Frangos
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Megan A. Hansen
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexander W. Toohey
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Carol E. Cass
- Professor Emerita, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - James D. Young
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Silvia Pagliardini
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School and New Jersey Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Gregory D. Funk
- Department of Physiology, Women and Children’s Health Research Institute, Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
Zheng XB, Zhang YL, Li Q, Liu YG, Wang XD, Yang BL, Zhu GC, Zhou CF, Gao Y, Liu ZX. Effects of 1,8-cineole on neuropathic pain mediated by P2X2 receptor in the spinal cord dorsal horn. Sci Rep 2019; 9:7909. [PMID: 31133659 PMCID: PMC6536508 DOI: 10.1038/s41598-019-44282-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
As an intractable health threat, neuropathic pain is now a key problem in clinical therapy, which can be caused by lesions affecting the peripheral nervous systems. 1,8-cineole is a natural monoterpene cyclic ether present in eucalyptus and has been reported to exhibit anti-inflammatory and antioxidant effects. Research has shown that 1,8-cineole inhibits P2X3 receptor-mediated neuropathic pains in dorsal root ganglion. The P2X2 and P2X3 receptors participate in the transmission of algesia and nociception information by primary sensory neurons. In the present study, We thus investigated in the spinal cord dorsal horn whether 1,8-cineole inhibits the expression of P2X2 receptor-mediated neuropathic pain. This study used rats in five random groups: group of chronic constriction injury(CCI) with dimethysulfoxide control (CCI + DMSO); group of CCI; sham group(Sham); group of CCI treated with a low dose 1,8-cineole (CCI + 50 mg/kg); group of CCI with a high dose (CCI + 100 mg/kg). We observed the effects of 1,8-cineole on thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT). We examined P2X2 receptors mRNA change in rat spinal cord dorsal horn by In situ nucleic acid hybridization(ISH) and Quantitative realtime polymerase chain reaction (qRT-PCR) methods. Western Blotting and Immunohistochemical staining methods were used to observe P2X2 receptor protein expressions in the rat spinal cord dorsal horn. It demonstrated that oral administration of 1,8-cineole inhibits over-expression of P2X2 receptor protein and mRNA in the spinal cord and dorsal horn in the CCI rats. And the study explored new methods for the prevention and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xiao-Bo Zheng
- Department of Anatomy, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.,Jiangxi Health Vocational College, Nanchang, 330052, Jiangxi, People's Republic of China
| | - Ya-Ling Zhang
- Department of Anatomy, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Qing Li
- Department of Anatomy, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yi-Guo Liu
- Grade 2018, Medical School of Tongji University, Shanghai, 310000, People's Republic of China
| | - Xiang-Dong Wang
- Jiangxi Health Vocational College, Nanchang, 330052, Jiangxi, People's Republic of China
| | - Bao-Lin Yang
- Department of Anatomy, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Gao-Chun Zhu
- Department of Anatomy, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Cong-Fa Zhou
- Department of Anatomy, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yun Gao
- Department of physiology, Basic Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zeng-Xu Liu
- Department of Anatomy, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
27
|
Wei Z, Fei Y, Su W, Chen G. Emerging Role of Schwann Cells in Neuropathic Pain: Receptors, Glial Mediators and Myelination. Front Cell Neurosci 2019; 13:116. [PMID: 30971897 PMCID: PMC6445947 DOI: 10.3389/fncel.2019.00116] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathic pain caused by nerve injury or disease remains a major challenge for modern medicine worldwide. Most of the pathogenic mechanisms underlying neuropathic pain are centered on neuronal mechanisms. Accumulating evidence suggests that non-neuronal cells, especially glial cells, also play active roles in the initiation and resolution of pain. The preponderance of evidence has implicated central nervous system (CNS) glial cells, i.e., microglia and astrocytes, in the control of pain. The role of Schwann cells in neuropathic pain remains poorly understood. Schwann cells, which detect nerve injury and provide the first response, play a critical role in the development and maintenance of neuropathic pain. The cells respond to nerve injury by changing their phenotype, proliferating and interacting with nociceptive neurons by releasing glial mediators (growth factors, cytokines, chemokines, and biologically active small molecules). In addition, receptors expressed in active Schwann cells have the potential to regulate different pain conditions. In this review article, we will provide and discuss emerging evidence by integrating recent advances related to Schwann cells and neuropathic pain.
Collapse
Affiliation(s)
- Zhongya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Fei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenfeng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
28
|
Wang Z, Mei W, Wang Q, Guo R, Liu P, Wang Y, Zhang Z, Wang L. Role of Dehydrocorybulbine in Neuropathic Pain After Spinal Cord Injury Mediated by P2X4 Receptor. Mol Cells 2019; 42:143-150. [PMID: 30622226 PMCID: PMC6399007 DOI: 10.14348/molcells.2018.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic neuropathic pain is one of the primary causes of disability subsequent to spinal cord injury. Patients experiencing neuropathic pain after spinal cord injury suffer from poor quality of life, so complementary therapy is seriously needed. Dehydrocorybulbine is an alkaloid extracted from Corydalis yanhusuo. It effectively alleviates neuropathic pain. In the present study, we explored the effect of dehydrocorybulbine on neuropathic pain after spinal cord injury and delineated its possible mechanism. Experiments were performed in rats to evaluate the contribution of dehydrocorybulbine to P2X4 signaling in the modulation of pain-related behaviors and the levels of pronociceptive interleukins and proteins after spinal cord injury. In a rat contusion injury model, we confirmed that chronic neuropathic pain is present on day 7 after spinal cord injury and P2X4R expression is exacerbated after spinal cord injury. We also found that administration of dehydrocorybulbine by tail vein injection relieved pain behaviors in rat contusion injury models without affecting motor functions. The elevation in the levels of pronociceptive interleukins (IL-1β, IL-18, MMP-9) after spinal cord injury was mitigated by dehydrocorybulbine. Dehydrocorybulbine significantly mitigated the upregulation of P2X4 receptor and reduced ATP-evoked intracellular Ca2+ concentration. Both P2XR and dopamine receptor2 agonists antagonized dehydrocorybulbine's antinociceptive effects. In conclusion, we propose that dehydrocorybulbine produces antinociceptive effects in spinal cord injury models by inhibiting P2X4R.
Collapse
Affiliation(s)
- Zhongwei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China
- Department of Spine Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou,
China
| | - Wei Mei
- Department of Spine Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou,
China
| | - Qingde Wang
- Department of Spine Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou,
China
| | - Rundong Guo
- Department of Spine Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou,
China
| | - Peilin Liu
- Department of Spine Surgery, Zhengzhou Orthopaedic Hospital, Zhengzhou,
China
| | - Yuqiang Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China
| | - Zijuan Zhang
- Experimental Teaching Center, School of Basic Medical Science, Henan University of Chinese Medicine, Zhengzhou,
China
| | - Limin Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
China
| |
Collapse
|
29
|
Mitchell R, Campbell G, Mikolajczak M, McGill K, Mahad D, Fleetwood-Walker SM. A Targeted Mutation Disrupting Mitochondrial Complex IV Function in Primary Afferent Neurons Leads to Pain Hypersensitivity Through P2Y 1 Receptor Activation. Mol Neurobiol 2019; 56:5917-5933. [PMID: 30689196 DOI: 10.1007/s12035-018-1455-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/14/2018] [Indexed: 01/20/2023]
Abstract
As mitochondrial dysfunction is evident in neurodegenerative disorders that are accompanied by pain, we generated inducible mutant mice with disruption of mitochondrial respiratory chain complex IV, by COX10 deletion limited to sensory afferent neurons through the use of an Advillin Cre-reporter. COX10 deletion results in a selective energy-deficiency phenotype with minimal production of reactive oxygen species. Mutant mice showed reduced activity of mitochondrial respiratory chain complex IV in many sensory neurons, increased ADP/ATP ratios in dorsal root ganglia and dorsal spinal cord synaptoneurosomes, as well as impaired mitochondrial membrane potential, in these synaptoneurosome preparations. These changes were accompanied by marked pain hypersensitivity in mechanical and thermal (hot and cold) tests without altered motor function. To address the underlying basis, we measured Ca2+ fluorescence responses of dorsal spinal cord synaptoneurosomes to activation of the GluK1 (kainate) receptor, which we showed to be widely expressed in small but not large nociceptive afferents, and is minimally expressed elsewhere in the spinal cord. Synaptoneurosomes from mutant mice showed greatly increased responses to GluK1 agonist. To explore whether altered nucleotide levels may play a part in this hypersensitivity, we pharmacologically interrogated potential roles of AMP-kinase and ADP-sensitive purinergic receptors. The ADP-sensitive P2Y1 receptor was clearly implicated. Its expression in small nociceptive afferents was increased in mutants, whose in vivo pain hypersensitivity, in mechanical, thermal and cold tests, was reversed by a selective P2Y1 antagonist. Energy depletion and ADP elevation in sensory afferents, due to mitochondrial respiratory chain complex IV deficiency, appear sufficient to induce pain hypersensitivity, by ADP activation of P2Y1 receptors.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Monophosphate/metabolism
- Alkyl and Aryl Transferases/metabolism
- Animals
- Behavior, Animal
- Calcium/metabolism
- Cells, Cultured
- Electron Transport Complex IV/genetics
- Electron Transport Complex IV/metabolism
- Fluorescence
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Hypersensitivity/complications
- Hypersensitivity/pathology
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mutation/genetics
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Nociception/drug effects
- Pain/complications
- Pain/pathology
- Phenotype
- Purinergic P2Y Receptor Antagonists/pharmacology
- Receptors, Kainic Acid/metabolism
- Receptors, Purinergic P2Y1/metabolism
- Spinal Cord/pathology
- Synapses/drug effects
- Synapses/metabolism
Collapse
Affiliation(s)
- Rory Mitchell
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Graham Campbell
- Centre for Clinical Brain Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Chancellor's Building, Little France, Edinburgh, Edinburgh, EH16 4SB, UK
| | - Marta Mikolajczak
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Katie McGill
- Centre for Clinical Brain Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Chancellor's Building, Little France, Edinburgh, Edinburgh, EH16 4SB, UK
| | - Don Mahad
- Centre for Clinical Brain Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Chancellor's Building, Little France, Edinburgh, Edinburgh, EH16 4SB, UK
| | - Sue M Fleetwood-Walker
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
30
|
Tang Y, Yin HY, Liu J, Rubini P, Illes P. P2X receptors and acupuncture analgesia. Brain Res Bull 2018; 151:144-152. [PMID: 30458249 DOI: 10.1016/j.brainresbull.2018.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Purinergic signaling has recently been suggested to constitute the cellular mechanism underlying acupuncture-induced analgesia (AA). By extending the original hypothesis on endogenous opioids being released during AA, Geoffrey Burnstock and Maiken Nedergaard supplied evidence for the involvement of purinoceptors (P2 and P1/A1 receptors) in the beneficial effects of AA. In view of certain pain states (e.g. neuropathic pain) which respond only poorly to therapy with standard analgesics, as well as with respect to the numerous unwanted effects of opioids and non-steroidal anti-inflammatory drugs, it is of great significance to search for alternative therapeutic options. Because clinical studies on AA yielded sometimes heterogeneous results, it is of eminent importance to relay on experiments carried out on laboratory animals, by evaluating the data with stringent statistical methods including comparison with a sufficient number of control groups. In this review, we summarize the state of the art situation with respect to the participation of P2 receptors in AA and try to forecast how the field is likely to move forward in the future.
Collapse
Affiliation(s)
- Yong Tang
- Medical & Nursing School, Chengdu University, 610106 Chengdu, China; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China.
| | - Hai-Yan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Juan Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Patrizia Rubini
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China.
| |
Collapse
|
31
|
Zhou YF, Ying XM, He XF, Shou SY, Wei JJ, Tai ZX, Shao XM, Liang Y, Fang F, Fang JQ, Jiang YL. Suppressing PKC-dependent membrane P2X3 receptor upregulation in dorsal root ganglia mediated electroacupuncture analgesia in rat painful diabetic neuropathy. Purinergic Signal 2018; 14:359-369. [PMID: 30084084 PMCID: PMC6298917 DOI: 10.1007/s11302-018-9617-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Painful diabetic neuropathy (PDN) is a common and troublesome diabetes complication. Protein kinase C (PKC)-mediated dorsal root ganglia (DRG) P2X3 receptor upregulation is one important mechanism underlying PDN. Accumulating evidence demonstrated that electroacupuncture (EA) at low frequency could effectively attenuate neuropathic pain. Our previous study showed that 2-Hz EA could relieve pain well in PDN. The study aimed to investigate whether 2-Hz EA relieves pain in PDN through suppressing PKC-mediated DRG P2X3 receptor upregulation. A 7-week feeding of high-fat and high-sugar diet plus a single injection of streptozotocin (STZ) in a dose of 35 mg/kg after a 5-week feeding of the diet successfully induced type 2 PDN in rats as revealed by the elevated body weight, fasting blood glucose, fasting insulin and insulin resistance, and the reduced paw withdrawal threshold (PWT), as well as the destructive ultrastructural change of sciatic nerve. DRG plasma membrane P2X3 receptor level and DRG PKC expression were elevated. Two-hertz EA failed to improve peripheral neuropathy; however, it reduced PWT, DRG plasma membrane P2X3 receptor level, and DRG PKC expression in PDN rats. Intraperitoneal administration of P2X3 receptor agonist αβ-meATP or PKC activator phorbol 12-myristate 13-acetate (PMA) blocked 2-Hz EA analgesia. Furthermore, PMA administration increased DRG plasma membrane P2X3 receptor level in PDN rats subject to 2-Hz EA treatment. These findings together indicated that the analgesic effect of EA in PDN is mediated by suppressing PKC-dependent membrane P2X3 upregulation in DRG. EA at low frequency is a valuable approach for PDN control.
Collapse
Affiliation(s)
- Ya-Feng Zhou
- Department of Acupuncture, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.,Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Ming Ying
- Department of Massage, the Third Affliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Xiao-Fen He
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Sheng-Yun Shou
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jun-Jun Wei
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhao-Xia Tai
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Mei Shao
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fang Fang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian-Qiao Fang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yong-Liang Jiang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
32
|
ATP-Gated P2X3 Receptors Are Specialised Sensors of the Extracellular Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 28639246 DOI: 10.1007/5584_2017_56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
P2X3 receptors are ion channels expressed by autonomic and sensory nerves and specialised in transducing extracellular ATP signals. Structural data, together with functional and biochemical studies, suggest that conformational changes of P2X3 receptors upon agonist binding influence downstream intracellular molecular mechanisms relevant for neuronal responses. Activity of P2X3 receptors is implicated in pain, itch, asthma, cardiovascular dysfunction and other pathologies. The study of these receptors has therefore a large potential in the field of drug development and interdisciplinary efforts could clarify molecular mechanisms controlling P2X3 receptor function in different physiological or pathological contexts.
Collapse
|
33
|
Abstract
Long noncoding RNAs have been implicated in neuropathy. Here, we identify and validate a long noncoding RNA, MRAK009713, as the primary regulator of neuropathic pain in chronic constriction injury (CCI) rats. MRAK009713 expression was markedly increased in CCI rats associated with enhanced pain behaviors, and small interfering RNA against MRAK009713 significantly reduced both mechanical and thermal hyperalgesia in the CCI rats. MRAK009713 is predicted to interact with the nociceptive P2X3 receptor by CatRAPID, a bioinformatics technology. Overexpression of MRAK009713 markedly increased expression of P2X3 in the dorsal root ganglia of the control rats, and MRAK009713 small interfering RNA significantly inhibited the P2X3 expression in the dorsal root ganglia of the CCI rats. MRAK009713 directly interacted with the P2X3 protein heterologously expressed in the human embryonic kidney (HEK) 293 cells and potentiated P2X3 receptor function. Thus, MRAK009713 is a novel positive regulator of neuropathic pain in rats through regulating the expression and function of the P2X3 receptor.
Collapse
|
34
|
Stephan G, Huang L, Tang Y, Vilotti S, Fabbretti E, Yu Y, Nörenberg W, Franke H, Gölöncsér F, Sperlágh B, Dopychai A, Hausmann R, Schmalzing G, Rubini P, Illes P. The ASIC3/P2X3 cognate receptor is a pain-relevant and ligand-gated cationic channel. Nat Commun 2018; 9:1354. [PMID: 29636447 PMCID: PMC5893604 DOI: 10.1038/s41467-018-03728-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
Abstract
Two subclasses of acid-sensing ion channels (ASIC3) and of ATP-sensitive P2X receptors (P2X3Rs) show a partially overlapping expression in sensory neurons. Here we report that both recombinant and native receptors interact with each other in multiple ways. Current measurements with the patch-clamp technique prove that ASIC3 stimulation strongly inhibits the P2X3R current partly by a Ca2+-dependent mechanism. The proton-binding site is critical for this effect and the two receptor channels appear to switch their ionic permeabilities during activation. Co-immunoprecipation proves the close association of the two protein structures. BN-PAGE and SDS-PAGE analysis is also best reconciled with the view that ASIC3 and P2X3Rs form a multiprotein structure. Finally, in vivo measurements in rats reveal the summation of pH and purinergically induced pain. In conclusion, the receptor subunits do not appear to form a heteromeric channel, but tightly associate with each other to form a protein complex, mediating unidirectional inhibition. Two subclasses of ligand-gated ion channels (ASIC3 and P2X3) are both present at sensory neurons and might be therefore subject to receptor crosstalk. Here authors use electrophysiology, biochemistry and co-immunoprecipitation to show that the two ion channels interact and affect P2X3 currents.
Collapse
Affiliation(s)
- Gabriele Stephan
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Lumei Huang
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany.,Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Sandra Vilotti
- Neurobiology Sector, International School for Advanced Studies, Trieste, 34136, Italy
| | - Elsa Fabbretti
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Ye Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai, 100025, China
| | - Wolfgang Nörenberg
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Heike Franke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1043, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, 1043, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1043, Hungary
| | - Anke Dopychai
- Molecular Pharmacology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52072, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52072, Germany
| | - Günther Schmalzing
- Molecular Pharmacology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52072, Germany
| | - Patrizia Rubini
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany.
| |
Collapse
|
35
|
Ginnetti AT, Paone DV, Stauffer SR, Potteiger CM, Shaw AW, Deng J, Mulhearn JJ, Nguyen DN, Segerdell C, Anquandah J, Calamari A, Cheng G, Leitl MD, Liang A, Moore E, Panigel J, Urban M, Wang J, Fillgrove K, Tang C, Cook S, Kane S, Salvatore CA, Graham SL, Burgey CS. Identification of second-generation P2X3 antagonists for treatment of pain. Bioorg Med Chem Lett 2018; 28:1392-1396. [PMID: 29548573 DOI: 10.1016/j.bmcl.2018.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 11/15/2022]
Abstract
A second-generation small molecule P2X3 receptor antagonist has been developed. The lead optimization strategy to address shortcomings of the first-generation preclinical lead compound is described herein. These studies were directed towards the identification and amelioration of preclinical hepatobiliary findings, reducing potential for drug-drug interactions, and decreasing the projected human dose of the first-generation lead.
Collapse
Affiliation(s)
- Anthony T Ginnetti
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA.
| | - Daniel V Paone
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Shaun R Stauffer
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Craig M Potteiger
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Anthony W Shaw
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - James Deng
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - James J Mulhearn
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Diem N Nguyen
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Carolyn Segerdell
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Juliana Anquandah
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Amy Calamari
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Gong Cheng
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Michael D Leitl
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Annie Liang
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Eric Moore
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Jacqueline Panigel
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Mark Urban
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Jixin Wang
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Kerry Fillgrove
- Department of Drug Metabolism, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Cuyue Tang
- Department of Drug Metabolism, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Sean Cook
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Stefanie Kane
- Department of Pain Research, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | | | - Samuel L Graham
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Christopher S Burgey
- Department of Medicinal Chemistry, MRL, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| |
Collapse
|
36
|
Antipurinergic therapy for autism-An in-depth review. Mitochondrion 2017; 43:1-15. [PMID: 29253638 DOI: 10.1016/j.mito.2017.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
Abstract
Are the symptoms of autism caused by a treatable metabolic syndrome that traces to the abnormal persistence of a normal, alternative functional state of mitochondria? A small clinical trial published in 2017 suggests this is possible. Based on a new unifying theory of pathogenesis for autism called the cell danger response (CDR) hypothesis, this study of 10 boys, ages 5-14years, showed that all 5 boys who received antipurinergic therapy (APT) with a single intravenous dose of suramin experienced improvements in all the core symptoms of autism that lasted for 5-8weeks. Language, social interaction, restricted interests, and repetitive movements all improved. Two children who were non-verbal spoke their first sentences. None of these improvements were observed in the placebo group. Larger and longer studies are needed to confirm this promising discovery. This review introduces the concept of M2 (anti-inflammatory) and M1 (pro-inflammatory) mitochondria that are polarized along a functional continuum according to cell stress. The pathophysiology of the CDR, the complementary functions of M1 and M2 mitochondria, relevant gene-environment interactions, and the metabolic underpinnings of behavior are discussed as foundation stones for understanding the improvements in ASD behaviors produced by antipurinergic therapy in this small clinical trial.
Collapse
|
37
|
Li L, Sheng X, Zhao S, Zou L, Han X, Gong Y, Yuan H, Shi L, Guo L, Jia T, Liu S, Wu B, Yi Z, Liu H, Gao Y, Li G, Li G, Zhang C, Xu H, Liang S. Nanoparticle-encapsulated emodin decreases diabetic neuropathic pain probably via a mechanism involving P2X3 receptor in the dorsal root ganglia. Purinergic Signal 2017; 13:559-568. [PMID: 28840511 PMCID: PMC5714846 DOI: 10.1007/s11302-017-9583-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). More than 90% of all cases of DM belong to type 2 diabetes mellitus (T2DM). Emodin is the main active component of Radix et rhizoma rhei and has anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Nanoparticle encapsulation of drugs is beneficial for drug targeting and bioavailability as well as for lowering drug toxicity side effects. The aim of this study was to investigate the effects of nanoparticle-encapsulated emodin (nano emodin) on diabetic neuropathic pain (DNP) mediated by the Purin 2X3 (P2X3) receptor in the dorsal root ganglia (DRG). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with nano emodin were higher compared with those in T2DM rats. Expression levels of P2X3 protein and messenger RNA (mRNA) in the DRG of T2DM rats were higher than those of controls, while levels in T2DM rats treated with nano emodin were significantly lower than those of the T2DM rats. Phosphorylation and activation of ERK1/2 in the T2DM DRG were decreased by nano emodin treatment. Nano emodin significantly inhibited currents activated by the P2X3 agonist α,β-meATP in HEK293 cells transfected with the P2X3 receptor. Therefore, nano emodin treatment may relieve DNP by decreasing excitatory transmission mediated by the DRG P2X3 receptor in T2DM rats.
Collapse
Affiliation(s)
- Lin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xuan Sheng
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shanhong Zhao
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lifang Zou
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xinyao Han
- First Clinical Department, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yingxin Gong
- First Clinical Department, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Huilong Yuan
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Liran Shi
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lili Guo
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Tianyu Jia
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Bing Wu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhihua Yi
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hui Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yun Gao
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Guodong Li
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
- Department of Cell Biology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hong Xu
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
- Jiangxi Provincial Key Laboratory of autonomic nervous function and disease, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
38
|
CB 1 Receptors Mediated Inhibition of ATP-Induced [Ca 2+]i Increase in Cultured Rat Spinal Dorsal Horn Neurons. Neurochem Res 2017; 43:267-275. [PMID: 29127599 DOI: 10.1007/s11064-017-2414-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Spinal cannabinoid receptor 1 (CB1R) and purinergic P2X receptors (P2XR) play a critical role in the process of pathological pain. Both CB1R and P2XR are expressed in spinal dorsal horn (DH) neurons. It is not clear whether CB1 receptor activation modulates the function of P2X receptor channels within dorsal horn. For this reason, we observed the effect of CP55940 (cannabinoid receptor agonist) on ATP-induced Ca2+ mobilization in cultured rat DH neurons. The changes of intracellular calcium concentration ([Ca2+]i) were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescent indicator. 100 μM ATP caused [Ca2+]i increase in cultured DH neurons. ATP-evoked [Ca2+]i increase in DH neurons was blocked by chelating extracellular Ca2+ and P2 purinoceptor antagonist PPADS. At the same time, ATP-γ-S (a non-hydrolyzable ATP analogue) mimicked the ATP action, while P2Y receptor agonist ADP failed to evoke [Ca2+]i increase in cultured DH neurons. These data suggest that ATP-induced [Ca2+]i elevation in cultured DH neurons is mediated by P2X receptor. Subsequently, we noticed that, in cultured rat DH neurons, ATP-induced Ca2+ mobilization was inhibited after pretreated with CP55940 with a concentration-dependent manner, which implies that the opening of P2X receptor channels are down-regulated by activation of cannabinoid receptor. The inhibitory effect of CP55940 on ATP-induced Ca2+ response was mimicked by ACEA (CB1R agonist), but was not influenced by AM1241 (CB2R agonist). Moreover, the inhibitory effect of CP55940 on ATP-induced Ca2+ mobilization was blocked by AM251 (CB1 receptor antagonist), but was not influenced by AM630 (CB2 receptor antagonist). In addition, we also observed that forskolin (an activator of adenylate cyclase) and 8-Br-cAMP (a cell-permeable cAMP analog) reversed the inhibitory effect of CP55940, respectively. In a summary, our observations raise a possibility that CB1R rather than CB2R can downregulate the opening of P2X receptor channels in DH neurons. The reduction of cAMP/PKA signaling is a key element in the inhibitory effect of CB1R on P2X-channel-induced Ca2+ mobilization.
Collapse
|
39
|
Solé-Magdalena A, Martínez-Alonso M, Coronado CA, Junquera LM, Cobo J, Vega JA. Molecular basis of dental sensitivity: The odontoblasts are multisensory cells and express multifunctional ion channels. Ann Anat 2017; 215:20-29. [PMID: 28954208 DOI: 10.1016/j.aanat.2017.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/26/2022]
Abstract
Odontoblasts are the dental pulp cells responsible for the formation of dentin. In addition, accumulating data strongly suggest that they can also function as sensory cells that mediate the early steps of mechanical, thermic, and chemical dental sensitivity. This assumption is based on the expression of different families of ion channels involved in various modalities of sensitivity and the release of putative neurotransmitters in response to odontoblast stimulation which are able to act on pulp sensory nerve fibers. This review updates the current knowledge on the expression of transient-potential receptor ion channels and acid-sensing ion channels in odontoblasts, nerve fibers innervating them and trigeminal sensory neurons, as well as in pulp cells. Moreover, the innervation of the odontoblasts and the interrelationship been odontoblasts and nerve fibers mediated by neurotransmitters was also revisited. These data might provide the basis for novel therapeutic approaches for the treatment of dentin sensibility and/or dental pain.
Collapse
Affiliation(s)
- A Solé-Magdalena
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - M Martínez-Alonso
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - C A Coronado
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - L M Junquera
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Servicio de Cirugía Maxilofacial, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J Cobo
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Instituto Asturiano de Odontología, Oviedo, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile.
| |
Collapse
|
40
|
Ying M, Liu H, Zhang T, Jiang C, Gong Y, Wu B, Zou L, Yi Z, Rao S, Li G, Zhang C, Jia T, Zhao S, Yuan H, Shi L, Li L, Liang S, Liu S. Effect of artemisinin on neuropathic pain mediated by P2X 4 receptor in dorsal root ganglia. Neurochem Int 2017; 108:27-33. [PMID: 28192150 DOI: 10.1016/j.neuint.2017.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 02/05/2023]
Abstract
Neuropathic pain is a type of chronic pain caused by nervous system damage and dysfunction. The pathogenesis of chronic pain is complicated, and there are no effective therapies for neuropathic pain. Studies show that the P2X4 receptor expressed in the satellite glial cells (SGCs) of dorsal root ganglia (DRG) is related to neuropathic pain. Artemisinin is a monomeric component extracted from traditional Chinese medicine and has a variety of important pharmacological effects and potential applications. This study observed the effect of artemisinin on neuropathic pain and delineated its possible mechanism. The chronic constriction injury (CCI) rat model was used in this study. The results demonstrated that artemisinin relieved pain behaviors in the CCI rats, inhibited the expression of P2X4 receptor in the DRG, and decreased the ATP-activated currents in HEK293 cells transfected with P2X4 plasmid. Dual-labeling immunofluorescence showed that the coexpression of P2X4 receptor and glial fibrillary acidic protein (GFAP) in the DRG of CCI rats was increased compared to control rats. After CCI rats were treated with artemisinin, the coexpression of P2X4 receptor and GFAP in the DRG was significantly decreased compared to the CCI group. This finding suggested that artemisinin could inhibit the nociceptive transmission mediated by P2X4 receptor in the DRG SGCs and thus relieve pain behaviors in the CCI rats.
Collapse
Affiliation(s)
- Mofeng Ying
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China
| | - Hui Liu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China
| | - Tengling Zhang
- Department of English Language Teaching, Nanchang Institute of Science and Technology, Nanchang, Jiangxi 330006, PR China
| | - Chenxu Jiang
- Class 131, Queen Marie College of Nanchang University, Medical College of Nanchang University, Nanchang, 330008, PR China
| | - Yingxin Gong
- Department of the First Clinical Medicine, Medical College of Nanchang University, Nanchang, 330008, PR China
| | - Bing Wu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China
| | - Lifang Zou
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China
| | - Zhihua Yi
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China
| | - Shenqiang Rao
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China
| | - Guilin Li
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China
| | - Chunping Zhang
- Department of Medical Genetics and Biology, Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China
| | - Tianyu Jia
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China
| | - Shanhong Zhao
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China
| | - Huilong Yuan
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China
| | - Liran Shi
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China
| | - Lin Li
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China
| | - Shangdong Liang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China.
| | - Shuangmei Liu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, PR China.
| |
Collapse
|
41
|
The effect of sinomenine in diabetic neuropathic pain mediated by the P2X 3 receptor in dorsal root ganglia. Purinergic Signal 2017; 13:227-235. [PMID: 28054206 DOI: 10.1007/s11302-016-9554-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/15/2016] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) accounts for more than 90% of all cases of diabetes mellitus (DM). Diabetic neuropathic pain (DNP) is a common complication of T2DM. Sinomenine is a natural bioactive component extracted from the Sinomenium acutum and has anti-inflammatory effects. The aim of our study was to investigate the effects of sinomenine on DNP mediated by the P2X3 receptor in dorsal root ganglia (DRG). The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with sinomenine were higher compared with those in T2DM rats. The expression levels of the P2X3 protein and mRNA in T2DM rat DRG were higher compared with those of the control, while those in T2DM rats treated with sinomenine were significantly lower compared with those of the T2DM rats. Sinomenine significantly inhibited P2X3 agonist ATP-activated currents in HEK293 cells transfected with the P2X3 receptor. Sinomenine decreased the phosphorylation and activation of P38MAPK in T2DM DRG. Therefore, sinomenine treatment may suppress the up-regulated expression and activation of the P2X3 receptor and relieve the hyperalgesia potentiated by the activation of P38MAPK in T2DM rats.
Collapse
|
42
|
Botz B, Bölcskei K, Helyes Z. Challenges to develop novel anti-inflammatory and analgesic drugs. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27576790 DOI: 10.1002/wnan.1427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 12/11/2022]
Abstract
Chronic inflammatory diseases and persistent pain of different origin represent common medical, social, and economic burden, and their pharmacotherapy is still an unresolved issue. Therefore, there is a great and urgent need to develop anti-inflammatory and analgesic agents with novel mechanisms of action, but it is a very challenging task. The main problem is the relatively large translational gap between the preclinical experimental data and the clinical results due to characteristics of the models, difficulties with the investigational techniques particularly for pain, as well as species differences in the mechanisms. We summarize here the current state-of-the-art medication and related ongoing strategies, and the novel targets with lead molecules under clinical development. The first members of the gold-standard categories, such as nonsteroidal anti-inflammatory drugs, glucocorticoids, and opioids, were introduced decades ago, and since then very few drugs with novel mechanisms of action have been successfully taken to the clinics despite considerable development efforts. Several biologics targeting different key molecules have provided breakthrough in some autoimmune/inflammatory diseases, but they are expensive, only parenterally available, their long-term side effects often limit their administration, and they do not effectively reduce pain. Some kinase inhibitors and phosphodiesterase-4 blockers have recently been introduced as new directions. There are in fact some promising novel approaches at different clinical stages of drug development focusing on transient receptor potential vanilloid 1/ankyrin 1 channel antagonism, inhibition of voltage-gated sodium/calcium channels, several enzymes (kinases, semicarbazide-sensitive amine oxidases, and matrix metalloproteinases), cytokines/chemokines, transcription factors, nerve growth factor, and modulation of several G protein-coupled receptors (cannabinoids, purinoceptors, and neuropeptides). WIREs Nanomed Nanobiotechnol 2017, 9:e1427. doi: 10.1002/wnan.1427 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bálint Botz
- Department of Radiology, Faculty of Medicine, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kata Bölcskei
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, Faculty of Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|
43
|
Tang Y, Yin HY, Rubini P, Illes P. Acupuncture-Induced Analgesia: A Neurobiological Basis in Purinergic Signaling. Neuroscientist 2016; 22:563-578. [PMID: 27343858 DOI: 10.1177/1073858416654453] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic pain is a debilitating and rather common health problem. The present shortage in analgesic drugs with a favorable spectrum but without remarkable side effects furthered the search for alternative therapeutic manipulations. Increasing evidence from both basic and clinical research on acupuncture, a main alternative therapy of traditional Chinese medicine, suggests that chronic pain is sensitive to acupuncture procedures. Clarification of the underlying mechanisms is a challenge of great theoretical and practical significance. The seminal hypothesis of Geoffrey Burnstock and the astounding findings of Maiken Nedergaard on the involvement of purinergic signaling in the beneficial effects of acupuncture fertilized the field and led to an intensification of research on acupurines. In this review, we will summarize the state-of-the-art situation and try to forecast how the field is likely to develop in the future.
Collapse
Affiliation(s)
- Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Yan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Patrizia Rubini
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
44
|
Viatchenko-Karpinski V, Novosolova N, Ishchenko Y, Azhar MA, Wright M, Tsintsadze V, Kamal A, Burnashev N, Miller AD, Voitenko N, Giniatullin R, Lozovaya N. Stable, synthetic analogs of diadenosine tetraphosphate inhibit rat and human P2X3 receptors and inflammatory pain. Mol Pain 2016; 12:1744806916637704. [PMID: 27030723 PMCID: PMC4955970 DOI: 10.1177/1744806916637704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/08/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A growing body of evidence suggests that ATP-gated P2X3 receptors (P2X3Rs) are implicated in chronic pain. We address the possibility that stable, synthetic analogs of diadenosine tetraphosphate (Ap4A) might induce antinociceptive effects by inhibiting P2X3Rs in peripheral sensory neurons. RESULTS The effects of two stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) are studied firstly in vitro on HEK293 cells expressing recombinant rat P2XRs (P2X2Rs, P2X3Rs, P2X4Rs, and P2X7Rs) and then using native rat brain cells (cultured trigeminal, nodose, or dorsal root ganglion neurons). Thereafter, the action of these stable, synthetic Ap4A analogs on inflammatory pain and thermal hyperalgesia is studied through the measurement of antinociceptive effects in formalin and Hargreaves plantar tests in rats in vivo. In vitro inhibition of rat P2X3Rs (not P2X2Rs, P2X4Rs nor P2X7Rs) is shown to take place mediated by high-affinity desensitization (at low concentrations; IC50 values 100-250 nM) giving way to only weak partial agonism at much higher concentrations (EC50 values ≥ 10 µM). Similar inhibitory activity is observed with human recombinant P2X3Rs. The inhibitory effects of AppNHppA on nodose, dorsal root, and trigeminal neuron whole cell currents suggest that stable, synthetic Ap4A analogs inhibit homomeric P2X3Rs in preference to heteromeric P2X2/3Rs. Both Ap4A analogs mediate clear inhibition of pain responses in both in vivo inflammation models. CONCLUSIONS Stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) being weak partial agonist provoke potent high-affinity desensitization-mediated inhibition of homomeric P2X3Rs at low concentrations. Therefore, both analogs demonstrate clear potential as potent analgesic agents for use in the management of chronic pain associated with heightened P2X3R activation.
Collapse
Affiliation(s)
- Viacheslav Viatchenko-Karpinski
- Laboratory of Sensory Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine International Center for Molecular Physiology, Kiev, Ukraine
| | | | | | - M Ameruddin Azhar
- Indian Institute of Chemical Technology, Hyderabad, India Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College London, London, UK
| | - Michael Wright
- Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College London, London, UK Institute of Pharmaceutical Science, King's College London, London, UK
| | - Vera Tsintsadze
- INSERM UMR901 Aix-Marseille Université, Marseille, France INMED, Institut de Neurobiologie de la Méditerranée, Marseille, France
| | - Ahmed Kamal
- Indian Institute of Chemical Technology, Hyderabad, India
| | - Nail Burnashev
- INSERM UMR901 Aix-Marseille Université, Marseille, France INMED, Institut de Neurobiologie de la Méditerranée, Marseille, France
| | - Andrew D Miller
- Institute of Pharmaceutical Science, King's College London, London, UK GlobalAcorn Ltd, London, UK
| | - Nana Voitenko
- Laboratory of Sensory Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine International Center for Molecular Physiology, Kiev, Ukraine
| | - Rashid Giniatullin
- Department of Neurobiology, A. I. Virtanen Institute, Kuopio, Finland Kazan Federal University, Kazan, Russia
| | - Natalia Lozovaya
- INSERM UMR901 Aix-Marseille Université, Marseille, France INMED, Institut de Neurobiologie de la Méditerranée, Marseille, France Neurochlore, Marseille, France
| |
Collapse
|
45
|
Xiao J, Huang Y, Li X, Li L, Yang T, Huang L, Yang L, Jiang H, Li H, Li F. TNP-ATP is Beneficial for Treatment of Neonatal Hypoxia-Induced Hypomyelination and Cognitive Decline. Neurosci Bull 2016; 32:99-107. [PMID: 26769489 DOI: 10.1007/s12264-015-0003-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/17/2015] [Indexed: 12/15/2022] Open
Abstract
Our previous study together with other investigations have reported that neonatal hypoxia or ischemia induces long-term cognitive impairment, at least in part through brain inflammation and hypomyelination. However, the detailed mechanisms are not fully understood. Here, we used a rodent model of neonatal hypoxia by subjecting postnatal day 0 (P0) rat pups to systemic hypoxia (3.5 h). We found that neonatal hypoxia increased the glutamate content and initiated inflammatory responses at 4 h and 1 day after hypoxia, caused hypomyelination in the corpus callosum, and impaired hippocampus-dependent learning and memory when assessed 30-60 days after hypoxia. Interestingly, much of the hypoxia-induced brain damage was ameliorated by treatment with the ATP analogue 2',3'-0-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate (TNP-ATP; blocks all ionotropic P2X1-7 receptors), whereas treatment with pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; inhibits P2X1-3 and P2X5-7 receptors) was less neuroprotective. Our data indicated that activation of ionotropic ATP receptors might be partially, if not fully, involved in glutamate deregulation, neuroinflammation, hypomyelination, and cognitive dysfunction after neonatal hypoxia.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Yilong Huang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Xia Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Longjun Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Ting Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Lixuan Huang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Ling Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Hong Jiang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Hongchun Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
46
|
lncRNA NONRATT021972 siRNA Decreases Diabetic Neuropathic Pain Mediated by the P2X 3 Receptor in Dorsal Root Ganglia. Mol Neurobiol 2016; 54:511-523. [PMID: 26742527 DOI: 10.1007/s12035-015-9632-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022]
Abstract
Long noncoding RNAs (lncRNAs) participate in physiological and pathophysiological processes. Type 2 diabetes mellitus (T2DM) accounts for more than 90 % of all cases of diabetes mellitus (DM). Diabetic neuropathic pain (DNP) is a common complication of T2DM. The aim of this study was to investigate the effects of lncRNA NONRATT021972 small interference RNA (siRNA) on DNP mediated by the P2X3 receptor in dorsal root ganglia (DRG). These experiments showed that the expression levels of NONRATT021972 in DRG were increased in the T2DM rat model (intraperitoneal injection of STZ with 30 mg/kg). The concentration of NONRATT021972 in T2DM patient serum was higher compared to control healthy subjects. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in T2DM rats were lower compared to control rats. MWT and TWL in T2DM rats treated with NONRATT021972 siRNA were higher compared with those in T2DM rats. The expression levels of the P2X3 protein and messenger RNA (mRNA) of T2DM rat DRG were higher compared to the control, while those in T2DM rats treated with NONRATT021972 siRNA were significantly lower compared to T2DM rats. The level of tumor necrosis factor-α (TNF-α) in the serum of T2DM rats treated with NONRATT021972 siRNA was significantly decreased compared with T2DM rats. NONRATT021972 siRNA inhibited the phosphorylation and activation of ERK1/2 in T2DM DRG. Thus, NONRATT021972 siRNA treatment may suppress the upregulated expression and activation of the P2X3 receptor and reduce the hyperalgesia potentiated by the pro-inflammatory cytokine TNF-α in T2DM rats.
Collapse
|
47
|
LncRNA uc.48+ is involved in diabetic neuropathic pain mediated by the P2X3 receptor in the dorsal root ganglia. Purinergic Signal 2015; 12:139-48. [PMID: 26686228 DOI: 10.1007/s11302-015-9488-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022] Open
Abstract
Some long non-coding RNAs (lncRNAs) participate in physiological processes that maintain cellular and tissue homeostasis, and thus, the dysregulated expression of lncRNAs is involved in the onset and progression of many pathological conditions. Research has indicated that the genetic knockout of some lncRNAs in mice resulted in peri- or postnatal lethality or developmental defects. Diabetes mellitus (DM) is a major cause of peripheral neuropathy. Our studies showed that the expression levels of lncRNA uc.48+ in the diabetic rat dorsal root ganglia (DRG) and the DM patients' serum samples were increased. It suggested that lncRNA uc.48+ was involved in the pathophysiological process of DM. The aim of this study was to investigate the effects of lncRNA uc.48+ small interfering RNA (siRNA) on diabetic neuropathic pain (DNP) mediated by the P2X3 receptor in the DRG. The values of the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured by the von Frey test and Hargreaves' test, respectively. The levels of P2X3 protein and messenger RNA (mRNA) in the DRG were detected by reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, and western blotting. The experiments showed that the MWT and TWL values in DM rats were lower than those in the control rats. The MWT and TWL values in DM rats treated with lncRNA uc.48+ siRNA were increased compared to those in DM rats, but there was no significant difference between the DM rat group and the DM + scramble siRNA group. The levels of P2X3 protein and mRNA in the DM DRG were higher than those in the control, while the levels of P2X3 protein and mRNA in the DG of DM rats treated with uc.48+ siRNA were significantly decreased compared to those in DM rats. The expression levels of TNF-α in the DRG of DM rats treated with uc.48+ siRNA were significantly decreased compared to those in the DM group. The phosphorylation and activation of ERK1/2 in the DM DRG were decreased by uc.48+ siRNA treatment. Therefore, uc.48+ siRNA treatment may alleviate the DNP by inhibiting the excitatory transmission mediated by the P2X3 receptor in DRG.
Collapse
|
48
|
Marchenkova A, Vilotti S, Fabbretti E, Nistri A. Brain natriuretic peptide constitutively downregulates P2X3 receptors by controlling their phosphorylation state and membrane localization. Mol Pain 2015; 11:71. [PMID: 26576636 PMCID: PMC4650943 DOI: 10.1186/s12990-015-0074-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND ATP-gated P2X3 receptors are important transducers of nociceptive stimuli and are almost exclusively expressed by sensory ganglion neurons. In mouse trigeminal ganglion (TG), P2X3 receptor function is unexpectedly enhanced by pharmacological block of natriuretic peptide receptor-A (NPR-A), outlining a potential inhibitory role of endogenous natriuretic peptides in nociception mediated by P2X3 receptors. Lack of change in P2X3 protein expression indicates a complex modulation whose mechanisms for downregulating P2X3 receptor function remain unclear. RESULTS To clarify this process in mouse TG cultures, we suppressed NPR-A signaling with either siRNA of the endogenous agonist BNP, or the NPR-A blocker anantin. Thus, we investigated changes in P2X3 receptor distribution in the lipid raft membrane compartment, their phosphorylation state, as well as their function with patch clamping. Delayed onset of P2X3 desensitization was one mechanism for the anantin-induced enhancement of P2X3 activity. Anantin application caused preferential P2X3 receptor redistribution to the lipid raft compartment and decreased P2X3 serine phosphorylation, two phenomena that were not interdependent. An inhibitor of cGMP-dependent protein kinase and siRNA-mediated knockdown of BNP mimicked the effect of anantin. CONCLUSIONS We demonstrated that in mouse trigeminal neurons endogenous BNP acts on NPR-A receptors to determine constitutive depression of P2X3 receptor function. Tonic inhibition of P2X3 receptor activity by BNP/NPR-A/PKG pathways occurs via two distinct mechanisms: P2X3 serine phosphorylation and receptor redistribution to non-raft membrane compartments. This novel mechanism of receptor control might be a target for future studies aiming at decreasing dysregulated P2X3 receptor activity in chronic pain.
Collapse
Affiliation(s)
- Anna Marchenkova
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| | - Sandra Vilotti
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| | - Elsa Fabbretti
- Center for Biomedical Sciences and Engineering, University of Nova Gorica, 5000, Nova Gorica, Slovenia.
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
49
|
Kowalski M, Hausmann R, Schmid J, Dopychai A, Stephan G, Tang Y, Schmalzing G, Illes P, Rubini P. Flexible subunit stoichiometry of functional human P2X2/3 heteromeric receptors. Neuropharmacology 2015; 99:115-30. [PMID: 26184350 DOI: 10.1016/j.neuropharm.2015.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 11/27/2022]
Abstract
The aim of the present work was to clarify whether heterotrimeric P2X2/3 receptors have a fixed subunit stoichiometry consisting of one P2X2 and two P2X3 subunits as previously suggested, or a flexible stoichiometry containing also the inverse subunit composition. For this purpose we transfected HEK293 cells with P2X2 and P2X3 encoding cDNA at the ratios of 1:2 and 4:1, and analysed the biophysical and pharmacological properties of the generated receptors by means of the whole-cell patch-clamp technique. The concentration-response curves for the selective agonist α,β-meATP did not differ from each other under the two transfection ratios. However, co-expression of an inactive P2X2 mutant and the wild type P2X3 subunit and vice versa resulted in characteristic distortions of the α,β-meATP concentration-response relationships, depending on which subunit was expressed in excess, suggesting that HEK293 cells express mixtures of (P2X2)1/(P2X3)2 and (P2X2)2/(P2X3)1 receptors. Whereas the allosteric modulators H+ and Zn2+ failed to discriminate between the two possible heterotrimeric receptor variants, the α,β-meATP-induced responses were blocked more potently by the competitive antagonist A317491, when the P2X2 subunit was expressed in deficit of the P2X3 subunit. Furthermore, blue-native PAGE analysis of P2X2 and P2X3 subunits co-expressed in Xenopus laevis oocytes and HEK293 cells revealed that plasma membrane-bound P2X2/3 receptors appeared in two clearly distinct heterotrimeric complexes: a (P2X2-GFP)2/(P2X3)1 complex and a (P2X2-GFP)1/(P2X3)2 complex. These data strongly indicate that the stoichiometry of the heteromeric P2X2/3 receptor is not fixed, but determined in a permutational manner by the relative availability of P2X2 and P2X3 subunits.
Collapse
Affiliation(s)
- Maria Kowalski
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Schmid
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Anke Dopychai
- Molecular Pharmacology, RWTH Aachen University, 52074 Aachen, Germany
| | - Gabriele Stephan
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | | | - Peter Illes
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Patrizia Rubini
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany.
| |
Collapse
|
50
|
Xiong W, Qiu SY, Xu LY, Zhang CP, Yi Y, Wu Q, Huang LP, Liu SM, Wu B, Peng LC, Song MM, Gao Y, Liang SD. Effects of intermedin on dorsal root ganglia in the transmission of neuropathic pain in chronic constriction injury rats. Clin Exp Pharmacol Physiol 2015; 42:780-7. [DOI: 10.1111/1440-1681.12416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Xiong
- The Affiliated Stomatological Hospital of Nanchang University; Nanchang China
| | - Shu-yi Qiu
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Ling-yun Xu
- Department of Stomatology; The First People's Hospital of Fuzhou; Fuzhou Jiangxi Province China
| | - Chun-ping Zhang
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Yun Yi
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Qin Wu
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Li-ping Huang
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Shuang-mei Liu
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Bing Wu
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Li-chao Peng
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Miao-miao Song
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Yun Gao
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| | - Shang-dong Liang
- Department of Physiology; Medical School of Nanchang University; Nanchang China
| |
Collapse
|