1
|
Shimakawa G, Müller P, Miyake C, Krieger-Liszkay A, Sétif P. Photo-oxidative damage of photosystem I by repetitive flashes and chilling stress in cucumber leaves. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149490. [PMID: 38960078 DOI: 10.1016/j.bbabio.2024.149490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Photosystem I (PSI) is an essential protein complex for oxygenic photosynthesis and is also known to be an important source of reactive oxygen species (ROS) in the light. When ROS are generated within PSI, the photosystem can be damaged. The so-called PSI photoinhibition is a lethal event for oxygenic phototrophs, and it is prevented by keeping the reaction center chlorophyll (P700) oxidized in excess light conditions. Whereas regulatory mechanisms for controlling P700 oxidation have been discovered already, the molecular mechanism of PSI photoinhibition is still unclear. Here, we characterized the damage mechanism of PSI photoinhibition by in vitro transient absorption and electron paramagnetic resonance (EPR) spectroscopy in isolated PSI from cucumber leaves that had been subjected to photoinhibition treatment. Photodamage to PSI was induced by two different light treatments: 1. continuous illumination with high light at low (chilling) temperature (C/LT) and 2. repetitive flashes at room temperature (F/RT). These samples were compared to samples that had been illuminated with high light at room temperature (C/RT). The [FeS] clusters FX and (FA FB) were destructed in C/LT but not in F/RT. Transient absorption spectroscopy indicated that half of the charge separation was impaired in F/RT, however, low-temperature EPR revealed the light-induced FX signal at a similar size as in the case of C/RT. This indicates that the two branches of electron transfer in PSI were affected differently. Electron transfer at the A-branch was inhibited in F/RT and also partially in C/LT, while the B-branch remained active.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, 91198 Gif-sur-Yvette, France; Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Pavel Müller
- Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Chikahiro Miyake
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Anja Krieger-Liszkay
- Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, 91198 Gif-sur-Yvette, France.
| | - Pierre Sétif
- Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Kato K, Nakajima Y, Xing J, Kumazawa M, Ogawa H, Shen JR, Ifuku K, Nagao R. Structural basis for molecular assembly of fucoxanthin chlorophyll a/ c-binding proteins in a diatom photosystem I supercomplex. eLife 2024; 13:RP99858. [PMID: 39480899 DOI: 10.7554/elife.99858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein-protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms.
Collapse
Affiliation(s)
- Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Jian Xing
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Minoru Kumazawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
3
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
4
|
Degen GE, Johnson MP. Photosynthetic control at the cytochrome b6f complex. THE PLANT CELL 2024; 36:4065-4079. [PMID: 38668079 PMCID: PMC11449013 DOI: 10.1093/plcell/koae133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/18/2024] [Indexed: 10/05/2024]
Abstract
Photosynthetic control (PCON) is a protective mechanism that prevents light-induced damage to PSI by ensuring the rate of NADPH and ATP production via linear electron transfer (LET) is balanced by their consumption in the CO2 fixation reactions. Protection of PSI is a priority for plants since they lack a dedicated rapid-repair cycle for this complex, meaning that any damage leads to prolonged photoinhibition and decreased growth. The imbalance between LET and the CO2 fixation reactions is sensed at the level of the transthylakoid ΔpH, which increases when light is in excess. The canonical mechanism of PCON involves feedback control by ΔpH on the plastoquinol oxidation step of LET at cytochrome b6f. PCON thereby maintains the PSI special pair chlorophylls (P700) in an oxidized state, which allows excess electrons unused in the CO2 fixation reactions to be safely quenched via charge recombination. In this review we focus on angiosperms, consider how photo-oxidative damage to PSI comes about, explore the consequences of PSI photoinhibition on photosynthesis and growth, discuss recent progress in understanding PCON regulation, and finally consider the prospects for its future manipulation in crop plants to improve photosynthetic efficiency.
Collapse
Affiliation(s)
- Gustaf E Degen
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
5
|
Kehler T, Szewczyk S, Gibasiewicz K. Dependence of Protein Immobilization and Photocurrent Generation in PSI-FTO Electrodes on the Electrodeposition Parameters. Int J Mol Sci 2024; 25:9772. [PMID: 39337260 PMCID: PMC11431872 DOI: 10.3390/ijms25189772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the immobilization of cyanobacterial photosystem I (PSI) from Synechocystis sp. PCC 6803 onto fluorine-doped tin oxide (FTO) conducting glass plates to create photoelectrodes for biohybrid solar cells. The fabrication of these PSI-FTO photoelectrodes is based on two immobilization processes: rapid electrodeposition driven by an external electric field and slower adsorption during solvent evaporation, both influenced by gravitational sedimentation. Deposition and performance of photoelectrodes was investigated by UV-Vis absorption spectroscopy and photocurrent measurements. We investigated the efficiency of PSI immobilization under varying conditions, including solution pH, applied electric field intensity and duration, and electrode polarization, with the goals to control (1) the direction of migration and (2) the orientation of the PSI particles on the substrate surface. Variation in the pH value of the PSI solution alters the surface charge distribution, affecting the net charge and the electric dipole moment of these proteins. Results showed PSI migration to the positively charged electrode at pH 6, 7, and 8, and to the negatively charged electrode at pH 4.4 and 5, suggesting an isoelectric point of PSI between 5 and 6. At acidic pH, the electrophoretic migration was largely hindered by protein aggregation. Notably, photocurrent generation was consistently cathodic and correlated with PSI layer thickness, and no conclusions can be drawn on the orientation of the immobilized proteins. Overall, these findings suggest mediated electron transfer from FTO to PSI by the used electrolyte containing 10 mM sodium ascorbate and 200 μM dichlorophenolindophenol.
Collapse
Affiliation(s)
- Theresa Kehler
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Sebastian Szewczyk
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Santabarbara S, Casazza AP. Thermodynamic Factors Controlling Electron Transfer among the Terminal Electron Acceptors of Photosystem I: Insights from Kinetic Modelling. Int J Mol Sci 2024; 25:9795. [PMID: 39337283 PMCID: PMC11432928 DOI: 10.3390/ijms25189795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Photosystem I is a key component of primary energy conversion in oxygenic photosynthesis. Electron transfer reactions in Photosystem I take place across two parallel electron transfer chains that converge after a few electron transfer steps, sharing both the terminal electron acceptors, which are a series of three iron-sulphur (Fe-S) clusters known as FX, FA, and FB, and the terminal donor, P700. The two electron transfer chains show kinetic differences which are, due to their close geometrical symmetry, mainly attributable to the tuning of the physicochemical reactivity of the bound cofactors, exerted by the protein surroundings. The factors controlling the rate of electron transfer between the terminal Fe-S clusters are still not fully understood due to the difficulties of monitoring these events directly. Here we present a discussion concerning the driving forces associated with electron transfer between FX and FA as well as between FA and FB, employing a tunnelling-based description of the reaction rates coupled with the kinetic modelling of forward and recombination reactions. It is concluded that the reorganisation energy for FX- oxidation shall be lower than 1 eV. Moreover, it is suggested that the analysis of mutants with altered FA redox properties can also provide useful information concerning the upstream phylloquinone cofactor energetics.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy;
| | | |
Collapse
|
7
|
Almazova N, Aubry S, Tsironis GP. Targeted Energy Transfer Dynamics and Chemical Reactions. ENTROPY (BASEL, SWITZERLAND) 2024; 26:753. [PMID: 39330086 PMCID: PMC11431403 DOI: 10.3390/e26090753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024]
Abstract
Ultrafast reaction processes take place when resonant features of nonlinear model systems are taken into account. In the targeted energy or electron transfer dimer model this is accomplished through the implementation of nonlinear oscillators with opposing types of nonlinearities, one attractive while the second repulsive. In the present work, we show that this resonant behavior survives if we take into account the vibrational degrees of freedom as well. After giving a summary of the basic formalism of chemical reactions we show that resonant electron transfer can be assisted by vibrations. We find the condition for this efficient transfer and show that in the case of additional interaction with noise, a distinct non-Arrhenius behavior develops that is markedly different from the usual Kramers-like activated transfer.
Collapse
Affiliation(s)
- Natalya Almazova
- Institute of Theoretical and Computational Physics, Department of Physics, University of Crete, 71003 Heraklion, Greece
| | - Serge Aubry
- Institute of Theoretical and Computational Physics, Department of Physics, University of Crete, 71003 Heraklion, Greece
| | - Giorgos P Tsironis
- Institute of Theoretical and Computational Physics, Department of Physics, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
8
|
Nagao R, Yamamoto H, Ogawa H, Ito H, Yamamoto Y, Suzuki T, Kato K, Nakajima Y, Dohmae N, Shen JR. Presence of low-energy chlorophylls d in photosystem I trimer and monomer cores isolated from Acaryochloris sp. NBRC 102871. PHOTOSYNTHESIS RESEARCH 2024; 161:203-212. [PMID: 38935195 DOI: 10.1007/s11120-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Acaryochloris species belong to a special category of cyanobacteria possessing chlorophyll (Chl) d. One of the photosynthetic characteristics of Acaryochloris marina MBIC11017 is that the absorption spectra of photosystem I (PSI) showed almost no bands and shoulders of low-energy Chls d over 740 nm. In contrast, the absorption spectra of other Acaryochloris species showed a shoulder around 740 nm, suggesting that low-energy Chls d within PSI are diversified among Acaryochloris species. In this study, we purified PSI trimer and monomer cores from Acaryochloris sp. NBRC 102871 and examined their protein and pigment compositions and spectral properties. The protein bands and pigment compositions of the PSI trimer and monomer of NBRC102871 were virtually identical to those of MBIC11017. The absorption spectra of the NBRC102871 PSIs exhibited a shoulder around 740 nm, whereas the fluorescence spectra of PSI trimer and monomer displayed maximum peaks at 754 and 767 nm, respectively. These spectral properties were different from those of MBIC11017, indicating the presence of low-energy Chls d within the NBRC102871 PSIs. Moreover, we analyzed the NBRC102871 genome to identify amino acid sequences of PSI proteins and compared them with those of the A. marina MBIC11017 and MBIC10699 strains whose genomes are available. The results showed that some of the sequences in NBRC102871 were distinct from those in MBIC11017 and MBIC10699. These findings provide insights into the variety of low-energy Chls d with respect to the protein environments of PSI cores among the three Acaryochloris strains.
Collapse
Affiliation(s)
- Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hibiki Ito
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Yuma Yamamoto
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
9
|
Suzuki T, Ogawa H, Dohmae N, Shen JR, Ehira S, Nagao R. Strong interaction of CpcL with photosystem I cores induced in heterocysts of Anabaena sp. PCC 7120. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001183. [PMID: 38863983 PMCID: PMC11165356 DOI: 10.17912/micropub.biology.001183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Phycobilisomes (PBSs) are photosynthetic light-harvesting antennae and appear to be loosely bound to photosystem I (PSI). We previously found unique protein bands in each PSI fraction in heterocysts of Anabaena sp. PCC 7120 by two-dimensional blue native/SDS-PAGE; however, the protein bands have not been identified. Here we analyzed the protein bands by mass spectrometry, which were identified as CpcL, one of the components in PBSs. As different composition and organization of Anabaena PSI-PBS supercomplexes were observed, the expression and binding properties of PBSs including CpcL to PSIs in this cyanobacterium may be diversified in response to its living environments.
Collapse
Affiliation(s)
- Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Shigeki Ehira
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
10
|
Li J, Zhang S, Lei P, Guo L, Zhao X, Meng F. Physiological and Proteomic Responses of the Tetraploid Robinia pseudoacacia L. to High CO 2 Levels. Int J Mol Sci 2024; 25:5262. [PMID: 38791300 PMCID: PMC11121411 DOI: 10.3390/ijms25105262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The increase in atmospheric CO2 concentration is a significant factor in triggering global warming. CO2 is essential for plant photosynthesis, but excessive CO2 can negatively impact photosynthesis and its associated physiological and biochemical processes. The tetraploid Robinia pseudoacacia L., a superior and improved variety, exhibits high tolerance to abiotic stress. In this study, we investigated the physiological and proteomic response mechanisms of the tetraploid R. pseudoacacia under high CO2 treatment. The results of our physiological and biochemical analyses revealed that a 5% high concentration of CO2 hindered the growth and development of the tetraploid R. pseudoacacia and caused severe damage to the leaves. Additionally, it significantly reduced photosynthetic parameters such as Pn, Gs, Tr, and Ci, as well as respiration. The levels of chlorophyll (Chl a and b) and the fluorescent parameters of chlorophyll (Fm, Fv/Fm, qP, and ETR) also significantly decreased. Conversely, the levels of ROS (H2O2 and O2·-) were significantly increased, while the activities of antioxidant enzymes (SOD, CAT, GR, and APX) were significantly decreased. Furthermore, high CO2 induced stomatal closure by promoting the accumulation of ROS and NO in guard cells. Through a proteomic analysis, we identified a total of 1652 DAPs after high CO2 treatment. GO functional annotation revealed that these DAPs were mainly associated with redox activity, catalytic activity, and ion binding. KEGG analysis showed an enrichment of DAPs in metabolic pathways, secondary metabolite biosynthesis, amino acid biosynthesis, and photosynthetic pathways. Overall, our study provides valuable insights into the adaptation mechanisms of the tetraploid R. pseudoacacia to high CO2.
Collapse
Affiliation(s)
- Jianxin Li
- College of Forestry and Grassland, Jilin Agriculture University, Changchun 130118, China; (J.L.); (P.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (L.G.)
| | - Subin Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (L.G.)
| | - Pei Lei
- College of Forestry and Grassland, Jilin Agriculture University, Changchun 130118, China; (J.L.); (P.L.)
| | - Liyong Guo
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (L.G.)
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agriculture University, Changchun 130118, China; (J.L.); (P.L.)
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Changchun 130118, China
| | - Fanjuan Meng
- College of Forestry and Grassland, Jilin Agriculture University, Changchun 130118, China; (J.L.); (P.L.)
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Changchun 130118, China
| |
Collapse
|
11
|
Kirpich JS, Luo L, Nelson MR, Agarwala N, Xu W, Hastings G. Is the A -1 Pigment in Photosystem I Part of P700? A (P700 +-P700) FTIR Difference Spectroscopy Study of A -1 Mutants. Int J Mol Sci 2024; 25:4839. [PMID: 38732056 PMCID: PMC11084411 DOI: 10.3390/ijms25094839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The involvement of the second pair of chlorophylls, termed A-1A and A-1B, in light-induced electron transfer in photosystem I (PSI) is currently debated. Asparagines at PsaA600 and PsaB582 are involved in coordinating the A-1B and A-1A pigments, respectively. Here we have mutated these asparagine residues to methionine in two single mutants and a double mutant in PSI from Synechocystis sp. PCC 6803, which we term NA600M, NB582M, and NA600M/NB582M mutants. (P700+-P700) FTIR difference spectra (DS) at 293 K were obtained for the wild-type and the three mutant PSI samples. The wild-type and mutant FTIR DS differ considerably. This difference indicates that the observed changes in the (P700+-P700) FTIR DS cannot be due to only the PA and PB pigments of P700. Comparison of the wild-type and mutant FTIR DS allows the assignment of different features to both A-1 pigments in the FTIR DS for wild-type PSI and assesses how these features shift upon cation formation and upon mutation. While the exact role the A-1 pigments play in the species we call P700 is unclear, we demonstrate that the vibrational modes of the A-1A and A-1B pigments are modified upon P700+ formation. Previously, we showed that the A-1 pigments contribute to P700 in green algae. In this manuscript, we demonstrate that this is also the case in cyanobacterial PSI. The nature of the mutation-induced changes in algal and cyanobacterial PSI is similar and can be considered within the same framework, suggesting a universality in the nature of P700 in different photosynthetic organisms.
Collapse
Affiliation(s)
- Julia S. Kirpich
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Lujun Luo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Michael R. Nelson
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Neva Agarwala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
12
|
Luo L, Martin AP, Tandoh EK, Chistoserdov A, Slipchenko LV, Savikhin S, Xu W. Impact of Peripheral Hydrogen Bond on Electronic Properties of the Primary Acceptor Chlorophyll in the Reaction Center of Photosystem I. Int J Mol Sci 2024; 25:4815. [PMID: 38732034 PMCID: PMC11084960 DOI: 10.3390/ijms25094815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Photosystem I (PS I) is a photosynthetic pigment-protein complex that absorbs light and uses the absorbed energy to initiate electron transfer. Electron transfer has been shown to occur concurrently along two (A- and B-) branches of reaction center (RC) cofactors. The electron transfer chain originates from a special pair of chlorophyll a molecules (P700), followed by two chlorophylls and one phylloquinone in each branch (denoted as A-1, A0, A1, respectively), converging in a single iron-sulfur complex Fx. While there is a consensus that the ultimate electron donor-acceptor pair is P700+A0-, the involvement of A-1 in electron transfer, as well as the mechanism of the very first step in the charge separation sequence, has been under debate. To resolve this question, multiple groups have targeted electron transfer cofactors by site-directed mutations. In this work, the peripheral hydrogen bonds to keto groups of A0 chlorophylls have been disrupted by mutagenesis. Four mutants were generated: PsaA-Y692F; PsaB-Y667F; PsaB-Y667A; and a double mutant PsaA-Y692F/PsaB-Y667F. Contrary to expectations, but in agreement with density functional theory modeling, the removal of the hydrogen bond by Tyr → Phe substitution was found to have a negligible effect on redox potentials and optical absorption spectra of respective chlorophylls. In contrast, Tyr → Ala substitution was shown to have a fatal effect on the PS I function. It is thus inferred that PsaA-Y692 and PsaB-Y667 residues have primarily structural significance, and their ability to coordinate respective chlorophylls in electron transfer via hydrogen bond plays a minor role.
Collapse
Affiliation(s)
- Lujun Luo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; (L.L.)
| | - Antoine P. Martin
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA
| | - Elijah K. Tandoh
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; (L.L.)
| | - Andrei Chistoserdov
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | | | - Sergei Savikhin
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; (L.L.)
| |
Collapse
|
13
|
Das B, Bora SR, Bishen SM, Mishra H, Kalita DJ, Wahab A. Photophysics of a Monoannulated Indigo: Intra- and Intermolecular Charge Transfer. J Phys Chem A 2024; 128:2565-2573. [PMID: 38513220 DOI: 10.1021/acs.jpca.3c07763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
In the present work, the photoinduced charge-transfer (CT) behavior of 7-phenyl-6H-pyrido[1,2-a:3,4-b']diindole-6,13(12H)-dione (HCB) as a function of solvent polarity is reported by UV-vis absorption, steady-state and time-resolved fluorescence, and quantum chemical calculations. Calculated excited state energies of HCB at the B3PW91/6-31+G* level in vacuo and in solvents fulfill the energy requirements for singlet fission, which is the most promising path for the generation of highly efficient solar cells. The calculated potential energy curve for the compound reveals that the keto form is the predominant form in the ground state. Large bathochromic shifts in fluorescence with decreasing trends of quantum yield and lifetime indicate the occurrence of intramolecular CT from the indole bicycle to the indolinone moiety of HCB in highly polar solvents. The observed quenching of HCB fluorescence in different solvents without altering the spectral shape upon addition of a donor, triethylamine, is attributed to intermolecular CT, and it was examined in terms of the Stern-Volmer kinetics. The thermodynamics of photoinduced CT processes in HCB was analyzed using the measured photophysical data and cyclic voltammetric redox potentials via the Rehm-Weller equation. Analyses with the semiclassical Marcus theory suggest that both the CT processes fall under the Marcus normal region.
Collapse
Affiliation(s)
- Bidyut Das
- Department of Chemistry, Cotton University, Guwahati 781 001, Assam, India
| | - Smiti Rani Bora
- Department of Chemistry, Gauhati University, Guwahati 781 014, Assam, India
| | - Siddharth Mall Bishen
- Physics Section MMV, Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | - Hirdyesh Mishra
- Physics Section MMV, Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | | | - Abdul Wahab
- Department of Chemistry, Cotton University, Guwahati 781 001, Assam, India
| |
Collapse
|
14
|
Hao T, Xu Y, Liang C, Peng X, Yu S, Peng L. Establishing an efficient membrane bioreactor for simultaneous pollutant removal and purple bacteria production under salinity stress. CHEMOSPHERE 2024; 353:141535. [PMID: 38403121 DOI: 10.1016/j.chemosphere.2024.141535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Recovering resources from wastewater to alleviate the energy crisis has become the prevailing trend of technological development. Purple phototrophic bacteria (PPB), a group of fast-growing microbes, have been widely noticed for their potential in producing value-added products from waste streams. However, saline contents in these waste streams, such as food processing wastewater pose a big challenge, which not only restrain the pollutant removal efficiency, but also hinder the growth of functional microbes. To overcome this, a photo anaerobic membrane bioreactor cultivating PPB (PPB-MBR) was constructed and its performance upon long-term salinity stress was investigated. PPB-MBR achieved desirable pollutants removal performance with the average COD and NH4+ removal efficiency being 87% (±8%, n = 87) and 89% (±10%, n = 87), respectively during long-term exposure to salinity stress of 1-80 g NaCl L-1. PPB were predominant during the entire operation period of 87 days (60%-80%), obtaining maximum biomass yield of 0.67 g biomass g-1 CODremoved and protein productivity of 0.18 g L-1 d-1 at the salinity level of 20 g NaCl L-1 and 60 g NaCl L-1, respectively. The sum of value-added products in proportion to the biomass reached 58% at maximum at the salinity level of 60 g NaCl L-1 with protein, pigments and trehalose contributing to 44%, 8.7%, and 5%, respectively. Based on economic analysis, the most cost-saving scenario treating food processing wastewater was revealed at salinity level of around 20 g NaCl L-1. However, more optimization tools are needed to boost the production efficiency so that the profit from value-added products can outweigh the additional cost by excess salinity in the future implication.
Collapse
Affiliation(s)
- Tianqi Hao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Xiaoshuai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| |
Collapse
|
15
|
Zazubovich V, Jankowiak R. High-Resolution Frequency-Domain Spectroscopic and Modeling Studies of Photosystem I (PSI), PSI Mutants and PSI Supercomplexes. Int J Mol Sci 2024; 25:3850. [PMID: 38612659 PMCID: PMC11011720 DOI: 10.3390/ijms25073850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Photosystem I (PSI) is one of the two main pigment-protein complexes where the primary steps of oxygenic photosynthesis take place. This review describes low-temperature frequency-domain experiments (absorption, emission, circular dichroism, resonant and non-resonant hole-burned spectra) and modeling efforts reported for PSI in recent years. In particular, we focus on the spectral hole-burning studies, which are not as common in photosynthesis research as the time-domain spectroscopies. Experimental and modeling data obtained for trimeric cyanobacterial Photosystem I (PSI3), PSI3 mutants, and PSI3-IsiA18 supercomplexes are analyzed to provide a more comprehensive understanding of their excitonic structure and excitation energy transfer (EET) processes. Detailed information on the excitonic structure of photosynthetic complexes is essential to determine the structure-function relationship. We will focus on the so-called "red antenna states" of cyanobacterial PSI, as these states play an important role in photochemical processes and EET pathways. The high-resolution data and modeling studies presented here provide additional information on the energetics of the lowest energy states and their chlorophyll (Chl) compositions, as well as the EET pathways and how they are altered by mutations. We present evidence that the low-energy traps observed in PSI are excitonically coupled states with significant charge-transfer (CT) character. The analysis presented for various optical spectra of PSI3 and PSI3-IsiA18 supercomplexes allowed us to make inferences about EET from the IsiA18 ring to the PSI3 core and demonstrate that the number of entry points varies between sample preparations studied by different groups. In our most recent samples, there most likely are three entry points for EET from the IsiA18 ring per the PSI core monomer, with two of these entry points likely being located next to each other. Therefore, there are nine entry points from the IsiA18 ring to the PSI3 trimer. We anticipate that the data discussed below will stimulate further research in this area, providing even more insight into the structure-based models of these important cyanobacterial photosystems.
Collapse
Affiliation(s)
- Valter Zazubovich
- Department of Physics, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
16
|
Cherepanov D, Aybush A, Johnson TW, Shelaev I, Gostev F, Mamedov M, Nadtochenko V, Semenov A. Inverted region in the reaction of the quinone reduction in the A 1-site of photosystem I from cyanobacteria. PHOTOSYNTHESIS RESEARCH 2024; 159:115-131. [PMID: 37093503 DOI: 10.1007/s11120-023-01020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Photosystem I from the menB strain of Synechocystis sp. PCC 6803 containing foreign quinones in the A1 sites was used for studying the primary steps of electron transfer by pump-probe femtosecond laser spectroscopy. The free energy gap (- ΔG) of electron transfer between the reduced primary acceptor A0 and the quinones bound in the A1 site varied from 0.12 eV for the low-potential 1,2-diamino-anthraquinone to 0.88 eV for the high-potential 2,3-dichloro-1,4-naphthoquinone, compared to 0.5 eV for the native phylloquinone. It was shown that the kinetics of charge separation between the special pair chlorophyll P700 and the primary acceptor A0 was not affected by quinone substitutions, whereas the rate of A0 → A1 electron transfer was sensitive to the redox-potential of quinones: the decrease of - ΔG by 400 meV compared to the native phylloquinone resulted in a ~ fivefold slowing of the reaction The presence of the asymmetric inverted region in the ΔG dependence of the reaction rate indicates that the electron transfer in photosystem I is controlled by nuclear tunneling and should be treated in terms of quantum electron-phonon interactions. A three-mode implementation of the multiphonon model, which includes modes around 240 cm-1 (large-scale protein vibrations), 930 cm-1 (out-of-plane bending of macrocycles and protein backbone vibrations), and 1600 cm-1 (double bonds vibrations) was applied to rationalize the observed dependence. The modes with a frequency of at least 1600 cm-1 make the predominant contribution to the reorganization energy, while the contribution of the "classical" low-frequency modes is only 4%.
Collapse
Affiliation(s)
- Dmitry Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991.
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992.
| | - Arseny Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - T Wade Johnson
- Department of Chemistry, Susquehanna University, 514 University Ave., Selinsgrove, PA, 17870, USA
| | - Ivan Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - Fedor Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - Mahir Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992
| | - Victor Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, Russia, 119991
| | - Alexey Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991.
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992.
| |
Collapse
|
17
|
Gollan PJ, Grebe S, Roling L, Grimm B, Spetea C, Aro E. Photosynthetic and transcriptome responses to fluctuating light in Arabidopsis thylakoid ion transport triple mutant. PLANT DIRECT 2023; 7:e534. [PMID: 37886682 PMCID: PMC10598627 DOI: 10.1002/pld3.534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
Fluctuating light intensity challenges fluent photosynthetic electron transport in plants, inducing photoprotection while diminishing carbon assimilation and growth, and also influencing photosynthetic signaling for regulation of gene expression. Here, we employed in vivo chlorophyll-a fluorescence and P700 difference absorption measurements to demonstrate the enhancement of photoprotective energy dissipation of both photosystems in wild-type Arabidopsis thaliana after 6 h exposure to fluctuating light as compared with constant light conditions. This acclimation response to fluctuating light was hampered in a triple mutant lacking the thylakoid ion transport proteins KEA3, VCCN1, and CLCe, leading to photoinhibition of photosystem I. Transcriptome analysis revealed upregulation of genes involved in biotic stress and defense responses in both genotypes after exposure to fluctuating as compared with constant light, yet these responses were demonstrated to be largely upregulated in triple mutant already under constant light conditions compared with wild type. The current study illustrates the rapid acclimation of plants to fluctuating light, including photosynthetic, transcriptomic, and metabolic adjustments, and highlights the connection among thylakoid ion transport, photosynthetic energy balance, and cell signaling.
Collapse
Affiliation(s)
- Peter J. Gollan
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Steffen Grebe
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
- Present address:
Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS)University of HelsinkiHelsinkiFinland
| | - Lena Roling
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Cornelia Spetea
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Eva‐Mari Aro
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
18
|
Passantino JM, Christiansen BA, Nabhan MA, Parkerson ZJ, Oddo TD, Cliffel DE, Jennings GK. Photoactive and conductive biohybrid films by polymerization of pyrrole through voids in photosystem I multilayer films. NANOSCALE ADVANCES 2023; 5:5301-5308. [PMID: 37767044 PMCID: PMC10521210 DOI: 10.1039/d3na00354j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The combination of conducting polymers with electro- and photoactive proteins into thin films holds promise for advanced energy conversion materials and devices. The emerging field of protein electronics requires conductive soft materials in a composite with electrically insulating proteins. The electropolymerization of pyrrole through voids in a drop-casted photosystem I (PSI) multilayer film enables the straightforward fabrication of photoactive and conductive biohybrid films. The rate of polypyrrole (PPy) growth is reduced by the presence of the PSI film but is insensitive to its thickness, suggesting that rapid diffusion of pyrrole through the voids within the PSI film enables initiation at vacant areas on the gold surface. The base thickness of the composite tends to increase with time, as PPy chains propagate through and beyond the PSI film, coalescing to exhibit a tubule-like morphology as observed by scanning electron microscopy. Increasing amounts of PPy greatly increase the capacitance of the composite films in a manner almost identical to that of pure PPy films grown from unmodified gold, consistent with a high polymer/aqueous interfacial area and a conductive composite film. While PPy is not photoactive here, all composite films, including those with large amounts of PPy, exhibit photocurrents when irradiated by white light in the presence of redox mediator species. Optimization of the Py electropolymerization time is necessary, as increasing amounts of PPy lead to decreased photocurrent density due to a combination of light absorbance by the polymer and reduced accessibility of redox species to active PSI sites.
Collapse
Affiliation(s)
- Joshua M Passantino
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - Blake A Christiansen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - Marc A Nabhan
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - Zane J Parkerson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - Tyler D Oddo
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University Nashville TN 37235-1822 USA
| | - G Kane Jennings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235-1604 USA
| |
Collapse
|
19
|
Nagao R, Ogawa H, Tsuboshita N, Kato K, Toyofuku R, Tomo T, Shen JR. Isolation and characterization of trimeric and monomeric PSI cores from Acaryochloris marina MBIC11017. PHOTOSYNTHESIS RESEARCH 2023; 157:55-63. [PMID: 37199910 DOI: 10.1007/s11120-023-01025-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Photosystem I (PSI) catalyzes light-induced electron-transfer reactions and has been observed to exhibit various oligomeric states and different energy levels of chlorophylls (Chls) in response to oligomerization. However, the biochemical and spectroscopic properties of a PSI monomer containing Chls d are not well understood. In this study, we successfully isolated and characterized PSI monomers from the cyanobacterium Acaryochloris marina MBIC11017, and compared their properties with those of the A. marina PSI trimer. The PSI trimers and monomers were prepared using trehalose density gradient centrifugation after anion-exchange and hydrophobic interaction chromatography. The polypeptide composition of the PSI monomer was found to be consistent with that of the PSI trimer. The absorption spectrum of the PSI monomer showed the Qy band of Chl d at 704 nm, which was blue-shifted from the peak at 707 nm observed in the PSI-trimer spectrum. The fluorescence-emission spectrum of the PSI monomer measured at 77 K exhibited a peak at 730 nm without a broad shoulder in the range of 745-780 nm, which was clearly observed in the PSI-trimer spectrum. These spectroscopic properties of the A. marina PSI trimer and monomer suggest different formations of low-energy Chls d between the two types of PSI cores. Based on these findings, we discuss the location of low-energy Chls d in A. marina PSIs.
Collapse
Affiliation(s)
- Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Naoki Tsuboshita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Reona Toyofuku
- Department of Physics, Graduate School of Science, Tokyo University of Science, Tokyo, 162-8601, Japan
| | - Tatsuya Tomo
- Department of Physics, Graduate School of Science, Tokyo University of Science, Tokyo, 162-8601, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
20
|
Mishima E, Wahida A, Seibt T, Conrad M. Diverse biological functions of vitamin K: from coagulation to ferroptosis. Nat Metab 2023:10.1038/s42255-023-00821-y. [PMID: 37337123 DOI: 10.1038/s42255-023-00821-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/12/2023] [Indexed: 06/21/2023]
Abstract
Vitamin K is essential for several physiological processes, such as blood coagulation, in which it serves as a cofactor for the conversion of peptide-bound glutamate to γ-carboxyglutamate in vitamin K-dependent proteins. This process is driven by the vitamin K cycle facilitated by γ-carboxyglutamyl carboxylase, vitamin K epoxide reductase and ferroptosis suppressor protein-1, the latter of which was recently identified as the long-sought-after warfarin-resistant vitamin K reductase. In addition, vitamin K has carboxylation-independent functions. Akin to ubiquinone, vitamin K acts as an electron carrier for ATP production in some organisms and prevents ferroptosis, a type of cell death hallmarked by lipid peroxidation. In this Perspective, we provide an overview of the diverse functions of vitamin K in physiology and metabolism and, at the same time, offer a perspective on its role in ferroptosis together with ferroptosis suppressor protein-1. A comparison between vitamin K and ubiquinone, from an evolutionary perspective, may offer further insights into the manifold roles of vitamin K in biology.
Collapse
Affiliation(s)
- Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tobias Seibt
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
21
|
Nagao R, Ueno Y, Furutani M, Kato K, Shen JR, Akimoto S. Biochemical and spectroscopic characterization of PSI-LHCI from the red alga Cyanidium caldarium. PHOTOSYNTHESIS RESEARCH 2023; 156:315-323. [PMID: 36781711 DOI: 10.1007/s11120-023-00999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/12/2023] [Indexed: 05/23/2023]
Abstract
Light-harvesting complexes (LHCs) have been diversified in oxygenic photosynthetic organisms, and play an essential role in capturing light energy which is transferred to two types of photosystem cores to promote charge-separation reactions. Red algae are one of the groups of photosynthetic eukaryotes, and their chlorophyll (Chl) a-binding LHCs are specifically associated with photosystem I (PSI). In this study, we purified three types of preparations, PSI-LHCI supercomplexes, PSI cores, and isolated LHCIs, from the red alga Cyanidium caldarium, and examined their properties. The polypeptide bands of PSI-LHCI showed characteristic PSI and LHCI components without contamination by other proteins. The carotenoid composition of LHCI displayed zeaxanthins, β-cryptoxanthins, and β-carotenes. Among the carotenoids, zeaxanthins were enriched in LHCI. On the contrary, both zeaxanthins and β-cryptoxanthins could not be detected from PSI, suggesting that zeaxanthins and β-cryptoxanthins are bound to LHCI but not PSI. A Qy peak of Chl a in the absorption spectrum of LHCI was shifted to a shorter wavelength than those in PSI and PSI-LHCI. This tendency is in line with the result of fluorescence-emission spectra, in which the emission maxima of PSI-LHCI, PSI, and LHCI appeared at 727, 719, and 677 nm, respectively. Time-resolved fluorescence spectra of LHCI represented no 719 and 727-nm fluorescence bands from picoseconds to nanoseconds. These results indicate that energy levels of Chls around/within LHCIs and within PSI are changed by binding LHCIs to PSI. Based on these findings, we discuss the expression, function, and structure of red algal PSI-LHCI supercomplexes.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama-shi, Okayama, 700-8530, Japan.
- Faculty of Agriculture, Shizuoka University, Shizuoka-shi, Shizuoka, 422-8529, Japan.
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe-shi, Hyogo, 657-8501, Japan
- Institute of Arts and Science, Tokyo University of Science, Shinjyuku-ku, Tokyo, 162-8601, Japan
| | - Miyu Furutani
- Graduate School of Science, Kobe University, Kobe-shi, Hyogo, 657-8501, Japan
| | - Koji Kato
- Structural Biology Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-Gun, Hyogo, 679-5198, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama-shi, Okayama, 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe-shi, Hyogo, 657-8501, Japan.
| |
Collapse
|
22
|
Reiter S, Kiss FL, Hauer J, de Vivie-Riedle R. Thermal site energy fluctuations in photosystem I: new insights from MD/QM/MM calculations. Chem Sci 2023; 14:3117-3131. [PMID: 36970098 PMCID: PMC10034153 DOI: 10.1039/d2sc06160k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Cyanobacterial photosystem I (PSI) is one of the most efficient photosynthetic machineries found in nature. Due to the large scale and complexity of the system, the energy transfer mechanism from the antenna complex to the reaction center is still not fully understood. A central element is the accurate evaluation of the individual chlorophyll excitation energies (site energies). Such an evaluation must include a detailed treatment of site specific environmental influences on structural and electrostatic properties, but also their evolution in the temporal domain, because of the dynamic nature of the energy transfer process. In this work, we calculate the site energies of all 96 chlorophylls in a membrane-embedded model of PSI. The employed hybrid QM/MM approach using the multireference DFT/MRCI method in the QM region allows to obtain accurate site energies under explicit consideration of the natural environment. We identify energy traps and barriers in the antenna complex and discuss their implications for energy transfer to the reaction center. Going beyond previous studies, our model also accounts for the molecular dynamics of the full trimeric PSI complex. Via statistical analysis we show that the thermal fluctuations of single chlorophylls prevent the formation of a single prominent energy funnel within the antenna complex. These findings are also supported by a dipole exciton model. We conclude that energy transfer pathways may form only transiently at physiological temperatures, as thermal fluctuations overcome energy barriers. The set of site energies provided in this work sets the stage for theoretical and experimental studies on the highly efficient energy transfer mechanisms in PSI.
Collapse
Affiliation(s)
- Sebastian Reiter
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Ferdinand L Kiss
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich Lichtenbergstr. 4, Garching 85747 Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| |
Collapse
|
23
|
Than L, Wolfe KD, Cliffel DE, Jennings GK. Drop-casted Photosystem I/cytochrome c multilayer films for biohybrid solar energy conversion. PHOTOSYNTHESIS RESEARCH 2023; 155:299-308. [PMID: 36564600 DOI: 10.1007/s11120-022-00993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
One of the main barriers to making efficient Photosystem I-based biohybrid solar cells is the need for an electrochemical pathway to facilitate electron transfer between the P700 reaction center of Photosystem I and an electrode. To this end, nature provides inspiration in the form of cytochrome c6, a natural electron donor to the P700 site. Its natural ability to access the P700 binding pocket and reduce the reaction center can be mimicked by employing cytochrome c, which has a similar protein structure and redox chemistry while also being compatible with a variety of electrode surfaces. Previous research has incorporated cytochrome c to improve the photocurrent generation of Photosystem I using time consuming and/or specialized electrode preparation. While those methods lead to high protein areal density, in this work we use the quick and facile vacuum-assisted drop-casting technique to construct a Photosystem I/cytochrome c photoactive composite film with micron-scale thickness. We demonstrate that this simple fabrication technique can result in high cytochrome c loading and improvement in cathodic photocurrent over a drop-casted Photosystem I film without cytochrome c. In addition, we analyze the behavior of the cytochrome c/Photosystem I system at varying applied potentials to show that the improvement in performance can be attributed to enhancement of the electron transfer rate to P700 sites and therefore the PSI turnover rate within the composite film.
Collapse
Affiliation(s)
- Long Than
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235-1604, USA
| | - Kody D Wolfe
- Interdisciplinary Materials Science and Engineering Program, Vanderbilt University, Nashville, TN, 37235-0106, USA
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235-1822, USA
| | - G Kane Jennings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235-1604, USA.
| |
Collapse
|
24
|
Wang P, Frank A, Zhao F, Nowaczyk MM, Conzuelo F, Schuhmann W. A biomimetic assembly of folded photosystem I monolayers for an improved light utilization in biophotovoltaic devices. Bioelectrochemistry 2023; 149:108288. [DOI: 10.1016/j.bioelechem.2022.108288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 12/04/2022]
|
25
|
Zhang S, Zou B, Cao P, Su X, Xie F, Pan X, Li M. Structural insights into photosynthetic cyclic electron transport. MOLECULAR PLANT 2023; 16:187-205. [PMID: 36540023 DOI: 10.1016/j.molp.2022.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
During photosynthesis, light energy is utilized to drive sophisticated biochemical chains of electron transfers, converting solar energy into chemical energy that feeds most life on earth. Cyclic electron transfer/flow (CET/CEF) plays an essential role in efficient photosynthesis, as it balances the ATP/NADPH ratio required in various regulatory and metabolic pathways. Photosystem I, cytochrome b6f, and NADH dehydrogenase (NDH) are large multisubunit protein complexes embedded in the thylakoid membrane of the chloroplast and key players in NDH-dependent CEF pathway. Furthermore, small mobile electron carriers serve as shuttles for electrons between these membrane protein complexes. Efficient electron transfer requires transient interactions between these electron donors and acceptors. Structural biology has been a powerful tool to advance our knowledge of this important biological process. A number of structures of the membrane-embedded complexes, soluble electron carrier proteins, and transient complexes composed of both have now been determined. These structural data reveal detailed interacting patterns of these electron donor-acceptor pairs, thus allowing us to visualize the different parts of the electron transfer process. This review summarizes the current state of structural knowledge of three membrane complexes and their interaction patterns with mobile electron carrier proteins.
Collapse
Affiliation(s)
- Shumeng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baohua Zou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fen Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Pan
- College of Life Science, Capital Normal University, Beijing, China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Burnap RL. Cyanobacterial Bioenergetics in Relation to Cellular Growth and Productivity. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:25-64. [PMID: 36764956 DOI: 10.1007/10_2022_215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cyanobacteria, the evolutionary originators of oxygenic photosynthesis, have the capability to convert CO2, water, and minerals into biomass using solar energy. This process is driven by intricate bioenergetic mechanisms that consist of interconnected photosynthetic and respiratory electron transport chains coupled. Over the last few decades, advances in physiochemical analysis, molecular genetics, and structural analysis have enabled us to gain a more comprehensive understanding of cyanobacterial bioenergetics. This includes the molecular understanding of the primary energy conversion mechanisms as well as photoprotective and other dissipative mechanisms that prevent photodamage when the rates of photosynthetic output, primarily in the form of ATP and NADPH, exceed the rates that cellular assimilatory processes consume these photosynthetic outputs. Despite this progress, there is still much to learn about the systems integration and the regulatory circuits that control expression levels for optimal cellular abundance and activity of the photosynthetic complexes and the cellular components that convert their products into biomass. With an improved understanding of these regulatory principles and mechanisms, it should be possible to optimally modify cyanobacteria for enhanced biotechnological purposes.
Collapse
Affiliation(s)
- Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
27
|
Deepika C, Wolf J, Roles J, Ross I, Hankamer B. Sustainable Production of Pigments from Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:171-251. [PMID: 36571616 DOI: 10.1007/10_2022_211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pigments are intensely coloured compounds used in many industries to colour other materials. The demand for naturally synthesised pigments is increasing and their production can be incorporated into circular bioeconomy approaches. Natural pigments are produced by bacteria, cyanobacteria, microalgae, macroalgae, plants and animals. There is a huge unexplored biodiversity of prokaryotic cyanobacteria which are microscopic phototrophic microorganisms that have the ability to capture solar energy and CO2 and use it to synthesise a diverse range of sugars, lipids, amino acids and biochemicals including pigments. This makes them attractive for the sustainable production of a wide range of high-value products including industrial chemicals, pharmaceuticals, nutraceuticals and animal-feed supplements. The advantages of cyanobacteria production platforms include comparatively high growth rates, their ability to use freshwater, seawater or brackish water and the ability to cultivate them on non-arable land. The pigments derived from cyanobacteria and microalgae include chlorophylls, carotenoids and phycobiliproteins that have useful properties for advanced technical and commercial products. Development and optimisation of strain-specific pigment-based cultivation strategies support the development of economically feasible pigment biorefinery scenarios with enhanced pigment yields, quality and price. Thus, this chapter discusses the origin, properties, strain selection, production techniques and market opportunities of cyanobacterial pigments.
Collapse
Affiliation(s)
- Charu Deepika
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Juliane Wolf
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - John Roles
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ian Ross
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
28
|
Kandrashkin YE, van der Est A. A two-site triplet exciton hopping model: Application to 3P 700. J Chem Phys 2022; 157:224109. [PMID: 36546793 DOI: 10.1063/5.0132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A model is presented describing the effect on spin-polarized transient EPR signals caused by incoherent state hopping between two sites. It is shown that the size of the spin state space can be reduced by half to the subspace described by the site-average Hamiltonian and that the dynamics of the system results in a redistribution of the population between its eigenstates. Analytical expressions for the rates of population redistribution and the line shape are derived for the general case in which the back-and-forth rates are unequal. The EPR signals calculated using these expressions are in very good agreement with those obtained by direct numerical solution of the density matrix rate equations. The model is then used to investigate the influence of exciton hopping on triplet state transient EPR spectra. Using the triplet state of the primary donor of Photosystem I as an example, it is shown that the influence of unequal hopping rates becomes more pronounced in the spectrum at longer delay times after the laser flash.
Collapse
Affiliation(s)
- Yuri E Kandrashkin
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, Kazan 420029, Russia
| | - Art van der Est
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
29
|
Sukhanov AA, Mamedov MD, Milanovsky GE, Salikhov KM, Semenov AY. Changes in the Electron Transfer Symmetry in the Photosystem I Reaction Centers upon Removal of Iron-Sulfur Clusters. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1109-1118. [PMID: 36273879 DOI: 10.1134/s0006297922100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
In photosynthetic reaction centers of intact photosystem I (PSI) complexes from cyanobacteria, electron transfer at room temperature occurs along two symmetrical branches of redox cofactors A and B at a ratio of ~3 : 1 in favor of branch A. Previously, this has been indirectly demonstrated using pulsed absorption spectroscopy and more directly by measuring the decay modulation frequencies of electron spin echo signals (electron spin echo envelope modulation, ESEEM), which allows to determine the distance between the separated charges of the primary electron donor P700+ and phylloquinone acceptors A1A- and A1B- in the symmetric redox cofactors branches A and B. In the present work, these distances were determined using ESEEM in PSI complexes lacking three 4Fe-4S clusters, FX, FA, and FB, and the PsaC protein subunit (the so-called P700-A1 core), in which phylloquinone molecules A1A and A1B serve as the terminal electron acceptors. It was shown that in the P700-A1 core preparations, the average distance between the centers of the P700+A1- ion-radical pair at a temperature of 150 K in an aqueous glycerol solution and in a dried trehalose matrix, as well as in a trehalose matrix at 280 K, is ~25.5 Å, which corresponds to the symmetrical electron transfer along the A and B branches of redox cofactors at a ratio of 1 : 1. Possible reasons for the change in the electron transfer symmetry in PSI upon removal of the PsaC subunit and 4Fe-4S clusters FX, FA, and FB are discussed.
Collapse
Affiliation(s)
- Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420029, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Georgy E Milanovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Kev M Salikhov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420029, Russia
| | - Alexey Yu Semenov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
30
|
Cherepanov DA, Semenov AY, Mamedov MD, Aybush AV, Gostev FE, Shelaev IV, Shuvalov VA, Nadtochenko VA. Current state of the primary charge separation mechanism in photosystem I of cyanobacteria. Biophys Rev 2022; 14:805-820. [PMID: 36124265 PMCID: PMC9481807 DOI: 10.1007/s12551-022-00983-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
This review analyzes new data on the mechanism of ultrafast reactions of primary charge separation in photosystem I (PS I) of cyanobacteria obtained in the last decade by methods of femtosecond absorption spectroscopy. Cyanobacterial PS I from many species harbours 96 chlorophyll a (Chl a) molecules, including six specialized Chls denoted Chl1A/Chl1B (dimer P700, or PAPB), Chl2A/Chl2B, and Chl3A/Chl3B arranged in two branches, which participate in electron transfer reactions. The current data indicate that the primary charge separation occurs in a symmetric exciplex, where the special pair P700 is electronically coupled to the symmetrically located monomers Chl2A and Chl2B, which can be considered together as a symmetric exciplex Chl2APAPBChl2B with the mixed excited (Chl2APAPBChl2B)* and two charge-transfer states P700 +Chl2A - and P700 +Chl2B -. The redistribution of electrons between the branches in favor of the A-branch occurs after reduction of the Chl2A and Chl2B monomers. The formation of charge-transfer states and the symmetry breaking mechanisms were clarified by measuring the electrochromic Stark shift of β-carotene and the absorption dynamics of PS I complexes with the genetically altered Chl 2B or Chl 2A monomers. The review gives a brief description of the main methods for analyzing data obtained using femtosecond absorption spectroscopy. The energy levels of excited and charge-transfer intermediates arising in the cyanobacterial PS I are critically analyzed.
Collapse
Affiliation(s)
- Dmitry A. Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Arseniy V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Fedor E. Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Ivan V. Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Vladimir A. Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Victor A. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| |
Collapse
|
31
|
Shen W, Teo RD, Beratan DN, Warren JJ. Cofactor Dynamics Couples the Protein Surface to the Heme in Cytochrome c, Facilitating Electron Transfer. J Phys Chem B 2022; 126:3522-3529. [PMID: 35507916 PMCID: PMC9867876 DOI: 10.1021/acs.jpcb.2c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electron transport through biomolecules and in biological transport networks is of great importance to bioenergetics and biocatalysis. More generally, it is of crucial importance to understand how the pathways that connect buried metallocofactors to other cofactors, and to protein surfaces, affect the biological chemistry of metalloproteins. In terms of electron transfer (ET), the strongest coupling pathways usually comprise covalent and hydrogen bonded networks, with a limited number of through-space contacts. Herein, we set out to determine the relative roles of hydrogen bonds involved in ET via an established heme-to-surface tunneling pathway in cytochrome (cyt) c (i.e., heme-W59-D60-E61-N62). A series of cyt c variants were produced where a ruthenium tris(diimine) photooxidant was placed at position 62 via covalent modification of the N62C residue. Surprisingly, variants where the H-bonding residues W59 and D60 were replaced (i.e., W59F and D60A) showed no change in ET rate from the ferrous heme to Ru(III). In contrast, changing the composition of an alternative tunneling pathway (i.e., heme-M64-N63-C62) with the M64L substitution shows a factor of 2 decrease in the rate of heme-to-Ru ET. This pathway involves a through-space tunneling step between the heme and M64 residue, and such steps are usually disfavored. To rationalize why the heme-M64-N63-C62 is preferred, molecular dynamics (MD) simulations and Pathways analysis were employed. These simulations show that the change in heme-Ru ET rates is attributed to different conformations with compressed donor-acceptor distances, by ∼2 Å in pathway distance, in the M64-containing protein as compared to the M64L protein. The change in distance is correlated with changes in the electronic coupling that are in accord with the experimentally observed heme-Ru ET rates. Remarkably, the M64L variation at the core of the protein translates to changes in cofactor dynamics at the protein surface. The surface changes identified by MD simulations include dynamic anion-π and dipole-dipole interactions. These interactions influence the strength of tunneling pathways and ET rates by facilitating decreases in through-space tunneling distances in key coupling pathways.
Collapse
Affiliation(s)
- William Shen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby CA V5A 1S6, Canada
| | - Ruijie D. Teo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N. Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby CA V5A 1S6, Canada
| |
Collapse
|
32
|
Szewczyk S, Goyal A, Abram M, Burdziński G, Kargul J, Gibasiewicz K. Electron Transfer in a Bio-Photoelectrode Based on Photosystem I Multilayer Immobilized on the Conducting Glass. Int J Mol Sci 2022; 23:ijms23094774. [PMID: 35563164 PMCID: PMC9100268 DOI: 10.3390/ijms23094774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
A film of ~40 layers of partially oriented photosystem I (PSI) complexes isolated from the red alga Cyanidioschyzon merolae formed on the conducting glass through electrodeposition was investigated by time-resolved absorption spectroscopy and chronoamperometry. The experiments were performed at a range of electric potentials applied to the film and at different compositions of electrolyte solution being in contact with the film. The amount of immobilized proteins supporting light-induced charge separation (active PSI) ranged from ~10%, in the absence of any reducing agents (redox compounds or low potential), to ~20% when ascorbate and 2,6-dichlorophenolindophenol were added, and to ~35% when the high negative potential was additionally applied. The origin of the large fraction of permanently inactive PSI (65–90%) was unclear. Both reducing agents increased the subpopulation of active PSI complexes, with the neutral P700 primary electron donor, by reducing significant fractions of the photo-oxidized P700 species. The efficiencies of light-induced charge separation in the PSI film (10–35%) did not translate into an equally effective generation of photocurrent, whose internal quantum efficiency reached the maximal value of 0.47% at the lowest potentials. This mismatch indicates that the vast majority of the charge-separated states in multilayered PSI complexes underwent charge recombination.
Collapse
Affiliation(s)
- Sebastian Szewczyk
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland; (S.S.); (A.G.); (G.B.)
| | - Alice Goyal
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland; (S.S.); (A.G.); (G.B.)
| | - Mateusz Abram
- Solar Fuels Laboratory, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland;
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Gotard Burdziński
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland; (S.S.); (A.G.); (G.B.)
| | - Joanna Kargul
- Solar Fuels Laboratory, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland;
- Correspondence: (J.K.); (K.G.); Tel.: +48-22-5543760 (J.K.); +48-61-8296390 (K.G.)
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland; (S.S.); (A.G.); (G.B.)
- Correspondence: (J.K.); (K.G.); Tel.: +48-22-5543760 (J.K.); +48-61-8296390 (K.G.)
| |
Collapse
|
33
|
Kanda T, Saito K, Ishikita H. Mechanism of Mixed-Valence Fe 2.5+···Fe 2.5+ Formation in Fe 4S 4 Clusters in the Ferredoxin Binding Motif. J Phys Chem B 2022; 126:3059-3066. [PMID: 35435680 PMCID: PMC9059760 DOI: 10.1021/acs.jpcb.2c01320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most low-potential Fe4S4 clusters exist in the conserved binding sequence CxxCxxC (CnCn+3Cn+6). Fe(II) and Fe(III) at the first (Cn) and third (Cn+6) cysteine ligand sites form a mixed-valence Fe2.5+···Fe2.5+ pair in the reduced Fe(II)3Fe(III) cluster. Here, we investigate the mechanism of how the conserved protein environment induces mixed-valence pair formation in the Fe4S4 clusters, FX, FA, and FB in photosystem I, using a quantum mechanical/molecular mechanical approach. Exchange coupling between Fe sites is predominantly determined by the shape of the Fe4S4 cluster, which is stabilized by the preorganized protein electrostatic environment. The backbone NH and CO groups in the conserved CxxCxxC and adjacent helix regions orient along the FeCn···FeC(n+6) axis, generating an electric field and stabilizing the FeCn(II)FeC(n+6)(III) state in FA and FB. The overlap of the d orbitals via -S- (superexchange) is observed for the single FeCn(II)···FeC(n+6)(III) pair, leading to the formation of the mixed-valence Fe2.5+···Fe2.5+ pair. In contrast, several superexchange Fe(II)···Fe(III) pairs are observed in FX due to the highly symmetric pair of the CDGPGRGGTC sequences. This is likely the origin of FX serving as an electron acceptor in the two electron transfer branches.
Collapse
Affiliation(s)
- Tomoki Kanda
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
34
|
Kato K, Hamaguchi T, Nagao R, Kawakami K, Ueno Y, Suzuki T, Uchida H, Murakami A, Nakajima Y, Yokono M, Akimoto S, Dohmae N, Yonekura K, Shen JR. Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus. eLife 2022; 11:73990. [PMID: 35404232 PMCID: PMC9000952 DOI: 10.7554/elife.73990] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Photosystem I (PSI) is a multi-subunit pigment-protein complex that functions in light-harvesting and photochemical charge-separation reactions, followed by reduction of NADP to NADPH required for CO2 fixation in photosynthetic organisms. PSI from different photosynthetic organisms has a variety of chlorophylls (Chls), some of which are at lower-energy levels than its reaction center P700, a special pair of Chls, and are called low-energy Chls. However, the sites of low-energy Chls are still under debate. Here, we solved a 2.04-Å resolution structure of a PSI trimer by cryo-electron microscopy from a primordial cyanobacterium Gloeobacter violaceus PCC 7421, which has no low-energy Chls. The structure shows the absence of some subunits commonly found in other cyanobacteria, confirming the primordial nature of this cyanobacterium. Comparison with the known structures of PSI from other cyanobacteria and eukaryotic organisms reveals that one dimeric and one trimeric Chls are lacking in the Gloeobacter PSI. The dimeric and trimeric Chls are named Low1 and Low2, respectively. Low2 is missing in some cyanobacterial and eukaryotic PSIs, whereas Low1 is absent only in Gloeobacter. These findings provide insights into not only the identity of low-energy Chls in PSI, but also the evolutionary changes of low-energy Chls in oxyphototrophs.
Collapse
Affiliation(s)
- Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | | | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | | | | | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
| | | | - Akio Murakami
- Graduate School of Science, Kobe University
- Research Center for Inland Seas, Kobe University
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University
| | | | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
- Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
35
|
Ali F, Shafaa MW, Amin M. Computational Approach for Probing Redox Potential for Iron-Sulfur Clusters in Photosystem I. BIOLOGY 2022; 11:362. [PMID: 35336736 PMCID: PMC8945787 DOI: 10.3390/biology11030362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
Photosystem I is a light-driven electron transfer device. Available X-ray crystal structure from Thermosynechococcus elongatus showed that electron transfer pathways consist of two nearly symmetric branches of cofactors converging at the first iron-sulfur cluster FX, which is followed by two terminal iron-sulfur clusters FA and FB. Experiments have shown that FX has lower oxidation potential than FA and FB, which facilitates the electron transfer reaction. Here, we use density functional theory and Multi-Conformer Continuum Electrostatics to explain the differences in the midpoint Em potentials of the FX, FA and FB clusters. Our calculations show that FX has the lowest oxidation potential compared to FA and FB due to strong pairwise electrostatic interactions with surrounding residues. These interactions are shown to be dominated by the bridging sulfurs and cysteine ligands, which may be attributed to the shorter average bond distances between the oxidized Fe ion and ligating sulfurs for FX compared to FA and FB. Moreover, the electrostatic repulsion between the 4Fe-4S clusters and the positive potential of the backbone atoms is lowest for FX compared to both FA and FB. These results agree with the experimental measurements from the redox titrations of low-temperature EPR signals and of room temperature recombination kinetics.
Collapse
Affiliation(s)
- Fedaa Ali
- Medical Biophysics Division, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt; (F.A.); (M.W.S.)
- Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Medhat W. Shafaa
- Medical Biophysics Division, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt; (F.A.); (M.W.S.)
| | - Muhamed Amin
- Department of Sciences, University College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands
- Universiteit Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9718 BG Groningen, The Netherlands
- Department of Physics, City College of New York, City University of New York, New York, NY 10031, USA
| |
Collapse
|
36
|
Competition between intra-protein charge recombination and electron transfer outside photosystem I complexes used for photovoltaic applications. Photochem Photobiol Sci 2022; 21:319-336. [PMID: 35119621 DOI: 10.1007/s43630-022-00170-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/07/2022] [Indexed: 02/01/2023]
Abstract
Photosystem I (PSI) complexes isolated from three different species were electrodeposited on FTO conducting glass, forming a photoactive multilayer of the photo-electrode, for investigation of intricate electron transfer (ET) properties in such green hybrid nanosystems. The internal quantum efficiency of photo-electrochemical cells (PEC) containing the PSI-based photo-electrodes did not exceed ~ 0.5%. To reveal the reason for such a low efficiency of photocurrent generation, the temporal evolution of the transient concentration of the photo-oxidized primary electron donor, P+, was studied in aqueous suspensions of the PSI complexes by time-resolved absorption spectroscopy. The results of these measurements provided the information on: (1) completeness of charge separation in PSI reaction centers (RCs), (2) dynamics of internal charge recombination, and (3) efficiency of electron transfer from PSI to the electrolyte, which is the reaction competing with the internal charge recombination in the PSI RC. The efficiency of the full charge separation in the PSI complexes used for functionalization of the electrodes was ~ 90%, indicating that incomplete charge separation was not the main reason for the small yield of photocurrents. For the PSI particles isolated from a green alga Chlamydomonas reinhardtii, the probability of ET outside PSI was ~ 30-40%, whereas for their counterparts isolated from a cyanobacterium Synechocystis sp. PCC 6803 and a red alga Cyanidioschyzon merolae, it represented a mere ~ 4%. We conclude from the transient absorption data for the PSI biocatalysts in solution that the observed small photocurrent efficiency of ~ 0.5% for all the PECs analyzed in this study is likely due to: (1) limited efficiency of ET outside PSI, particularly in the case of PECs based on PSI from Synechocystis and C. merolae, and (2) the electrolyte-mediated electric short-circuiting in PSI particles forming the photoactive layer, particularly in the case of the C. reinhardtii PEC.
Collapse
|
37
|
Mathis P, Sage E, Byrdin M. Pushing the limits of flash photolysis to unravel the secrets of biological electron and proton transfer. Photochem Photobiol Sci 2022; 21:1533-1544. [DOI: 10.1007/s43630-021-00134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
|
38
|
Gisriel CJ, Flesher DA, Shen G, Wang J, Ho MY, Brudvig GW, Bryant DA. Structure of a photosystem I-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. J Biol Chem 2022; 298:101408. [PMID: 34793839 PMCID: PMC8689207 DOI: 10.1016/j.jbc.2021.101408] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023] Open
Abstract
Far-red light photoacclimation exhibited by some cyanobacteria allows these organisms to use the far-red region of the solar spectrum (700-800 nm) for photosynthesis. Part of this process includes the replacement of six photosystem I (PSI) subunits with isoforms that confer the binding of chlorophyll (Chl) f molecules that absorb far-red light (FRL). However, the exact sites at which Chl f molecules are bound are still challenging to determine. To aid in the identification of Chl f-binding sites, we solved the cryo-EM structure of PSI from far-red light-acclimated cells of the cyanobacterium Synechococcus sp. PCC 7335. We identified six sites that bind Chl f with high specificity and three additional sites that are likely to bind Chl f at lower specificity. All of these binding sites are in the core-antenna regions of PSI, and Chl f was not observed among the electron transfer cofactors. This structural analysis also reveals both conserved and nonconserved Chl f-binding sites, the latter of which exemplify the diversity in FRL-PSI among species. We found that the FRL-PSI structure also contains a bound soluble ferredoxin, PetF1, at low occupancy, which suggests that ferredoxin binds less transiently than expected according to the canonical view of ferredoxin-binding to facilitate electron transfer. We suggest that this may result from structural changes in FRL-PSI that occur specifically during FRL photoacclimation.
Collapse
Affiliation(s)
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
39
|
Nagao R, Yokono M, Ueno Y, Nakajima Y, Suzuki T, Kato KH, Tsuboshita N, Dohmae N, Shen JR, Ehira S, Akimoto S. Excitation-energy transfer in heterocysts isolated from the cyanobacterium Anabaena sp. PCC 7120 as studied by time-resolved fluorescence spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148509. [PMID: 34793768 DOI: 10.1016/j.bbabio.2021.148509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/06/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022]
Abstract
Heterocysts are formed in filamentous heterocystous cyanobacteria under nitrogen-starvation conditions, and possess a very low amount of photosystem II (PSII) complexes than vegetative cells. Molecular, morphological, and biochemical characterizations of heterocysts have been investigated; however, excitation-energy dynamics in heterocysts are still unknown. In this study, we examined excitation-energy-relaxation processes of pigment-protein complexes in heterocysts isolated from the cyanobacterium Anabaena sp. PCC 7120. Thylakoid membranes from the heterocysts showed no oxygen-evolving activity under our experimental conditions and no thermoluminescence-glow curve originating from charge recombination of S2QA-. Two dimensional blue-native/SDS-PAGE analysis exhibits tetrameric, dimeric, and monomeric photosystem I (PSI) complexes but almost no dimeric and monomeric PSII complexes in the heterocyst thylakoids. The steady-state fluorescence spectrum of the heterocyst thylakoids at 77 K displays both characteristic PSI fluorescence and unusual PSII fluorescence different from the fluorescence of PSII dimer and monomer complexes. Time-resolved fluorescence spectra at 77 K, followed by fluorescence decay-associated spectra, showed different PSII and PSI fluorescence bands between heterocysts and vegetative thylakoids. Based on these findings, we discuss excitation-energy-transfer mechanisms in the heterocysts.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Hokkaido 060-0819, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Ka-Ho Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Naoki Tsuboshita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Shigeki Ehira
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo 657-8501, Japan.
| |
Collapse
|
40
|
Godin R, Durrant JR. Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chem Soc Rev 2021; 50:13372-13409. [PMID: 34786578 DOI: 10.1039/d1cs00577d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continued development of solar energy conversion technologies relies on an improved understanding of their limitations. In this review, we focus on a comparison of the charge carrier dynamics underlying the function of photovoltaic devices with those of both natural and artificial photosynthetic systems. The solar energy conversion efficiency is determined by the product of the rate of generation of high energy species (charges for solar cells, chemical fuels for photosynthesis) and the energy contained in these species. It is known that the underlying kinetics of the photophysical and charge transfer processes affect the production yield of high energy species. Comparatively little attention has been paid to how these kinetics are linked to the energy contained in the high energy species or the energy lost in driving the forward reactions. Here we review the operational parameters of both photovoltaic and photosynthetic systems to highlight the energy cost of extending the lifetime of charge carriers to levels that enable function. We show a strong correlation between the energy lost within the device and the necessary lifetime gain, even when considering natural photosynthesis alongside artificial systems. From consideration of experimental data across all these systems, the emprical energetic cost of each 10-fold increase in lifetime is 87 meV. This energetic cost of lifetime gain is approx. 50% greater than the 59 meV predicted from a simple kinetic model. Broadly speaking, photovoltaic devices show smaller energy losses compared to photosynthetic devices due to the smaller lifetime gains needed. This is because of faster charge extraction processes in photovoltaic devices compared to the complex multi-electron, multi-proton redox reactions that produce fuels in photosynthetic devices. The result is that in photosynthetic systems, larger energetic costs are paid to overcome unfavorable kinetic competition between the excited state lifetime and the rate of interfacial reactions. We apply this framework to leading examples of photovoltaic and photosynthetic devices to identify kinetic sources of energy loss and identify possible strategies to reduce this energy loss. The kinetic and energetic analyses undertaken are applicable to both photovoltaic and photosynthetic systems allowing for a holistic comparison of both types of solar energy conversion approaches.
Collapse
Affiliation(s)
- Robert Godin
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada. .,Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Kelowna, British Columbia, Canada
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
41
|
Rogowski P, Urban A, Romanowska E. Light as a substrate: migration of LHCII antennas in extended Michaelis-Menten model for PSI kinetics. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112336. [PMID: 34736069 DOI: 10.1016/j.jphotobiol.2021.112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/12/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022]
Abstract
We extended, for the first time, the Michaelis-Menten (M-M) model to describe the kinetics of photosystem I (PSI) complexes using light as a substrate. Our work is novel as it can be useful for studying the phenomenon of "state transitions" because it quantifies the affinity of light to PSI reaction centers depending on the associated light harvesting complex II (LHCII) antennas. We verified our models by measuring the PSI activity as a function of light intensity using an oxygen electrode for chloroplast from plants grown in low light conditions and treated with far red light. We determined the kinetics constant KM for: PSI-LHCI, PSI-LHCI-LHCII and PSI-PSII megacomplexes and have shown that KM for PSI located in the megacomplexes was smaller in magnitude than PSI-LHCI, thus demonstrating that LHCII antennas are functionally associated with PSI. The parameter [S]1/2used in our models is the equivalent of M-M constant. Far red light increases [S]1/2, which indicates that transition from state 1 to state 2 leads to an energy gain while reaching the PSI reaction centers. We also observed that redistribution of the absorbed excitation energy is realized not only by LHCII migration but also by association of the photosystems in the megacomplexes.
Collapse
Affiliation(s)
- Paweł Rogowski
- Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02096 Warsaw, Poland.
| | - Aleksandra Urban
- Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02096 Warsaw, Poland.
| | - Elżbieta Romanowska
- Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02096 Warsaw, Poland.
| |
Collapse
|
42
|
Torabi N, Qiu X, López-Ortiz M, Loznik M, Herrmann A, Kermanpur A, Ashrafi A, Chiechi RC. Fullerenes Enhance Self-Assembly and Electron Injection of Photosystem I in Biophotovoltaic Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11465-11473. [PMID: 34544234 PMCID: PMC8495901 DOI: 10.1021/acs.langmuir.1c01542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/06/2021] [Indexed: 06/02/2023]
Abstract
This paper describes the fabrication of microfluidic devices with a focus on controlling the orientation of photosystem I (PSI) complexes, which directly affects the performance of biophotovoltaic devices by maximizing the efficiency of the extraction of electron/hole pairs from the complexes. The surface chemistry of the electrode on which the complexes assemble plays a critical role in their orientation. We compared the degree of orientation on self-assembled monolayers of phenyl-C61-butyric acid and a custom peptide on nanostructured gold electrodes. Biophotovoltaic devices fabricated with the C61 fulleroid exhibit significantly improved performance and reproducibility compared to those utilizing the peptide, yielding a 1.6-fold increase in efficiency. In addition, the C61-based devices were more stable under continuous illumination. Our findings show that fulleroids, which are well-known acceptor materials in organic photovoltaic devices, facilitate the extraction of electrons from PSI complexes without sacrificing control over the orientation of the complexes, highlighting this combination of traditional organic semiconductors with biomolecules as a viable approach to coopting natural photosynthetic systems for use in solar cells.
Collapse
Affiliation(s)
- Nahid Torabi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Department
of Materials Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Xinkai Qiu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Manuel López-Ortiz
- IBEC—Institut
de Bioenginyeria de Catalunya, The Barcelona
Institute of Science and Technology, Baldiri Reixac 15-21, Barcelona 08028, Spain
- Network
Biomedical Research Center in Biomaterials, Bioengineering and Nanomedicine
(CIBER-BBN), Madrid 28029, Spain
| | - Mark Loznik
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Andreas Herrmann
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Ahmad Kermanpur
- Department
of Materials Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Ali Ashrafi
- Department
of Materials Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Ryan C. Chiechi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
43
|
Xu C, Zhu Q, Chen JH, Shen L, Yi X, Huang Z, Wang W, Chen M, Kuang T, Shen JR, Zhang X, Han G. A unique photosystem I reaction center from a chlorophyll d-containing cyanobacterium Acaryochloris marina. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1740-1752. [PMID: 34002536 DOI: 10.1111/jipb.13113] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/12/2021] [Indexed: 05/10/2023]
Abstract
Photosystem I (PSI) is a large protein supercomplex that catalyzes the light-dependent oxidation of plastocyanin (or cytochrome c6 ) and the reduction of ferredoxin. This catalytic reaction is realized by a transmembrane electron transfer chain consisting of primary electron donor (a special chlorophyll (Chl) pair) and electron acceptors A0 , A1 , and three Fe4 S4 clusters, FX , FA , and FB . Here we report the PSI structure from a Chl d-dominated cyanobacterium Acaryochloris marina at 3.3 Å resolution obtained by single-particle cryo-electron microscopy. The A. marina PSI exists as a trimer with three identical monomers. Surprisingly, the structure reveals a unique composition of electron transfer chain in which the primary electron acceptor A0 is composed of two pheophytin a rather than Chl a found in any other well-known PSI structures. A novel subunit Psa27 is observed in the A. marina PSI structure. In addition, 77 Chls, 13 α-carotenes, two phylloquinones, three Fe-S clusters, two phosphatidyl glycerols, and one monogalactosyl-diglyceride were identified in each PSI monomer. Our results provide a structural basis for deciphering the mechanism of photosynthesis in a PSI complex with Chl d as the dominating pigments and absorbing far-red light.
Collapse
Affiliation(s)
- Caihuang Xu
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Jing-Hua Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Liangliang Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Xiaohan Yi
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zihui Huang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Min Chen
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW2006, Australia
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Division of Photosynthesis and Structural Biology, Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
44
|
Nagao R, Yokono M, Kato KH, Ueno Y, Shen JR, Akimoto S. High-light modification of excitation-energy-relaxation processes in the green flagellate Euglena gracilis. PHOTOSYNTHESIS RESEARCH 2021; 149:303-311. [PMID: 34037905 DOI: 10.1007/s11120-021-00849-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic organisms finely tune their photosynthetic machinery including pigment compositions and antenna systems to adapt to various light environments. However, it is poorly understood how the photosynthetic machinery in the green flagellate Euglena gracilis is modified under high-light conditions. In this study, we examined high-light modification of excitation-energy-relaxation processes in Euglena cells. Oxygen-evolving activity in the cells incubated at 300 µmol photons m-2 s-1 (HL cells) cannot be detected, reflecting severe photodamage to photosystem II (PSII) in vivo. Pigment compositions in the HL cells showed relative increases in 9'-cis-neoxanthin, diadinoxanthin, and chlorophyll b compared with the cells incubated at 30 µmol photons m-2 s-1 (LL cells). Absolute fluorescence spectra at 77 K exhibit smaller intensities of the PSII and photosystem I (PSI) fluorescence in the HL cells than in the LL cells. Absolute fluorescence decay-associated spectra at 77 K of the HL cells indicate suppression of excitation-energy transfer from light-harvesting complexes (LHCs) to both PSI and PSII with the time constant of 40 ps. Rapid energy quenching in LHCs and PSII in the HL cells is distinctly observed by averaged Chl-fluorescence lifetimes. These findings suggest that Euglena modifies excitation-energy-relaxation processes in addition to pigment compositions to deal with excess energy. These results provide insights into the photoprotection strategies of this alga under high-light conditions.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Hokkaido, 060-0819, Japan
| | - Ka-Ho Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan.
| |
Collapse
|
45
|
Kanda T, Saito K, Ishikita H. Electron Acceptor-Donor Iron Sites in the Iron-Sulfur Cluster of Photosynthetic Electron-Transfer Pathways. J Phys Chem Lett 2021; 12:7431-7438. [PMID: 34338530 DOI: 10.1021/acs.jpclett.1c01896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In photosystem I, two electron-transfer pathways via quinones (A1A and A1B) are merged at the iron-sulfur Fe4S4 cluster FX into a single pathway toward the other two Fe4S4 clusters FA and FB. Using a quantum mechanical/molecular mechanical approach, we identify the redox-active Fe sites in the clusters. In FA and FB, the Fe site, which does not belong to the CxxCxxCxxxCP motif, serves as an electron acceptor/donor. FX has two independent electron acceptor Fe sites for A- and B-branch electron transfers, depending on the Asp-B575 protonation state, which causes the A1A-to-FX electron transfer to be uphill and the A1B-to-FX electron transfer to be downhill. The two asymmetric electron-transfer pathways from A1 to FX and the separation of the electron acceptor and donor Fe sites are likely associated with the specific role of FX in merging the two electron transfer pathways into the single pathway.
Collapse
Affiliation(s)
- Tomoki Kanda
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
46
|
Izzo M, Jacquet M, Fujiwara T, Harputlu E, Mazur R, Wróbel P, Góral T, Unlu CG, Ocakoglu K, Miyagishima S, Kargul J. Development of a Novel Nanoarchitecture of the Robust Photosystem I from a Volcanic Microalga Cyanidioschyzon merolae on Single Layer Graphene for Improved Photocurrent Generation. Int J Mol Sci 2021; 22:8396. [PMID: 34445103 PMCID: PMC8395140 DOI: 10.3390/ijms22168396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we report the development of a novel photoactive biomolecular nanoarchitecture based on the genetically engineered extremophilic photosystem I (PSI) biophotocatalyst interfaced with a single layer graphene via pyrene-nitrilotriacetic acid self-assembled monolayer (SAM). For the oriented and stable immobilization of the PSI biophotocatalyst, an His6-tag was genetically engineered at the N-terminus of the stromal PsaD subunit of PSI, allowing for the preferential binding of this photoactive complex with its reducing side towards the graphene monolayer. This approach yielded a novel robust and ordered nanoarchitecture designed to generate an efficient direct electron transfer pathway between graphene, the metal redox center in the organic SAM and the photo-oxidized PSI biocatalyst. The nanosystem yielded an overall current output of 16.5 µA·cm-2 for the nickel- and 17.3 µA·cm-2 for the cobalt-based nanoassemblies, and was stable for at least 1 h of continuous standard illumination. The novel green nanosystem described in this work carries the high potential for future applications due to its robustness, highly ordered and simple architecture characterized by the high biophotocatalyst loading as well as simplicity of manufacturing.
Collapse
Affiliation(s)
- Miriam Izzo
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; (M.I.); (M.J.)
| | - Margot Jacquet
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; (M.I.); (M.J.)
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Yata 111, Mishima 411-8540, Japan; (T.F.); (S.M.)
| | - Ersan Harputlu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, Tarsus 33400, Turkey; (E.H.); (K.O.)
| | - Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Piotr Wróbel
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland;
| | - Tomasz Góral
- Cryomicroscopy and Electron Diffraction Core Facility, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland;
| | - C. Gokhan Unlu
- Department of Biomedical Engineering, Pamukkale University, Denizli 20070, Turkey;
| | - Kasim Ocakoglu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, Tarsus 33400, Turkey; (E.H.); (K.O.)
| | - Shinya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Yata 111, Mishima 411-8540, Japan; (T.F.); (S.M.)
| | - Joanna Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; (M.I.); (M.J.)
| |
Collapse
|
47
|
Kozuleva M, Petrova A, Milrad Y, Semenov A, Ivanov B, Redding KE, Yacoby I. Phylloquinone is the principal Mehler reaction site within photosystem I in high light. PLANT PHYSIOLOGY 2021; 186:1848-1858. [PMID: 34618103 PMCID: PMC8331129 DOI: 10.1093/plphys/kiab221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 05/04/2023]
Abstract
Photosynthesis is a vital process, responsible for fixing carbon dioxide, and producing most of the organic matter on the planet. However, photosynthesis has some inherent limitations in utilizing solar energy, and a part of the energy absorbed is lost in the reduction of O2 to produce the superoxide radical (O2•-) via the Mehler reaction, which occurs principally within photosystem I (PSI). For decades, O2 reduction within PSI was assumed to take place solely in the distal iron-sulfur clusters rather than within the two asymmetrical cofactor branches. Here, we demonstrate that under high irradiance, O2 photoreduction by PSI primarily takes place at the phylloquinone of one of the branches (the A-branch). This conclusion derives from the light dependency of the O2 photoreduction rate constant in fully mature wild-type PSI from Chlamydomonas reinhardtii, complexes lacking iron-sulfur clusters, and a mutant PSI, in which phyllosemiquinone at the A-branch has a significantly longer lifetime. We suggest that the Mehler reaction at the phylloquinone site serves as a release valve under conditions where both the iron-sulfur clusters of PSI and the mobile ferredoxin pool are highly reduced.
Collapse
Affiliation(s)
- Marina Kozuleva
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Anastasia Petrova
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuval Milrad
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexey Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Ivanov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Kevin E Redding
- School of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, USA
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Author for communication:
| |
Collapse
|
48
|
Cruz JA, Avenson TJ. Photosynthesis: a multiscopic view. JOURNAL OF PLANT RESEARCH 2021; 134:665-682. [PMID: 34170422 DOI: 10.1007/s10265-021-01321-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
A recurring analogy for photosynthesis research is the fable of the blind men and the elephant. Photosynthesis has many complex working parts, which has driven the need to study each of them individually, with an inherent understanding that a more complete picture will require systematic integration of these views. However, unlike the blind men, who are limited to using their hands, researchers have developed over the past decades a repertoire of methods for studying these components, many of which capitalize on unique features intrinsic to each. More recent concerns about food security and clean, renewable energy have increased support for applied photosynthesis research, with the idea of either improving photosynthetic performance as a desired trait in select species or using photosynthetic measurements as a phenotyping tool in breeding efforts or for high precision crop management. In this review, we spotlight the migration of approaches for studying photosynthesis from the laboratory into field environments, highlight some recent advances and speculate on areas where further development would be fruitful, with an eye towards how applied photosynthesis research can have impacts at local and global scales.
Collapse
Affiliation(s)
- Jeffrey A Cruz
- Plant Research Laboratories, Michigan State University, 612 Wilson Road, MI, S-206, Lansing, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, Lansing, MI, USA.
| | - Thomas J Avenson
- Department of Plant Sciences, University of Cambridge, CB2 9EW, Cambridge, UK
| |
Collapse
|
49
|
Gorka M, Charles P, Kalendra V, Baldansuren A, Lakshmi KV, Golbeck JH. A dimeric chlorophyll electron acceptor differentiates type I from type II photosynthetic reaction centers. iScience 2021; 24:102719. [PMID: 34278250 PMCID: PMC8267441 DOI: 10.1016/j.isci.2021.102719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
This research addresses one of the most compelling issues in the field of photosynthesis, namely, the role of the accessory chlorophyll molecules in primary charge separation. Using a combination of empirical and computational methods, we demonstrate that the primary acceptor of photosystem (PS) I is a dimer of accessory and secondary chlorophyll molecules, Chl2A and Chl3A, with an asymmetric electron charge density distribution. The incorporation of highly coupled donors and acceptors in PS I allows for extensive delocalization that prolongs the lifetime of the charge-separated state, providing for high quantum efficiency. The discovery of this motif has widespread implications ranging from the evolution of naturally occurring reaction centers to the development of a new generation of highly efficient artificial photosynthetic systems. Video abstract
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip Charles
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Vidmantas Kalendra
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
50
|
Kurashov V, Milanovsky G, Luo L, Martin A, Semenov AY, Savikhin S, Cherepanov DA, Golbeck JH, Xu W. Conserved residue PsaB-Trp673 is essential for high-efficiency electron transfer between the phylloquinones and the iron-sulfur clusters in Photosystem I. PHOTOSYNTHESIS RESEARCH 2021; 148:161-180. [PMID: 33991284 DOI: 10.1007/s11120-021-00839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Despite the high level of symmetry between the PsaA and PsaB polypeptides in Photosystem I, some amino acids pairs are strikingly different, such as PsaA-Gly693 and PsaB-Trp673, which are located near a cluster of 11 water molecules between the A1A and A1B quinones and the FX iron-sulfur cluster. In this work, we changed PsaB-Trp673 to PsaB-Phe673 in Synechocystis sp. PCC 6803. The variant contains ~ 85% of wild-type (WT) levels of Photosystem I but is unable to grow photoautotrophically. Both time-resolved and steady-state optical measurements show that in the PsaB-W673F variant less than 50% of the electrons reach the terminal iron-sulfur clusters FA and FB; the majority of the electrons recombine from A1A- and A1B-. However, in those reaction centers which pass electrons forward the transfer is heterogeneous: a minor population shows electron transfer rates from A1A- and A1B- to FX slightly slower than that of the WT, whereas a major population shows forward electron transfer rates to FX slowed to the ~ 10 µs time range. Competition between relatively similar forward and backward rates of electron transfer from the quinones to the FX cluster account for the relatively low yield of long-lived charge separation in the PsaB-W673F variant. A higher water content and its increased mobility observed in MD simulations in the interquinone cavity of the PsaB-W673F variant shifts the pK of PsaB-Asp575 and allows its deprotonation in situ. The heterogeneity found may be rooted in protonation state of PsaB-Asp575, which controls whether electron transfer can proceed beyond the phylloquinone cofactors.
Collapse
Affiliation(s)
- Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - George Milanovsky
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninskie Gory, 1, Building 40, Moscow, Russia, 119992
| | - Lujun Luo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Antoine Martin
- Department of Physics, Purdue University, West Lafayette, IN, USA
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninskie Gory, 1, Building 40, Moscow, Russia, 119992
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st, 4, Moscow, Russia, 117977
| | - Sergei Savikhin
- Department of Physics, Purdue University, West Lafayette, IN, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st, 4, Moscow, Russia, 117977.
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
| |
Collapse
|