1
|
Sun Q, Zheng S, Tang W, Wang X, Wang Q, Zhang R, Zhang N, Ping W. Prediction of lung adenocarcinoma prognosis and diagnosis with a novel model anchored in circadian clock-related genes. Sci Rep 2024; 14:18202. [PMID: 39107445 PMCID: PMC11303802 DOI: 10.1038/s41598-024-68256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Lung adenocarcinoma is the most common primary lung cancer seen in the world, and identifying genetic markers is essential for predicting the prognosis of lung adenocarcinoma and improving treatment outcomes. It is well known that alterations in circadian rhythms are associated with a higher risk of cancer. Moreover, circadian rhythms play a regulatory role in the human body. Therefore, studying the changes in circadian rhythms in cancer patients is crucial for optimizing treatment. The gene expression data and clinical data were sourced from TCGA database, and we identified the circadian clock-related genes. We used the obtained TCGA-LUAD data set to build the model, and the other 647 lung adenocarcinoma patients' data were collected from two GEO data sets for external verification. A risk score model for circadian clock-related genes was constructed, based on the identification of 8 genetically significant genes. Based on ROC analyses, the risk model demonstrated a high level of accuracy in predicting the overall survival times of lung adenocarcinoma patients in training folds, as well as external data sets. This study has successfully constructed a risk model for lung adenocarcinoma prognosis, utilizing circadian rhythm as its foundation. This model demonstrates a dependable capacity to forecast the outcome of the disease, which can further guide the relevant mechanism of lung adenocarcinoma and combine behavioral therapy with treatment to optimize treatment decision-making.
Collapse
Affiliation(s)
- Qihang Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shubin Zheng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Tang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruijie Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Gao H, Li Y, Zhang X, Zhang H, Tian Y, Li B. Unraveling the G protein-coupled receptor superfamily in aphids: Contractions and duplications linked to phloem feeding. Gen Comp Endocrinol 2024; 347:114435. [PMID: 38135222 DOI: 10.1016/j.ygcen.2023.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The G Protein-Coupled Receptor (GPCR) superfamily is the largest and most diverse transmembrane receptor family, playing crucial roles in regulating various physiological processes. As one of the most destructive pests, aphids have been subject to previous studies, which revealed fewer GPCR superfamily members in Acyrthosiphon pisum and Aphis gossypii and the loss of multiple neuropeptide GPCRs. To elucidate the contraction patterns and evolutionary features of the aphid GPCR superfamily, we identified 97, 105, and 95 GPCR genes in Rhopalosiphum maidis, A. pisum, and A. gossypii, respectively. Comparative analysis and phylogenetic investigations with other hemipteran insects revealed a contracted GPCR superfamily in aphids. This contraction mainly occurred in biogenic amine receptors, GABA-B-R, and fz families, and several neuropeptide receptors such as ACPR, CrzR, and PTHR were completely lost. This phenomenon may be related to the parasitic nature of aphids. Additionally, several GPCRs associated with aphid feeding and water balance underwent duplication, including Lkr, NPFR, CCHa1-R, and DH-R, Type A LGRs, but the SK/CCKLR that inhibits feeding was completely lost, indicating changes in feeding genes that underpin the aphid's prolonged phloem feeding behavior. Furthermore, we observed fine-tuning in opsins, with reduced long-wavelength opsins and additional duplications of short-wavelength opsin, likely associated with daytime activity. Lastly, we found variations in the number of mthl genes in aphids. In conclusion, our investigation sheds light on the GPCR superfamily in aphids, revealing its association with diet lifestyle and laying the foundation for understanding and developing control strategies for the aphid GPCR superfamily.
Collapse
Affiliation(s)
- Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xianzhen Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Gao H, Li Y, Zhang H, Wang S, Feng F, Tang J, Li B. Comparative study of neuropeptide signaling systems in Hemiptera. INSECT SCIENCE 2023; 30:705-724. [PMID: 36165207 DOI: 10.1111/1744-7917.13120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Numerous physiological processes in insects are tightly regulated by neuropeptides and their receptors. Although they form an ancient signaling system, there is still a great deal of variety in neuropeptides and their receptors among different species within the same order. Neuropeptides and their receptors have been documented in many hemipteran insects, but the differences among them have been poorly characterized. Commercial grapevines worldwide are plagued by the bug Daktulosphaira vitifoliae (Hemiptera: Sternorrhyncha). Here, 33 neuropeptide precursors and 48 putative neuropeptide G protein-coupled receptor (GPCR) genes were identified in D. vitifoliae. Their expression profiles at the probe and feeding stages reflected potential regulatory roles in probe behavior. By comparison, we found that the Releasing Hormone-Related Peptides (GnRHs) system of Sternorrhyncha was differentiated from those of the other 2 suborders in Hemiptera. Independent secondary losses of the adipokinetic hormone/corazonin-related peptide receptor (ACP) and corazonin (CRZ) occurred during the evolution of Sternorrhyncha. Additionally, we discovered that the neuropeptide signaling systems of Sternorrhyncha were very different from those of Heteroptera and Auchenorrhyncha, which was consistent with Sternorrhyncha's phylogenetic position at the base of the order. This research provides more knowledge on neuropeptide systems and sets the groundwork for the creation of novel D. vitifoliae management strategies that specifically target these signaling pathways.
Collapse
Affiliation(s)
- Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Suisui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Aleotti A, Wilkie IC, Yañez-Guerra LA, Gattoni G, Rahman TA, Wademan RF, Ahmad Z, Ivanova DA, Semmens DC, Delroisse J, Cai W, Odekunle E, Egertová M, Ferrario C, Sugni M, Bonasoro F, Elphick MR. Discovery and functional characterization of neuropeptides in crinoid echinoderms. Front Neurosci 2022; 16:1006594. [PMID: 36583101 PMCID: PMC9793003 DOI: 10.3389/fnins.2022.1006594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
Neuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria. However, our knowledge of neuropeptide signaling in echinoderms is largely based on bioinformatic and experimental analysis of eleutherozoans-Asterozoa (starfish and brittle stars) and Echinozoa (sea urchins and sea cucumbers). Little is known about neuropeptide signaling in crinoids (feather stars and sea lilies), which are a sister clade to the Eleutherozoa. Therefore, we have analyzed transcriptome/genome sequence data from three feather star species, Anneissia japonica, Antedon mediterranea, and Florometra serratissima, to produce the first comprehensive identification of neuropeptide precursors in crinoids. These include representatives of bilaterian neuropeptide precursor families and several predicted crinoid neuropeptide precursors. Using A. mediterranea as an experimental model, we have investigated the expression of selected neuropeptides in larvae (doliolaria), post-metamorphic pentacrinoids and adults, providing new insights into the cellular architecture of crinoid nervous systems. Thus, using mRNA in situ hybridization F-type SALMFamide precursor transcripts were revealed in a previously undescribed population of peptidergic cells located dorso-laterally in doliolaria. Furthermore, using immunohistochemistry a calcitonin-type neuropeptide was revealed in the aboral nerve center, circumoral nerve ring and oral tube feet in pentacrinoids and in the ectoneural and entoneural compartments of the nervous system in adults. Moreover, functional analysis of a vasopressin/oxytocin-type neuropeptide (crinotocin), which is expressed in the brachial nerve of the arms in A. mediterranea, revealed that this peptide causes a dose-dependent change in the mechanical behavior of arm preparations in vitro-the first reported biological action of a neuropeptide in a crinoid. In conclusion, our findings provide new perspectives on neuropeptide signaling in echinoderms and the foundations for further exploration of neuropeptide expression/function in crinoids as a sister clade to eleutherozoan echinoderms.
Collapse
Affiliation(s)
- Alessandra Aleotti
- Department of Environmental Science and Policy, University of Milan, Milan, Italy,School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Iain C. Wilkie
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Luis A. Yañez-Guerra
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Giacomo Gattoni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy,School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Tahshin A. Rahman
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard F. Wademan
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Zakaryya Ahmad
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Deyana A. Ivanova
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Dean C. Semmens
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Jérôme Delroisse
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Weigang Cai
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Esther Odekunle
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Michaela Egertová
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Maurice R. Elphick
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, United Kingdom,*Correspondence: Maurice R. Elphick,
| |
Collapse
|
5
|
Yang L, Wang J, Gong X, Fan Q, Yang X, Cui Y, Gao X, Li L, Sun X, Li Y, Wang Y. Emerging Roles for LGR4 in Organ Development, Energy Metabolism and Carcinogenesis. Front Genet 2022; 12:728827. [PMID: 35140734 PMCID: PMC8819683 DOI: 10.3389/fgene.2021.728827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Abstract
The leucine-rich repeats containing G protein-coupled receptor 4 (LGR4) belonging to G protein-coupled receptors (GPCRs) family, had various regulatory roles at multiple cellular types and numerous targeting sites, and aberrant LGR4 signaling played crucial roles in diseases and carcinogenesis. On the basis of these facts, LGR4 may become an appealing therapeutic target for the treatment of diseases and tumors. However, a comprehensive investigation of its functions and applications was still lacking. Hence, this paper provided an overview of the molecular characteristics and signaling mechanisms of LGR4, its involvement in multiple organ development and participation in the modulation of immunology related diseases, metabolic diseases, and oxidative stress damage along with cancer progression. Given that GPCRs accounted for almost a third of current clinical drug targets, the in-depth understanding of the sophisticated connections of LGR4 and its ligands would not only enrich their regulatory networks, but also shed new light on designing novel molecular targeted drugs and small molecule blockers for revolutionizing the treatment of various diseases and tumors.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jing Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiaodi Gong
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Qiong Fan
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiaoming Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yunxia Cui
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiaoyan Gao
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Lijuan Li
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yuhong Li
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
- *Correspondence: Yuhong Li, ; Yudong Wang,
| | - Yudong Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
- *Correspondence: Yuhong Li, ; Yudong Wang,
| |
Collapse
|
6
|
Maya-Maldonado K, Cime-Castillo J, Maya-Lucas O, Argotte-Ramos R, Rodríguez MC, Lanz-Mendoza H. Transcriptome analysis uncover differential regulation in cell cycle, immunity, and metabolism in Anopheles albimanus during immune priming with Plasmodium berghei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104046. [PMID: 33600838 DOI: 10.1016/j.dci.2021.104046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
In invertebrates, "immunological priming" is considered as the ability to acquire a protective (adaptive) immune response against a pathogen due to previous exposure to the same organism. To date, the mechanism by which this type of adaptive immune response originates in insects is not well understood. In the Anopheles albimanus - Plasmodium berghei model, a DNA synthesis that probably indicates an endoreplication process during priming induction has been evidenced. This work aimed to know the transcriptomic profile in the midguts of An. albimanus after priming induction. Our analysis indicates the participation of regulatory elements of the cell cycle in the immunological priming and points out the importance of the cell cycle regulation in the mosquito midgut.
Collapse
Affiliation(s)
- Krystal Maya-Maldonado
- Centro de Investigaciones sobre Enfermedades Infecciosas. Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, Mexico
| | - Jorge Cime-Castillo
- Centro de Investigaciones sobre Enfermedades Infecciosas. Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, Mexico
| | - Otoniel Maya-Lucas
- Novo Nordisk Foundation Center for Basic Metabolic Research. University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Rocio Argotte-Ramos
- Centro de Investigaciones sobre Enfermedades Infecciosas. Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, Mexico
| | - Maria Carmen Rodríguez
- Centro de Investigaciones sobre Enfermedades Infecciosas. Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, Mexico
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas. Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
7
|
Ben-Menahem D. GnRH-Related Neurohormones in the Fruit Fly Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22095035. [PMID: 34068603 PMCID: PMC8126107 DOI: 10.3390/ijms22095035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Genomic and phylogenetic analyses of various invertebrate phyla revealed the existence of genes that are evolutionarily related to the vertebrate’s decapeptide gonadotropin-releasing hormone (GnRH) and the GnRH receptor genes. Upon the characterization of these gene products, encoding peptides and putative receptors, GnRH-related peptides and their G-protein coupled receptors have been identified. These include the adipokinetic hormone (AKH) and corazonin (CRZ) in insects and their cognate receptors that pair to form bioactive signaling systems, which network with additional neurotransmitters/hormones (e.g., octopamine and ecdysone). Multiple studies in the past 30 years have identified many aspects of the biology of these peptides that are similar in size to GnRH and function as neurohormones. This review briefly describes the main activities of these two neurohormones and their receptors in the fruit fly Drosophila melanogaster. The similarities and differences between Drosophila AKH/CRZ and mammalian GnRH signaling systems are discussed. Of note, while GnRH has a key role in reproduction, AKH and CRZ show pleiotropic activities in the adult fly, primarily in metabolism and stress responses. From a protein evolution standpoint, the GnRH/AKH/CRZ family nicely demonstrates the developmental process of neuropeptide signaling systems emerging from a putative common ancestor and leading to divergent activities in distal phyla.
Collapse
Affiliation(s)
- David Ben-Menahem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
8
|
The Role of LGR4 (GPR48) in Normal and Cancer Processes. Int J Mol Sci 2021; 22:ijms22094690. [PMID: 33946652 PMCID: PMC8125670 DOI: 10.3390/ijms22094690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeats containing G protein-coupled receptor 4 (LGR4) is a receptor that belongs to the superfamily of G protein-coupled receptors that can be activated by R-spondins (RSPOs), Norrin, circLGR4, and the ligand of the receptor activator of nuclear factor kappa-B (RANKL) ligands to regulate signaling pathways in normal and pathological processes. LGR4 is widely expressed in different tissues where it has multiple functions such as tissue development and maintenance. LGR4 mainly acts through the Wnt/β-catenin pathway to regulate proliferation, survival, and differentiation. In cancer, LGR4 participates in tumor progression, invasion, and metastasis. Furthermore, recent evidence reveals that LGR4 is essential for the regulation of the cancer stem cell population by controlling self-renewal and regulating stem cell properties. This review summarizes the function of LGR4 and its ligands in normal and malignant processes.
Collapse
|
9
|
Gao H, Li Y, Wang M, Song X, Tang J, Feng F, Li B. Identification and Expression Analysis of G Protein-Coupled Receptors in the Miridae Insect Apolygus lucorum. Front Endocrinol (Lausanne) 2021; 12:773669. [PMID: 34899608 PMCID: PMC8660763 DOI: 10.3389/fendo.2021.773669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 01/31/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest and most versatile family of transmembrane receptors in the cell and they play a vital role in the regulation of multiple physiological processes. The family Miridae (Hemiptera: Heteroptera) is one of the most diverse families of insects. Until now, information on GPCRs has been lacking in Miridae. Apolygus lucorum, a representative species of the Miridae, is an omnivorous pest that occurs worldwide and is notorious for causing serious damage to various crops and substantial economic losses. By searching the genome, 133 GPCRs were identified in A. lucorum. Compared with other model insects, we have observed GPCR genes to be remarkably expanded in A. lucorum, especially focusing on biogenic amine receptors and neuropeptide receptors. Among these, there is a novel large clade duplicated from known FMRFamide receptors (FMRFaRs). Moreover, the temporal and spatial expression profiles of the 133 genes across developmental stages were determined by transcriptome analysis. Most GPCR genes showed a low expression level in the whole organism of A. lucorum. However, there were a few highly expressed GPCR genes. The highly expressed LW opsins in the head probably relate to nocturning of A. lucorum, and the expression of Cirl at different times and in different tissues indicated it may be involved in growth and development of A. lucorum. We also found C2 leucine-rich repeat-containing GPCRs (LGRs) were mainly distributed in Hemiptera and Phthiraptera among insects. Our study was the first investigation on GPCRs in A. lucorum and it provided a molecular target for the regulation and control of Miridae pests.
Collapse
|
10
|
Identification of Key Receptor Residues Discriminating Human Chorionic Gonadotropin (hCG)- and Luteinizing Hormone (LH)-Specific Signaling. Int J Mol Sci 2020; 22:ijms22010151. [PMID: 33375708 PMCID: PMC7794846 DOI: 10.3390/ijms22010151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
(1) The human luteinizing hormone (LH)/chorionic gonadotropin (hCG) receptor (LHCGR) discriminates its two hormone ligands and differs from the murine receptor (Lhr) in amino acid residues potentially involved in qualitative discerning of LH and hCG. The latter gonadotropin is absent in rodents. The aim of the study is to identify LHCGR residues involved in hCG/LH discrimination. (2) Eight LHCGR cDNAs were developed, carrying “murinizing” mutations on aminoacidic residues assumed to interact specifically with LH, hCG, or both. HEK293 cells expressing a mutant or the wild type receptor were treated with LH or hCG and the kinetics of cyclic adenosine monophosphate (cAMP) and phosphorylated extracellular signal-regulated kinases 1/2 (pERK1/2) activation was analyzed by bioluminescence resonance energy transfer (BRET). (3) Mutations falling within the receptor leucine reach repeat 9 and 10 (LRR9 and LRR10; K225S +T226I and R247T), of the large extracellular binding domain, are linked to loss of hormone-specific induced cAMP increase, as well as hCG-specific pERK1/2 activation, leading to a Lhr-like modulation of the LHCGR-mediated intracellular signaling pattern. These results support the hypothesis that LHCGR LRR domain is the interaction site of the hormone β-L2 loop, which differs between LH and hCG, and might be fundamental for inducing gonadotropin-specific signals. (4) Taken together, these data identify LHCGR key residues likely evolved in the human to discriminate LH/hCG specific binding.
Collapse
|
11
|
Zhang M, Wei H, Liu T, Li W, Li Y, Wang S, Xing Q, Hu X, Zhang L, Bao Z. Potential GnRH and steroidogenesis pathways in the scallop Patinopecten yessoensis. J Steroid Biochem Mol Biol 2020; 204:105756. [PMID: 32979503 DOI: 10.1016/j.jsbmb.2020.105756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/15/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) controls synthesis of sex steroid hormones through hypothalamic-pituitary-gonadal (HPG) axis in vertebrates. But in mollusks, research on GnRH and steroidogenesis pathways is still limited. In this study, we first identified two gonadotropin receptor like genes (LGR and LGR5L) and four steroidogenesis-related genes (CYP17A, HSD17B12, HSD3B1 and HSD3B2) in the scallop Patinopecten yessoensis. By examining the expression of 11 genes in the ganglia and/or gonad as well as the concentration of progesterone, testosterone and estradiol in the gonad, we postulate that a potential GnRH signaling pathway (GnRH-GnRHR-GPB5-LGR/LGR5L) in the cerebral and pedal ganglia (CPG) and steroidogenesis pathway (CYP17A, HSD17B12 and HSD3B1) in the gonad are involved in regulating sex steroid hormones. E2/T index that indicates aromatase activity is higher in the ovary than testis and is positively correlated with the expression of FOXL2 in the gonad, implying the presence of aromatase in the scallop. In addition, we confirmed that expression of most of the downstream genes in the two pathways was significantly elevated after injection of mature py-GnRH peptide. This study would contribute to a new understanding of the molecular basis underlying reproduction regulation by GnRH in mollusks.
Collapse
Affiliation(s)
- Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Huilan Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Tian Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
12
|
Melnattur K, Zhang B, Shaw PJ. Disrupting flight increases sleep and identifies a novel sleep-promoting pathway in Drosophila. SCIENCE ADVANCES 2020; 6:eaaz2166. [PMID: 32494708 PMCID: PMC7209998 DOI: 10.1126/sciadv.aaz2166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/25/2020] [Indexed: 06/06/2023]
Abstract
Sleep is plastic and is influenced by ecological factors and environmental changes. The mechanisms underlying sleep plasticity are not well understood. We show that manipulations that impair flight in Drosophila increase sleep as a form of sleep plasticity. We disrupted flight by blocking the wing-expansion program, genetically disrupting flight, and by mechanical wing perturbations. We defined a new sleep regulatory circuit starting with specific wing sensory neurons, their target projection neurons in the ventral nerve cord, and the neurons they connect to in the central brain. In addition, we identified a critical neuropeptide (burs) and its receptor (rickets) that link wing expansion and sleep. Disrupting flight activates these sleep-promoting projection neurons, as indicated by increased cytosolic calcium levels, and stably increases the number of synapses in their axonal projections. These data reveal an unexpected role for flight in regulating sleep and provide new insight into how sensory processing controls sleep need.
Collapse
Affiliation(s)
- K. Melnattur
- Department of Neuroscience, Washington University School of Medicine, Campus Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - B. Zhang
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - P. J. Shaw
- Department of Neuroscience, Washington University School of Medicine, Campus Box 8108, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Li X, Du L, Jiang XJ, Ju Q, Qu CJ, Qu MJ, Liu TX. Identification and Characterization of Neuropeptides and Their G Protein-Coupled Receptors (GPCRs) in the Cowpea Aphid Aphis craccivora. Front Endocrinol (Lausanne) 2020; 11:640. [PMID: 33042012 PMCID: PMC7527416 DOI: 10.3389/fendo.2020.00640] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Neuropeptides are the most abundant and diverse signal molecules in insects. They act as neurohormones and neuromodulators to regulate the physiology and behavior of insects. The majority of neuropeptides initiate downstream signaling pathways through binding to G protein-coupled receptors (GPCRs) on the cell surface. In this study, RNA-seq technology and bioinformatics were used to search for genes encoding neuropeptides and their GPCRs in the cowpea aphid Aphis craccivora. And the expression of these genes at different developmental stages of A. craccivora was analyzed by quantitative real-time PCR (qRT-PCR). A total of 40 candidate genes encoding neuropeptide precursors were identified from the transcriptome data, which is roughly equivalent to the number of neuropeptide genes that have been reported in other insects. On this basis, software analysis combined with homologous prediction estimated that there could be more than 60 mature neuropeptides with biological activity. In addition, 46 neuropeptide GPCRs were obtained, of which 40 belong to rhodopsin-like receptors (A-family GPCRs), including 21 families of neuropeptide receptors and 7 orphan receptors, and 6 belong to secretin-like receptors (B-family GPCRs), including receptors for diuretic hormone 31, diuretic hormone 44 and pigment-dispersing factor (PDF). Compared with holometabolous insects such as Drosophila melanogaster, the coding genes for sulfakinin, corazonin, arginine vasopressin-like peptide (AVLP), and trissin and the corresponding receptors were not found in A. craccivora. It is speculated that A. craccivora likely lacks the above neuropeptide signaling pathways, which is consistent with Acyrthosiphon pisum and that the loss of these pathways may be a common feature of aphids. In addition, expression profiling revealed neuropeptide genes and their GPCR genes that are differentially expressed at different developmental stages and in different wing morphs. This study will help to deepen our understanding of the neuropeptide signaling systems in aphids, thus laying the foundation for the development of new methods for aphid control targeting these signaling systems.
Collapse
Affiliation(s)
- Xiao Li
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Long Du
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Xiao-Jing Jiang
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Qian Ju
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Chun-Juan Qu
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Ming-Jing Qu
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
- *Correspondence: Ming-Jing Qu
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- Tong-Xian Liu
| |
Collapse
|
14
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
15
|
Otsuka A, Jinguji A, Maejima Y, Kasahara Y, Shimomura K, Hidema S, Nishimori K. LGR4 is essential for R-spondin1-mediated suppression of food intake via pro-opiomelanocortin. Biosci Biotechnol Biochem 2019; 83:1336-1342. [PMID: 30916623 DOI: 10.1080/09168451.2019.1591266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 4 (LGR4) suppresses food intake after its activation by binding of its ligands, R-spondins. We investigated the mechanism of food intake suppression by R-spondin1 in a region-specific Lgr4 gene knockout (LGR4 cKO) mouse model, generated by deletion of the Lgr4 gene in arcuate nucleus (ARC) using Lgr4fx/fx mice combined with infection of an AAV-Cre vector. After R-spondin1 administration, LGR4 cKO mice didn't exhibit a suppressed appetite, compared to that in control mice, which received a vehicle. In ARC of LGR4 cKO mice, Pomc mRNA expression was reduced, leading to suppressed food intake. On the other hand, neurons-specific LGR4 KO mice exhibited no differences in Pomc expression, and no structural differences were observed in the ARC of mutant mice. These results suggest that LGR4 is an essential part of the mechanism, inducing Pomc gene expression with R-spondin1 in ARC neurons in mice, thereby regulating feeding behavior. Abbreviations: LGR4: Leucine-rich repeat-containing G-protein coupled receptor 4; RSPOs: roof plate-specific spondins; ARC: arcuate nucleus; AAV: adeno associated virus; POMC: pro-opiomelanocortin; CART: cocaine and amphetamine-regulated transcript; NPY: neuropeptide Y; AgRP: agouti-related peptide; Axin2: axis inhibition protein 2; Lef1: lymphoid enhancer binding factor 1; ccnd1: cyclin D1.
Collapse
Affiliation(s)
- Ayano Otsuka
- a Department of Molecular and Cell Biology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Ayana Jinguji
- a Department of Molecular and Cell Biology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Yuko Maejima
- b Department of Bioregulation and Pharmacological Medicine, School of Medicine , Fukushima Medical University , Fukushima , Japan
| | - Yoshiyuki Kasahara
- c Advanced Interdisciplinary Biomedical Engineering, Graduate School of Medicine , Tohoku University , Sendai , Japan
| | - Kenju Shimomura
- b Department of Bioregulation and Pharmacological Medicine, School of Medicine , Fukushima Medical University , Fukushima , Japan
| | - Shizu Hidema
- a Department of Molecular and Cell Biology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Katsuhiko Nishimori
- a Department of Molecular and Cell Biology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
16
|
Nielsen SKD, Koch TL, Hauser F, Garm A, Grimmelikhuijzen CJP. De novo transcriptome assembly of the cubomedusa Tripedalia cystophora, including the analysis of a set of genes involved in peptidergic neurotransmission. BMC Genomics 2019; 20:175. [PMID: 30836949 PMCID: PMC6402141 DOI: 10.1186/s12864-019-5514-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/07/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The phyla Cnidaria, Placozoa, Ctenophora, and Porifera emerged before the split of proto- and deuterostome animals, about 600 million years ago. These early metazoans are interesting, because they can give us important information on the evolution of various tissues and organs, such as eyes and the nervous system. Generally, cnidarians have simple nervous systems, which use neuropeptides for their neurotransmission, but some cnidarian medusae belonging to the class Cubozoa (box jellyfishes) have advanced image-forming eyes, probably associated with a complex innervation. Here, we describe a new transcriptome database from the cubomedusa Tripedalia cystophora. RESULTS Based on the combined use of the Illumina and PacBio sequencing technologies, we produced a highly contiguous transcriptome database from T. cystophora. We then developed a software program to discover neuropeptide preprohormones in this database. This script enabled us to annotate seven novel T. cystophora neuropeptide preprohormone cDNAs: One coding for 19 copies of a peptide with the structure pQWLRGRFamide; one coding for six copies of a different RFamide peptide; one coding for six copies of pQPPGVWamide; one coding for eight different neuropeptide copies with the C-terminal LWamide sequence; one coding for thirteen copies of a peptide with the RPRAamide C-terminus; one coding for four copies of a peptide with the C-terminal GRYamide sequence; and one coding for seven copies of a cyclic peptide, of which the most frequent one has the sequence CTGQMCWFRamide. We could also identify orthologs of these seven preprohormones in the cubozoans Alatina alata, Carybdea xaymacana, Chironex fleckeri, and Chiropsalmus quadrumanus. Furthermore, using TBLASTN screening, we could annotate four bursicon-like glycoprotein hormone subunits, five opsins, and 52 other family-A G protein-coupled receptors (GPCRs), which also included two leucine-rich repeats containing G protein-coupled receptors (LGRs) in T. cystophora. The two LGRs are potential receptors for the glycoprotein hormones, while the other GPCRs are candidate receptors for the above-mentioned neuropeptides. CONCLUSIONS By combining Illumina and PacBio sequencing technologies, we have produced a new high-quality de novo transcriptome assembly from T. cystophora that should be a valuable resource for identifying the neuronal components that are involved in vision and other behaviors in cubomedusae.
Collapse
Affiliation(s)
- Sofie K. D. Nielsen
- Section of Marine Biology, Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark
| | - Thomas L. Koch
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Frank Hauser
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Anders Garm
- Section of Marine Biology, Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark
| | - Cornelis J. P. Grimmelikhuijzen
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Li Z, Liu S, Lou J, Mulholland M, Zhang W. LGR4 protects hepatocytes from injury in mouse. Am J Physiol Gastrointest Liver Physiol 2019; 316:G123-G131. [PMID: 30406697 PMCID: PMC6383381 DOI: 10.1152/ajpgi.00056.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Leucine-rich repeat G protein-coupled receptors (LGRs) and their endogenous ligands R-spondin1-4 (Rspo) are critical in embryonic development and in maintenance of stem cells. The functions of the Rspo-LGR system in differentiated cells remain uncharacterized. In this study, the expression profiles of LGRs and Rspos were characterized in mature hepatocytes. A liver-specific knockout of LGR4 in mouse was generated and used to study hepatic ischemia/reperfusion-induced injury (HIRI) as well as lipopolysaccharide/ D- galactosamine (LPS/D-Gal)-induced liver injury. We have demonstrated that, in adult liver, LGR4 is expressed in hepatocytes and responds to Rspo1 with internalization. Rspo1 is responsive to various nutritional states and to mTOR signaling. Activation of LGR4 by Rspo1 significantly reduced tumor necrosis factor-α (TNFα)-induced cell death, and levels of NF-κB-p65 and caspase-3 in cultured hepatocytes. Knockdown of hepatic LGR4 rendered hepatocytes more vulnerable to TNFα-induced damage in cultured primary cells and in the setting of HIRI and LPS/D-Gal-induced liver injury. Rspo1 potentiated both basal and Wnt3a-induced stabilization of β-catenin. Disruption of β-catenin signaling reversed the protective effects of Rspo1 on TNFα-induced hepatocyte toxicity. LGR4 knockdown increased nuclear translocation of NF-κB-p65 in response to acute injury. Overexpression of IKKβ attenuated the protective effects of Rspo1 on TNFα-induced cell death. In conclusion, the Rspo1-LGR4 system represents a novel pathway for cytoprotection and modulation of stress-induced tissue damage. NEW & NOTEWORTHY Functional LGR4 is present in mature hepatocytes. R-spodin1 protects hepatocytes from tumor necrosis factor-α-induced cell death. Liver-specific knockdown of LGR4 renders liver more susceptible to acute injury. LGR4 protects hepatocytes from injury by inhibition of NF-κB signaling.
Collapse
Affiliation(s)
- Ziru Li
- 1Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Shiying Liu
- 2Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Jianing Lou
- 3Department of Stomatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Michael Mulholland
- 1Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Weizhen Zhang
- 1Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan,2Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
18
|
Bathgate RA, Kocan M, Scott DJ, Hossain MA, Good SV, Yegorov S, Bogerd J, Gooley PR. The relaxin receptor as a therapeutic target – perspectives from evolution and drug targeting. Pharmacol Ther 2018; 187:114-132. [DOI: 10.1016/j.pharmthera.2018.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
R-spondin3-LGR4 signaling protects hepatocytes against DMOG-induced hypoxia/reoxygenation injury through activating β-catenin. Biochem Biophys Res Commun 2018; 499:59-65. [PMID: 29555474 DOI: 10.1016/j.bbrc.2018.03.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND & AIMS Leucine-rich repeat G-protein-coupled receptor 4 (LGR4) and its ligands R-spondin1-4 (Rspos) have been vastly investigated in embryonic development. The biological functions of Rspos-LGR4 system in liver remains largely unknown. Here, we explored whether it protects hepatocytes against hypoxia/reoxygenation (H/R) induced damage. METHODS H/R injury was induced by dimethyloxalylglycine (DMOG) in AML12 cells and the effects of Rspo3 on cell proliferation and apoptosis were assessed. Specific shRNAs were used to interfere LGR4 or β-catenin. RESULTS DMOG caused hepatocytes damage evidenced by increase in HIF-1α, cell death and apoptosis genes p27 and Bax, with concurrent decrease of cell proliferation genes PCNA and CyclinD1. Of all the Rspos, Rspo3 is predominantly expressed in AML12 hepatocytes. Importantly, Rspo3 demonstrated an alteration in a manner similar to proliferation-related genes during H/R injury. Rspo3 pretreatment rendered hepatocytes less vulnerable to DMOG induced H/R injury. Ablation of LGR4 using shRNA attenuated the protective effects of Rspo3. Wnt3a also protected AML12 cells from damages caused by H/R, showing enhanced proliferation activity. Notably, knockdown of β-catenin in hepatocytes completely abolished the effect of Rspo3 pretreatment on the expression levels of PCNA and CyclinD1. CONCLUSION Rspo3-LGR4 axis protects hepatocytes from H/R injury via activating β-catenin.
Collapse
|
20
|
Immunohistochemical mapping and transcript expression of the GPA2/GPB5 receptor in tissues of the adult mosquito, Aedes aegypti. Cell Tissue Res 2017; 369:313-330. [PMID: 28401307 DOI: 10.1007/s00441-017-2610-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
GPA2/GPB5 is a glycoprotein hormone found in most bilateral metazoans including the mosquito, Aedes aegypti. To elucidate physiological roles and functions of GPA2/GPB5, we aim to identify prospective target tissues by examining the tissue- and sex-specific expression profile of its receptor, the leucine-rich repeat-containing G protein-coupled receptor 1 (LGR1) in the adult mosquito. Western analyses using a heterologous system with CHO-K1 cells, transiently expressing A. aegypti LGR1, yielded a 112-kDa monomeric band and high-molecular weight multimers, which associated with membrane-protein fractions. Moreover, immunoblot analyses on protein isolated from HEK 293 T cells stably expressing a fusion construct of A. aegypti LGR1-EGFP (LGR1: 105 kDa+EGFP: 27 kDa) yielded a band with a measured molecular weight of 139 kDa that also associated with membrane-protein fractions and upon deglycosylation, migrated as a lower molecular weight band of 132 kDa. Immunocytochemical analysis of HEK 293 T cells stably expressing this fusion construct confirmed EGFP fluorescence and LGR1-like immunoreactivity colocalized primarily to the plasma membrane. Immunohistochemical mapping in adult mosquitoes revealed LGR1-like immunoreactivity is widespread in the alimentary canal. Importantly, LGR1-like immunoreactivity localizes specifically to basolateral regions of epithelia and, in some regions, appeared as punctate intracellular staining, which together indicates a potential role in feeding and/or hydromineral balance. LGR1 transcript expression was also detected in gut regions that exhibited strong LGR1-like immunoreactivity. Interestingly, LGR1 transcript expression and strong LGR1-like immunoreactivity was also identified in reproductive tissues including the testes and ovaries, which together suggests a potential role linked to spermatogenesis and oogenesis in male and female mosquitoes, respectively.
Collapse
|
21
|
Buckley SJ, Fitzgibbon QP, Smith GG, Ventura T. In silico prediction of the G-protein coupled receptors expressed during the metamorphic molt of Sagmariasus verreauxi (Crustacea: Decapoda) by mining transcriptomic data: RNA-seq to repertoire. Gen Comp Endocrinol 2016; 228:111-127. [PMID: 26850661 DOI: 10.1016/j.ygcen.2016.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Against a backdrop of food insecurity, the farming of decapod crustaceans is a rapidly expanding and globally significant source of food protein. Sagmariasus verreauxi spiny lobster, the subject of this study, are decapods of underdeveloped aquaculture potential. Crustacean neuropeptide G-protein coupled receptors (GPCRs) mediate endocrine pathways that are integral to animal fecundity, growth and survival. The potential use of novel biotechnologies to enhance GPCR-mediated physiology may assist in improving the health and productivity of farmed decapod populations. This study catalogues the GPCRs expressed in the early developmental stages, as well as adult tissues, with a view to illuminating key neuropeptide receptors. De novo assembled contiguous sequences generated from transcriptomic reads of metamorphic and post metamorphic S. verreauxi were filtered for seven transmembrane domains, and used as a reference for iterative re-mapping. Subsequent putative GPCR open reading frames (ORFs) were BLAST annotated, categorised, and compared to published orthologues based on phylogenetic analysis. A total of 85 GPCRs were digitally predicted, that represented each of the four arthropod subfamilies. They generally displayed low-level and non-differential metamorphic expression with few exceptions that we examined using RT-PCR and qPCR. Two putative CHH-like neuropeptide receptors were annotated. Three dimensional structural modelling suggests that these receptors exhibit a conserved extracellular ligand binding pocket, providing support to the notion that these receptors co-evolved with their ligands across Decapoda. This perhaps narrows the search for means to increase productivity of farmed decapod populations.
Collapse
Affiliation(s)
- Sean J Buckley
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Quinn P Fitzgibbon
- Fisheries and Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Gregory G Smith
- Fisheries and Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Tomer Ventura
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia.
| |
Collapse
|
22
|
Audsley N, Down RE. G protein coupled receptors as targets for next generation pesticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:27-37. [PMID: 26226649 DOI: 10.1016/j.ibmb.2015.07.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
There is an on-going need for the discovery and development of new pesticides due to the loss of existing products through the continuing development of resistance, the desire for products with more favourable environmental and toxicological profiles and the need to implement the principles of integrated pest management. Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behaviour, including reproduction, osmoregulation, growth and development. Modifying normal receptor function by blocking or over stimulating its actions may either result in the death of a pest or disrupt its normal fitness or reproductive capacity to reduce pest populations. Hence GPCRs offer potential targets for the development of next generation pesticides providing opportunities to discover new chemistries for invertebrate pest control. Such receptors are important targets for pharmaceutical drugs, but are under-exploited by the agro-chemical industry. The octopamine receptor agonists are the only pesticides with a recognized mode of action, as described in the classification scheme developed by the Insecticide Resistance Action Committee, that act via a GPCR. The availability of sequenced insect genomes has facilitated the characterization of insect GPCRs, but the development and utilization of screening assays to identify lead compounds has been slow. Various studies using knock-down technologies or applying the native ligands and/or neuropeptide analogues to pest insects in vivo, have however demonstrated that modifying normal receptor function can have an insecticidal effect. This review presents examples of potential insect neuropeptide receptors that are potential targets for lead compound development, using case studies from three representative pest species, Tribolium castaneum, Acyrthosiphon pisum, and Drosophila suzukii. Functional analysis studies on T. castaneum suggest that GPCRs involved in growth and development (eclosion hormone, ecdysis triggering hormone and crustacean cardioacceleratory peptide receptors) as well as the dopamine-2 like, latrophilin-like, starry night, frizzled-like, methuselah-like and the smoothened receptors may be suitable pesticide targets. From in vivo studies using native ligands and peptide analogues, receptors which appear to have a role in the regulation of feeding in the pea aphid, such as the PISCF-allatostatin and the various "kinin" receptors, are also potential targets. In Drosophila melanogaster various neuropeptides and their signalling pathways have been studied extensively. This may provide insights into potential pesticide targets that could be exploited in D. suzukii. Examples include the sex peptide receptor, which is involved in reproduction and host seeking behaviours, and those responsible for osmoregulation such as the diuretic hormone receptors. However the neuropeptides and their receptors in insects are often poorly characterized, especially in pest species. Although data from closely related species may be transferable (e.g. D. melanogaster to D. suzukii), peptides and receptors may have different roles in different insects, and hence a target in one insect may not be appropriate in another. Hence fundamental knowledge of the roles and functions of receptors is vital for development to proceed.
Collapse
|
23
|
Graves J, Markman S, Alegranti Y, Gechtler J, Johnson RI, Cagan R, Ben-Menahem D. The LH/CG receptor activates canonical signaling pathway when expressed in Drosophila. Mol Cell Endocrinol 2015; 413:145-56. [PMID: 26112185 DOI: 10.1016/j.mce.2015.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/29/2015] [Accepted: 06/18/2015] [Indexed: 01/12/2023]
Abstract
G-protein coupled receptors (GPCRs) and their ligands provide precise tissue regulation and are therefore often restricted to specific animal phyla. For example, the gonadotropins and their receptors are crucial for vertebrate reproduction but absent from invertebrates. In mammals, LHR mainly couples to the PKA signaling pathway, and CREB is the major transcription factor of this pathway. Here we present the results of expressing elements of the human gonadotropin system in Drosophila. Specifically, we generated transgenic Drosophila expressing the human LH/CG receptor (denoted as LHR), a constitutively active form of LHR, and an hCG analog. We demonstrate activation-dependent signaling by LHR to direct Drosophila phenotypes including lethality and specific midline defects; these phenotypes were due to LHR activation of PKA/CREB pathway activity. That the LHR can act in an invertebrate demonstrates the conservation of factors required for GPCR function among phylogenetically distant organisms. This novel gonadotropin model may assist the identification of new modulators of mammalian fertility by exploiting the powerful genetic and pharmacological tools available in Drosophila.
Collapse
Affiliation(s)
- Justin Graves
- Dept. of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New-York, NY, USA
| | - Svetlana Markman
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yair Alegranti
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jenia Gechtler
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ruth I Johnson
- Dept. of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New-York, NY, USA
| | - Ross Cagan
- Dept. of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New-York, NY, USA
| | - David Ben-Menahem
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
24
|
Koizumi M, Oyama K, Yamakami Y, Kida T, Satoh R, Kato S, Hidema S, Oe T, Goto T, Clevers H, Nawa A, Nishimori K. Lgr4 controls specialization of female gonads in mice. Biol Reprod 2015; 93:90. [PMID: 26333992 DOI: 10.1095/biolreprod.114.123638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 08/18/2015] [Indexed: 11/01/2022] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is a type of membrane receptor with a seven-transmembrane structure. LGR4 is homologous to gonadotropin receptors, such as follicle-stimulating hormone receptor (Fshr) and luteinizing hormone/choriogonadotropin receptor (Lhcgr). Recently, it has been reported that Lgr4 is a membrane receptor for R-spondin ligands, which mediate Wnt/beta-catenin signaling. Defects of R-spondin homolog (Rspo1) and wingless-type MMTV integration site family, member 4 (Wnt4) cause masculinization of female gonads. We observed that Lgr4(-/-) female mice show abnormal development of the Wolffian ducts and somatic cells similar to that in the male gonads. Lgr4(-/-) female mice exhibited masculinization similar to that observed in Rspo1-deficient mice. In Lgr4(-/-) ovarian somatic cells, the expression levels of lymphoid enhancer-binding factor 1 (Lefl) and Axin2 (Axin2), which are target genes of Wnt/beta-catenin signaling, were lower than they were in wild-type mice. This study suggests that Lgr4 is critical for ovarian somatic cell specialization via the cooperative signaling of Rspo1 and Wnt/beta-catenin.
Collapse
Affiliation(s)
- Masae Koizumi
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Japan
| | - Kazunori Oyama
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yukiko Yamakami
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomoyo Kida
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ryo Satoh
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shigeki Kato
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shizu Hidema
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takaaki Goto
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Akihiro Nawa
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Toon, Japan
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
25
|
Van Hiel MB, Vandersmissen HP, Proost P, Vanden Broeck J. Cloning, constitutive activity and expression profiling of two receptors related to relaxin receptors in Drosophila melanogaster. Peptides 2015; 68:83-90. [PMID: 25064813 DOI: 10.1016/j.peptides.2014.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
Leucine-rich repeat containing G protein-coupled receptors (LGRs) comprise a cluster of transmembrane proteins, characterized by the presence of a large N-terminal extracellular domain. This receptor group can be classified into three subtypes. Belonging to the subtype C LGRs are the mammalian relaxin receptors LGR7 (RXFP1) and LGR8 (RXFP2), which mediate important reproductive and other processes. We identified two related receptors in the genome of the fruit fly and cloned their open reading frames into an expression vector. Interestingly, dLGR3 demonstrated constitutive activity at very low doses of transfected plasmid, whereas dLGR4 did not show any basal activity. Both receptors exhibited a similar expression pattern during development, with relatively high transcript levels during the first larval stage. In addition, both receptors displayed higher expression in male adult flies as compared to female flies. Analysis of the tissue distribution of both receptor transcripts revealed a high expression of dLGR3 in the female fat body, while the expression of dLGR4 peaked in the midgut of both the wandering and adult stage.
Collapse
Affiliation(s)
- Matthias B Van Hiel
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, P.O. Box 2465, B-3000 Leuven, Belgium
| | - Hans Peter Vandersmissen
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, P.O. Box 2465, B-3000 Leuven, Belgium
| | - Paul Proost
- Molecular Immunology, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, P.O. Box 1030, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, P.O. Box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
26
|
Nikitin M. Bioinformatic prediction of Trichoplax adhaerens regulatory peptides. Gen Comp Endocrinol 2015; 212:145-55. [PMID: 24747483 DOI: 10.1016/j.ygcen.2014.03.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 01/29/2023]
Abstract
Trichoplax adhaerens (phylum Placozoa) is a very simple organism that lacks a nervous system. However, its genome contains many genes essential for neuronal function and development. I report the results of regulatory peptide predictions for this enigmatic animal. Extensive transcriptome, genome, and predicted proteome mining allowed us to predict four insulins, at least five short peptide precursors, one granulin, one paracrine regulator of cell growth, and one complex temptin-attractin pheromone signaling system. The expression of three insulins, four short peptide precursors, granulin, and one out of the six temptin genes was detected. Five predicted regulatory peptide precursors could potentially release over 60 different mature peptides. Some of the predicted peptides are somewhat similar to anthozoan RW amides, Aplysia pedal peptide 3, and PRQFV amide. Other predicted short peptides could not readily be classified into established families. These data provide the foundation for the molecular, biochemical, physiological, and behavioral studies of one the most primitive animal coordination systems, and give unique insight into the origins and early evolution of the nervous system.
Collapse
Affiliation(s)
- Mikhail Nikitin
- Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119991, Russia.
| |
Collapse
|
27
|
Li Z, Zhang W, Mulholland MW. LGR4 and Its Role in Intestinal Protection and Energy Metabolism. Front Endocrinol (Lausanne) 2015; 6:131. [PMID: 26379625 PMCID: PMC4548225 DOI: 10.3389/fendo.2015.00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 01/04/2023] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptors were identified by the unique nature of their long leucine-rich repeat extracellular domains. Distinct from classical G protein-coupled receptors which act via G proteins, LGR4 functions mainly through Wnt/β-catenin signaling to regulate cell proliferation, differentiation, and adult stem cell homeostasis. LGR4 is widely expressed in tissues ranging from the reproductive system, urinary system, sensory organs, digestive system, and the central nervous system, indicating LGR4 may have multiple functions in development. Here, we focus on the digestive system by reviewing its effects on crypt cells differentiation and stem cells maintenance, which are important for cell regeneration after injury. Through effects on Wnt/β-catenin signaling and cell proliferation, LGR4 and its endogenous ligands, R-spondins, are involved in colon tumorigenesis. LGR4 also contributes to regulation of energy metabolism, including food intake, energy expenditure, and lipid metabolism, as well as pancreatic β-cell proliferation and insulin secretion. This review summarizes the identification of LGR4, its endogenous ligand, ligand-receptor binding and intracellular signaling. Physiological functions include intestinal development and energy metabolism. The potential effects of LGR4 and its ligand in the treatment of inflammatory bowel disease, chemoradiotherapy-induced gut damage, colorectal cancer, and diabetes are also discussed.
Collapse
Affiliation(s)
- Ziru Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Weizhen Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- *Correspondence: Weizhen Zhang, 4618B, MSII, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China, ; Michael W. Mulholland, 1500 East Medical Center Drive, 2101 Taubman Center SPC 5346, Ann Arbor, MI 48109, USA,
| | - Michael W. Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
- *Correspondence: Weizhen Zhang, 4618B, MSII, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China, ; Michael W. Mulholland, 1500 East Medical Center Drive, 2101 Taubman Center SPC 5346, Ann Arbor, MI 48109, USA,
| |
Collapse
|
28
|
Nataraja SG, Yu HN, Palmer SS. Discovery and Development of Small Molecule Allosteric Modulators of Glycoprotein Hormone Receptors. Front Endocrinol (Lausanne) 2015; 6:142. [PMID: 26441832 PMCID: PMC4568768 DOI: 10.3389/fendo.2015.00142] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 11/30/2022] Open
Abstract
Glycoprotein hormones, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and thyroid-stimulating hormone (TSH) are heterodimeric proteins with a common α-subunit and hormone-specific β-subunit. These hormones are dominant regulators of reproduction and metabolic processes. Receptors for the glycoprotein hormones belong to the family of G protein-coupled receptors. FSH receptor (FSHR) and LH receptor are primarily expressed in somatic cells in ovary and testis to promote egg and sperm production in women and men, respectively. TSH receptor is expressed in thyroid cells and regulates the secretion of T3 and T4. Glycoprotein hormones bind to the large extracellular domain of the receptor and cause a conformational change in the receptor that leads to activation of more than one intracellular signaling pathway. Several small molecules have been described to activate/inhibit glycoprotein hormone receptors through allosteric sites of the receptor. Small molecule allosteric modulators have the potential to be administered orally to patients, thus improving the convenience of treatment. It has been a challenge to develop a small molecule allosteric agonist for glycoprotein hormones that can mimic the agonistic effects of the large natural ligand to activate similar signaling pathways. However, in the past few years, there have been several promising reports describing distinct chemical series with improved potency in preclinical models. In parallel, proposal of new structural model for FSHR and in silico docking studies of small molecule ligands to glycoprotein hormone receptors provide a giant leap on the understanding of the mechanism of action of the natural ligands and new chemical entities on the receptors. This review will focus on the current status of small molecule allosteric modulators of glycoprotein hormone receptors, their effects on common signaling pathways in cells, their utility for clinical application as demonstrated in preclinical models, and use of these molecules as novel tools to dissect the molecular signaling pathways of these receptors.
Collapse
Affiliation(s)
- Selvaraj G. Nataraja
- TocopheRx Inc., Burlington, MA, USA
- *Correspondence: Selvaraj G. Nataraja, TocopheRx Inc., 15 New England Executive Park, Suite 1087, Burlington, MA 01803, USA,
| | - Henry N. Yu
- TocopheRx Inc., Burlington, MA, USA
- EMD Serono Research and Development Institute Inc., Billerica, MA, USA
| | | |
Collapse
|
29
|
Szkudlinski MW. New Frontier in Glycoprotein Hormones and Their Receptors Structure-Function. Front Endocrinol (Lausanne) 2015; 6:155. [PMID: 26539160 PMCID: PMC4609891 DOI: 10.3389/fendo.2015.00155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/18/2015] [Indexed: 01/27/2023] Open
Abstract
Last two decades of structure-function studies performed in numerous laboratories provided substantial progress in understanding basic science, physiological, pathophysiological, pharmacological, and comparative aspects of glycoprotein hormones (GPHs) and their cognate receptors. Multiple concepts and models developed based on experimental data in the past stood the test of time and have been, at least in part, confirmed and/or remained compatible with the new structures resolved at the atomic level. Major advances in understanding of the ligand-receptor relationships are heralding the dawn of a new era for GPHs and their receptors, although many basic questions still remain unanswered. This article examines retrospectively several basic science aspects of GPH super-agonists and related "biosuperiors" in a broader context of the advances in the ligand-receptor structure-function relationships and new mechanistic models generated based on the structure elucidation. Due to selective focus of my comments and perspectives in certain parts, the reader is directed to the most relevant publications and reviews in the field for more comprehensive analyses.
Collapse
Affiliation(s)
- Mariusz W. Szkudlinski
- Trophogen Inc., Rockville, MD, USA
- *Correspondence: Mariusz W. Szkudlinski, Trophogen Inc., 9714 Medical Center Drive, Rockville, MD, USA,
| |
Collapse
|
30
|
Xu JG, Huang C, Yang Z, Jin M, Fu P, Zhang N, Luo J, Li D, Liu M, Zhou Y, Zhu Y. Crystal structure of LGR4-Rspo1 complex: insights into the divergent mechanisms of ligand recognition by leucine-rich repeat G-protein-coupled receptors (LGRs). J Biol Chem 2014; 290:2455-65. [PMID: 25480784 DOI: 10.1074/jbc.m114.599134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeat G-protein-coupled receptors (LGRs) are a unique class of G-protein-coupled receptors characterized by a large extracellular domain to recognize ligands and regulate many important developmental processes. Among the three groups of LGRs, group B members (LGR4-6) recognize R-spondin family proteins (Rspo1-4) to stimulate Wnt signaling. In this study, we successfully utilized the "hybrid leucine-rich repeat technique," which fused LGR4 with the hagfish VLR protein, to obtain two recombinant human LGR4 proteins, LGR415 and LGR49. We determined the crystal structures of ligand-free LGR415 and the LGR49-Rspo1 complex. LGR4 exhibits a twisted horseshoe-like structure. Rspo1 adopts a flat and β-fold architecture and is bound in the concave surface of LGR4 in the complex through electrostatic and hydrophobic interactions. All the Rspo1-binding residues are conserved in LGR4-6, suggesting that LGR4-6 bind R-spondins through an identical surface. Structural analysis of our LGR4-Rspo1 complex with the previously determined LGR4 and LGR5 structures revealed that the concave surface of LGR4 is the sole binding site for R-spondins, suggesting a one-site binding model of LGR4-6 in ligand recognition. The molecular mechanism of LGR4-6 is distinct from the two-step mechanism of group A receptors LGR1-3 and the multiple-interface binding model of group C receptors LGR7-8, suggesting LGRs utilize the divergent mechanisms for ligand recognition. Our structures, together with previous reports, provide a comprehensive understanding of the ligand recognition by LGRs.
Collapse
Affiliation(s)
- Jin-Gen Xu
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Chunfeng Huang
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Zhengfeng Yang
- the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mengmeng Jin
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Panhan Fu
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Ni Zhang
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Jian Luo
- the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dali Li
- the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- the Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yan Zhou
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| | - Yongqun Zhu
- From the Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058 and
| |
Collapse
|
31
|
Yegorov S, Bogerd J, Good SV. The relaxin family peptide receptors and their ligands: new developments and paradigms in the evolution from jawless fish to mammals. Gen Comp Endocrinol 2014; 209:93-105. [PMID: 25079565 DOI: 10.1016/j.ygcen.2014.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
Relaxin family peptide receptors (Rxfps) and their ligands, relaxin (Rln) and insulin-like (Insl) peptides, are broadly implicated in the regulation of reproductive and neuroendocrine processes in mammals. Most placental mammals harbour genes for four receptors, namely rxfp1, rxfp2, rxfp3 and rxfp4. The number and identity of rxfps in other vertebrates are immensely variable, which is probably attributable to intraspecific variation in reproductive and neuroendocrine regulation. Here, we highlight several interesting, but greatly overlooked, aspects of the rln/insl-rxfp evolutionary history: the ancient origin, recruitment of novel receptors, diverse roles of selection, differential retention and lineage-specific loss of genes over evolutionary time. The tremendous diversity of rln/insl and rxfp genes appears to have arisen from two divergent receptors and one ligand that were duplicated by whole genome duplications (WGD) in early vertebrate evolution, although several genes, notably relaxin in mammals, were also duplicated via small scale duplications. Duplication and loss of genes have varied across lineages: teleosts retained more WGD-derived genes, dominated by those thought to be involved in neuroendocrine regulation (rln3, insl5 and rxfp 3/4 genes), while eutherian mammals witnessed the diversification and rapid evolution of genes involved in reproduction (rln/insl3). Several genes that arose early in evolutionary history were lost in most mammals, but retained in teleosts and, to a lesser extent, in early diverging tetrapods. To elaborate on their evolutionary history, we provide updated phylogenies of the Rxfp1/2 and Rxfp3/4 receptors and their ligands, including new sequences from early diverging vertebrate taxa such as coelacanth, skate, spotted gar, and lamprey. We also summarize the recent progress made towards understanding the functional biology of Rxfps in non-mammalian taxa, providing a new conceptual framework for research on Rxfp signaling across vertebrates.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada
| | - Jan Bogerd
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sara V Good
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada.
| |
Collapse
|
32
|
Harwood BN, Draper I, Kopin AS. Targeted inactivation of the rickets receptor in muscle compromises Drosophila viability. ACTA ACUST UNITED AC 2014; 217:4091-8. [PMID: 25278473 DOI: 10.1242/jeb.110098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bursicon is a hormone that modulates wing expansion, cuticle hardening and melanization in Drosophila melanogaster. Bursicon activity is mediated through its cognate G protein-coupled receptor (GPCR), rickets. We have developed a membrane-tethered bursicon construct that enables spatial modulation of rickets-mediated physiology in transgenic flies. Ubiquitous expression of tethered bursicon throughout development results in arrest at the pupal stage. The few organisms that eclose fail to undergo wing expansion. These phenotypes suggest that expression of tethered bursicon inhibits rickets-mediated function. Consistent with this hypothesis, we show in vitro that sustained stimulation of rickets by tethered bursicon leads to receptor desensitization. Furthermore, tissue-specific expression of the tethered bursicon inhibitor unraveled a critical role for rickets in a subset of adult muscles. Taken together, our findings highlight the utility of membrane-tethered inhibitors as important genetic/pharmacological tools to dissect the tissue-specific roles of GPCRs in vivo.
Collapse
Affiliation(s)
- Benjamin N Harwood
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, 800 Washington St, Box 7703, Boston, MA 02111, USA Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, 145 Harrison Avenue, Boston, MA 02111, USA
| | - Isabelle Draper
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, 800 Washington St, Box 7703, Boston, MA 02111, USA
| | - Alan S Kopin
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, 800 Washington St, Box 7703, Boston, MA 02111, USA Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, 145 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
33
|
Roch GJ, Sherwood NM. Glycoprotein hormones and their receptors emerged at the origin of metazoans. Genome Biol Evol 2014; 6:1466-79. [PMID: 24904013 PMCID: PMC4079206 DOI: 10.1093/gbe/evu118] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cystine knot growth factor (CKGF) superfamily includes important secreted developmental regulators, including the families of transforming growth factor beta, nerve growth factor, platelet-derived growth factor, and the glycoprotein hormones (GPHs). The evolutionary origin of the GPHs and the related invertebrate bursicon hormone, and their characteristic receptors, contributes to an understanding of the endocrine system in metazoans. Using a sensitive search method with hidden Markov models, we identified homologs of the hormones and receptors, along with the closely related bone morphogenetic protein (BMP) antagonists in basal metazoans. In sponges and a comb jelly, cystine knot hormones (CKHs) with mixed features of GPHs, bursicon, and BMP antagonists were identified using primary sequence and phylogenetic analysis. Also, we identified potential receptors for these CKHs, leucine-rich repeat-containing G protein-coupled receptors (LGRs), in the same species. Cnidarians, such as the sea anemone, coral, and hydra, diverged later in metazoan evolution and appear to have duplicated and differentiated CKH-like peptides resulting in bursicon/GPH-like peptides and several BMP antagonists: Gremlin (Grem), sclerostin domain containing (SOSD), neuroblastoma suppressor of tumorigenicity 1 (NBL1), and Norrie disease protein. An expanded cnidarian LGR group also evolved, including receptors for GPH and bursicon. With the appearance of bilaterians, a separate GPH (thyrostimulin) along with bursicon and BMP antagonists were present. Synteny indicates that the GPHs, Grem, and SOSD have been maintained in a common gene neighborhood throughout much of metazoan evolution. The stable and highly conserved CKGFs are not identified in nonmetazoan organisms but are established with their receptors in the basal metazoans, becoming critical to growth, development, and regulation in all animals.
Collapse
Affiliation(s)
- Graeme J Roch
- Department of Biology, University of Victoria, British Columbia, Canada
| | - Nancy M Sherwood
- Department of Biology, University of Victoria, British Columbia, Canada
| |
Collapse
|
34
|
Abstract
Adult stem cells are controlled by an intricate interplay of potent Wnt agonists, antagonists, and anti-antagonists. This review by de Lau et al. focuses on the complex physical and functional interactions of three recently discovered protein families that control stem cell activity by regulating surface expression of Wnt receptors: Lgr5 and its homologs, the E3 ligases Rnf43 and Znrf3, and the secreted R-spondin ligands. Lgr5 was originally discovered as a common Wnt target gene in adult intestinal crypts and colon cancer. It was subsequently identified as an exquisite marker of multiple Wnt-driven adult stem cell types. Lgr5 and its homologs, Lgr4 and Lgr6, constitute the receptors for R-spondins, potent Wnt signal enhancers and stem cell growth factors. The Lgr5/R-spondin complex acts by neutralizing Rnf43 and Znrf3, two transmembrane E3 ligases that remove Wnt receptors from the stem cell surface. Rnf43/Znrf3 are themselves encoded by Wnt target genes and constitute a negative Wnt feedback loop. Thus, adult stem cells are controlled by an intricate interplay of potent Wnt agonists, antagonists, and anti-antagonists.
Collapse
Affiliation(s)
- Wim de Lau
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | | | | | | |
Collapse
|
35
|
Li JY, Chai B, Zhang W, Fritze DM, Zhang C, Mulholland MW. LGR4 and its ligands, R-spondin 1 and R-spondin 3, regulate food intake in the hypothalamus of male rats. Endocrinology 2014; 155:429-40. [PMID: 24280058 PMCID: PMC3891940 DOI: 10.1210/en.2013-1550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamus plays a key role in the regulation of feeding behavior. Several hypothalamic nuclei, including the arcuate nucleus (ARC), paraventricular nucleus, and ventromedial nucleus of the hypothalamus (VMH), are involved in energy homeostasis. Analysis of microarray data derived from ARC revealed that leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) is highly expressed. LGR4, LGR5, and LGR6 form a subfamily of closely related receptors. Recently, R-spondin (Rspo) family proteins were identified as ligands of the LGR4 subfamily. In the present study, we investigated the distribution and function of LGR4-LGR6 and Rspos (1-4) in the brain of male rat. In situ hybridization showed that LGR4 is expressed in the ARC, VMH, and median eminence of the hypothalamus. LGR4 colocalizes with neuropeptide Y, proopiomelanocortin, and brain-derived neurotrophic factor neurons. LGR5 is not detectable with in situ hybridization; LGR6 is only expressed in the epithelial lining of the lower portion of the third ventricle and median eminence. Rspo1 is expressed in the VMH and down-regulated with fasting. Rspo3 is expressed in the paraventricular nucleus and also down-regulated with fasting. Rspos 1 and 3 colocalize with the neuronal marker HuD, indicating that they are expressed by neurons. Injection of Rspo1 or Rspo3 into the third brain ventricle inhibited food intake. Rspo1 decreased neuropeptide Y and increased proopiomelanocortin expression in the ARC. Rspo1 and Rspo3 mRNA is up-regulated by insulin. These data indicate that Rspo1 and Rspo3 and their receptor LGR4 form novel circuits in the brain to regulate energy homeostasis.
Collapse
Affiliation(s)
- Ji-Yao Li
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109-0346
| | | | | | | | | | | |
Collapse
|
36
|
Zhou J, Chen Y, Huang Y, Long J, Wan F, Zhang S. Serum follicle-stimulating hormone level is associated with human epidermal growth factor receptor type 2 and Ki67 expression in post-menopausal females with breast cancer. Oncol Lett 2013; 6:1128-1132. [PMID: 24137476 PMCID: PMC3796423 DOI: 10.3892/ol.2013.1516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/25/2013] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine the association between levels of the gender hormones, follicle-stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P) and prolactin (PRL), and two breast cancer molecular markers, human epidermal growth factor receptor 2 (Her-2) and Ki67, in post-menopausal patients with breast cancer. A retrospective study of the serum hormone levels of FSH, LH, P and PRL and the expression status of Her-2 and Ki67 was performed using 187 post-menopausal females with breast cancer. Her-2+ breast cancer patients exhibited higher serum FSH levels compared with Her-2− patients (69.47±3.219 vs. 58.56±1.516 IU/l). The patients with high Ki67 expression [immunohistochemistry (IHC), 3+] displayed higher FSH (72.51±4.616 vs. 60.53±1.476 IU/l) and LH (32.33±1.916 vs. 26.98±0.8852 IU/l) levels than those with lower Ki67 expression. No correlation was identified between the FSH, LH, P and PRL hormone levels, tumor stages and lymphovascular invasion (LVI). In conclusion, a higher serum FSH level was identified in Her-2+ post-menopausal patients with breast cancer. Higher serum FSH and LH levels were also observed in breast cancer patients with high Ki67 expression. FSH and LH may function in the progression of breast cancer.
Collapse
Affiliation(s)
- Jun Zhou
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences of Zhejiang, Cancer Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China ; Department of Surgery, The Women's Hospital of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | | | | | | | | | | |
Collapse
|
37
|
Modern methods to investigate the oligomerization of glycoprotein hormone receptors (TSHR, LHR, FSHR). Methods Enzymol 2013; 521:367-83. [PMID: 23351750 DOI: 10.1016/b978-0-12-391862-8.00020-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
As for other GPCRs, the oligomerization of glycoprotein hormone receptors (GPHRs) appears as critical event for receptor function. By means of modern techniques based on the BRET or FRET principle, GPHR oligomerization has been reported to explain several physiological and pathological conditions. In particular, the presence of oligomers was demonstrated not only in in vitro heterologous systems but also in in vivo tissues, and GPHR homodimerization appears associated with strong negative cooperativity, thus suggesting that one hormone molecule may be sufficient for receptor dimer stimulation. In addition, oligomerization has been reported to occur early during the posttranslational maturation process and to be involved in the dominant negative effect exerted by loss-of-function TSH receptor (TSHR) mutants, that are prevalently retained inside the cell, on the surface expression of wild-type receptors. This molecular mechanism thus explains the dominant inheritance of certain forms of TSH resistance. Here, we provide the description of the methods used in the original BRET, FRET, and HTRF-RET experiments.
Collapse
|
38
|
Troppmann B, Kleinau G, Krause G, Gromoll J. Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Hum Reprod Update 2013; 19:583-602. [DOI: 10.1093/humupd/dmt023] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Harwood BN, Fortin JP, Gao K, Chen C, Beinborn M, Kopin AS. Membrane tethered bursicon constructs as heterodimeric modulators of the Drosophila G protein-coupled receptor rickets. Mol Pharmacol 2013; 83:814-21. [PMID: 23340494 DOI: 10.1124/mol.112.081570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study of complex heterodimeric peptide ligands has been hampered by a paucity of pharmacological tools. To facilitate such investigations, we have explored the utility of membrane tethered ligands (MTLs). Feasibility of this recombinant approach was explored with a focus on Drosophila bursicon, a heterodimeric cystine-knot protein that activates the G protein-coupled receptor rickets (rk). Rk/bursicon signaling is an evolutionarily conserved pathway in insects required for wing expansion, cuticle hardening, and melanization during development. We initially engineered two distinct MTL constructs, each composed of a type II transmembrane domain, a peptide linker, and a C terminal extracellular ligand that corresponded to either the α or β bursicon subunit. Coexpression of the two complementary bursicon MTLs triggered rk-mediated signaling in vitro. We were then able to generate functionally active bursicon MTLs in which the two subunits were fused into a single heterodimeric peptide, oriented as either α-β or β-α. Carboxy-terminal deletion of 32 amino acids in the β-α MTL construct resulted in loss of agonist activity. Coexpression of this construct with rk inhibited receptor-mediated signaling by soluble bursicon. We have thus generated membrane-anchored bursicon constructs that can activate or inhibit rk signaling. These probes can be used in future studies to explore the tissue and/or developmental stage-dependent effects of bursicon in the genetically tractable Drosophila model organism. In addition, our success in generating functionally diverse bursicon MTLs offers promise that such technology can be broadly applied to other complex ligands, including the family of mammalian cystine-knot proteins.
Collapse
Affiliation(s)
- Benjamin N Harwood
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) have an early evolutionary origin and are already abundant in basal animals with primitive nervous systems such as cnidarians (Hydra, jellyfishes, corals, and sea anemones). Most animals emerging after the Cnidaria belong to two evolutionary lineages, the Protostomia (to which the majority of invertebrates belong) and Deuterostomia (to which some minor groups of invertebrates, and all vertebrates belong). These two lineages split about 700 million years (Myr) ago. Many mammalian neuropeptide GPCRs have orthologues in the Protostomia and this is also true for some of the mammalian neuropeptides. Examples are oxytocin/vasopressin, GnRH, gastrin/CCK, and neuropeptide Y and their GPCRs. These results implicate that protostomes (for example insects and nematodes) can be used as models to study the biology of neuropeptide signaling.
Collapse
|
41
|
Osigus HJ, Eitel M, Schierwater B. Chasing the urmetazoon: striking a blow for quality data? Mol Phylogenet Evol 2012; 66:551-7. [PMID: 22683435 DOI: 10.1016/j.ympev.2012.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
Abstract
The ever-lingering question: "What did the urmetazoan look like?" has not lost its charm, appeal or elusiveness for one and a half centuries. A solid amount of organismal data give what some feel is a clear answer (e.g. Placozoa are at the base of the metazoan tree of life (ToL)), but a diversity of modern molecular data gives almost as many answers as there are exemplars, and even the largest molecular data sets could not solve the question and sometimes even suggest obvious zoological nonsense. Since the problems involved in this phylogenetic conundrum encompass a wide array of analytical freedom and uncertainty it seems questionable whether a further increase in molecular data (quantity) can solve this classical deep phylogeny problem. This review thus strikes a blow for evaluating quality data (including morphological, molecule morphologies, gene arrangement, and gene loss versus gene gain data) in an appropriate manner.
Collapse
Affiliation(s)
- Hans-Jürgen Osigus
- ITZ, Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Germany
| | | | | |
Collapse
|
42
|
De Loof A, Lindemans M, Liu F, De Groef B, Schoofs L. Endocrine archeology: do insects retain ancestrally inherited counterparts of the vertebrate releasing hormones GnRH, GHRH, TRH, and CRF? Gen Comp Endocrinol 2012; 177:18-27. [PMID: 22402582 DOI: 10.1016/j.ygcen.2012.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 01/20/2012] [Accepted: 02/03/2012] [Indexed: 11/28/2022]
Abstract
Vertebrate releasing hormones include gonadotropin releasing hormone (GnRH), growth hormone releasing hormone (GHRH), corticotropin releasing hormone (CRF), and thyrotropin-releasing hormone (TRH). They are synthesized in the hypothalamus and stimulate the release of pituitary hormones. Here we review the knowledge on hormone releasing systems in the protostomian lineage. We address the question: do insects have peptides that may be phylogenetically related to an ancestral GnRH, GHRH, TRH, and CRF? Such endocrine archeology has become possible thanks to the growing list of fully sequenced genomes as well as to the continuously improving bioinformatic tool set. It has recently been shown that the ecdysozoan (nematodes and arthropods) adipokinetic hormones (AKHs), the lophotrochozoan (annelids and mollusks) GnRHs as well as the protochordate GnRHs are structurally related. The adipokinetic hormone precursor-related peptides (APRPs), in locusts encoded by the same gene that contains the AKH-coding region, have been forwarded as the structural counterpart of GHRH of vertebrates. CRF is relatively well conserved in insects, in which it functions as a diuretic hormone. Members of TRH-receptor family seem to have been conserved in some arthropods, but other elements of the thyroid hormone signaling system are not. A challenging idea is that in insects the functions of the thyroid hormones were taken over by juvenile hormone (JH). Our reconstruction suggests that, perhaps, the ancestral releasing hormone precursors played a role in controlling energy metabolism and water balance, and that releasing hormone functions as present in extant vertebrates were probably secondarily acquired.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | | | | | | | | |
Collapse
|
43
|
Identification and developmental expression of leucine-rich repeat-containing G protein-coupled receptor 6 (lgr6) in the medaka fish, Oryzias latipes. Dev Genes Evol 2012; 222:217-27. [PMID: 22576653 DOI: 10.1007/s00427-012-0403-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
G protein-coupled receptors are critical regulators of diverse developmental processes such as oocyte maturation, fertilization, gastrulation, and organogenesis. To further study the molecular mechanisms underlying these processes, we cloned and characterized the orphan leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), a stem cell marker in mammalian hair follicles, in medaka fish, Oryzias latipes. To examine the expression pattern of lgr6, we performed whole-mount in situ hybridization (WISH) during embryogenesis. The expression of lgr6 was first detected as a band in the anterior part of the posterior brain vesicle in 0.5-1 day post fertilization (dpf) embryos. This band disappeared by 2 dpf, but new signals appeared in the otic vesicles bordering the original band and also detected in the nasal placode and posterior lateral line primordia. At later stages (3-5 dpf), lgr6 was widely expressed in the brain, otic vesicle, neuromasts, root of the pectoral fin, cranial cartilage, and gut. Then, we conducted more detailed expression analysis of lgr6 in adult gut using WISH and immunohistochemical staining. Lgr6-positive cells were detected in the crypt-like proliferative zone and in parts of the villus. We also performed RT-PCR of mRNAs from different tissues. The lgr6 mRNA was found highest in the kidney and gill. The transcript was also present in the brain, heart, liver, spleen, intestine, skeletal muscle, testis, and ovary, similar to that of mammalian LGR6. These results suggest that medaka lgr6 plays an important role in organ development during embryogenesis and serves as a good molecular marker for future studies of postembryonic organ-specific development in mammals.
Collapse
|
44
|
Van Hiel MB, Vandersmissen HP, Van Loy T, Vanden Broeck J. An evolutionary comparison of leucine-rich repeat containing G protein-coupled receptors reveals a novel LGR subtype. Peptides 2012; 34:193-200. [PMID: 22100731 DOI: 10.1016/j.peptides.2011.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
Leucine-rich repeat containing G protein-coupled receptors or LGRs are receptors with important functions in development and reproduction. Belonging to this evolutionarily conserved group of receptors are the well-studied glycoprotein hormone receptors and relaxin receptors in mammals, as well as the bursicon receptor, which triggers cuticle hardening and tanning in freshly enclosed insects. In this study, the numerous LGR sequences in different animal phyla are analyzed and compared. Based on these data a phylogenetic tree was generated. This information sheds new light on structural and evolutionary aspects regarding this receptor group. Apart from vertebrates and insects, LGRs are also present in early chordates (Urochordata, Cephalochordata and Hyperoartia) and other arthropods (Arachnida and Branchiopoda) as well as in Mollusca, Echinodermata, Hemichordata, Nematoda, and even in ancient animal life forms, such as Cnidaria and Placozoa. Three distinct types of LGR exist, distinguishable by their number of leucine-rich repeats (LRRs), their type-specific hinge region and the presence or absence of an LDLa motif. Type C LGRs containing only one LDLa (C1 subtype) appear to be present in nearly all animal phyla. We here describe a second subtype, C2, containing multiple LDLa motifs, which was discovered in echinoderms, mollusks and in one insect species (Pediculus humanis corporis). In addition, eight putative LGRs can be predicted from the genome data of the placozoan species Trichoplax adhaerens. They may represent an ancient form of the LGRs, however, more genomic data will be required to confirm this hypothesis.
Collapse
Affiliation(s)
- Matthias B Van Hiel
- Zoological Institute of the Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
45
|
LRR conservation mapping to predict functional sites within protein leucine-rich repeat domains. PLoS One 2011; 6:e21614. [PMID: 21789174 PMCID: PMC3138743 DOI: 10.1371/journal.pone.0021614] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022] Open
Abstract
Computational prediction of protein functional sites can be a critical first step for analysis of large or complex proteins. Contemporary methods often require several homologous sequences and/or a known protein structure, but these resources are not available for many proteins. Leucine-rich repeats (LRRs) are ligand interaction domains found in numerous proteins across all taxonomic kingdoms, including immune system receptors in plants and animals. We devised Repeat Conservation Mapping (RCM), a computational method that predicts functional sites of LRR domains. RCM utilizes two or more homologous sequences and a generic representation of the LRR structure to identify conserved or diversified patches of amino acids on the predicted surface of the LRR. RCM was validated using solved LRR+ligand structures from multiple taxa, identifying ligand interaction sites. RCM was then used for de novo dissection of two plant microbe-associated molecular pattern (MAMP) receptors, EF-TU RECEPTOR (EFR) and FLAGELLIN-SENSING 2 (FLS2). In vivo testing of Arabidopsis thaliana EFR and FLS2 receptors mutagenized at sites identified by RCM demonstrated previously unknown functional sites. The RCM predictions for EFR, FLS2 and a third plant LRR protein, PGIP, compared favorably to predictions from ODA (optimal docking area), Consurf, and PAML (positive selection) analyses, but RCM also made valid functional site predictions not available from these other bioinformatic approaches. RCM analyses can be conducted with any LRR-containing proteins at www.plantpath.wisc.edu/RCM, and the approach should be modifiable for use with other types of repeat protein domains.
Collapse
|
46
|
Wen Z, Gulia M, Clark KD, Dhara A, Crim JW, Strand MR, Brown MR. Two insulin-like peptide family members from the mosquito Aedes aegypti exhibit differential biological and receptor binding activities. Mol Cell Endocrinol 2010; 328:47-55. [PMID: 20643184 PMCID: PMC2957182 DOI: 10.1016/j.mce.2010.07.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/21/2010] [Accepted: 07/01/2010] [Indexed: 12/21/2022]
Abstract
Insects encode multiple ILPs but only one homolog of the vertebrate IR that activates the insulin-signaling pathway. However, it remains unclear whether all insect ILPs are high affinity ligands for the IR or have similar biological functions. The yellow fever mosquito, Aedes aegypti, encodes eight ILPs with prior studies strongly implicating ILPs from the brain in regulating metabolism and the maturation of eggs following blood feeding. Here we addressed whether two ILP family members expressed in the brain, ILP4 and ILP3, have overlapping functional and receptor binding activities. Our results indicated that ILP3 exhibits strong insulin-like activity by elevating carbohydrate and lipid storage in sugar-fed adult females, whereas ILP4 does not. In contrast, both ILPs exhibited dose-dependent gonadotropic activity in blood-fed females as measured by the stimulation of ovaries to produce ecdysteroids and the uptake of yolk by primary oocytes. Binding studies using ovary membranes indicated that ILP4 and ILP3 do not cross compete; a finding further corroborated by cross-linking and immunoblotting experiments showing that ILP3 binds the MIR while ILP4 binds an unknown 55kDa membrane protein. In contrast, each ILP activated the insulin-signaling pathway in ovaries as measured by enhanced phosphorylation of Akt. RNAi and inhibitor studies further indicated that the gonadotropic activity of ILP4 and ILP3 requires the MIR and a functional insulin-signaling pathway. Taken together, our results indicate that two members of the Ae. aegypti ILP family exhibit partially overlapping biological activity and different binding interactions with the MIR.
Collapse
Affiliation(s)
- Zhimou Wen
- Department of Entomology, University of Georgia, USA
| | - Monika Gulia
- Department of Entomology, University of Georgia, USA
| | | | - Animesh Dhara
- Neuroscience Division of the Biomedical Health Sciences Institute, University of Georgia, USA
| | - Joe W. Crim
- Department of Cellular Biology, University of Georgia, USA
| | - Michael R. Strand
- Department of Entomology, University of Georgia, USA
- Corresponding authors at: University of Georgia, Department of Entomology, 413 Biological Sciences Building, Athens, GA 30602, USA. Tel 706-542-2371; fax: 706-542-2271, (M. R. Brown), (M. R. Strand)
| | - Mark R. Brown
- Department of Entomology, University of Georgia, USA
- Corresponding authors at: University of Georgia, Department of Entomology, 413 Biological Sciences Building, Athens, GA 30602, USA. Tel 706-542-2371; fax: 706-542-2271, (M. R. Brown), (M. R. Strand)
| |
Collapse
|
47
|
Hansen KK, Stafflinger E, Schneider M, Hauser F, Cazzamali G, Williamson M, Kollmann M, Schachtner J, Grimmelikhuijzen CJP. Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. J Biol Chem 2010; 285:10736-47. [PMID: 20068045 PMCID: PMC2856281 DOI: 10.1074/jbc.m109.045369] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/04/2009] [Indexed: 11/06/2022] Open
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) play a central role in the physiology of insects. One large family of insect neuropeptides are the adipokinetic hormones (AKHs), which mobilize lipids and carbohydrates from the insect fat body. Other peptides are the corazonins that are structurally related to the AKHs but represent a different neuropeptide signaling system. We have previously cloned an orphan GPCR from the malaria mosquito Anopheles gambiae that was structurally intermediate between the A. gambiae AKH and corazonin GPCRs. Using functional expression of the receptor in cells in cell culture, we have now identified the ligand for this orphan receptor as being pQVTFSRDWNAamide, a neuropeptide that is structurally intermediate between AKH and corazonin and that we therefore named ACP (AKH/corazonin-related peptide). ACP does not activate the A. gambiae AKH and corazonin receptors and, vice versa, AKH and corazonin do not activate the ACP receptor, showing that the ACP/receptor couple is an independent and so far unknown peptidergic signaling system. Because ACP is structurally intermediate between AKH and corazonin and the ACP receptor between the AKH and corazonin receptors, this is a prominent example of receptor/ligand co-evolution, probably originating from receptor and ligand gene duplications followed by mutations and evolutionary selection, thereby yielding three independent hormonal systems. The ACP signaling system occurs in the mosquitoes A. gambiae, Aedes aegypti, and Culex pipiens (Diptera), the silkworm Bombyx mori (Lepidoptera), the red flour beetle Tribolium castaneum (Coleoptera), the parasitic wasp Nasonia vitripennis (Hymenoptera), and the bug Rhodnius prolixus (Hemiptera). However, the ACP system is not present in 12 Drosophila species (Diptera), the honeybee Apis mellifera (Hymenoptera), the pea aphid Acyrthosiphon pisum (Hemiptera), the body louse Pediculus humanus (Phthiraptera), and the crustacean Daphnia pulex, indicating that it has been lost several times during arthropod evolution. In particular, this frequent loss of hormonal systems is unique for arthropods compared with vertebrates.
Collapse
Affiliation(s)
- Karina K. Hansen
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Elisabeth Stafflinger
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Martina Schneider
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Frank Hauser
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Giuseppe Cazzamali
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Michael Williamson
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Martin Kollmann
- the Department of Animal Physiology, University of Marburg, D-35032 Marburg, Germany
| | - Joachim Schachtner
- the Department of Animal Physiology, University of Marburg, D-35032 Marburg, Germany
| | - Cornelis J. P. Grimmelikhuijzen
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| |
Collapse
|
48
|
Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgård R, Clevers H. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 2010; 327:1385-9. [PMID: 20223988 DOI: 10.1126/science.1184733] [Citation(s) in RCA: 585] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mammalian epidermis consists of three self-renewing compartments: the hair follicle, the sebaceous gland, and the interfollicular epidermis. We generated knock-in alleles of murine Lgr6, a close relative of the Lgr5 stem cell gene. Lgr6 was expressed in the earliest embryonic hair placodes. In adult hair follicles, Lgr6+ cells resided in a previously uncharacterized region directly above the follicle bulge. They expressed none of the known bulge stem cell markers. Prenatal Lgr6+ cells established the hair follicle, sebaceous gland, and interfollicular epidermis. Postnatally, Lgr6+ cells generated sebaceous gland and interfollicular epidermis, whereas contribution to hair lineages gradually diminished with age. Adult Lgr6+ cells executed long-term wound repair, including the formation of new hair follicles. We conclude that Lgr6 marks the most primitive epidermal stem cell.
Collapse
Affiliation(s)
- Hugo J Snippert
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Neuropeptide Receptors as Possible Targets for Development of Insect Pest Control Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 692:211-26. [DOI: 10.1007/978-1-4419-6902-6_11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Anctil M. Chemical transmission in the sea anemone Nematostella vectensis: A genomic perspective. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 4:268-289. [PMID: 20403752 DOI: 10.1016/j.cbd.2009.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/30/2009] [Accepted: 07/07/2009] [Indexed: 12/30/2022]
Abstract
The sequencing of the starlet sea anemone (Nematostella vectensis) genome provides opportunities to investigate the function and evolution of genes associated with chemical neurotransmission and hormonal signaling. This is of particular interest because sea anemones are anthozoans, the phylogenetically basal cnidarians least changed from the common ancestors of cnidarians and bilaterian animals, and because cnidarians are considered the most basal metazoans possessing a nervous system. This analysis of the genome has yielded 20 orthologues of enzymes and nicotinic receptors associated with cholinergic function, an even larger number of genes encoding enzymes, receptors and transporters for glutamatergic (28) and GABAergic (34) transmission, and two orthologues of purinergic receptors. Numerous genes encoding enzymes (14), receptors (60) and transporters (5) for aminergic transmission were identified, along with four adenosine-like receptors and one nitric oxide synthase. Diverse neuropeptide and hormone families are also represented, mostly with genes encoding prepropeptides and receptors related to varying closeness to RFamide (17) and tachykinin (14), but also galanin (8), gonadotropin-releasing hormones and vasopressin/oxytocin (5), melanocortins (11), insulin-like peptides (5), glycoprotein hormones (7), and uniquely cnidarian peptide families (44). Surprisingly, no muscarinic acetylcholine receptors were identified and a large number of melatonin-related, but not serotonin, orthologues were found. Phylogenetic tree construction and inspection of multiple sequence alignments reveal how evolutionarily and functionally distant chemical transmitter-related proteins are from those of higher metazoans.
Collapse
Affiliation(s)
- Michel Anctil
- Département de sciences biologiques and Centre de recherches en sciences neurologiques, Université de Montréal, Case postale 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7.
| |
Collapse
|