1
|
Nguyen QH, Lai CHR, Norris MJ, Ng D, Shah M, Lai CCL, Isenman DE, Moraes TF. A surface lipoprotein on Pasteurella multocida binds complement factor I to promote immune evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619360. [PMID: 39484374 PMCID: PMC11526892 DOI: 10.1101/2024.10.21.619360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Pasteurella multocida is the leading cause of wound infections in humans following animals' bites or scratches. This bacterium is also commonly found in the respiratory tract of many mammals and can cause serious diseases resulting in the brutal rapid death of infected animals, especially cattle. To prevent these infections in cattle, a subunit-based vaccine utilizing the surface lipoprotein PmSLP was developed and showed remarkable protection with a single dose administration. Here, we report that PmSLP binds host complement factor I (FI) and facilitates cleavage of complement components C3b and C4b independently of any cofactors (e.g FH, C4BP), thereby allowing the pathogen to evade host defence. Cryo-EM structure of PmSLP bound to FI reveals that PmSLP stimulates FI enzymatic activity by stabilizing the catalytic domain. This is the first time that a bacterial protein has been shown to directly activate FI independent of complement cofactors and target all arms of the complement cascade.
Collapse
|
2
|
Pietri GP, Bertuzzi S, Karnicar K, Unione L, Lisnic B, Malic S, Miklic K, Novak M, Calloni I, Santini L, Usenik A, Romano MR, Adamo R, Jonjic S, Turk D, Jiménez-Barbero J, Lenac Rovis T. Antigenic determinants driving serogroup-specific antibody response to Neisseria meningitidis C, W, and Y capsular polysaccharides: Insights for rational vaccine design. Carbohydr Polym 2024; 341:122349. [PMID: 38876728 DOI: 10.1016/j.carbpol.2024.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Meningococcal glycoconjugate vaccines sourced from capsular polysaccharides (CPSs) of pathogenic Neisseria meningitidis strains are well-established measures to prevent meningococcal disease. However, the exact structural factors responsible for antibody recognition are not known. CPSs of Neisseria meningitidis serogroups Y and W differ by a single stereochemical center, yet they evoke specific immune responses. Herein, we developed specific monoclonal antibodies (mAbs) targeting serogroups C, Y, and W and evaluated their ability to kill bacteria. We then used these mAbs to dissect structural elements responsible for carbohydrate-protein interactions. First, Men oligosaccharides were screened against the mAbs using ELISA to select putative lengths representing the minimal antigenic determinant. Next, molecular interaction features between the mAbs and serogroup-specific sugar fragments were elucidated using STD-NMR. Moreover, X-ray diffraction data with the anti-MenW CPS mAb enabled the elucidation of the sugar-antibody binding mode. Our findings revealed common traits in the epitopes of all three sialylated serogroups. The minimal binding epitopes typically comprise five to six repeating units. Moreover, the O-acetylation of the neuraminic acid moieties was fundamental for mAb binding. These insights hold promise for the rational design of optimized meningococcal oligosaccharides, opening new avenues for novel production methods, including chemical or enzymatic approaches.
Collapse
Affiliation(s)
- Gian Pietro Pietri
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sara Bertuzzi
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Katarina Karnicar
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Luca Unione
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Bizkaia, Spain
| | - Berislav Lisnic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Suzana Malic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Karmela Miklic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Matej Novak
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Ilaria Calloni
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | | | - Aleksandra Usenik
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | | | | | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Dusan Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Bizkaia, Spain; Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
3
|
Manoharan S, Farman TA, Piliou S, Mastroeni P. Characterisation and Immunogenicity of Neisseria cinerea outer membrane vesicles displaying NadA, NHBA and fHbp from Neisseria meningitidis serogroup B. Front Immunol 2024; 15:1473064. [PMID: 39380985 PMCID: PMC11458423 DOI: 10.3389/fimmu.2024.1473064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
More affordable and effective vaccines against bacterial meningitis caused by Neisseria meningitidis serogroup B are still required for global prevention. We have previously shown that modified outer membrane vesicles (mOMVs) from commensal Neisseria cinerea can be used as a platform to induce immune responses against meningococcal antigens. The aim of the present study was to use a combination of two genetically engineered mOMVs to express multiple antigens from N. meningitidis known to be involved in protective immunity to meningococcal meningitis (different variants of factor H binding protein (fHbp), Neisseria Heparin Binding Antigen (NHBA) and Neisseria Adhesin A (NadA)). Antigen expression in the mOMVs was confirmed by Western blotting; detoxification of the lipooligosaccharide (LOS) was confirmed by measuring human Toll-like receptor 4 (hTLR4) activation using in vitro cell assays. Mice immunised with a combination of two mOMVs expressing fHbp, NHBA and NadA produced antibodies to all the antigens. Furthermore, serum bactericidal activity (SBA) was induced by the immunisation, with mOMVs expressing NadA displaying high SBA titres against a nadA+ MenB strain. The work highlights the potential of mOMVs from N. cinerea to induce functional immune responses against multiple antigens involved in the protective immune response to meningococcal disease.
Collapse
MESH Headings
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Animals
- Adhesins, Bacterial/immunology
- Adhesins, Bacterial/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Bacterial Proteins/immunology
- Bacterial Proteins/genetics
- Mice
- Meningococcal Vaccines/immunology
- Humans
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/blood
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/prevention & control
- Meningitis, Meningococcal/microbiology
- Neisseria cinerea/immunology
- Bacterial Outer Membrane/immunology
- Female
- Extracellular Vesicles/immunology
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/genetics
- Mice, Inbred BALB C
- Carrier Proteins
Collapse
Affiliation(s)
- Shathviga Manoharan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
4
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
5
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
6
|
Piliou S, Farman TA, Marini A, Manoharan S, Mastroeni P. Commensal Neisseria cinerea outer membrane vesicles as a platform for the delivery of meningococcal and gonococcal antigens to the immune system. Vaccine 2023; 41:7671-7681. [PMID: 38008665 DOI: 10.1016/j.vaccine.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
An affordable, accessible, and broadly protective vaccine is required to tackle the re-occurring bacterial meningococcal epidemics in Sub-Saharan Africa as well as an effective control of multi-drug resistant strains of gonococcus. Outer membrane vesicles (OMVs) secreted from Gram-negative bacteria represent an attractive platform for antigen delivery to the immune system and therefore for development of multi-component vaccines. In this study, we describe the generation of modified OMVs (mOMVs) from commensal biosafety-level 1 (BSL-1) Neisseria cinerea ATCC® 14685TM, which is phylogenetically close to the pathogenic bacteria Neisseria meningitidis and Neisseria gonorrhoeae. mOMVs were prepared from N. cinerea engineered to express heterologous antigens from N. meningitidis (factor H binding protein (fHbp) and Neisseria Heparin Binding Antigen (NHBA-2)) and from N. gonorrhoeae (NHBA-542). Mice immunised with the mOMVs produced antibodies against fHbp and NHBA. The work indicates that mOMV from N. cinerea can be used as a platform to induce immune responses against antigens involved in the protective immune response against meningococcal and gonococcal diseases.
Collapse
Affiliation(s)
- Stavroula Piliou
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Theo A Farman
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Arianna Marini
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Shathviga Manoharan
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
7
|
Yee WX, Barnes G, Lavender H, Tang CM. Meningococcal factor H-binding protein: implications for disease susceptibility, virulence, and vaccines. Trends Microbiol 2023; 31:805-815. [PMID: 36941192 PMCID: PMC10914675 DOI: 10.1016/j.tim.2023.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
Neisseria meningitidis is a human-adapted pathogen that causes meningitis and sepsis worldwide. N. meningitidis factor H-binding protein (fHbp) provides a mechanism for immune evasion by binding human complement factor H (CFH) to protect it from complement-mediated killing. Here, we discuss features of fHbp which enable it to engage human CFH (hCFH), and the regulation of fHbp expression. Studies of host susceptibility and bacterial genome-wide association studies (GWAS) highlight the importance of the interaction between fHbp and CFH and other complement factors, such as CFHR3, on the development of invasive meningococcal disease (IMD). Understanding the basis of fHbp:CFH interactions has also informed the design of next-generation vaccines as fHbp is a protective antigen. Structure-informed refinement of fHbp vaccines will help to combat the threat posed by the meningococcus, and accelerate the elimination of IMD.
Collapse
Affiliation(s)
- Wearn-Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Grace Barnes
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
8
|
Papara C, Karsten CM, Ujiie H, Schmidt E, Schmidt-Jiménez LF, Baican A, Freire PC, Izumi K, Bieber K, Peipp M, Verschoor A, Ludwig RJ, Köhl J, Zillikens D, Hammers CM. The relevance of complement in pemphigoid diseases: A critical appraisal. Front Immunol 2022; 13:973702. [PMID: 36059476 PMCID: PMC9434693 DOI: 10.3389/fimmu.2022.973702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigoid diseases are autoimmune chronic inflammatory skin diseases, which are characterized by blistering of the skin and/or mucous membranes, and circulating and tissue-bound autoantibodies. The well-established pathomechanisms comprise autoantibodies targeting various structural proteins located at the dermal-epidermal junction, leading to complement factor binding and activation. Several effector cells are thus attracted and activated, which in turn inflict characteristic tissue damage and subepidermal blistering. Moreover, the detection of linear complement deposits in the skin is a diagnostic hallmark of all pemphigoid diseases. However, recent studies showed that blistering might also occur independently of complement. This review reassesses the importance of complement in pemphigoid diseases based on current research by contrasting and contextualizing data from in vitro, murine and human studies.
Collapse
Affiliation(s)
- Cristian Papara
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Christian M. Karsten
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | | | - Adrian Baican
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patricia C. Freire
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Kentaro Izumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Admar Verschoor
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Otorhinolaryngology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Ralf J. Ludwig
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Christoph M. Hammers
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- *Correspondence: Christoph M. Hammers,
| |
Collapse
|
9
|
Facchetti A, Wheeler JX, Vipond C, Whiting G, Lavender H, Feavers IM, Maiden MCJ, Maharjan S. Factor H binding protein (fHbp)-mediated differential complement resistance of a serogroup C Neisseria meningitidis isolate from cerebrospinal fluid of a patient with invasive meningococcal disease. Access Microbiol 2021; 3:000255. [PMID: 34712903 PMCID: PMC8549389 DOI: 10.1099/acmi.0.000255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/03/2021] [Indexed: 11/01/2022] Open
Abstract
During an outbreak of invasive meningococcal disease (IMD) at the University of Southampton, UK, in 1997, two Neisseria meningitidis serogroup C isolates were retrieved from a student ('Case'), who died of IMD, and a close contact ('Carrier') who, after mouth-to-mouth resuscitation on the deceased, did not contract the disease. Genomic comparison of the isolates demonstrated extensive nucleotide sequence identity, with differences identified in eight genes. Here, comparative proteomics was used to measure differential protein expression between the isolates and investigate whether the differences contributed to the clinical outcomes. A total of six proteins were differentially expressed: four proteins (methylcitrate synthase, PrpC; hypothetical integral membrane protein, Imp; fructose-1,6-bisphosphate aldolase, Fba; aldehyde dehydrogenase A, AldA) were upregulated in the Case isolate, while one protein (Type IV pilus-associated protein, PilC2) was downregulated. Peptides for factor H binding protein (fHbp), a major virulence factor and antigenic protein, were only detected in the Case, with a single base deletion (ΔT366) in the Carrier fHbp causing lack of its expression. Expression of fHbp resulted in an increased resistance of the Case isolate to complement-mediated killing in serum. Complementation of fHbp expression in the Carrier increased its serum resistance by approximately 8-fold. Moreover, a higher serum bactericidal antibody titre was seen for the Case isolate when using sera from mice immunized with Bexsero (GlaxoSmithKline), a vaccine containing fHbp as an antigenic component. This study highlights the role of fHbp in the differential complement resistance of the Case and the Carrier isolates. Expression of fHbp in the Case resulted in its increased survival in serum, possibly leading to active proliferation of the bacteria in blood and death of the student through IMD. Moreover, enhanced killing of the Case isolate by sera raised against an fHbp-containing vaccine, Bexsero, underlines the role and importance of fHbp in infection and immunity.
Collapse
Affiliation(s)
- Alessandra Facchetti
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Jun X Wheeler
- Division of Analytical Biological Sciences, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Caroline Vipond
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Gail Whiting
- Division of Analytical Biological Sciences, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Martin C J Maiden
- Department of Zoology, Peter Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Sunil Maharjan
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
10
|
Ispasanie E, Muri L, Schubart A, Thorburn C, Zamurovic N, Holbro T, Kammüller M, Pluschke G. Alternative Complement Pathway Inhibition Does Not Abrogate Meningococcal Killing by Serum of Vaccinated Individuals. Front Immunol 2021; 12:747594. [PMID: 34691058 PMCID: PMC8531814 DOI: 10.3389/fimmu.2021.747594] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of complement activation causes a number of diseases, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. These conditions can be treated with monoclonal antibodies (mAbs) that bind to the complement component C5 and prevent formation of the membrane attack complex (MAC). While MAC is involved in uncontrolled lysis of erythrocytes in these patients, it is also required for serum bactericidal activity (SBA), i.e. clearance of encapsulated bacteria. Therefore, terminal complement blockage in these patients increases the risk of invasive disease by Neisseria meningitidis more than 1000-fold compared to the general population, despite obligatory vaccination. It is assumed that alternative instead of terminal pathway inhibition reduces the risk of meningococcal disease in vaccinated individuals. To address this, we investigated the SBA with alternative pathway inhibitors. Serum was collected from adults before and after vaccination with a meningococcal serogroup A, C, W, Y capsule conjugate vaccine and tested for meningococcal killing in the presence of factor B and D, C3, C5 and MASP-2 inhibitors. B meningococci were not included in this study since the immune response against protein-based vaccines is more complex. Unsurprisingly, inhibition of C5 abrogated killing of meningococci by all sera. In contrast, both factor B and D inhibitors affected meningococcal killing in sera from individuals with low, but not with high bactericidal anti-capsular titers. While the anti-MASP-2 mAb did not impair SBA, inhibition of C3 impeded meningococcal killing in most, but not in all sera. These data provide evidence that vaccination can provide protection against invasive meningococcal disease in patients treated with alternative pathway inhibitors.
Collapse
Affiliation(s)
- Emma Ispasanie
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lukas Muri
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anna Schubart
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Natasa Zamurovic
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Holbro
- Global Drug Development, Novartis Pharma AG, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gerd Pluschke
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Williams AH, Wheeler R, Deghmane AE, Santecchia I, Schaub RE, Hicham S, Moya Nilges M, Malosse C, Chamot-Rooke J, Haouz A, Dillard JP, Robins WP, Taha MK, Gomperts Boneca I. Defective lytic transglycosylase disrupts cell morphogenesis by hindering cell wall de- O-acetylation in Neisseria meningitidis. eLife 2020; 9:e51247. [PMID: 32022687 PMCID: PMC7083599 DOI: 10.7554/elife.51247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Lytic transglycosylases (LT) are enzymes involved in peptidoglycan (PG) remodeling. However, their contribution to cell-wall-modifying complexes and their potential as antimicrobial drug targets remains unclear. Here, we determined a high-resolution structure of the LT, an outer membrane lipoprotein from Neisseria species with a disordered active site helix (alpha helix 30). We show that deletion of the conserved alpha-helix 30 interferes with the integrity of the cell wall, disrupts cell division, cell separation, and impairs the fitness of the human pathogen Neisseria meningitidis during infection. Additionally, deletion of alpha-helix 30 results in hyperacetylated PG, suggesting this LtgA variant affects the function of the PG de-O-acetylase (Ape 1). Our study revealed that Ape 1 requires LtgA for optimal function, demonstrating that LTs can modulate the activity of their protein-binding partner. We show that targeting specific domains in LTs can be lethal, which opens the possibility that LTs are useful drug-targets.
Collapse
Affiliation(s)
- Allison Hillary Williams
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur; Groupe Avenir, INSERM 75015ParisFrance
| | - Richard Wheeler
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur; Groupe Avenir, INSERM 75015ParisFrance
- Tumour Immunology and Immunotherapy, Institut Gustave RoussyVillejuifFrance
| | | | - Ignacio Santecchia
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur; Groupe Avenir, INSERM 75015ParisFrance
- Universté Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Ryan E Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Samia Hicham
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur; Groupe Avenir, INSERM 75015ParisFrance
| | - Maryse Moya Nilges
- Unité Technologie et Service BioImagerie Ultrastructural, Institut PasteurParisFrance
| | - Christian Malosse
- Unité Technologie et Service Spectrométrie de Masse pour la Biologie, Institut Pasteur; UMR 3528, CNRS 75015ParisFrance
| | - Julia Chamot-Rooke
- Unité Technologie et Service Spectrométrie de Masse pour la Biologie, Institut Pasteur; UMR 3528, CNRS 75015ParisFrance
| | - Ahmed Haouz
- Plate-forme de Cristallographie-C2RT, Institut Pasteur; UMR3528, CNRS 75015ParisFrance
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - William P Robins
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | | | - Ivo Gomperts Boneca
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur; Groupe Avenir, INSERM 75015ParisFrance
| |
Collapse
|
12
|
Ghias MH, Hyde MJ, Tomalin LE, Morgan BP, Alavi A, Lowes MA, Piguet V. Role of the Complement Pathway in Inflammatory Skin Diseases: A Focus on Hidradenitis Suppurativa. J Invest Dermatol 2019; 140:531-536.e1. [PMID: 31870626 DOI: 10.1016/j.jid.2019.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
Although the role of immune dysregulation in hidradenitis suppurativa (HS) has yet to be elucidated, recent studies identified several complement abnormalities in patients with HS. The complement system serves a critical role in the modulation of immune response and regulation of cutaneous commensal bacteria. Complement is implicated in several inflammatory skin diseases including systemic lupus erythematosus, angioedema, pemphigus, bullous pemphigoid, and HS. A model of HS pathogenesis is proposed, integrating the role of commensal bacteria, cutaneous immune responses, and complement dysregulation. The role of complement in disease pathogenesis has led to the development of novel anticomplement agents and clinical trials investigating the efficacy of such treatments in HS.
Collapse
Affiliation(s)
| | | | - Lewis E Tomalin
- Icahn School of Medicine at Mt. Sinai Department of Population Health, New York, New York
| | - B Paul Morgan
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Afsaneh Alavi
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, Ontario, Canada
| | | | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
van den Broek B, van der Flier M, de Groot R, de Jonge MI, Langereis JD. Common Genetic Variants in the Complement System and their Potential Link with Disease Susceptibility and Outcome of Invasive Bacterial Infection. J Innate Immun 2019; 12:131-141. [PMID: 31269507 DOI: 10.1159/000500545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/19/2019] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pneumoniae and Neisseria meningitidis are pathogens that frequently colonize the nasopharynx in an asymptomatic manner but are also a cause of invasive bacterial infections mainly in young children. The complement system plays a crucial role in humoral immunity, complementing the ability of antibodies to clear microbes, thereby protecting the host against bacterial infections, including S. pneumoniae and N. meningitidis. While it is widely accepted that complement deficiencies due to rare genetic variants increase the risk for invasive bacterial infection, not much is known about the common genetic variants in the complement system in relation to disease susceptibility. In this review, we provide an overview of the effects of common genetic variants on complement activation and on complement-mediated inflammation.
Collapse
Affiliation(s)
- Bryan van den Broek
- Paediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Nijmegen, The Netherlands.,Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Michiel van der Flier
- Paediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Nijmegen, The Netherlands.,Expertise Center for Immunodeficiency and Auto inflammation (REIA), Radboudumc, Nijmegen, The Netherlands.,Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Ronald de Groot
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands, .,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands,
| |
Collapse
|
14
|
Identification of a lytic Pseudomonas aeruginosa phage depolymerase and its anti-biofilm effect and bactericidal contribution to serum. Virus Genes 2019; 55:394-405. [PMID: 30937696 DOI: 10.1007/s11262-019-01660-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infection has imposed a great threat to patients with cystic fibrosis. With the emergence of multidrug-resistant P. aeruginosa, developing an alternative anti-microbial strategy is indispensable and more urgent than ever. In this study, a lytic P. aeruginosa phage was isolated from the sewage of a hospital, and one protein was predicted as the depolymerase-like protein by genomic sequence analysis, it includes two catalytic regions, the Pectate lyase_3 super family and Glycosyl hydrolase_28 super family. Further analysis demonstrated that recombinant depolymerase-like protein degraded P. aeruginosa exopolysaccharide and enhanced bactericidal activity mediated by serum in vitro. Additionally, this protein disrupted host bacterial biofilms. All of these results showed that the phage-derived depolymerase-like protein has the potential to be developed into an anti-microbial agent that targets P. aeruginosa.
Collapse
|
15
|
Ray TD, Mekasha S, Liang Y, Lu B, Ram S, Ingalls RR. Species-specific differences in regulation of macrophage inflammation by the C3a-C3a receptor axis. Innate Immun 2018; 24:66-78. [PMID: 29297237 PMCID: PMC6818254 DOI: 10.1177/1753425917747044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Complement is an important arm of the innate immune system. Recent studies have shown that products of complement pathway activation can interact directly with other innate immune signaling molecules, including TLRs and inflammasome family members, during some infectious and chronic inflammatory disorders. Activation of the complement system generates anaphylatoxins, such as C3a and C5a, which modulate inflammation. However, the biological effects of interactions between the anaphylatoxins with their receptors may vary across species. In this study, we demonstrate that human complement and rat complement differ in the way they modulate the inflammatory response to the human pathogen, Neisseria gonorrhoeae, as well as purified pathogen-associated ligands, such as LPS. While rat serum down-regulates MyD88-dependent pro-inflammatory cytokine responses in macrophages, human serum has no effect, or in some cases an enhancing effect. Further, the inhibitory effect of rat serum on otherwise pro-inflammatory stimuli is mediated by complement, specifically C3a-C3a receptor interactions, via an undefined signaling mechanism that down-regulates the transcription factor, NF-κB and NLRP3 inflammasome-mediated caspase-1 activation. This study highlights important functional differences between rodent and human complement that could explain some of the differences in immune responses between these two species. Understanding the crosstalk between complement and other arms of the innate immune system will facilitate the development of better anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Tathagat Dutta Ray
- 1 Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | - Samrawit Mekasha
- 1 Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | - Yanmei Liang
- 1 Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | - Bao Lu
- 2 1862 Division of Pulmonary and Respiratory Disease, Boston Children's Hospital , Harvard Medical School, Boston, MA, USA
| | - Sanjay Ram
- 3 Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robin R Ingalls
- 1 Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
16
|
Fernández FJ, Gómez S, Vega MC. Pathogens' toolbox to manipulate human complement. Semin Cell Dev Biol 2017; 85:98-109. [PMID: 29221973 DOI: 10.1016/j.semcdb.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/15/2022]
Abstract
The surveillance and pathogen fighting functions of the complement system have evolved to protect mammals from life-threatening infections. In turn, pathogens have developed complex molecular mechanisms to subvert, divert and evade the effector functions of the complement. The study of complement immunoevasion by pathogens sheds light on their infection drivers, knowledge that is essential to implement therapies. At the same time, complement evasion also acts as a discovery ground that reveals important aspects of how complement works under physiological conditions. In recent years, complex interrelationships between infection insults and the onset of autoimmune and complement dysregulation diseases have led to propose that encounters with pathogens can act as triggering factors for disease. The correct management of these diseases involves the recognition of their triggering factors and the development and administration of complement-associated molecular therapies. Even more recently, unsuspected proteins from pathogens have been shown to possess moonlighting functions as virulence factors, raising the possibility that behind the first line of virulence factors there be many more pathogen proteins playing secondary, helping and supporting roles for the pathogen to successfully establish infections. In an era where antibiotics have a progressively reduced effect on the management and control of infectious diseases worldwide, knowledge on the mechanisms of pathogenic invasion and evasion look more necessary and pressing than ever.
Collapse
Affiliation(s)
| | - Sara Gómez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - M Cristina Vega
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
17
|
Piotrowski C, Lede V, Butthof A, Kaiser N, Hirrlinger PG, Tschöp MH, Schöneberg T, Bechmann I. Open housing drives the expression of immune response genes in the nasal mucosa, but not the olfactory bulb. PLoS One 2017; 12:e0187192. [PMID: 29077773 PMCID: PMC5659768 DOI: 10.1371/journal.pone.0187192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/16/2017] [Indexed: 11/25/2022] Open
Abstract
Nasal mucosa and olfactory bulb are separated by the cribriform plate which is perforated by olfactory nerves. We have previously demonstrated that the cribriform plate is permissive for T cells and monocytes and that viruses can enter the bulb upon intranasal injection by axonal transportation. Therefore, we hypothesized that nasal mucosa and olfactory bulb are equipped to deal with constant infectious threats. To detect genes involved in this process, we compared gene expression in nasal mucosa and bulb of mice kept under specific pathogen free (SPF) conditions to gene expression of mice kept on non-SPF conditions using RNA deep sequencing. We found massive alterations in the expression of immune-related genes of the nasal mucosa, while the bulb did not respond immunologically. The absence of induction of immune-related genes in the olfactory bulb suggests effective defence mechanisms hindering entrance of environmental pathogens beyond the outer arachnoid layer. The genes detected in this study may include candidates conferring susceptibility to meningitis.
Collapse
Affiliation(s)
- Carolin Piotrowski
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Anne Butthof
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Nicole Kaiser
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Petra G. Hirrlinger
- Medical Experimental Center, Faculty of Medicine, University of Leipzig, Leipzig,Germany
| | | | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Mirzakhani K, Gargari SLM, Rasooli I, Rasoulinejad S. Development of a DNA Aptamer for Screening Neisseria meningitidis Serogroup B by Cell SELEX. IRANIAN BIOMEDICAL JOURNAL 2017; 22:193-201. [PMID: 28941453 PMCID: PMC5889504 DOI: 10.22034/ibj.22.3.193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023]
Abstract
Background Artificial oligonucleotides like DNA or RNA aptamers can be used as biodiagnostic alternatives for antibodies to detect pathogens. Comparing to antibodies, artificial oligonucleotides are produced easily at lower costs and are more stable. Neisseria meningitidis, the causative agent of meningitis, is responsible for about 1% of infections in an epidemic period. Specific DNA aptamers that bind to N. meningitidis serogroup B were identified by whole-cell Systemic Evolution of Ligands by EXponential Enrichment (SELEX). Methods The SELEX begins with a library of labeled ssDNA molecules. After six rounds of selection and two rounds of counter-selection, 60 clones were obtained, of which the binding efficiency of 21 aptamers to the aforementioned bacterium was tested by flow cytometry. Results The aptamers K3 and K4 showed the highest affinity to N. meningitidis serogroup B and no affinity to N. meningitidis serogroups Y, A, and C, or to other meningitis causing bacteria. The dissociation constant (Kd value) for K3 and K4 were calculated as 28.3±8.9 pM and 39.1±8.6 pM, respectively. K3 aptamer with the lowest Kd was chosen as the main aptamer. K3 could detect N. meningitidis in patients’ cerebrospinal fluid (CSF) samples and in CSF from healthy volunteers inoculated with N. meningitidis serogroup B (ATCC 13090) at 200 and 100 CFU ml-1, respectively. Conclusion The findings suggest the application of the developed aptamer in specific detection of N. meningitidis serogroup B amongst a group of meningitis causing bacteria.
Collapse
Affiliation(s)
- Kimia Mirzakhani
- Faculty of Medicine, Institute of Human Genetics, Friedrich-Schiller University, Jena, Germany
| | | | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | | |
Collapse
|
19
|
Ji X, Yao PP, Zhang LY, Li Y, Xu F, Mei LL, Zhu SR, Zhang YJ, Zhu HP, van der Veen S. Capsule switching of Neisseria meningitidis sequence type 7 serogroup A to serogroup X. J Infect 2017; 75:521-531. [PMID: 28916450 DOI: 10.1016/j.jinf.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVES The bacterial pathogen Neisseria meningitidis is able to escape the currently available capsule-based vaccines by undergoing capsule switching. In this study, we investigated whether capsule switching has occurred in a recently emerged sequence type (ST) 7 serogroup X isolate in China, for which currently no vaccine is available. METHODS To identify capsule switching breakpoints, the capsule locus and flanking regions of the ST-7 serogroup X isolate and three endemic ST-7 serogroup A isolates were sequenced and compared. To obtain further insight into capsule switching frequency and length of DNA fragments involved, capsule switching assays were performed using genomic DNA containing combinations of antibiotic selection markers at various locations in the capsule locus and flanking regions. RESULTS Sequence analyses showed that capsule switching has occurred and involved a 8450 bp serogroup X DNA fragment spanning the region from galE to ctrC. Capsule switching assays indicate that capsule switching occurs at a frequency of 6.3 × 10-6 per bacterium per μg of DNA and predominantly involved DNA fragments of about 8.1-9.6 kb in length. CONCLUSIONS Our results show that capsule switching in N. meningitidis occurs at high frequency and involves recombination in the flanking regions of the capsule biosynthesis genes.
Collapse
Affiliation(s)
- Xuemeng Ji
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ping-Ping Yao
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Le-Yi Zhang
- Wenzhou City Center for Disease Control and Prevention, China
| | - Yi Li
- Wenzhou City Center for Disease Control and Prevention, China
| | - Fang Xu
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Ling-Ling Mei
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Shui-Rong Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Yan-Jun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Han-Ping Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Ignatov D, Johansson J. RNA-mediated signal perception in pathogenic bacteria. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28792118 DOI: 10.1002/wrna.1429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens encounter several different environments during an infection, many of them possibly being detrimental. In order to sense its surroundings and adjust the gene expression accordingly, different regulatory schemes are undertaken. With these, the bacterium appropriately can differentiate between various environmental cues to express the correct virulence factor at the appropriate time and place. An attractive regulator device is RNA, which has an outstanding ability to alter its structure in response to external stimuli, such as metabolite concentration or alterations in temperature, to control its downstream gene expression. This review will describe the function of riboswitches and thermometers, with a particular emphasis on regulatory RNAs being important for bacterial pathogenicity. WIREs RNA 2017, 8:e1429. doi: 10.1002/wrna.1429 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dmitriy Ignatov
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
|
22
|
Hovingh ES, van den Broek B, Jongerius I. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion. Front Microbiol 2016; 7:2004. [PMID: 28066340 PMCID: PMC5167704 DOI: 10.3389/fmicb.2016.02004] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.
Collapse
Affiliation(s)
- Elise S. Hovingh
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| | - Bryan van den Broek
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
| | - Ilse Jongerius
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| |
Collapse
|
23
|
Barnwal RP, Loh E, Godin KS, Yip J, Lavender H, Tang CM, Varani G. Structure and mechanism of a molecular rheostat, an RNA thermometer that modulates immune evasion by Neisseria meningitidis. Nucleic Acids Res 2016; 44:9426-9437. [PMID: 27369378 PMCID: PMC5100586 DOI: 10.1093/nar/gkw584] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/24/2016] [Accepted: 06/18/2016] [Indexed: 11/15/2022] Open
Abstract
Neisseria meningitidis causes bacterial meningitis and septicemia. It evades the host complement system by upregulating expression of immune evasion factors in response to changes in temperature. RNA thermometers within mRNAs control expression of bacterial immune evasion factors, including CssA, in the 5'-untranslated region of the operon for capsule biosynthesis. We dissect the molecular mechanisms of thermoregulation and report the structure of the CssA thermometer. We show that the RNA thermometer acts as a rheostat, whose stability is optimized to respond in a small temperature range around 37°C as occur within the upper airways during infection. Small increases in temperature gradually open up the structure to allow progressively increased access to the ribosome binding site. Even small changes in stability induced by mutations of imperfect base pairs, as in naturally occurring polymorphisms, shift the thermometer response outside of the desired temperature range, suggesting that its activity could be modulated by pharmacological intervention.
Collapse
Affiliation(s)
| | - Edmund Loh
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Microbiology, Tumor and Cell Biology (MTC), Mikrobiell Patogenes, Gustaf V, Karolinska Sjukhuset 171 76 Stockholm, Sweden
| | - Katherine S Godin
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jordan Yip
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Antunes A, Derkaoui M, Terrade A, Denizon M, Deghmane AE, Deutscher J, Delany I, Taha MK. The Phosphocarrier Protein HPr Contributes to Meningococcal Survival during Infection. PLoS One 2016; 11:e0162434. [PMID: 27655040 PMCID: PMC5031443 DOI: 10.1371/journal.pone.0162434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022] Open
Abstract
Neisseria meningitidis is an exclusively human pathogen frequently carried asymptomatically in the nasopharynx but it can also provoke invasive infections such as meningitis and septicemia. N. meningitidis uses a limited range of carbon sources during infection, such as glucose, that is usually transported into bacteria via the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS), in which the phosphocarrier protein HPr (encoded by the ptsH gene) plays a central role. Although N. meningitidis possesses an incomplete PTS, HPr was found to be required for its virulence. We explored the role of HPr using bioluminescent wild-type and ΔptsH strains in experimental infection in transgenic mice expressing the human transferrin. The wild-type MC58 strain was recovered at higher levels from the peritoneal cavity and particularly from blood compared to the ΔptsH strain. The ΔptsH strain provoked lower levels of septicemia in mice and was more susceptible to complement-mediated killing than the wild-type strain. We tested whether meningococcal structures impacted complement resistance and observed that only the capsule level was decreased in the ΔptsH mutant. We therefore compared the transcriptomic profiles of wild-type and ΔptsH strains and identified 49 differentially expressed genes. The HPr regulon contains mainly hypothetical proteins (43%) and several membrane-associated proteins that could play a role during host interaction. Some other genes of the HPr regulon are involved in stress response. Indeed, the ΔptsH strain showed increased susceptibility to environmental stress conditions. Our data suggest that HPr plays a pleiotropic role in host-bacteria interactions most likely through the innate immune response that may be responsible for the enhanced clearance of the ΔptsH strain from blood.
Collapse
Affiliation(s)
- Ana Antunes
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
- * E-mail: (AA); (MKT)
| | - Meriem Derkaoui
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Aude Terrade
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
| | - Mélanie Denizon
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
| | - Ala-Eddine Deghmane
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Centre National de la Recherche Scientifique, UMR8261 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Isabel Delany
- Novartis Vaccines and Diagnostics s.r.l. (a GSK company), Via Fiorentina 1, 53100, Siena, Italy
| | - Muhamed-Kheir Taha
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
- * E-mail: (AA); (MKT)
| |
Collapse
|
25
|
Kaur G, Paliwal A, Tomar M, Gupta V. Detection of Neisseria meningitidis using surface plasmon resonance based DNA biosensor. Biosens Bioelectron 2016; 78:106-110. [DOI: 10.1016/j.bios.2015.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/21/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
|
26
|
Park YD, Williamson PR. Masking the Pathogen: Evolutionary Strategies of Fungi and Their Bacterial Counterparts. J Fungi (Basel) 2015; 1:397-421. [PMID: 29376918 PMCID: PMC5753132 DOI: 10.3390/jof1030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 11/21/2022] Open
Abstract
Pathogens reduce immune recognition of their cell surfaces using a variety of inert structural polysaccharides. For example, capsular polysaccharides play critical roles in microbial survival strategies. Capsules are widely distributed among bacterial species, but relatively rare in eukaryotic microorganisms, where they have evolved considerable complexity in structure and regulation and are exemplified by that of the HIV/AIDS-related fungus Cryptococcus neoformans. Endemic fungi that affect normal hosts such as Histoplasma capsulatum and Blastomyces dermatitidis have also evolved protective polysaccharide coverings in the form of immunologically inert α-(1,3)-glucan polysaccharides to protect their more immunogenic β-(1,3)-glucan-containing cell walls. In this review we provide a comparative update on bacterial and fungal capsular structures and immunogenic properties as well as the polysaccharide masking strategies of endemic fungal pathogens.
Collapse
Affiliation(s)
- Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Rm 11N222, MSC 1888, Bethesda, MD 20892, USA.
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Rm 11N222, MSC 1888, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
HexR Controls Glucose-Responsive Genes and Central Carbon Metabolism in Neisseria meningitidis. J Bacteriol 2015; 198:644-54. [PMID: 26644430 DOI: 10.1128/jb.00659-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/24/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Neisseria meningitidis, an exclusively human pathogen and the leading cause of bacterial meningitis, must adapt to different host niches during human infection. N. meningitidis can utilize a restricted range of carbon sources, including lactate, glucose, and pyruvate, whose concentrations vary in host niches. Microarray analysis of N. meningitidis grown in a chemically defined medium in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. Most such genes are implicated in energy metabolism and transport, and some are implicated in virulence. In particular, genes involved in glucose catabolism were upregulated, whereas genes involved in the tricarboxylic acid cycle were downregulated. Several genes encoding surface-exposed proteins, including the MafA adhesins and Neisseria surface protein A, were upregulated in the presence of glucose. Our microarray analysis led to the identification of a glucose-responsive hexR-like transcriptional regulator that controls genes of the central carbon metabolism of N. meningitidis in response to glucose. We characterized the HexR regulon and showed that the hexR gene is accountable for some of the glucose-responsive regulation; in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of the bacterium. Based on DNA sequence alignment of the target sites, we propose a 17-bp pseudopalindromic consensus HexR binding motif. Furthermore, N. meningitidis strains lacking hexR expression were deficient in establishing successful bacteremia in an infant rat model of infection, indicating the importance of this regulator for the survival of this pathogen in vivo. IMPORTANCE Neisseria meningitidis grows on a limited range of nutrients during infection. We analyzed the gene expression of N. meningitidis in response to glucose, the main energy source available in human blood, and we found that glucose regulates many genes implicated in energy metabolism and nutrient transport, as well as some implicated in virulence. We identified and characterized a transcriptional regulator (HexR) that controls metabolic genes of N. meningitidis in response to glucose. We generated a mutant lacking HexR and found that the mutant was impaired in causing systemic infection in animal models. Since N. meningitidis lacks known bacterial regulators of energy metabolism, our findings suggest that HexR plays a major role in its biology by regulating metabolism in response to environmental signals.
Collapse
|
28
|
Recognition of Neisseria meningitidis by the long pentraxin PTX3 and its role as an endogenous adjuvant. PLoS One 2015; 10:e0120807. [PMID: 25786110 PMCID: PMC4364741 DOI: 10.1371/journal.pone.0120807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/07/2015] [Indexed: 11/21/2022] Open
Abstract
Long pentraxin 3 (PTX3) is a non-redundant component of the humoral arm of innate immunity. The present study was designed to investigate the interaction of PTX3 with Neisseria meningitidis. PTX3 bound acapsular meningococcus, Neisseria-derived outer membrane vesicles (OMV) and 3 selected meningococcal antigens (GNA0667, GNA1030 and GNA2091). PTX3-recognized microbial moieties are conserved structures which fulfil essential microbial functions. Ptx3-deficient mice had a lower antibody response in vaccination protocols with OMV and co-administration of PTX3 increased the antibody response, particularly in Ptx3-deficient mice. Administration of PTX3 reduced the bacterial load in infant rats challenged with Neisseria meningitidis. These results suggest that PTX3 recognizes a set of conserved structures from Neisseria meningitidis and acts as an amplifier/endogenous adjuvant of responses to this bacterium.
Collapse
|
29
|
Jongerius I, Schuijt TJ, Mooi FR, Pinelli E. Complement evasion by Bordetella pertussis: implications for improving current vaccines. J Mol Med (Berl) 2015; 93:395-402. [PMID: 25686752 PMCID: PMC4366546 DOI: 10.1007/s00109-015-1259-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 12/17/2022]
Abstract
Bordetella pertussis causes whooping cough or pertussis, a highly contagious disease of the respiratory tract. Despite high vaccination coverage, reported cases of pertussis are rising worldwide and it has become clear that the current vaccines must be improved. In addition to the well-known protective role of antibodies and T cells during B. pertussis infection, innate immune responses such as the complement system play an essential role in B. pertussis killing. In order to evade this complement activation and colonize the human host, B. pertussis expresses several molecules that inhibit complement activation. Interestingly, one of the known complement evasion proteins, autotransporter Vag8, is highly expressed in the recently emerged B. pertussis isolates. Here, we describe the current knowledge on how B. pertussis evades complement-mediated killing. In addition, we compare this to complement evasion strategies used by other bacterial species. Finally, we discuss the consequences of complement evasion by B. pertussis on adaptive immunity and how identification of the bacterial molecules and the mechanisms involved in complement evasion might help improve pertussis vaccines.
Collapse
Affiliation(s)
- Ilse Jongerius
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
- Present Address: Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Tim J. Schuijt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
- Present Address: Department of Clinical Chemistry, Hematology and Immunology, Diakonessenhuis, Bosboomstraat 1, 3582 KE Utrecht, The Netherlands
| | - Frits R. Mooi
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Elena Pinelli
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
30
|
Panelius J, Meri S. Complement system in dermatological diseases - fire under the skin. Front Med (Lausanne) 2015; 2:3. [PMID: 25688346 PMCID: PMC4310328 DOI: 10.3389/fmed.2015.00003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/09/2015] [Indexed: 12/03/2022] Open
Abstract
The complement system plays a key role in several dermatological diseases. Overactivation, deficiency, or abnormality of the control proteins are often related to a skin disease. Autoimmune mechanisms with autoantibodies and a cytotoxic effect of the complement membrane attack complex on epidermal or vascular cells can cause direct tissue damage and inflammation, e.g., in systemic lupus erythematosus (SLE), phospholipid antibody syndrome, and bullous skin diseases like pemphigoid. By evading complement attack, some microbes like Borrelia spirochetes and staphylococci can persist in the skin and cause prolonged symptoms. In this review, we present the most important skin diseases connected to abnormalities in the function of the complement system. Drugs having an effect on the complement system are also briefly described. On one hand, drugs with free hydroxyl on amino groups (e.g., hydralazine, procainamide) could interact with C4A, C4B, or C3 and cause an SLE-like disease. On the other hand, progress in studies on complement has led to novel anti-complement drugs (recombinant C1-inhibitor and anti-C5 antibody, eculizumab) that could alleviate symptoms in diseases associated with excessive complement activation. The main theme of the manuscript is to show how relevant the complement system is as an immune effector system in contributing to tissue injury and inflammation in a broad range of skin disorders.
Collapse
Affiliation(s)
- Jaana Panelius
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland ; Department of Dermatology and Allergology, Skin and Allergy Hospital, Helsinki University Central Hospital , Helsinki , Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland ; Huslab, Helsinki University Central Hospital , Helsinki , Finland ; Research Programs Unit, Immunobiology, University of Helsinki , Helsinki , Finland
| |
Collapse
|
31
|
Caesar JJE, Lavender H, Ward PN, Exley RM, Eaton J, Chittock E, Malik TH, Goiecoechea De Jorge E, Pickering MC, Tang CM, Lea SM. Competition between antagonistic complement factors for a single protein on N. meningitidis rules disease susceptibility. eLife 2014; 3. [PMID: 25534642 PMCID: PMC4273445 DOI: 10.7554/elife.04008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/25/2014] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association studies have found variation within the complement factor H gene family links to host susceptibility to meningococcal disease caused by infection with Neisseria meningitidis (Davila et al., 2010). Mechanistic insights have been challenging since variation within this locus is complex and biological roles of the factor H-related proteins, unlike factor H, are incompletely understood. N. meningitidis subverts immune responses by hijacking a host-immune regulator, complement factor H (CFH), to the bacterial surface (Schneider et al., 2006; Madico et al., 2007; Schneider et al., 2009). We demonstrate that complement factor-H related 3 (CFHR3) promotes immune activation by acting as an antagonist of CFH. Conserved sequences between CFH and CFHR3 mean that the bacterium cannot sufficiently distinguish between these two serum proteins to allow it to hijack the regulator alone. The level of protection from complement attack achieved by circulating N. meningitidis therefore depends on the relative levels of CFH and CFHR3 in serum. These data may explain the association between genetic variation in both CFH and CFHR3 and susceptibility to meningococcal disease.
Collapse
Affiliation(s)
- Joseph J E Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Philip N Ward
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jack Eaton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Emily Chittock
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Talat H Malik
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, London, United Kingdom
| | - Elena Goiecoechea De Jorge
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, London, United Kingdom
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, London, United Kingdom
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Ardissone S, Fumeaux C, Bergé M, Beaussart A, Théraulaz L, Radhakrishnan SK, Dufrêne YF, Viollier PH. Cell cycle constraints on capsulation and bacteriophage susceptibility. eLife 2014; 3. [PMID: 25421297 PMCID: PMC4241560 DOI: 10.7554/elife.03587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/21/2014] [Indexed: 12/28/2022] Open
Abstract
Despite the crucial role of bacterial capsules in pathogenesis, it is still unknown if systemic cues such as the cell cycle can control capsule biogenesis. In this study, we show that the capsule of the synchronizable model bacterium Caulobacter crescentus is cell cycle regulated and we unearth a bacterial transglutaminase homolog, HvyA, as restriction factor that prevents capsulation in G1-phase cells. This capsule protects cells from infection by a generalized transducing Caulobacter phage (φCr30), and the loss of HvyA confers insensitivity towards φCr30. Control of capsulation during the cell cycle could serve as a simple means to prevent steric hindrance of flagellar motility or to ensure that phage-mediated genetic exchange happens before the onset of DNA replication. Moreover, the multi-layered regulatory circuitry directing HvyA expression to G1-phase is conserved during evolution, and HvyA orthologues from related Sinorhizobia can prevent capsulation in Caulobacter, indicating that alpha-proteobacteria have retained HvyA activity.
Collapse
Affiliation(s)
- Silvia Ardissone
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Coralie Fumeaux
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Matthieu Bergé
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Audrey Beaussart
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laurence Théraulaz
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Sunish Kumar Radhakrishnan
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
33
|
Genetic diversity and levels of expression of factor H binding protein among carriage isolates of Neisseria meningitidis. PLoS One 2014; 9:e107240. [PMID: 25247300 PMCID: PMC4172500 DOI: 10.1371/journal.pone.0107240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022] Open
Abstract
The prevention of meningococcal disease may be improved by recombinant vaccines such as 4CMenB and rLP2086 that target the factor H binding protein (fHbp), an immunogenic surface component of Neisseria meningitidis present as one of three variants. Whether such vaccines decrease carriage of invasive isolates and thus induce herd immunity is unknown. We analyzed the genetic diversity and levels of expression of fHbp among 268 carriage strains and compare them to those of 467 invasive strains. fhbp gene sequencing showed higher proportions of variants 2 and 3 among carriage isolates (p<0.0001). Carriage isolates expressed lower levels of fHbp (p<0.01) but that remain high enough to predict targeting by antibodies against fHbp particularly in group B isolates belonging to the frequent hypervirulent clonal complexes in Europe and North America (cc32, cc41/44, cc269). This suggests that fHbp targeting meningococcal vaccines might reduce, at least in part, the acquisition of some hyperinvasive isolates.
Collapse
|
34
|
Berends ETM, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SHM. Bacteria under stress by complement and coagulation. FEMS Microbiol Rev 2014; 38:1146-71. [PMID: 25065463 DOI: 10.1111/1574-6976.12080] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/23/2014] [Accepted: 07/14/2014] [Indexed: 02/03/2023] Open
Abstract
The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria.
Collapse
Affiliation(s)
- Evelien T M Berends
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Human factor H (FH) impairs protective meningococcal anti-FHbp antibody responses and the antibodies enhance FH binding. mBio 2014; 5:e01625-14. [PMID: 25161192 PMCID: PMC4173785 DOI: 10.1128/mbio.01625-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The meningococcal 4CMenB vaccine (Bexsero; Novartis) contains four antigens that can elicit serum bactericidal activity, one of which is factor H (FH)-binding protein (FHbp). FHbp specifically binds human complement FH. When humans are immunized, FHbp is expected to form a complex with FH, which could affect immunogenicity and safety. Wild-type mice (whose FH does not bind to FHbp) and human FH transgenic mice were immunized with three doses of 4CMenB, and their responses were compared. There were no significant differences between the serum bactericidal responses of transgenic and wild-type mice to strains with all of the antigens mismatched for 4CMenB except PorA or NadA. In contrast, against a strain mismatched for all of the antigens except FHbp, the transgenic mice had 15-fold weaker serum bactericidal antibody responses (P = 0.0006). Binding of FH downregulates complement. One explanation for the lower anti-FHbp serum bactericidal activity in the transgenic mice is that their postimmunization serum samples enhanced the binding of FH to FHbp, whereas the serum samples from the wild-type mice inhibited FH binding. Control antiserum from transgenic mice immunized with a low-FH-binding mutant FHbp (R41S) vaccine inhibited FH binding. Two 4CMenB-vaccinated transgenic mice developed serum IgM autoantibodies to human FH. Thus, human FH impairs protective serum anti-FHbp antibody responses, in part by skewing the antibody repertoire to FHbp epitopes outside the FH binding site. FHbp vaccines that bind FH may elicit FH autoantibodies. Mutant FHbp antigens with low FH binding could improve protection and, potentially, vaccine safety in humans. IMPORTANCE Two serogroup B meningococcal vaccines contain a novel antigen called factor H (FH)-binding protein (FHbp). FHbp specifically binds human FH, a plasma protein that downregulates complement. One vaccine (4CMenB; Novartis) is licensed in Europe, Canada, and Australia. When humans are immunized, FHbp can complex with FH. We compared the immunogenicity of 4CMenB vaccine in wild-type mice, whose own FH does not bind to FHbp, and human FH transgenic mice. Transgenic mice had respective antibody responses similar to those of wild-type mice to 4CMenB antigens that do not bind FH. However, the protective antibody responses of the transgenic mice to FHbp were impaired, largely because the antibodies did not inhibit but rather enhanced the binding of FH to FHbp. Two transgenic mice developed serum IgM autoantibodies to FH. Mutant FHbp antigens with low FH binding likely will elicit greater protection in humans than FHbp vaccines that bind FH and have a lower risk of FH autoantibodies.
Collapse
|
36
|
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518. [PMID: 24692354 DOI: 10.1152/physrev.00033.2013] [Citation(s) in RCA: 515] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.
Collapse
|
37
|
Park YD, Shin S, Panepinto J, Ramos J, Qiu J, Frases S, Albuquerque P, Cordero RJB, Zhang N, Himmelreich U, Beenhouwer D, Bennett JE, Casadevall A, Williamson PR. A role for LHC1 in higher order structure and complement binding of the Cryptococcus neoformans capsule. PLoS Pathog 2014; 10:e1004037. [PMID: 24789368 PMCID: PMC4006888 DOI: 10.1371/journal.ppat.1004037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 02/15/2014] [Indexed: 12/21/2022] Open
Abstract
Polysaccharide capsules are important virulence factors for many microbial pathogens including the opportunistic fungus Cryptococcus neoformans. In the present study, we demonstrate an unusual role for a secreted lactonohydrolase of C. neoformans, LHC1 in capsular higher order structure. Analysis of extracted capsular polysaccharide from wild-type and lhc1Δ strains by dynamic and static light scattering suggested a role for the LHC1 locus in altering the capsular polysaccharide, both reducing dimensions and altering its branching, density and solvation. These changes in the capsular structure resulted in LHC1-dependent alterations of antibody binding patterns, reductions in human and mouse complement binding and phagocytosis by the macrophage-like cell line J774, as well as increased virulence in mice. These findings identify a unique molecular mechanism for tertiary structural changes in a microbial capsule, facilitating immune evasion and virulence of a fungal pathogen. Polysaccharide capsules are important virulence factors in pathogenic microbes that provide a protective coat against host immunity. Cryptococcus neoformans is a pathogenic encapsulated yeast that is a major opportunistic infection, causing approximately 600,000 cases of meningitis per year in AIDS patients globally, and whose polysaccharide capsule is a major virulence factor. While extensive work has detailed the chemical components forming the cryptococcal capsule, the molecular events leading to the higher order assembly of the capsule, and its consequences on immune subterfuge remain unknown. In the present studies we used a proteomics method to identify a novel hydrolytic enzyme, lactonohydrolase (Lhc1) and used a variety of biophysical methods including dynamic and static light scattering as well as motility studies to show that extracted capsular polysaccharide undergoes remodeling in a LHC1-dependent fashion. This results in a more tightly compacted capsular structure that alters binding of anti-capsular antibodies and reduces binding by both human as well as mouse serum complement. Furthermore, LHC1-dependent capsular alterations serve to increase the virulence of the fungus in a mouse model, suggesting a novel role for this class of enzyme in capsular remodeling and immune evasion in microbial pathogenesis.
Collapse
Affiliation(s)
- Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Soowan Shin
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - John Panepinto
- Department of Microbiology and Immunology, University at Buffalo, the State University of New York, Buffalo, New York, United States of America
| | - Jeanie Ramos
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Jin Qiu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Susana Frases
- Department of Microbiology and Immunology and Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Laboratorio de Ultraestrutura Cellular Hertha Meyer, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Albuquerque
- Department of Microbiology and Immunology and Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Radames J. B. Cordero
- Department of Microbiology and Immunology and Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Nannan Zhang
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Uwe Himmelreich
- Biomedical NMR Unit, Department of Medical Diagnostic Sciences, Division of Radiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - David Beenhouwer
- Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - John E. Bennett
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Arturo Casadevall
- Department of Microbiology and Immunology and Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Peter R. Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
38
|
Krajewski SS, Narberhaus F. Temperature-driven differential gene expression by RNA thermosensors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:978-988. [PMID: 24657524 DOI: 10.1016/j.bbagrm.2014.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/28/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022]
Abstract
Many prokaryotic genes are organized in operons. Genes organized in such transcription units are co-transcribed into a polycistronic mRNA. Despite being clustered in a single mRNA, individual genes can be subjected to differential regulation, which is mainly achieved at the level of translation depending on initiation and elongation. Efficiency of translation initiation is primarily determined by the structural accessibility of the ribosome binding site (RBS). Structured cis-regulatory elements like RNA thermometers (RNATs) can contribute to differential regulation of individual genes within a polycistronic mRNA. RNATs are riboregulators that mediate temperature-responsive regulation of a downstream gene by modulating the accessibility of its RBS. At low temperature, the RBS is trapped by intra-molecular base pairing prohibiting translation initiation. The secondary structure melts with increasing temperature thus liberating the RBS. Here, we present an overview of different RNAT types and specifically highlight recently discovered RNATs. The main focus of this review is on RNAT-based differential control of polycistronic operons. Finally, we discuss the influence of temperature on other riboregulators and the potential of RNATs in synthetic RNA biology. This article is part of a Special Issue entitled: Riboswitches.
Collapse
|
39
|
Panatto D, Amicizia D, Lai PL, Gasparini R. Neisseria meningitidisB vaccines. Expert Rev Vaccines 2014; 10:1337-51. [DOI: 10.1586/erv.11.103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Mook-Kanamori BB, Brouwer MC, Geldhoff M, Ende AVD, van de Beek D. Cerebrospinal fluid complement activation in patients with pneumococcal and meningococcal meningitis. J Infect 2014; 68:542-7. [PMID: 24412248 DOI: 10.1016/j.jinf.2013.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/29/2013] [Accepted: 12/31/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent research into the treatment of bacterial meningitis has examined the innate immune system, specifically the complement system, as a potential target for adjuvant therapy. However, the effects of blocking the complement system may be pathogen dependent. METHODS We measured cerebrospinal fluid (CSF) levels of complement components C1q, C3a, iC3b, C5a, sC5b-9, CFH and MBL in 310 patients with pneumococcal and meningococcal meningitis from a prospective nationwide cohort study. The CSF complement component levels were successfully determined for between 289 (93%) and 307 (99%) patients, depending on available volumes of stored CSF. RESULTS Complement factors C1q and MBL as well as common complement pathway factors C3a, iC3b, C5a, sC5b-9 and complement regulator CFH were all elevated in patients with bacterial meningitis as compared to the controls. CSF levels of complement components C5a and sC5b-9 were higher in patients with pneumococcal meningitis compared to those with meningococcal meningitis. After correction for age, immunocompromised state and level of consciousness, the CSF concentrations of C5a and sC5b-9 remained different between causative microorganisms (P = 0.006 and P = 0.016 respectively). In pneumococcal meningitis high C5a and C5b-9 levels are associated with the occurrence of systemic complications, unfavorable outcome and death, whereas an inverse relationship between C5b-9 levels and mortality is observed in meningococcal meningitis. CONCLUSIONS Our study shows striking variations in complement activation depending on the pathogen responsible for the bacterial meningitis. In pneumococcal meningitis, high CSF complement levels were a strong indicator of disease severity and mortality, however in meningococcal meningitis, an inverse relationship between sC5b-9 and mortality was observed.
Collapse
Affiliation(s)
- Barry B Mook-Kanamori
- Department of Neurology, Academic Medical Center, Center of Infection and Immunity Amsterdam (CINIMA), Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Academic Medical Center, Center of Infection and Immunity Amsterdam (CINIMA), Amsterdam, The Netherlands
| | - Madelijn Geldhoff
- Department of Neurology, Academic Medical Center, Center of Infection and Immunity Amsterdam (CINIMA), Amsterdam, The Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Academic Medical Center, Center of Infection and Immunity Amsterdam (CINIMA), Amsterdam, The Netherlands; The Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Center, Center of Infection and Immunity Amsterdam (CINIMA), Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Academic Medical Center, Center of Infection and Immunity Amsterdam (CINIMA), Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Nonfunctional variant 3 factor H binding proteins as meningococcal vaccine candidates. Infect Immun 2013; 82:1157-63. [PMID: 24379280 DOI: 10.1128/iai.01183-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis is a human-specific pathogen and leading cause of meningitis and septicemia. Factor H binding protein (fHbp), a virulence factor which protects N. meningitidis from innate immunity by binding the human complement regulator factor H (fH) with high affinity, is also a key antigen in vaccines being developed to prevent meningococcal disease. fHbp can be divided into three variant groups (V1, V2, and V3) that elicit limited immunological cross-reactivity. The interaction of fH with fHbp could impair the immunogenicity of this antigen by hindering access to the antigenic epitopes in fHbp, providing the rationale for the development of nonfunctional fHbps as vaccine candidates. Here, we characterized the two nonfunctional V3 fHbps, fHbp(T286A) and fHbp(E313A), which each contains a single amino acid substitution that leads to a marked reduction in affinity for fH without affecting the folding of the proteins. The immunogenicity of the nonfunctional fHbps was assessed in transgenic mice expressing a single chimeric fH containing domains of human fH involved in binding to fHbp. No differences in anti-V3 fHbp antibody titers were elicited by the wild-type V3 fHbp, V3 fHbp(T286A), and V3 fHbp(E313A), demonstrating that the nonfunctional fHbps retain their immunogenicity. Furthermore, the nonfunctional V3 fHbps elicit serum bactericidal activity that is equivalent to or higher than that observed with the wild-type protein. Our findings provide the basis for the rational design of next-generation vaccines containing nonfunctional V3 fHbps.
Collapse
|
42
|
McCormack R, de Armas L, Shiratsuchi M, Podack ER. Killing machines: three pore-forming proteins of the immune system. Immunol Res 2013; 57:268-78. [PMID: 24293008 PMCID: PMC3980504 DOI: 10.1007/s12026-013-8469-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The evolution of early multicellular eukaryotes 400-500 million years ago required a defensive strategy against microbial invasion. Pore-forming proteins containing the membrane-attack-complex-perforin (MACPF) domain were selected as the most efficient means to destroy bacteria or virally infected cells. The mechanism of pore formation by the MACPF domain is distinctive in that pore formation is purely physical and unspecific. The MACPF domain polymerizes, refolds, and inserts itself into bilayer membranes or bacterial outer cell walls. The displacement of surface lipid/carbohydrate molecules by the polymerizing MACPF domain creates clusters of large, water-filled holes that destabilize the barrier function and provide access for additional anti-bacterial or anti-viral effectors to sensitive sites that complete the destruction of the invader via enzymatic or chemical attack. The highly efficient mechanism of anti-microbial defense by a combined physical and chemical strategy using pore-forming MACPF-proteins has been retargeted during evolution of vertebrates and mammals for three purposes: (1) to kill extracellular bacteria C9/polyC9 evolved in conjunction with complement, (2) to kill virus infected and cancer cells perforin-1/polyperforin-1 CTL evolved targeted by NK and CTL, and (3) to kill intracellular bacteria transmembrane perforin-2/putative polyperforin-2 evolved targeted by phagocytic and nonphagocytic cells. Our laboratory has been involved in the discovery and description of each of the three pore-formers that will be reviewed here.
Collapse
Affiliation(s)
- Ryan McCormack
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lesley de Armas
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Motoaki Shiratsuchi
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eckhard R. Podack
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
43
|
Loh E, Kugelberg E, Tracy A, Zhang Q, Gollan B, Ewles H, Chalmers R, Pelicic V, Tang CM. Temperature triggers immune evasion by Neisseria meningitidis. Nature 2013; 502:237-40. [PMID: 24067614 PMCID: PMC3836223 DOI: 10.1038/nature12616] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022]
Abstract
Neisseria meningitidis has several strategies to evade complement-mediated killing, and these contribute to its ability to cause septicaemic disease and meningitis. However, the meningococcus is primarily an obligate commensal of the human nasopharynx, and it is unclear why the bacterium has evolved exquisite mechanisms to avoid host immunity. Here we demonstrate that mechanisms of meningococcal immune evasion and resistance against complement increase in response to an increase in ambient temperature. We have identified three independent RNA thermosensors located in the 5' untranslated regions of genes necessary for capsule biosynthesis, the expression of factor H binding protein, and sialylation of lipopolysaccharide, which are essential for meningococcal resistance against immune killing. Therefore increased temperature (which occurs during inflammation) acts as a 'danger signal' for the meningococcus, enhancing its defence against human immune killing. Infection with viral pathogens, such as influenza, leads to inflammation in the nasopharynx with an increased temperature and recruitment of immune effectors. Thermoregulation of immune defence could offer an adaptive advantage to the meningococcus during co-infection with other pathogens, and promote the emergence of virulence in an otherwise commensal bacterium.
Collapse
Affiliation(s)
- Edmund Loh
- Sir William Dunn School of Pathology, University of Oxford, Sir Parks Road, Oxford OX1 3RE
| | | | - Alexander Tracy
- Sir William Dunn School of Pathology, University of Oxford, Sir Parks Road, Oxford OX1 3RE
| | - Qian Zhang
- Centre for Molecular Microbiology and Infection, Imperial College London
| | - Bridget Gollan
- Centre for Molecular Microbiology and Infection, Imperial College London
| | - Helen Ewles
- Centre for Molecular Microbiology and Infection, Imperial College London
| | | | - Vladimir Pelicic
- Centre for Molecular Microbiology and Infection, Imperial College London
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Sir Parks Road, Oxford OX1 3RE
- Centre for Molecular Microbiology and Infection, Imperial College London
| |
Collapse
|
44
|
|
45
|
Distinct binding and immunogenic properties of the gonococcal homologue of meningococcal factor h binding protein. PLoS Pathog 2013; 9:e1003528. [PMID: 23935503 PMCID: PMC3731240 DOI: 10.1371/journal.ppat.1003528] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/13/2013] [Indexed: 01/29/2023] Open
Abstract
Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH), a negative regulator of the complement system, to its surface via fH binding protein (fHbp), providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp) which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups. Neisseria meningitidis is a major cause of sepsis and meningitis in young children and adolescents. Although vaccines are currently available against several serogroups, a broadly effective vaccine against serogroup B is still needed. Factor H binding protein (fHbp) can bind the human complement regulator factor H (fH) and is an important meningococcal immunogen. fHbp is divided into three variant groups (V1, V2 and V3) and immunisation with V1 fHbp does not elicit cross-protection against meningococcus expressing fHbp V2 or V3, and vice versa. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae which we named Gonococcal homologue of factor H binding protein (Ghfp). We show that in contrast to fHbp, Ghfp is not expressed on the bacterial surface and is unable to bind to factor H. Surprisingly, we found that antibodies raised against Ghfp have the capacity to mediate protective immunity against N. meningitidis expressing any of the three variant groups of fHbp, and could provide a broadly protective vaccine against N. meningitidis.
Collapse
|
46
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
47
|
Johswich KO, McCaw SE, Islam E, Sintsova A, Gu A, Shively JE, Gray-Owen SD. In vivo adaptation and persistence of Neisseria meningitidis within the nasopharyngeal mucosa. PLoS Pathog 2013; 9:e1003509. [PMID: 23935487 PMCID: PMC3723569 DOI: 10.1371/journal.ppat.1003509] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/04/2013] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis (Nme) asymptomatically colonizes the human nasopharynx, yet can initiate rapidly-progressing sepsis and meningitis in rare instances. Understanding the meningococcal lifestyle within the nasopharyngeal mucosa, a phase of infection that is prerequisite for disease, has been hampered by the lack of animal models. Herein, we compare mice expressing the four different human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) that can bind the neisserial Opa protein adhesins, and find that expression of human CEACAM1 is necessary and sufficient to establish intranasal colonization. During infection, in vivo selection for phase variants expressing CEACAM1-specific Opa proteins occurs, allowing mucosal attachment and entry into the subepithelial space. Consistent with an essential role for Opa proteins in this process, Opa-deficient meningococci were unable to colonize the CEACAM1-humanized mice. While simple Opa-mediated attachment triggered an innate response regardless of meningococcal viability within the inoculum, persistence of viable Opa-expressing bacteria within the CEACAM1-humanized mice was required for a protective memory response to be achieved. Parenteral immunization with a capsule-based conjugate vaccine led to the accumulation of protective levels of Nme-specific IgG within the nasal mucus, yet the sterilizing immunity afforded by natural colonization was instead conferred by Nme-specific IgA without detectable IgG. Considered together, this study establishes that the availability of CEACAM1 helps define the exquisite host specificity of this human-restricted pathogen, displays a striking example of in vivo selection for the expression of desirable Opa variants, and provides a novel model in which to consider meningococcal infection and immunity within the nasopharyngeal mucosa. Neisseria meningitidis (Nme), a common cause of bacterial meningitis, are carried asymptomatically in the nasopharynx by a substantial proportion of healthy individuals. Their strict adaptation to the human as host has so far impeded the development of animal models to study the meningococcal lifestyle in vivo. While several human CEACAMs are recognized by the neisserial Opa protein adhesins, we show here that the expression of human CEACAM1 in transgenic mice is necessary and sufficient to allow nasal colonization by Nme. The dependence on human CEACAM1 is attributable to the Opa proteins, since intranasal infection with Opa-negative colonies of Nme selects for bacteria expressing Opa proteins, and genetically Opa-deficient meningococci are unable to colonize these animals. We use this new mouse model to examine how innate immune factors such as neutrophils and complement limit colonization. Furthermore, we compare how adaptive responses elicited by colonization and those generated by parenteral vaccination differentially confer sterilizing immunity. Together, this work provides the first evidence of the critical nature of Opa-CEACAM1 binding in vivo, demonstrates that this is a major determinant of the host restriction by Nme, and reveals a clear disparity between immune correlates of sterilizing immunity conferred by natural colonization versus parenteral immunization.
Collapse
Affiliation(s)
- Kay O Johswich
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Wang C, Li S, Lin T, Cheng Y, Sun T, Wang J, Cheng TR, Mong KKT, Wong C, Wu C. Synthesis ofNeisseria meningitidisSerogroup W135 Capsular Oligosaccharides for Immunogenicity Comparison and Vaccine Development. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302540] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chia‐Hung Wang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115 (Taiwan)
- Institute of Biochemistry and Molecular Biology, National Yang‐Ming University, 155, Linong Street, Section 2, Taipei, 112 (Taiwan)
| | - Shiou‐Ting Li
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115 (Taiwan)
| | - Tzu‐Lung Lin
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei (Taiwan)
| | - Yang‐Yu Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115 (Taiwan)
| | - Tsung‐Hsien Sun
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115 (Taiwan)
| | - Jin‐Town Wang
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei (Taiwan)
| | - Ting‐Jen R. Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115 (Taiwan)
| | - Kwok Kong Tony Mong
- Department of Applied Chemistry, National Chiao‐Tung University, Hsin‐Chu (Taiwan)
| | - Chi‐Huey Wong
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115 (Taiwan)
- Institute of Biochemistry and Molecular Biology, National Yang‐Ming University, 155, Linong Street, Section 2, Taipei, 112 (Taiwan)
| | - Chung‐Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115 (Taiwan)
- Institute of Biochemistry and Molecular Biology, National Yang‐Ming University, 155, Linong Street, Section 2, Taipei, 112 (Taiwan)
| |
Collapse
|
49
|
Wang CH, Li ST, Lin TL, Cheng YY, Sun TH, Wang JT, Cheng TJR, Mong KKT, Wong CH, Wu CY. Synthesis ofNeisseria meningitidisSerogroup W135 Capsular Oligosaccharides for Immunogenicity Comparison and Vaccine Development. Angew Chem Int Ed Engl 2013; 52:9157-61. [DOI: 10.1002/anie.201302540] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/11/2013] [Indexed: 11/12/2022]
|
50
|
Khan MA, Knox N, Prashar A, Alexander D, Abdel-Nour M, Duncan C, Tang P, Amatullah H, Dos Santos CC, Tijet N, Low DE, Pourcel C, Van Domselaar G, Terebiznik M, Ensminger AW, Guyard C. Comparative Genomics Reveal That Host-Innate Immune Responses Influence the Clinical Prevalence of Legionella pneumophila Serogroups. PLoS One 2013; 8:e67298. [PMID: 23826259 PMCID: PMC3694923 DOI: 10.1371/journal.pone.0067298] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/16/2013] [Indexed: 11/19/2022] Open
Abstract
Legionella pneumophila is the primary etiologic agent of legionellosis, a potentially fatal respiratory illness. Amongst the sixteen described L. pneumophila serogroups, a majority of the clinical infections diagnosed using standard methods are serogroup 1 (Sg1). This high clinical prevalence of Sg1 is hypothesized to be linked to environmental specific advantages and/or to increased virulence of strains belonging to Sg1. The genetic determinants for this prevalence remain unknown primarily due to the limited genomic information available for non-Sg1 clinical strains. Through a systematic attempt to culture Legionella from patient respiratory samples, we have previously reported that 34% of all culture confirmed legionellosis cases in Ontario (n = 351) are caused by non-Sg1 Legionella. Phylogenetic analysis combining multiple-locus variable number tandem repeat analysis and sequence based typing profiles of all non-Sg1 identified that L. pneumophila clinical strains (n = 73) belonging to the two most prevalent molecular types were Sg6. We conducted whole genome sequencing of two strains representative of these sequence types and one distant neighbour. Comparative genomics of the three L. pneumophila Sg6 genomes reported here with published L. pneumophila serogroup 1 genomes identified genetic differences in the O-antigen biosynthetic cluster. Comparative optical mapping analysis between Sg6 and Sg1 further corroborated this finding. We confirmed an altered O-antigen profile of Sg6, and tested its possible effects on growth and replication in in vitro biological models and experimental murine infections. Our data indicates that while clinical Sg1 might not be better suited than Sg6 in colonizing environmental niches, increased bloodstream dissemination through resistance to the alternative pathway of complement mediated killing in the human host may explain its higher prevalence.
Collapse
Affiliation(s)
- Mohammad Adil Khan
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie Knox
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Akriti Prashar
- Cell and Systems Biology and Biological Sciences, University of Toronto at Scarborough, Scarborough, Ontario, Canada
| | - David Alexander
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mena Abdel-Nour
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Hajera Amatullah
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Claudia C. Dos Santos
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Donald E. Low
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Christine Pourcel
- Institut de Génétique et Microbiologie, Université Paris-Sud, Paris, France
| | - Gary Van Domselaar
- Cell and Systems Biology and Biological Sciences, University of Toronto at Scarborough, Scarborough, Ontario, Canada
| | - Mauricio Terebiznik
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Alexander W. Ensminger
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Cyril Guyard
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|