1
|
Groves JT, Feng L, Austin RN. Structure and Function of Alkane Monooxygenase (AlkB). Acc Chem Res 2023; 56:3665-3675. [PMID: 38032826 DOI: 10.1021/acs.accounts.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Every year, perhaps as much as 800 million tons of hydrocarbons enters the environment; alkanes make up a large percentage of it. Most are transformed by organisms that utilize these molecules as sources of energy and carbon. Both aerobic and anaerobic alkane transformation chemistries exist, capitalizing on the presence of alkanes in both oxic and anoxic environments. Over the past 40 years, tremendous progress has been made in understanding the structure and mechanism of enzymes that catalyze the transformation of methane. By contrast, progress involving enzymes that transform liquid alkanes has been slower with the first structures of AlkB, the predominant aerobic alkane hydroxylase in the environment, appearing in 2023. Because of the fundamental importance of C-H bond activation chemistries, interest in understanding how biology activates and transforms alkanes is high.In this Account, we focus on steps we have taken to understand the mechanism and structure of alkane monooxygenase (AlkB), the metalloenzyme that dominates the transformation of liquid alkanes in the environment (not to be confused with another AlkB that is an α-ketogluturate-dependent enzyme involved in DNA repair). First, we briefly describe what is known about the prevalence of AlkB in the environment and its role in the carbon cycle. Then we review the key findings from our recent high-resolution cryoEM structure of AlkB and highlight important similarities and differences in the structures of members of class III diiron enzymes. Functional studies, which we summarize, from a number of single residue variants enable us to say a great deal about how the structure of AlkB facilitates its function. Next, we overview work from our laboratories using mechanistically diagnostic radical clock substrates to characterize the mechanism of AlkB and contextualize the results we have obtained on AlkB with results we have obtained on other alkane-oxidizing enzymes and explain these results in light of the enzyme's structure. Finally, we integrate recent work in our laboratories with information from prior studies of AlkB, and relevant model systems, to create a holistic picture of the enzyme. We end by pointing to critical questions that still need to be answered, questions about the electronic structure of the active site of the enzyme throughout the reaction cycle and about whether and to what extent the enzyme plays functional roles in biology beyond simply initiating the degradation of alkanes.
Collapse
Affiliation(s)
- John T Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | | |
Collapse
|
2
|
Mahor D, Cong Z, Weissenborn MJ, Hollmann F, Zhang W. Valorization of Small Alkanes by Biocatalytic Oxyfunctionalization. CHEMSUSCHEM 2022; 15:e202101116. [PMID: 34288540 DOI: 10.1002/cssc.202101116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of alkanes into valuable chemical products is a vital reaction in organic synthesis. This reaction, however, is challenging, owing to the inertness of C-H bonds. Transition metal catalysts for C-H functionalization are frequently explored. Despite chemical alternatives, nature has also evolved powerful oxidative enzymes (e. g., methane monooxygenases, cytochrome P450 oxygenases, peroxygenases) that are capable of transforming C-H bonds under very mild conditions, with only the use of molecular oxygen or hydrogen peroxide as electron acceptors. Although progress in alkane oxidation has been reviewed extensively, little attention has been paid to small alkane oxidation. The latter holds great potential for the manufacture of chemicals. This Minireview provides a concise overview of the most relevant enzyme classes capable of small alkanes (C<6 ) oxyfunctionalization, describes the essentials of the catalytic mechanisms, and critically outlines the current state-of-the-art in preparative applications.
Collapse
Affiliation(s)
- Durga Mahor
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- Indian Institute of Science Education and Research Berhampur, Odisha, 760010, India
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, Shandong, 266101, P. R. China
| | - Martin J Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale), Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Wuyuan Zhang
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
3
|
Williams SC, Luongo D, Orman M, Vizcarra CL, Austin RN. An alkane monooxygenase (AlkB) family in which all electron transfer partners are covalently bound to the oxygen-activating hydroxylase. J Inorg Biochem 2022; 228:111707. [PMID: 34990970 PMCID: PMC8799515 DOI: 10.1016/j.jinorgbio.2021.111707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Alkane monooxygenase (AlkB) is a non-heme diiron enzyme that catalyzes the hydroxylation of alkanes. It is commonly found in alkanotrophic organisms that can live on alkanes as their sole source of carbon and energy. Activation of AlkB occurs via two-electron reduction of its diferric active site, which facilitates the binding, activation, and cleavage of molecular oxygen for insertion into an inert CH bond. Electrons are typically supplied by NADH via a rubredoxin reductase (AlkT) to a rubredoxin (AlkG) to AlkB, although alternative electron transfer partners have been observed. Here we report a family of AlkBs in which both electron transfer partners (a ferredoxin and a ferredoxin reductase) appear as an N-terminal gene fusion to the hydroxylase (ferr_ferrR_AlkB). This enzyme catalyzes the hydroxylation of medium chain alkanes (C6-C14), with a preference for C10-C12. It requires only NADH for activity. It is present in a number of bacteria that are known to be human pathogens. A survey of the genome neighborhoods in which is it found suggest it may be involved in alkane metabolism, perhaps facilitating growth of pathogens in non-host environments.
Collapse
|
4
|
Gregson BH, Metodieva G, Metodiev MV, Golyshin PN, McKew BA. Differential Protein Expression During Growth on Medium Versus Long-Chain Alkanes in the Obligate Marine Hydrocarbon-Degrading Bacterium Thalassolituus oleivorans MIL-1. Front Microbiol 2018; 9:3130. [PMID: 30619200 PMCID: PMC6304351 DOI: 10.3389/fmicb.2018.03130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 02/02/2023] Open
Abstract
The marine obligate hydrocarbonoclastic bacterium Thalassolituus oleivorans MIL-1 metabolizes a broad range of aliphatic hydrocarbons almost exclusively as carbon and energy sources. We used LC-MS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on medium- (n-C14) or long-chain (n-C28) alkanes. During growth on n-C14, T. oleivorans expresses an alkane monooxygenase system involved in terminal oxidation including two alkane 1-monooxygenases, a ferredoxin, a ferredoxin reductase and an aldehyde dehydrogenase. In contrast, during growth on long-chain alkanes (n-C28), T. oleivorans may switch to a subterminal alkane oxidation pathway evidenced by significant upregulation of Baeyer-Villiger monooxygenase and an esterase, proteins catalyzing ketone and ester metabolism, respectively. The metabolite (primary alcohol) generated from terminal oxidation of an alkane was detected during growth on n-C14 but not on n-C28 also suggesting alternative metabolic pathways. Expression of both active and passive transport systems involved in uptake of long-chain alkanes was higher when compared to the non-hydrocarbon control, including a TonB-dependent receptor, a FadL homolog and a specialized porin. Also, an inner membrane transport protein involved in the export of an outer membrane protein was expressed. This study has demonstrated the substrate range of T. oleivorans is larger than previously reported with growth from n-C10 up to n-C32. It has also greatly enhanced our understanding of the fundamental physiology of T. oleivorans, a key bacterium that plays a significant role in natural attenuation of marine oil pollution, by identifying key enzymes expressed during the catabolism of n-alkanes.
Collapse
Affiliation(s)
- Benjamin H Gregson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Gergana Metodieva
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Bangor, United Kingdom.,School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, United Kingdom
| | - Boyd A McKew
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
5
|
Hoschek A, Bühler B, Schmid A. Umgehung des Gas-flüssig-Stofftransports von Sauerstoff durch Kopplung der photosynthetischen Wasseroxidation an eine biokatalytische Oxyfunktionalisierung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anna Hoschek
- Department Solare Materialien; Helmholtz-Zentrum für Umweltforschung - UFZ; Permoserstraße 15 04318 Leipzig Deutschland
| | - Bruno Bühler
- Department Solare Materialien; Helmholtz-Zentrum für Umweltforschung - UFZ; Permoserstraße 15 04318 Leipzig Deutschland
| | - Andreas Schmid
- Department Solare Materialien; Helmholtz-Zentrum für Umweltforschung - UFZ; Permoserstraße 15 04318 Leipzig Deutschland
| |
Collapse
|
6
|
Hoschek A, Bühler B, Schmid A. Overcoming the Gas-Liquid Mass Transfer of Oxygen by Coupling Photosynthetic Water Oxidation with Biocatalytic Oxyfunctionalization. Angew Chem Int Ed Engl 2017; 56:15146-15149. [PMID: 28945948 PMCID: PMC5708270 DOI: 10.1002/anie.201706886] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/24/2017] [Indexed: 01/15/2023]
Abstract
Gas–liquid mass transfer of gaseous reactants is a major limitation for high space–time yields, especially for O2‐dependent (bio)catalytic reactions in aqueous solutions. Herein, oxygenic photosynthesis was used for homogeneous O2 supply via in situ generation in the liquid phase to overcome this limitation. The phototrophic cyanobacterium Synechocystis sp. PCC6803 was engineered to synthesize the alkane monooxygenase AlkBGT from Pseudomonas putida GPo1. With light, but without external addition of O2, the chemo‐ and regioselective hydroxylation of nonanoic acid methyl ester to ω‐hydroxynonanoic acid methyl ester was driven by O2 generated through photosynthetic water oxidation. Photosynthesis also delivered the necessary reduction equivalents to regenerate the Fe2+ center in AlkB for oxygen transfer to the terminal methyl group. The in situ coupling of oxygenic photosynthesis to O2‐transferring enzymes now enables the design of fast hydrocarbon oxyfunctionalization reactions.
Collapse
Affiliation(s)
- Anna Hoschek
- Department Solar Materials, Helmholtz-Centre for Environmental Research, UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department Solar Materials, Helmholtz-Centre for Environmental Research, UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Andreas Schmid
- Department Solar Materials, Helmholtz-Centre for Environmental Research, UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
7
|
Tsai YF, Luo WI, Chang JL, Chang CW, Chuang HC, Ramu R, Wei GT, Zen JM, Yu SSF. Electrochemical Hydroxylation of C 3-C 12 n-Alkanes by Recombinant Alkane Hydroxylase (AlkB) and Rubredoxin-2 (AlkG) from Pseudomonas putida GPo1. Sci Rep 2017; 7:8369. [PMID: 28827709 PMCID: PMC5566439 DOI: 10.1038/s41598-017-08610-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/26/2017] [Indexed: 01/22/2023] Open
Abstract
An unprecedented method for the efficient conversion of C3–C12 linear alkanes to their corresponding primary alcohols mediated by the membrane-bound alkane hydroxylase (AlkB) from Pseudomonas putida GPo1 is demonstrated. The X-ray absorption spectroscopy (XAS) studies support that electrons can be transferred from the reduced AlkG (rubredoxin-2, the redox partner of AlkB) to AlkB in a two-phase manner. Based on this observation, an approach for the electrocatalytic conversion from alkanes to alcohols mediated by AlkB using an AlkG immobilized screen-printed carbon electrode (SPCE) is developed. The framework distortion of AlkB–AlkG adduct on SPCE surface might create promiscuity toward gaseous substrates. Hence, small alkanes including propane and n-butane can be accommodated in the hydrophobic pocket of AlkB for C–H bond activation. The proof of concept herein advances the development of artificial C–H bond activation catalysts.
Collapse
Affiliation(s)
- Yi-Fang Tsai
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-I Luo
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Jen-Lin Chang
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | | | - Ravirala Ramu
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Guor-Tzo Wei
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-yi, 621, Taiwan
| | - Jyh-Myng Zen
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
8
|
Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics. Chem Rev 2017; 117:8574-8621. [PMID: 28206744 DOI: 10.1021/acs.chemrev.6b00624] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.
Collapse
Affiliation(s)
- Vincent C-C Wang
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Suman Maji
- School of Chemical Engineering and Physical Sciences, Lovely Professional University , Jalandhar-Delhi G. T. Road (NH-1), Phagwara, Punjab India 144411
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University , 250 Kuo Kuang Road, Taichung 402, Taiwan
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Sunney I Chan
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.,Noyes Laboratory, 127-72, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Grant C, Deszcz D, Wei YC, Martínez-Torres RJ, Morris P, Folliard T, Sreenivasan R, Ward J, Dalby P, Woodley JM, Baganz F. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes. Sci Rep 2014; 4:5844. [PMID: 25068650 PMCID: PMC5376172 DOI: 10.1038/srep05844] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 07/03/2014] [Indexed: 01/31/2023] Open
Abstract
Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially relevant rates of uptake of C7-C16 n-alkanes. Without alkL expression, native E.coli n-alkane uptake was the rate-limiting step in both the whole-cell bioconversion of C7-C16 n-alkanes and in the activation of a whole-cell alkane biosensor by C10 and C11 alkanes. By coexpression of alkL as a transporter plug-in, specific yields improved by up to 100-fold for bioxidation of >C12 alkanes to fatty alcohols and acids. The alkL protein was shown to be toxic to the host when overexpressed but when expressed from a vector capable of controlled induction, yields of alkane oxidation were improved a further 10-fold (8 g/L and 1.7 g/g of total oxidized products). Further testing of activity on n-octane with the controlled expression vector revealed the highest reported rates of 120 μmol/min/g and 1 g/L/h total oxidized products. This is the first time AlkL has been shown to directly facilitate enhanced uptake of C10-C16 alkanes and represents the highest reported gain in product yields resulting from its use.
Collapse
Affiliation(s)
- Chris Grant
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Dawid Deszcz
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Yu-Chia Wei
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | | | - Phattaraporn Morris
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Thomas Folliard
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Rakesh Sreenivasan
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - John Ward
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
- Dept. of Structural and Molecular Biology, ISMB, University College London, Gower Street, London WC1E 6BT, U.K
| | - Paul Dalby
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - John M. Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK 2800 Lyngby, Denmark
| | - Frank Baganz
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| |
Collapse
|
10
|
Schrewe M, Julsing MK, Lange K, Czarnotta E, Schmid A, Bühler B. Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization. Biotechnol Bioeng 2014; 111:1820-30. [DOI: 10.1002/bit.25248] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/18/2014] [Accepted: 03/24/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Manfred Schrewe
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Mattijs K. Julsing
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Kerstin Lange
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Eik Czarnotta
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Andreas Schmid
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| | - Bruno Bühler
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering; TU Dortmund University; Emil-Figge-Strasse 66 Dortmund 44227 Germany
| |
Collapse
|
11
|
Nie Y, Chi CQ, Fang H, Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL. Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 2014; 4:4968. [PMID: 24829093 PMCID: PMC4021335 DOI: 10.1038/srep04968] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/07/2014] [Indexed: 11/08/2022] Open
Abstract
AlkB and CYP153 are important alkane hydroxylases responsible for aerobic alkane degradation in bioremediation of oil-polluted environments and microbial enhanced oil recovery. Since their distribution in nature is not clear, we made the investigation among thus-far sequenced 3,979 microbial genomes and 137 metagenomes from terrestrial, freshwater, and marine environments. Hundreds of diverse alkB and CYP153 genes including many novel ones were found in bacterial genomes, whereas none were found in archaeal genomes. Moreover, these genes were detected with different distributional patterns in the terrestrial, freshwater, and marine metagenomes. Hints for horizontal gene transfer, gene duplication, and gene fusion were found, which together are likely responsible for diversifying the alkB and CYP153 genes adapt to the ubiquitous distribution of different alkanes in nature. In addition, different distributions of these genes between bacterial genomes and metagenomes suggested the potentially important roles of unknown or less common alkane degraders in nature.
Collapse
Affiliation(s)
- Yong Nie
- College of Engineering, Peking University, Beijing 100871, P. R. China
- Institute of Engineering (Baotou), College of Engineering, Peking University, Baotou 014030, China
| | - Chang-Qiao Chi
- College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Hui Fang
- College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Jie-Liang Liang
- College of Engineering, Peking University, Beijing 100871, P. R. China
| | - She-Lian Lu
- College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Guo-Li Lai
- College of Engineering, Peking University, Beijing 100871, P. R. China
- Institute of Engineering (Baotou), College of Engineering, Peking University, Baotou 014030, China
| | - Yue-Qin Tang
- College of Engineering, Peking University, Beijing 100871, P. R. China
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
12
|
Controlled oxidation of aliphatic CH bonds in metallo-monooxygenases: Mechanistic insights derived from studies on deuterated and fluorinated hydrocarbons. J Inorg Biochem 2014; 134:118-33. [DOI: 10.1016/j.jinorgbio.2014.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/06/2014] [Accepted: 02/11/2014] [Indexed: 01/01/2023]
|
13
|
Biochemical analysis of recombinant AlkJ from Pseudomonas putida reveals a membrane-associated, flavin adenine dinucleotide-dependent dehydrogenase suitable for the biosynthetic production of aliphatic aldehydes. Appl Environ Microbiol 2014; 80:2468-77. [PMID: 24509930 DOI: 10.1128/aem.04297-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The noncanonical alcohol dehydrogenase AlkJ is encoded on the alkane-metabolizing alk operon of the mesophilic bacterium Pseudomonas putida GPo1. To gain insight into the enzymology of AlkJ, we have produced the recombinant protein in Escherichia coli and purified it to homogeneity using His6 tag affinity and size exclusion chromatography (SEC). Despite synthesis in the cytoplasm, AlkJ was associated with the bacterial cell membrane, and solubilization with n-dodecyl-β-D-maltoside was necessary to liberate the enzyme. SEC and spectrophotometric analysis revealed a dimeric quaternary structure with stoichiometrically bound reduced flavin adenine dinucleotide (FADH2). The holoenzyme showed thermal denaturation at moderate temperatures around 35°C, according to both activity assay and temperature-dependent circular dichroism spectroscopy. The tightly bound coenzyme was released only upon denaturation with SDS or treatment with urea-KBr and, after air oxidation, exhibited the characteristic absorption spectrum of FAD. The enzymatic activity of purified AlkJ for 1-butanol, 1-hexanol, and 1-octanol as well as the n-alkanol derivative ω-hydroxy lauric acid methyl ester (HLAMe) was quantified in the presence of the artificial electron acceptors phenazine methosulfate (PMS) and 2,6-dichlorophenolindophenol (DCPIP), indicating broad substrate specificity with the lowest activity on the shortest alcohol, 1-butanol. Furthermore, AlkJ was able to accept as cosubstrates/oxidants the ubiquinone derivatives Q0 and Q1, also in conjunction with cytochrome c, which suggests coupling to the bacterial respiratory chain of this membrane-associated enzyme in its physiological environment. Using gas chromatographic analysis, we demonstrated specific biocatalytic conversion by AlkJ of the substrate HLAMe to the industrially relevant aldehyde, thus enabling the biotechnological production of 12-amino lauric acid methyl ester via subsequent enzymatic transamination.
Collapse
|
14
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part I. {Fe(SγCys)4} proteins. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Schrewe M, Ladkau N, Bühler B, Schmid A. Direct Terminal Alkylamino-FunctionalizationviaMultistep Biocatalysis in One Recombinant Whole-Cell Catalyst. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201200958] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Cooper HLR, Mishra G, Huang X, Pender-Cudlip M, Austin RN, Shanklin J, Groves JT. Parallel and competitive pathways for substrate desaturation, hydroxylation, and radical rearrangement by the non-heme diiron hydroxylase AlkB. J Am Chem Soc 2012; 134:20365-75. [PMID: 23157204 PMCID: PMC3531984 DOI: 10.1021/ja3059149] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A purified and highly active form of the non-heme diiron hydroxylase AlkB was investigated using the diagnostic probe substrate norcarane. The reaction afforded C2 (26%) and C3 (43%) hydroxylation and desaturation products (31%). Initial C-H cleavage at C2 led to 7% C2 hydroxylation and 19% 3-hydroxymethylcyclohexene, a rearrangement product characteristic of a radical rearrangement pathway. A deuterated substrate analogue, 3,3,4,4-norcarane-d(4), afforded drastically reduced amounts of C3 alcohol (8%) and desaturation products (5%), while the radical rearranged alcohol was now the major product (65%). This change in product ratios indicates a large kinetic hydrogen isotope effect of ∼20 for both the C-H hydroxylation at C3 and the desaturation pathway, with all of the desaturation originating via hydrogen abstraction at C3 and not C2. The data indicate that AlkB reacts with norcarane via initial C-H hydrogen abstraction from C2 or C3 and that the three pathways, C3 hydroxylation, C3 desaturation, and C2 hydroxylation/radical rearrangement, are parallel and competitive. Thus, the incipient radical at C3 either reacts with the iron-oxo center to form an alcohol or proceeds along the desaturation pathway via a second H-abstraction to afford both 2-norcarene and 3-norcarene. Subsequent reactions of these norcarenes lead to detectable amounts of hydroxylation products and toluene. By contrast, the 2-norcaranyl radical intermediate leads to C2 hydroxylation and the diagnostic radical rearrangement, but this radical apparently does not afford desaturation products. The results indicate that C-H hydroxylation and desaturation follow analogous stepwise reaction channels via carbon radicals that diverge at the product-forming step.
Collapse
Affiliation(s)
| | - Girish Mishra
- Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973
| | - Xiongyi Huang
- Department of Chemistry, Princeton University, Princeton NJ 08544
| | | | | | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton NJ 08544
| |
Collapse
|
17
|
Gross R, Buehler K, Schmid A. Engineered catalytic biofilms for continuous large scale production of n-octanol and (S)-styrene oxide. Biotechnol Bioeng 2012; 110:424-36. [PMID: 22886684 DOI: 10.1002/bit.24629] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/11/2012] [Accepted: 07/26/2012] [Indexed: 11/08/2022]
Abstract
This study evaluates the technical feasibility of biofilm-based biotransformations at an industrial scale by theoretically designing a process employing membrane fiber modules as being used in the chemical industry and compares the respective process parameters to classical stirred-tank studies. To our knowledge, catalytic biofilm processes for fine chemicals production have so far not been reported on a technical scale. As model reactions, we applied the previously studied asymmetric styrene epoxidation employing Pseudomonas sp. strain VLB120ΔC biofilms and the here-described selective alkane hydroxylation. Using the non-heme iron containing alkane hydroxylase system (AlkBGT) from P. putida Gpo1 in the recombinant P. putida PpS81 pBT10 biofilm, we were able to continuously produce 1-octanol from octane with a maximal productivity of 1.3 g L ⁻¹(aq) day⁻¹ in a single tube micro reactor. For a possible industrial application, a cylindrical membrane fiber module packed with 84,000 polypropylene fibers is proposed. Based on the here presented calculations, 59 membrane fiber modules (of 0.9 m diameter and 2 m length) would be feasible to realize a production process of 1,000 tons/year for styrene oxide. Moreover, the product yield on carbon can at least be doubled and over 400-fold less biomass waste would be generated compared to classical stirred-tank reactor processes. For the octanol process, instead, further intensification in biological activity and/or surface membrane enlargement is required to reach production scale. By taking into consideration challenges such as biomass growth control and maintaining a constant biological activity, this study shows that a biofilm process at an industrial scale for the production of fine chemicals is a sustainable alternative in terms of product yield and biomass waste production.
Collapse
Affiliation(s)
- Rainer Gross
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Emil-Figge-Str. 66, Dortmund 44221, Germany
| | | | | |
Collapse
|
18
|
Schrewe M, Magnusson AO, Willrodt C, Bühler B, Schmid A. Kinetic Analysis of Terminal and Unactivated CH Bond Oxyfunctionalization in Fatty Acid Methyl Esters by Monooxygenase-Based Whole-Cell Biocatalysis. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100440] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Zhang W, Tang WL, Wang Z, Li Z. Regio- and Stereoselective Biohydroxylations with a Recombinant Escherichia coli Expressing P450pyr Monooxygenase of Sphingomonas Sp. HXN-200. Adv Synth Catal 2010. [DOI: 10.1002/adsc.201000266] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Abstract
Whole-cell biocatalysis utilizes native or recombinant enzymes produced by cellular metabolism to perform synthetically interesting reactions. Besides hydrolases, oxidoreductases represent the most applied enzyme class in industry. Oxidoreductases are attributed a high future potential, especially for applications in the chemical and pharmaceutical industries, as they enable highly interesting chemistry (e.g., the selective oxyfunctionalization of unactivated C-H bonds). Redox reactions are characterized by electron transfer steps that often depend on redox cofactors as additional substrates. Their regeneration typically is accomplished via the metabolism of whole-cell catalysts. Traditionally, studies towards productive redox biocatalysis focused on the biocatalytic enzyme, its activity, selectivity, and specificity, and several successful examples of such processes are running commercially. However, redox cofactor regeneration by host metabolism was hardly considered for the optimization of biocatalytic rate, yield, and/or titer. This article reviews molecular mechanisms of oxidoreductases with synthetic potential and the host redox metabolism that fuels biocatalytic reactions with redox equivalents. The tools discussed in this review for investigating redox metabolism provide the basis for studies aiming at a deeper understanding of the interplay between synthetically active enzymes and metabolic networks. The ultimate goal of rational whole-cell biocatalyst engineering and use for fine chemical production is discussed.
Collapse
|
21
|
|
22
|
Gunsalus IC, Marshall VP, Ribbons DW. Monoterpene Dissimilation: Chemical and Genetic Models. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/10408417109104484] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Kimura T. Biochemical aspects of iron-sulfur linkage in non-heme iron protein, with special reference to “Adrenodoxin”. STRUCTURE AND BONDING 2008. [DOI: 10.1007/bfb0118845] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
24
|
Karasevich EI, Kulikova VS, Shilov AE, Shteinman AA. Biomimetic alkane oxidation involving metal complexes. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1998v067n04abeh000315] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Hou CT. Monooxygenase system ofBacillus megateriumALA2: Studies on linoleic acid epoxidation products. J AM OIL CHEM SOC 2006. [DOI: 10.1007/s11746-006-5023-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ching T. Hou
- ; Microbial Genomics and Bioprocessing Research Unit, NCAUR, ARS; USDA; 1815 N. University St. Peoria 61604 Illinois
| |
Collapse
|
26
|
Meinhold P, Peters M, Hartwick A, Hernandez A, Arnold F. Engineering Cytochrome P450 BM3 for Terminal Alkane Hydroxylation. Adv Synth Catal 2006. [DOI: 10.1002/adsc.200505465] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Coon MJ. Omega Oxygenases: Nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun 2005; 338:378-85. [PMID: 16165094 DOI: 10.1016/j.bbrc.2005.08.169] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 08/24/2005] [Indexed: 11/22/2022]
Abstract
Enzymes that effect with ease one of the most difficult chemical reactions, hydroxylation of an unfunctionalized alkyl group, are of particular interest because highly reactive intermediates must be produced. A typical example, the hydroxylation of fatty acids in the omega position, is now known to occur widely in nature. The catalysts, which can be called "omega-oxygenases," also insert molecular oxygen into a variety of other substrates at positions removed from activating functional groups, as in steroids, eicosanoids, and numerous drugs and other xenobiotics. Progress in the characterization of bacterial nonheme-iron enzymes, and plant, bacterial, and mammalian P450 cytochromes that catalyze fatty acid omega-oxidation, and evidence for multiple functional oxidants are summarized.
Collapse
Affiliation(s)
- Minor J Coon
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
28
|
Sayavedra-Soto LA, Doughty DM, Kurth EG, Bottomley PJ, Arp DJ. Product and product-independent induction of butane oxidation in Pseudomonas butanovora. FEMS Microbiol Lett 2005; 250:111-6. [PMID: 16055278 DOI: 10.1016/j.femsle.2005.06.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2005] [Accepted: 06/27/2005] [Indexed: 10/25/2022] Open
Abstract
Pseudomonas butanovora grows on butane by means of an inducible soluble alkane monooxygenase (sBMO). The induction of sBMO was studied using the wild type and a sBMO reporter strain. The reporter strain has the lacZ::kan cassette inserted into bmoX, the gene that encodes the alpha-subunit of the hydroxylase of sBMO. The beta-galactosidase activity in the reporter strain was not induced by butane, but was induced by 1-butanol and butyraldehyde. P. butanovora expressed sBMO product-independent activity at 3.0+/-1 nmol ethylene oxide min(-1) mg protein(-1) in stationary phase. The sBMO product-independent activity likely primes the expression of sBMO by butane.
Collapse
Affiliation(s)
- Luis A Sayavedra-Soto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | |
Collapse
|
29
|
Abstract
The author describes studies that led to the resolution and reconstitution of the cytochrome P450 enzyme system in microsomal membranes. The review indicates how purification and characterization of the cytochromes led to rigorous evidence for multiple isoforms of the oxygenases with distinct chemical and physical properties and different but somewhat overlapping substrate specificities. Present knowledge of the individual steps in the P450 and reductase reaction cycles is summarized, including evidence for the generation of multiple functional oxidants that may contribute to the exceptional diversity of the reactions catalyzed.
Collapse
Affiliation(s)
- Minor J Coon
- Department of Biological Chemistry, Medical School, The University of Michigan, Ann Arbor 48109, USA.
| |
Collapse
|
30
|
Abstract
The year 2004 marks the 50th anniversary of the discovery of cytochrome P450. Minor J. (Jud) Coon has been a leader in this field for the last 35 years. This review summarizes his contributions to P450 research by discussing six of his most significant publications; not surprisingly, these papers serve as landmarks for the major directions followed in P450 research.
Collapse
Affiliation(s)
- Todd D Porter
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA.
| |
Collapse
|
31
|
Austin RN, Buzzi K, Kim E, Zylstra GJ, Groves JT. Xylene monooxygenase, a membrane-spanning non-heme diiron enzyme that hydroxylates hydrocarbons via a substrate radical intermediate. J Biol Inorg Chem 2003; 8:733-40. [PMID: 12811621 DOI: 10.1007/s00775-003-0466-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Accepted: 04/11/2003] [Indexed: 10/18/2022]
Abstract
The non-heme diiron enzyme xylene monooxygenase (XylM) has been shown to hydroxylate hydrocarbons via a hydrogen abstraction-carbon radical recombination mechanism (oxygen rebound). Using the radical clock bicyclo[4.1.0]heptane (norcarane) in a whole-cell assay, and observing the ratio of rearranged 3-(hydroxymethyl)cyclohexene and unrearranged 2-norcaranol products, the lifetime of the substrate radical was determined to be approximately 0.2 ns. The wild-type organism Pseudomonas putida mt-2 and two separate Escherichia coli clones expressing xylMA genes gave similar results. One clone produced the Pseudomonas putida mt-2 XylMA hydroxylase and the other produced Sphingomonas yanoikuyae B1 XylMA hydroxylase. Clones were constructed by inserting genes for xylene monooxygenase and xylene monooxygenase reductase downstream from an IPTG-inducible T7 promoter. Mechanistic investigations using whole-cell assays will facilitate more rapid screening of structure-function relationships and the identification of novel oxygenases. This approach should enable the construction of a picture of the key metalloenzymes and the mechanisms they use in selected parts of the global carbon cycle without requiring the isolation of every protein involved.
Collapse
Affiliation(s)
- Rachel N Austin
- Department of Chemistry, Bates College, 5 Andrews Road, Lewiston, ME 04240, USA.
| | | | | | | | | |
Collapse
|
32
|
Shanklin J, Whittle E. Evidence linking the Pseudomonas oleovorans alkane omega-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family. FEBS Lett 2003; 545:188-92. [PMID: 12804773 DOI: 10.1016/s0014-5793(03)00529-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pseudomonas oleovorans alkane omega-hydroxylase (AlkB) is an integral membrane diiron enzyme that shares a requirement for iron and oxygen for activity in a manner similar to that of the non-heme integral membrane desaturases, epoxidases, acetylenases, conjugases, ketolases, decarbonylase and methyl oxidases. No overall sequence similarity is detected between AlkB and these desaturase-like enzymes by computer algorithms; however, they do contain a series of histidine residues in a similar relative positioning with respect to hydrophobic regions thought to be transmembrane domains. To test whether these conserved histidine residues are functionally equivalent to those of the desaturase-like enzymes we used scanning alanine mutagenesis to test if they are essential for activity of AlkB. These experiments show that alanine substitution of any of the eight conserved histidines results in complete inactivation, whereas replacement of three non-conserved histidines in close proximity to the conserved residues, results in only partial inactivation. These data provide the first experimental support for the hypotheses: (i) that the histidine motif in AlkB is equivalent to that in the desaturase-like enzymes and (ii) that the conserved histidine residues play a vital role such as coordinating the Fe ions comprising the diiron active site.
Collapse
Affiliation(s)
- John Shanklin
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave., Upton, NY 11973, USA.
| | | |
Collapse
|
33
|
Chang D, Feiten HJ, Witholt B, Li Z. Regio- and stereoselective hydroxylation of N-substituted piperidin-2-ones with Sphingomonas sp. HXN-200. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0957-4166(02)00534-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Coon MJ. Enzyme ingenuity in biological oxidations: a trail leading to cytochrome p450. J Biol Chem 2002; 277:28351-63. [PMID: 12050174 DOI: 10.1074/jbc.r200015200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Minor J Coon
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
35
|
van Beilen JB, Neuenschwander M, Smits THM, Roth C, Balada SB, Witholt B. Rubredoxins involved in alkane oxidation. J Bacteriol 2002; 184:1722-32. [PMID: 11872724 PMCID: PMC134906 DOI: 10.1128/jb.184.6.1722-1732.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rubredoxins (Rds) are essential electron transfer components of bacterial membrane-bound alkane hydroxylase systems. Several Rd genes associated with alkane hydroxylase or Rd reductase genes were cloned from gram-positive and gram-negative organisms able to grow on n-alkanes (Alk-Rds). Complementation tests in an Escherichia coli recombinant containing all Pseudomonas putida GPo1 genes necessary for growth on alkanes except Rd 2 (AlkG) and sequence comparisons showed that the Alk-Rds can be divided in AlkG1- and AlkG2-type Rds. All alkane-degrading strains contain AlkG2-type Rds, which are able to replace the GPo1 Rd 2 in n-octane hydroxylation. Most strains also contain AlkG1-type Rds, which do not complement the deletion mutant but are highly conserved among gram-positive and gram-negative bacteria. Common to most Rds are the two iron-binding CXXCG motifs. All Alk-Rds possess four negatively charged residues that are not conserved in other Rds. The AlkG1-type Rds can be distinguished from the AlkG2-type Rds by the insertion of an arginine downstream of the second CXXCG motif. In addition, the glycines in the two CXXCG motifs are usually replaced by other amino acids. Mutagenesis of residues conserved in either the AlkG1- or the AlkG2-type Rds, but not between both types, shows that AlkG1 is unable to transfer electrons to the alkane hydroxylase mainly due to the insertion of the arginine, whereas the exchange of the glycines in the two CXXCG motifs only has a limited effect.
Collapse
Affiliation(s)
- Jan B van Beilen
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
36
|
Smits THM, Balada SB, Witholt B, van Beilen JB. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J Bacteriol 2002; 184:1733-42. [PMID: 11872725 PMCID: PMC134907 DOI: 10.1128/jb.184.6.1733-1742.2002] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned homologs of the Pseudomonas putida GPo1 alkane hydroxylase from Pseudomonas aeruginosa PAO1, Pseudomonas fluorescens CHA0, Alcanivorax borkumensis AP1, Mycobacterium tuberculosis H37Rv, and Prauserella rugosa NRRL B-2295. Sequence comparisons show that the level of protein sequence identity between the homologs is as low as 35%, and that the Pseudomonas alkane hydroxylases are as distantly related to each other as to the remaining alkane hydroxylases. Based on the observation that rubredoxin, an electron transfer component of the GPo1 alkane hydroxylase system, can be replaced by rubredoxins from other alkane hydroxylase systems, we have developed three recombinant host strains for the functional analysis of the novel alkane hydroxylase genes. Two hosts, Escherichia coli GEc137 and P. putida GPo12, were equipped with pGEc47 Delta B, which encodes all proteins necessary for growth on medium-chain-length alkanes (C(6) to C(12)), except a functional alkane hydroxylase. The third host was an alkB knockout derivative of P. fluorescens CHA0, which is no longer able to grow on C(12) to C(16) alkanes. All alkane hydroxylase homologs, except the Acinetobacter sp. ADP1 AlkM, allowed at least one of the three hosts to grow on n-alkanes.
Collapse
Affiliation(s)
- Theo H M Smits
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
37
|
Austin RN, Chang HK, Zylstra GJ, Groves JT. The Non-Heme Diiron Alkane Monooxygenase of Pseudomonas oleovorans (AlkB) Hydroxylates via a Substrate Radical Intermediate. J Am Chem Soc 2000. [DOI: 10.1021/ja001500v] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rachel N. Austin
- Department of Chemistry, Princeton University Princeton, New Jersey 08544 Biotechnology Center for Agriculture and the Environment Rutgers University, New Brunswick New Jersey 08901
| | - Hung-Kuang Chang
- Department of Chemistry, Princeton University Princeton, New Jersey 08544 Biotechnology Center for Agriculture and the Environment Rutgers University, New Brunswick New Jersey 08901
| | - Gerben J. Zylstra
- Department of Chemistry, Princeton University Princeton, New Jersey 08544 Biotechnology Center for Agriculture and the Environment Rutgers University, New Brunswick New Jersey 08901
| | - John T. Groves
- Department of Chemistry, Princeton University Princeton, New Jersey 08544 Biotechnology Center for Agriculture and the Environment Rutgers University, New Brunswick New Jersey 08901
| |
Collapse
|
38
|
Staijen IE, Van Beilen JB, Witholt B. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1957-65. [PMID: 10727934 DOI: 10.1046/j.1432-1327.2000.01196.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We tested the synthesis and in vivo function of the inducible alkane hydroxylase of Pseudomonas oleovorans GPo1 in several Escherichia coli recombinants. The enzyme components (AlkB, AlkG and AlkT) were synthesized at various rates in different E. coli hosts, which after induction produced between twofold and tenfold more of the Alk components than did P. oleovorans. The enzyme components were less stable in recombinant E. coli hosts than in P. oleovorans. In addition, the specific activity of the alkane mono-oxygenase component AlkB was five or six times lower in E. coli than in P. oleovorans. Evidently, optimal functioning of the hydroxylase system requires factors or a molecular environment that are available in Pseudomonas but not in E. coli. These factors are likely to include correct interactions of AlkB with the membrane and incorporation of iron into the AlkG and AlkB apoproteins.
Collapse
Affiliation(s)
- I E Staijen
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zürich, Switzerland
| | | | | |
Collapse
|
39
|
Canosa I, Sánchez-Romero JM, Yuste L, Rojo F. A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Mol Microbiol 2000; 35:791-9. [PMID: 10692156 DOI: 10.1046/j.1365-2958.2000.01751.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The AlkS regulator, encoded by the alkS gene of the Pseudomonas oleovorans OCT plasmid, activates the expression of a set of enzymes that allow assimilation of alkanes. We show that the AlkS protein regulates, both negatively and positively, the expression of its own gene. In the absence of alkanes, alkS is expressed from promoter PalkS1, which is recognized by sigmaS-RNA polymerase, and whose activity is very low in the exponential phase of growth and considerably higher in stationary phase. AlkS was found to downregulate this promoter, limiting expression of alkS in stationary phase when alkanes were absent. In the presence of alkanes, AlkS repressed PalkS1 more strongly and simultaneously activated a second promoter for alkS, named PalkS2, located 38 bp downstream from PalkS1. Activation of PalkS2 allowed efficient transcription of alkS when alkanes were present. Transcription from PalkS2 was modulated by catabolite repression when cells were provided with a preferred carbon source. We propose that the expression of alkS is regulated by a positive feedback mechanism, which leads to a rapid increase in alkS transcription when alkanes are present. This mechanism should allow a rapid induction of the pathway, as well as a fast switch-off when alkanes are depleted. An improved model for the regulation of the pathway is proposed.
Collapse
Affiliation(s)
- I Canosa
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 - Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Lee HJ, Basran J, Scrutton NS. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex. Biochemistry 1998; 37:15513-22. [PMID: 9799514 DOI: 10.1021/bi981853v] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rubredoxin reductase (RR) and rubredoxin form a soluble and physiological eT complex. The complex provides reducing equivalents for a membrane-bound omega-hydroxylase, required for the hydroxylation of alkanes and related compounds. The gene (alkT) encoding RR has been overexpressed and the enzyme purified in amounts suitable for studies of eT by stopped-flow spectroscopy. The eT reactions from NADH to the flavin of RR and from reduced RR to the 1Fe and 2Fe forms of rubredoxin have been characterized by transient kinetic and thermodynamic analysis. The reductive half-reaction proceeds in a one-step reaction involving oxidized enzyme and a two-electron-reduced enzyme-NAD+ charge-transfer complex. Flavin reduction is observed at 450 nm and charge-transfer formation at 750 nm; both steps are hyperbolically dependent on NADH concentration. The limiting flavin reduction rate (180 +/- 4 s-1) is comparable to the limiting rate for charge-transfer formation (189 +/- 7 s-1) and analysis at 450 and 750 nm yielded enzyme-NADH dissociation constants of 36 +/- 2 and 43 +/- 5 microM, respectively. Thermodynamic analysis of the reductive half-reaction yielded values for changes in entropy (DeltaS = -65.8 +/- 2.2 J mol-1 K-1), enthalpy (DeltaH = 37.8 +/- 0.6 kJ mol-1) and Gibbs free energy (DeltaG = 57.5 +/- 0.7 kJ mol-1 at 298 K) during hydride ion transfer to the flavin N5 atom. Spectral analysis of mixtures of 1Fe or 2Fe rubredoxin and RR suggest that conformational changes accompany eT complex assembly. Both the 1Fe (nonphysiological) and 2Fe (physiological) forms of rubredoxin were found to oxidize two electron-reduced rubredoxin reductase with approximately equal facility. Rates for the reduction of rubredoxin are hyperbolically dependent on rubredoxin concentration and the limiting rates are 72. 7 +/- 0.6 and 55.2 +/- 0.3 s-1 for the 1Fe and 2Fe forms, respectively. Analysis of the temperature dependence of eT to rubredoxin using eT theory revealed that the reaction is not adequately described as a nonadiabatic eT reaction (HAB >> 80 cm-1). eT to both the 1Fe and 2Fe forms of rubredoxin is therefore gated by an adiabatic process that precedes the eT reaction from flavin to iron. Possible origins of this adiabatic event are discussed.
Collapse
Affiliation(s)
- H J Lee
- Department of Biochemistry, University of Leicester, U.K
| | | | | |
Collapse
|
41
|
Staijen IE, Witholt B. Synthesis of alkane hydroxylase ofPseudomonas oleovorans increases the iron requirement ofalk+ bacterial strains. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19980120)57:2<228::aid-bit12>3.0.co;2-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Heterogeneous natures of the microbial steroid 9α-hydroxylase in nocardioforms. Arch Pharm Res 1997; 20:519-24. [DOI: 10.1007/bf02975204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1997] [Indexed: 10/21/2022]
|
43
|
Shanklin J, Achim C, Schmidt H, Fox BG, Münck E. Mössbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. Proc Natl Acad Sci U S A 1997; 94:2981-6. [PMID: 9096332 PMCID: PMC20308 DOI: 10.1073/pnas.94.7.2981] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/1996] [Accepted: 01/18/1997] [Indexed: 02/04/2023] Open
Abstract
The gene encoding the alkane omega-hydroxylase (AlkB; EC 1.14.15.3) from Pseudomonas oleovorans was expressed in Escherichia coli. The integral-membrane protein was purified as nearly homogeneous protein vesicles by differential ultracentrifugation and HPLC cation exchange chromatography without the detergent solubilization normally required for membrane proteins. Purified AlkB had specific activity of up to 5 units/mg for octane-dependent NADPH consumption. Mössbauer studies of AlkB showed that it contains an exchange-coupled dinuclear iron cluster of the type found in soluble diiron proteins such as hemerythrin, ribonucleotide reductase, methane monooxygenase, stearoyl-acyl carrier protein (ACP) delta9 desaturase, rubrerythrin, and purple acid phosphatase. In the as-isolated enzyme, the cluster contains an antiferromagnetically coupled pair of high-spin Fe(III) sites, with an occupancy of up to 0.9 cluster per AlkB. The diferric cluster could be reduced by sodium dithionite, and the diferrous state was found to be stable in air. When both O2 and substrate (octane) were added, however, the diferrous cluster was quantitatively reoxidized, proving that the diiron cluster occupies the active site. Mossbauer data on reduced AlkB are consistent with a cluster coordination rich in nitrogen-containing ligands. New sequence analyses indicate that at least 11 nonheme integral-membrane enzymes, including AlkB, contain the 8-histidine motif required for catalytic activity in stearoyl-CoA desaturase. Based on our Mössbauer studies of AlkB, we propose that the integral-membrane enzymes in this family contain diiron clusters. Because these enzymes catalyze a diverse range of oxygenation reactions, this proposal suggests a greatly expanded role for diiron clusters in O2-activation biochemistry.
Collapse
Affiliation(s)
- J Shanklin
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | |
Collapse
|
44
|
Staijen IE, Hatzimanikatis V, Witholt B. The AlkB monooxygenase of Pseudomonas oleovorans--synthesis, stability and level in recombinant Escherichia coli and the native host. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:462-70. [PMID: 9119013 DOI: 10.1111/j.1432-1033.1997.00462.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have studied the synthesis and stability of the monooxygenase AlkB of Pseudomonas oleovorans in its natural host and in recombinant Escherichia coli. Three strains were investigated: the prototype strain P. oleovorans and the E. coli alk+ recombinants HB101 (pGEc47) and W3110 (pGEc47). Plasmid pGEc47 allows regulated expression of alkB and synthesis of active AlkB in E. coli. The E. coli strains were selected because E. coli HB101 (pGEc47) produces similar amounts of AlkB as P. oleovorans (1.5-2% of total cell protein), whereas E. coli W3110 (pGEc47) is able to make substantially (about fivefold) more AlkB. The AlkB synthesis and degradation rates in batch cultures of the three strains were determined by means of isotopic-labeling and immunological techniques. The mean specific AlkB synthesis rates in P. oleovorans, E. coli HB101 (pGEc47) and E. coli W3110 (pGEc47) were approximately 7, 12.5 and 45 microg x mg protein(-1) x h(-1), respectively. The half-lives of AlkB were estimated to be 80, 3 and 15 for P. oleovorans, E. coli HB101 (pGEc47) and E. coli W3110 (pGEc47), respectively. Thus, the intracellular AlkB level in each of the three strains was the result of their AlkB synthesis and degradation rates. The AlkB level during batch growth was modelled by means of experimentally derived parameters for AlkB synthesis and degradation, and showed good agreement with AlkB levels determined by means of immunoblotting in all strains investigated.
Collapse
Affiliation(s)
- I E Staijen
- Institute of Biotechnology, Swiss Federal Institute of Technology, Zurich
| | | | | |
Collapse
|
45
|
Sakai Y, Maeng JH, Kubota S, Tani A, Tani Y, Kato N. A non-conventional dissimilation pathway for long chain n-alkanes in Acinetobacter sp. M-1 that starts with a dioxygenase reaction. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0922-338x(96)80578-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Effects of octane on the fatty acid composition and transition temperature of Pseudomonas oleovorans membrane lipids during growth in two-liquid-phase continuous cultures. Enzyme Microb Technol 1995. [DOI: 10.1016/0141-0229(94)00106-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Peters J, Witholt B. Solubilization of the overexpressed integral membrane protein alkane monooxygenase of the recombinant Escherichia coli W3110[pGEc47]. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1196:145-53. [PMID: 7841178 DOI: 10.1016/0005-2736(94)00216-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The integral membrane-bound alkane monooxygenase (AlkB) from Pseudomonas oleovorans has been overexpressed in the recombinant Escherichia coli strain W3110[pGEc47] and expression levels of 10 to 15% relative to the total cell protein were reached. The amount of phospholipids in induced cells is about 3-fold higher compared to the wild-type and AlkB has been shown to be located in small membrane vesicles. We present here a study on the solubilization of these AlkB containing membrane vesicles by different detergents with special emphasis on structural requirements for a surfactant preserving the activity of AlkB. Moreover, the effects of the detergents used on the complete alkane hydroxylase system was studied.
Collapse
Affiliation(s)
- J Peters
- Institut für Biotechnologie, ETH-Hönggerberg, Zürich, Switzerland
| | | |
Collapse
|
48
|
van Beilen JB, Wubbolts MG, Witholt B. Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 1994; 5:161-74. [PMID: 7532480 DOI: 10.1007/bf00696457] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Many Pseudomonads are able to use linear alkanes as sole carbon and energy source. The genetics and enzymology of alkane metabolism have been investigated in depth for Pseudomonas oleovorans, which is able to oxidize C5-C12 n-alkanes by virtue of two gene regions, localized on the OCT-plasmid. The so-called alk-genes have been cloned in pLAFR1, and were subsequent analyzed using minicell expression experiments, DNA sequencing and deletion analysis. This has led to the identification and characterization of of the alkBFGHJKL and alkST genes which encode all proteins necessary to convert alkanes to the corresponding acyl-CoA derivatives. These then enter the beta-oxidation-cycle, and can be utilized as carbon- and energy sources. Medium (C6-C12)- or long-chain (C13-C20) n-alkanes can be utilized by many strains, some of which have been partially characterized. The alkane-oxidizing enzymes used by some of these strains (e.g. two P. aeruginosa strains, a P. denitrificans strain and a marine Pseudomonas sp.) appear to be closely related to those encoded by the OCT-plasmid.
Collapse
Affiliation(s)
- J B van Beilen
- Institute of Biotechnology, ETH-Hönggerberg, Zürich, Switzerland
| | | | | |
Collapse
|
49
|
van Beilen JB, Kingma J, Witholt B. Substrate specificity of the alkane hydroxylase system of Pseudomonas oleovorans GPo1. Enzyme Microb Technol 1994. [DOI: 10.1016/0141-0229(94)90066-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
van Beilen JB, Eggink G, Enequist H, Bos R, Witholt B. DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans. Mol Microbiol 1992; 6:3121-36. [PMID: 1453953 DOI: 10.1111/j.1365-2958.1992.tb01769.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The alkBFGHJKL and alkST operons encode enzymes that allow Pseudomonas putida (oleovorans) to metabolize alkanes. In this paper we report the nucleotide sequence of a 4592 bp region of the alkBFGHJKL operon encoding the AlkJ, AlkK and AlkL polypeptides. The alkJ gene encodes a protein of 59 kilodaltons. The predicted amino acid sequence shows significant homology with four flavin proteins: choline dehydrogenase, a glucose dehydrogenase and two oxidases. AlkJ is membrane-bound and converts aliphatic medium-chain-length alcohols into aldehydes. The properties of AlkJ suggest that it is linked to the electron transfer chain. AlkJ is necessary for growth on alkanes only in P. putida alcohol dehydrogenase (AlcA) mutants. AlkK is homologous to a range of proteins which act by an ATP-dependent covalent binding of AMP to their substrate. This list includes the acetate, coumarate and long-chain fatty acid CoA ligases. The alkK gene complements a fadD mutation in Escherichia coli, which shows that it indeed encodes an acyl-CoA synthetase. AlkK is a 60 kilodalton protein located in the cytoplasm. AlkL is homologous to OmpW, a Vibrio cholerae outer membrane protein of unknown function, and a hypothetical polypeptide encoded by ytt4 in E. coli. AlkL, OmpW and Ytt4 all have a signal peptide and end with a sequence characteristic of outer membrane proteins. The alkL gene product was found in the outer membrane of E. coli W3110 containing the alk-genes. The alkL gene can be deleted without a clear effect on growth rate. Its function remains unknown. The G+C content of the alkJKL genes is 45%, identical to that of the alkBFGH genes, and significantly lower than the G+C content of the OCT-plasmid and the P. putida chromosome.
Collapse
Affiliation(s)
- J B van Beilen
- Department of Biochemistry, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|