1
|
Lee MS, Wang J, Yuan H, Jiao H, Tsai TL, Squire MW, Li WJ. Endothelin-1 differentially directs lineage specification of adipose- and bone marrow-derived mesenchymal stem cells. FASEB J 2018; 33:996-1007. [PMID: 30096039 DOI: 10.1096/fj.201800614r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blood vessels composed of endothelial cells (ECs) contact with mesenchymal stem cells (MSCs) in different tissues, suggesting possible interaction between these 2 types of cells. We hypothesized that endothelin-1 (ET1), a secreted paracrine factor of ECs, can differentially direct the lineages of adipose-derived stem cells (ASCs) and bone marrow-derived MSCs (BMSCs). Predifferentiated ASCs and BMSCs were treated with ET1 for 2 cell passages and then induced for multilineage differentiation. Our results showed that adipogenesis of ET1-pretreated ASCs and osteogenesis of ET1-pretreated BMSCs were increased compared to those of control cells. The effect of ET1 on enhancing adipogenesis of ASCs and osteogenesis of BMSCs was attenuated by blocking endothelin receptor type A (ETAR) and/or endothelin receptor type B (ETBR). Western blot analysis indicated that regulation by ET1 was mediated through activation of the protein kinase B and ERK1/2 signaling pathways. We analyzed subpopulations of ASCs and BMSCs with or without ETAR and/or ETBR, and we found that ETAR+/ETBR- and ETAR-/ETBR+ subpopulations of ASCs and those of BMSCs pretreated with ET1 were prone to turning into adipocytes and osteoblasts, respectively, after differentiation induction. Our findings provide insight into the differential regulation of MSC specification by ET1, which may help develop viable approaches for tissue regeneration.-Lee, M.-S., Wang, J., Yuan, H., Jiao, H., Tsai, T.-L., Squire, M. W., Li, W.-J. Endothelin-1 differentially directs lineage specification of adipose- and bone marrow-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Ming-Song Lee
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and
| | - Jesse Wang
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and
| | - Huihua Yuan
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Chemical Engineering and Biotechnology, College of Chemistry, Donghua University, Shanghai, China
| | - Hongli Jiao
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tsung-Lin Tsai
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and
| | - Matthew W Squire
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wan-Ju Li
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and
| |
Collapse
|
2
|
Bhattacharya B, Low SHH, Chong ML, Chia D, Koh KX, Sapari NS, Kaye S, Hung H, Benoukraf T, Soong R. Acquired resistance to combination treatment through loss of synergy with MEK and PI3K inhibitors in colorectal cancer. Oncotarget 2018; 7:29187-98. [PMID: 27081080 PMCID: PMC5045388 DOI: 10.18632/oncotarget.8692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/28/2016] [Indexed: 12/15/2022] Open
Abstract
Historically, understanding of acquired resistance (AQR) to combination treatment has been based on knowledge of resistance to its component agents. To test whether an altered drug interaction could be an additional factor in AQR to combination treatment, models of AQR to combination and single agent MEK and PI3K inhibitor treatment were generated. Combination indices indicated combination treatment of PI3K and MEK inhibitors remained synergistic in cells with AQR to single agent but not combination AQR cells. Differences were also observed between the models in cellular phenotypes, pathway signaling and drug cross-resistance. Genomics implicated TGFB2-EDN1 overexpression as candidate determinants in models of AQR to combination treatment. Supplementation of endothelin in parental cells converted synergism to antagonism. Silencing of TGFB2 or EDN1 in cells with AQR conferred synergy between PI3K and MEK inhibitor. These results highlight that AQR to combination treatment may develop through alternative mechanisms to those of single agent treatment, including a change in drug interaction.
Collapse
Affiliation(s)
- Bhaskar Bhattacharya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sarah Hong Hui Low
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Mei Ling Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Dilys Chia
- Department of Pharmacy, National University of Singapore, Singapore
| | - King Xin Koh
- Department of Pathology, National University of Singapore, Singapore
| | - Nur Sabrina Sapari
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Stanley Kaye
- Drug Development Unit, Royal Marsden NHS Trust, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Huynh Hung
- Laboratory of Molecular Endocrinology, National Cancer Centre of Singapore, Singapore
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pathology, National University of Singapore, Singapore
| |
Collapse
|
3
|
Qu H, Yu H, Gu R, Chen D, Chen X, Huang Y, Xi W, Huang Y. Proteomics for studying the effects of L. rhamnosus LV108 against non-alcoholic fatty liver disease in rats. RSC Adv 2018; 8:38517-38528. [PMID: 35559112 PMCID: PMC9090571 DOI: 10.1039/c8ra06771f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/04/2018] [Indexed: 01/07/2023] Open
Abstract
Probiotics show protective effects against non-alcoholic fatty liver disease (NAFLD). However, their efficacy against NAFLD and the mechanisms are still unknown. In this study, Tandem Mass Tag (TMT) relative quantitative proteomics was utilized to track the changes in liver protein expression in rats fed with Lactobacillus rhamnosus LV108. A total of 4155 corresponding proteins were identified by MS. A total of 26 differentially expressed proteins were found between the L. rhamnosus LV108 treatment group and mode group, and there are 16 proteins up-regulated and 10 proteins down-regulated. Most of the differentially expressed proteins were involved in apoptosis and lipid metabolism. The key differentially expressed proteins (BFAR and Cyt-C) were verified by parallel reaction monitoring to be reliable. Our study is the first attempt to analyze the protein profile of probiotic-treated NAFLD model rats by quantitative proteomics. The identified proteins in this study will likely contribute to a better understanding of the molecular mechanisms of the effect of probiotics on NAFLD. Probiotics show protective effects against non-alcoholic fatty liver disease (NAFLD).![]()
Collapse
Affiliation(s)
- Hengxian Qu
- College of Food Science and Technology
- Yangzhou University
- Yangzhou
- China
- Key Lab of Dairy Biotechnology and Safety Control
| | - Hongbo Yu
- Uni-enterprise (China) Holding, Ltd
- Kunshan
- China
| | - Ruixia Gu
- College of Food Science and Technology
- Yangzhou University
- Yangzhou
- China
- Key Lab of Dairy Biotechnology and Safety Control
| | - Dawei Chen
- College of Food Science and Technology
- Yangzhou University
- Yangzhou
- China
- Key Lab of Dairy Biotechnology and Safety Control
| | - Xia Chen
- College of Food Science and Technology
- Yangzhou University
- Yangzhou
- China
- Key Lab of Dairy Biotechnology and Safety Control
| | | | - Wenbo Xi
- Uni-enterprise (China) Holding, Ltd
- Kunshan
- China
| | - Yujun Huang
- College of Food Science and Technology
- Yangzhou University
- Yangzhou
- China
- Key Lab of Dairy Biotechnology and Safety Control
| |
Collapse
|
4
|
Atef ME, Anand-Srivastava MB. Role of PKCδ in Enhanced Expression of Gqα/PLCβ1 Proteins and VSMC Hypertrophy in Spontaneously Hypertensive Rats. PLoS One 2016; 11:e0157955. [PMID: 27379421 PMCID: PMC4933357 DOI: 10.1371/journal.pone.0157955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/06/2016] [Indexed: 02/07/2023] Open
Abstract
Gqα signaling has been implicated in cardiac hypertrophy. In addition, angiotensin II (Ang II) was also shown to induce its hypertrophic effect through Gqα and PKCδ activation. We recently showed the role of enhanced expression of Gqα/PLCβ1 proteins in vascular smooth muscle cell (VSMC) hypertrophy, however, the role of PKCδ in VSMC hypertrophy in animal model is still lacking. The present study was therefore undertaken to examine the role of PKCδ and the associated signaling mechanisms in VSMC hypertrophy using 16-week-old spontaneously hypertensive rats (SHR). VSMC from 16-week-old SHR exhibited enhanced phosphorylation of PKCδ-Tyr311 and increased protein synthesis, marker of hypertrophy, as compared to WKY rats which was attenuated by rottlerin, an inhibitor of PKCδ. In addition, knocking down of PKCδ by PKCδ-siRNA also attenuated enhanced protein synthesis in VSMC from SHR. Furthermore, rottlerin attenuated the increased production of superoxide anion, NAD(P)H oxidase activity, increased expression of Gqα, phospholipase C (PLC)β1, insulin like growth factor-1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) proteins in VSMC from SHR. In addition, the enhanced phosphorylation of c-Src, PKCδ-Tyr311, IGF-1R, EGFR and ERK1/2 exhibited by VSMC from SHR was also attenuated by rottlerin. These results suggest that VSMC from SHR exhibit enhanced activity of PKCδ and that PKCδ is the upstream molecule of reactive oxygen species (ROS) and contributes to the enhanced expression of Gqα and PLCβ1 proteins and resultant VSMC hypertrophy involving c-Src, growth factor receptor transactivation and MAP kinase signaling.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Animals
- Benzopyrans/pharmacology
- Blotting, Western
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Hypertrophy
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NADPH Oxidases/metabolism
- Phospholipase C beta/metabolism
- Phosphorylation/drug effects
- Protein Kinase C-delta/genetics
- Protein Kinase C-delta/metabolism
- Proto-Oncogene Proteins pp60(c-src)/metabolism
- RNA Interference
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Growth Factor/metabolism
- Species Specificity
- Superoxides/metabolism
- Tyrosine/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Mohammed Emehdi Atef
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Madhu B. Anand-Srivastava
- Department of Molecular and Integrative Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
5
|
Scruggs SB, Wang D, Ping P. PRKCE gene encoding protein kinase C-epsilon-Dual roles at sarcomeres and mitochondria in cardiomyocytes. Gene 2016; 590:90-6. [PMID: 27312950 DOI: 10.1016/j.gene.2016.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/23/2016] [Accepted: 06/05/2016] [Indexed: 12/26/2022]
Abstract
Protein kinase C-epsilon (PKCε) is an isoform of a large PKC family of enzymes that has a variety of functions in different cell types. Here we discuss two major roles of PKCε in cardiac muscle cells; specifically, its role in regulating cardiac muscle contraction via targeting the sarcomeric proteins, as well as modulating cardiac cell energy production and metabolism by targeting cardiac mitochondria. The importance of PKCε action is described within the context of intracellular localization, as substrate selectivity and specificity is achieved through spatiotemporal targeting of PKCε. Accordingly, the role of PKCε in regulating myocardial function in physiological and pathological states has been documented in both cardioprotection and cardiac hypertrophy.
Collapse
Affiliation(s)
- Sarah B Scruggs
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Ding Wang
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peipei Ping
- Departments of Physiology, Medicine (Cardiology) and Bioinformatics, NIH BD2K Center of Excellence for Biomedical Computing, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Tsai TL, Wang B, Squire MW, Guo LW, Li WJ. Endothelial cells direct human mesenchymal stem cells for osteo- and chondro-lineage differentiation through endothelin-1 and AKT signaling. Stem Cell Res Ther 2015; 6:88. [PMID: 25998005 PMCID: PMC4416238 DOI: 10.1186/s13287-015-0065-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 08/20/2014] [Accepted: 03/25/2015] [Indexed: 02/08/2023] Open
Abstract
Introduction Human mesenchymal stem cells (hMSCs) reside in a perivascular niche of the body, suggesting that they interact closely with vascular endothelial cells (ECs) through cell-cell interaction or paracrine signaling to maintain cell functions. Endothelin-1 (ET1) is a paracrine factor mainly secreted by ECs. We thus hypothesize that ECs can regulate cellular activities of hMSCs and direct their stem cell fate. Methods We investigated whether co-cultured human aortic endothelial cells (HAECs) were able to regulate expression of potency- and lineage-related markers in bone marrow-derived hMSCs. We further explored the regulatory effects of ET1 on cell proliferation, expression of surface antigens and pluripotency-related markers, and multilineage differentiation in hMSCs. Activation of the AKT signaling pathway in hMSCs was also analyzed to identify its mechanistic role in the ET1-induced regulation. Results Co-cultured HAECs enhanced expression of mesenchymal lineage-related markers in hMSCs. Treatment of ET receptor antagonist downregulated the increased expression of CBFA1 in hMSCs cultured with HAEC-conditioned medium. hMSCs treated with ET1 showed cell proliferation and expression of surface antigens, CD73, CD90, and CD105, comparable with those without ET1 treatment. ET1-treated hMSCs also expressed upregulated mRNA transcript levels of OCT3/4, NANOG, CBFA1 and SOX9. When induced for lineage-specific differentiation, hMSCs pre-treated with ET1 showed enhanced osteogenesis and chondrogenesis. However, adipogenic differentiation of hMSCs was not affected by ET1 pretreatment. We further showed that the ET1-induced regulation was mediated by activation of AKT signaling. Conclusion Our results demonstrate that ET1 secreted by HAECs can direct bone marrow-derived hMSCs for osteo- and chondro-lineage differentiation through activation of the AKT signaling pathway, suggesting that ET1 plays a crucial role in regulation of hMSC activity. Our findings may help understand how hMSCs interact with ECs in a perivascular niche. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0065-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tsung-Lin Tsai
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI 53705, USA.
| | - Bowen Wang
- Department of Surgery, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5151, Madison, WI 53705, USA.
| | - Matthew W Squire
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA.
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5151, Madison, WI 53705, USA.
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, Laboratory of Musculoskeletal Biology and Regenerative Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI, 53705, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5051, Madison, WI 53705, USA.
| |
Collapse
|
7
|
Lee A, Jeong D, Mitsuyama S, Oh JG, Liang L, Ikeda Y, Sadoshima J, Hajjar RJ, Kho C. The role of SUMO-1 in cardiac oxidative stress and hypertrophy. Antioxid Redox Signal 2014; 21:1986-2001. [PMID: 24893265 PMCID: PMC4208582 DOI: 10.1089/ars.2014.5983] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS Small ubiquitin-like modifier type 1 (SUMO-1) has been shown to play a critical role in the dysfunction of the cardiac isoform of sarcoplasmic reticulum calcium ATPase (SERCA2a) pump in the setting of heart failure. In cardiac hypertrophy, the role of SUMO-1 has not been defined and our study's goals were to examine the effects of modulating SUMO-1 on the hypertrophic response both in vitro and in vivo and to examine whether oxidative stress (during cardiac hypertrophy) is abrogated by SUMO-1 gene transfer. RESULTS In mice undergoing transverse aortic constriction (TAC), SUMO-1 levels increased slightly during the compensated stage of hypertrophy and then dropped sharply during the transition to heart failure. In isolated cardiomyocytes, SUMO-1 gene transfer inhibited the hypertrophic response in the presence of phenylephrine. Adeno-associated vector type 9 (AAV9) gene transfer of SUMO-1 prevented the heart from undergoing hypertrophy after TAC and prevented the development of left ventricular dysfunction. Furthermore, SUMO-1 gene transfer blocked the negative effects of H2O2 on SERCA2a activity in cardiac myocytes, while in vivo indices of oxidative stress were decreased by SUMO-1 in cardiac hypertrophy and heart failure. INNOVATION AND CONCLUSION The results of this study indicate that post-translational modifications of SERCA2a caused by the toxic environment of the hypertrophied and failing myocardium can be prevented by SUMO-1. Antioxid. Redox Signal. 21, 1986-2001.
Collapse
Affiliation(s)
- Ahyoung Lee
- 1 Department of Cardiology, Cardiovascular Research Center , Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bressan M, Yang PB, Louie JD, Navetta AM, Garriock RJ, Mikawa T. Reciprocal myocardial-endocardial interactions pattern the delay in atrioventricular junction conduction. Development 2014; 141:4149-57. [PMID: 25273084 DOI: 10.1242/dev.110007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Efficient blood flow depends on two developmental processes that occur within the atrioventricular junction (AVJ) of the heart: conduction delay, which entrains sequential chamber contraction; and valve formation, which prevents retrograde fluid movement. Defects in either result in severe congenital heart disease; however, little is known about the interplay between these two crucial developmental processes. Here, we show that AVJ conduction delay is locally assigned by the morphogenetic events that initiate valve formation. Our data demonstrate that physical separation from endocardial-derived factors prevents AVJ myocardium from becoming fast conducting. Mechanistically, this physical separation is induced by myocardial-derived factors that support cardiac jelly deposition at the onset of valve formation. These data offer a novel paradigm for conduction patterning, whereby reciprocal myocardial-endocardial interactions coordinate the processes of valve formation with establishment of conduction delay. This, in turn, synchronizes the electrophysiological and structural events necessary for the optimization of blood flow through the developing heart.
Collapse
Affiliation(s)
- Michael Bressan
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - PoAn Brian Yang
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - Jonathan D Louie
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - Alicia M Navetta
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - Robert J Garriock
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| | - Takashi Mikawa
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94143-3120, USA
| |
Collapse
|
9
|
Lee LK, Kim JH, Kim MY, Lee JU, Yang SM, Jeon HJ, Lee WD, Noh JW, Kwak TY, Jang SH, Lee TH, Kim B, Kim J. A Review of Signal Transduction of Endothelin-1 and Mitogen-activated Protein Kinase-related Pain for Nanophysiotherapy. J Phys Ther Sci 2014; 26:789-92. [PMID: 24926154 PMCID: PMC4047254 DOI: 10.1589/jpts.26.789] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/30/2013] [Indexed: 12/30/2022] Open
Abstract
[Purpose] An understanding of pain is very important in the study of nanophysiotherapy.
In this review, we summarize the mechanisms of endothelin-1 (ET-1)- and mitogen-activated
protein kinase (MAPK)-related pain, and suggest their applications in pain physiotherapy.
[Method] This review focuses on the signal transduction of pain and its mechanisms.
[Results] Our reviews show that mechanisms of ET-1- and MAPK-related pain exist.
[Conclusions] In this review article, we carefully discuss the signal transduction in
ET-1- and MAPK-related pain with reference to pain nanophysiotherapy from the perspective
of nanoparticle-associated signal transduction.
Collapse
Affiliation(s)
- Lim-Kyu Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Ju-Hyun Kim
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Mee-Young Kim
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Jeong-Uk Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Seung-Min Yang
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Hye-Joo Jeon
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Won-Deok Lee
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Ji-Woong Noh
- Laboratory of Health Science and Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Republic of Korea
| | - Taek-Yong Kwak
- Department of Taekwondo Instructor Education, Yongin University, Republic of Korea
| | - Sung-Ho Jang
- Department of Judo, College of Martial Arts, Yongin University, Republic of Korea
| | - Tae-Hyun Lee
- Department of Combative Martial Arts Training, College of Martial Arts, Yongin University, Republic of Korea
| | - Bokyung Kim
- Institute of Functional Genomics, Department of Physiology, School of Medicine, Konkuk University, Republic of Korea
| | - Junghwan Kim
- Department of Physical Therapy, College of Public Health and Welfare, Yongin University, Republic of Korea
| |
Collapse
|
10
|
Apelin increases cardiac contractility via protein kinase Cε- and extracellular signal-regulated kinase-dependent mechanisms. PLoS One 2014; 9:e93473. [PMID: 24695532 PMCID: PMC3973555 DOI: 10.1371/journal.pone.0093473] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/06/2014] [Indexed: 01/05/2023] Open
Abstract
Background Apelin, the endogenous ligand for the G protein-coupled apelin receptor, is an important regulator of the cardiovascular homoeostasis. We previously demonstrated that apelin is one of the most potent endogenous stimulators of cardiac contractility; however, its underlying signaling mechanisms remain largely elusive. In this study we characterized the contribution of protein kinase C (PKC), extracellular signal-regulated kinase 1/2 (ERK1/2) and myosin light chain kinase (MLCK) to the positive inotropic effect of apelin. Methods and Results In isolated perfused rat hearts, apelin increased contractility in association with activation of prosurvival kinases PKC and ERK1/2. Apelin induced a transient increase in the translocation of PKCε, but not PKCα, from the cytosol to the particulate fraction, and a sustained increase in the phosphorylation of ERK1/2 in the left ventricle. Suppression of ERK1/2 activation diminished the apelin-induced increase in contractility. Although pharmacological inhibition of PKC attenuated the inotropic response to apelin, it had no effect on ERK1/2 phosphorylation. Moreover, the apelin-induced positive inotropic effect was significantly decreased by inhibition of MLCK, a kinase that increases myofilament Ca2+ sensitivity. Conclusions Apelin increases cardiac contractility through parallel and independent activation of PKCε and ERK1/2 signaling in the adult rat heart. Additionally MLCK activation represents a downstream mechanism in apelin signaling. Our data suggest that, in addition to their role in cytoprotection, modest activation of PKCε and ERK1/2 signaling improve contractile function, therefore these pathways represent attractive possible targets in the treatment of heart failure.
Collapse
|
11
|
Mishra S, Chatterjee S. Lactosylceramide promotes hypertrophy through ROS generation and activation of ERK1/2 in cardiomyocytes. Glycobiology 2014; 24:518-31. [PMID: 24658420 PMCID: PMC4001711 DOI: 10.1093/glycob/cwu020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypertrophy is central to several heart diseases; however, not much is known about the role of glycosphingolipids (GSLs) in this phenotype. Since GSLs have been accorded several physiological functions, we sought to determine whether these compounds affect cardiac hypertrophy. By using a rat cardiomyoblast cell line, H9c2 cells and cultured primary neonatal rat cardiomyocytes, we have determined the effects of GSLs on hypertrophy. Our study comprises (a) measurement of [(3)H]-leucine incorporation into protein, (b) measurement of cell size and morphology by immunofluorescence microscopy and (c) real-time quantitative mRNA expression assay for atrial natriuretic peptide and brain natriuretic peptide. Phenylephrine (PE), a well-established agonist of cardiac hypertrophy, served as a positive control in these studies. Subsequently, mechanistic studies were performed to explore the involvement of various signaling transduction pathways that may contribute to hypertrophy in these cardiomyocytes. We observed that lactosylceramide specifically exerted a concentration- (50-100 µM) and time (48 h)-dependent increase in hypertrophy in cardiomyocytes but not a library of other structurally related GSLs. Further, in cardiomyocytes, LacCer generated reactive oxygen species, stimulated the phosphorylation of p44 mitogen activated protein kinase and protein kinase-C, and enhanced c-jun and c-fos expression, ultimately leading to hypertrophy. In summary, we report here that LacCer specifically induces hypertrophy in cardiomyocytes via an "oxygen-sensitive signal transduction pathway."
Collapse
Affiliation(s)
- Sumita Mishra
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
12
|
Arumugam S, Mito S, Thandavarayan RA, Giridharan VV, Pitchaimani V, Karuppagounder V, Harima M, Nomoto M, Suzuki K, Watanabe K. Mulberry Leaf Diet Protects Against Progression of Experimental Autoimmune Myocarditis to Dilated Cardiomyopathy Via Modulation of Oxidative Stress and MAPK-Mediated Apoptosis. Cardiovasc Ther 2013; 31:352-62. [DOI: 10.1111/1755-5922.12029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Somasundaram Arumugam
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Sayaka Mito
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Rajarajan A. Thandavarayan
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
- Bristol Heart Institute; University of Bristol, Bristol Royal Infirmary; Bristol UK
| | - Vijayasree V. Giridharan
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Vigneshwaran Pitchaimani
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Vengadeshprabhu Karuppagounder
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Meilei Harima
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Mayumi Nomoto
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Kenji Suzuki
- Department of Gastroenterology; Niigata University Graduate School of Medical and Dental Sciences; Niigata City Japan
| | - Kenichi Watanabe
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| |
Collapse
|
13
|
Chang YW, Chang YT, Wang Q, Lin JJC, Chen YJ, Chen CC. Quantitative phosphoproteomic study of pressure-overloaded mouse heart reveals dynamin-related protein 1 as a modulator of cardiac hypertrophy. Mol Cell Proteomics 2013; 12:3094-107. [PMID: 23882026 DOI: 10.1074/mcp.m113.027649] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pressure-overload stress to the heart causes pathological cardiac hypertrophy, which increases the risk of cardiac morbidity and mortality. However, the detailed signaling pathways induced by pressure overload remain unclear. Here we used phosphoproteomics to delineate signaling pathways in the myocardium responding to acute pressure overload and chronic hypertrophy in mice. Myocardial samples at 4 time points (10, 30, 60 min and 2 weeks) after transverse aortic banding (TAB) in mice underwent quantitative phosphoproteomics assay. Temporal phosphoproteomics profiles showed 360 phosphorylation sites with significant regulation after TAB. Multiple mechanical stress sensors were activated after acute pressure overload. Gene ontology analysis revealed differential phosphorylation between hearts with acute pressure overload and chronic hypertrophy. Most interestingly, analysis of the cardiac hypertrophy pathway revealed phosphorylation of the mitochondrial fission protein dynamin-related protein 1 (DRP1) by prohypertrophic kinases. Phosphorylation of DRP1 S622 was confirmed in TAB-treated mouse hearts and phenylephrine (PE)-treated rat neonatal cardiomyocytes. TAB-treated mouse hearts showed phosphorylation-mediated mitochondrial translocation of DRP1. Inhibition of DRP1 with the small-molecule inhibitor mdivi-1 reduced the TAB-induced hypertrophic responses. Mdivi-1 also prevented PE-induced hypertrophic growth and oxygen consumption in rat neonatal cardiomyocytes. We reveal the signaling responses of the heart to pressure stress in vivo and in vitro. DRP1 may be important in the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu-Wang Chang
- Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
Drawnel FM, Archer CR, Roderick HL. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br J Pharmacol 2013; 168:296-317. [PMID: 22946456 DOI: 10.1111/j.1476-5381.2012.02195.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Endothelin-1 (ET-1) is a critical autocrine and paracrine regulator of cardiac physiology and pathology. Produced locally within the myocardium in response to diverse mechanical and neurohormonal stimuli, ET-1 acutely modulates cardiac contractility. During pathological cardiovascular conditions such as ischaemia, left ventricular hypertrophy and heart failure, myocyte expression and activity of the entire ET-1 system is enhanced, allowing the peptide to both initiate and maintain maladaptive cellular responses. Both the acute and chronic effects of ET-1 are dependent on the activation of intracellular signalling pathways, regulated by the inositol-trisphosphate and diacylglycerol produced upon activation of the ET(A) receptor. Subsequent stimulation of protein kinases C and D, calmodulin-dependent kinase II, calcineurin and MAPKs modifies the systolic calcium transient, myofibril function and the activity of transcription factors that coordinate cellular remodelling. The precise nature of the cellular response to ET-1 is governed by the timing, localization and context of such signals, allowing the peptide to regulate both cardiomyocyte physiology and instigate disease. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1.
Collapse
Affiliation(s)
- Faye M Drawnel
- Babraham Research Campus, Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
15
|
p90 ribosomal S6 kinases play a significant role in early gene regulation in the cardiomyocyte response to G(q)-protein-coupled receptor stimuli, endothelin-1 and α(1)-adrenergic receptor agonists. Biochem J 2013; 450:351-63. [PMID: 23215897 PMCID: PMC3573779 DOI: 10.1042/bj20121371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ERK1/2 (extracellular-signal-regulated kinase 1/2) and their substrates RSKs (p90 ribosomal S6 kinases) phosphorylate different transcription factors, contributing differentially to transcriptomic profiles. In cardiomyocytes ERK1/2 are required for >70% of the transcriptomic response to endothelin-1. In the present study we investigated the role of RSKs in the transcriptomic responses to the Gq-protein-coupled receptor agonists endothelin-1, phenylephrine (a generic α1-adrenergic receptor agonist) and A61603 (α1A-adrenergic receptor selective). Phospho-ERK1/2 and phospho-RSKs appeared in cardiomyocyte nuclei within 2–3 min of stimulation (endothelin-1>A61603≈phenylephrine). All agonists increased nuclear RSK2, but only endothelin-1 increased the nuclear RSK1 content. PD184352 (inhibits ERK1/2 activation) and BI-D1870 (inhibits RSKs) were used to dissect the contribution of RSKs to the endothelin-1-responsive transcriptome. Of the 213 RNAs up-regulated after 1 h, 51% required RSKs for their up-regulation, whereas 29% required ERK1/2 but not RSKs. The transcriptomic response to phenylephrine overlapped with, but was not identical with, endothelin-1. As with endothelin-1, PD184352 inhibited the up-regulation of most phenylephrine-responsive transcripts, but the greater variation in the effects of BI-D1870 suggests that differential RSK signalling influences global gene expression. A61603 induced similar changes in RNA expression in cardiomyocytes as phenylephrine, indicating that the signal was mediated largely through α1A-adrenergic receptors. A61603 also increased expression of immediate early genes in perfused adult rat hearts and, as in cardiomyocytes, up-regulation of the majority of genes was inhibited by PD184352. PD184352 or BI-D1870 prevented the increased surface area induced by endothelin-1 in cardiomyocytes. Thus RSKs play a significant role in regulating cardiomyocyte gene expression and hypertrophy in response to Gq-protein-coupled receptor stimulation.
Collapse
|
16
|
Yu L, Li M, She T, Shi C, Meng W, Wang B, Cheng M. Endothelin-1 stimulates the expression of L-type Ca2+ channels in neonatal rat cardiomyocytes via the extracellular signal-regulated kinase 1/2 pathway. J Membr Biol 2013; 246:343-53. [PMID: 23546014 DOI: 10.1007/s00232-013-9538-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 03/16/2013] [Indexed: 01/07/2023]
Abstract
The cardiac L-type Ca(2+) channel current (I(Ca,L)) plays an important role in controlling both cardiac excitability and excitation-contraction coupling and is involved in the electrical remodeling during postnatal heart development and cardiac hypertrophy. However, the possible role of endothelin-1 (ET-1) in the electrical remodeling of postnatal and diseased hearts remains unclear. Therefore, the present study was designed to investigate the transcriptional regulation of I(Ca,L) mediated by ET-1 in neonatal rat ventricular myocytes using the whole-cell patch-clamp technique, quantitative RT-PCR and Western blotting. Furthermore, we determined whether the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway is involved. ET-1 increased I(Ca,L) density without altering its voltage dependence of activation and inactivation. In line with the absence of functional changes, ET-1 increased L-type Ca(2+) channel pore-forming α1C-subunit mRNA and protein levels without affecting the mRNA expression of auxiliary β- and α2/δ-subunits. Furthermore, an actinomycin D chase experiment revealed that ET-1 did not alter α1C-subunit mRNA stability. These effects of ET-1 were inhibited by the ETA receptor antagonist BQ-123 but not the ETB receptor antagonist BQ-788. Moreover, the effects of ET-1 on I(Ca,L) and α1C-subunit expression were abolished by the ERK1/2 inhibitor (PD98059) but not by the p38 MAPK inhibitor (SB203580) or the c-Jun N-terminal kinase inhibitor (SP600125). These findings indicate that ET-1 increased the transcription of L-type Ca(2+) channel in cardiomyocytes via activation of ERK1/2 through the ETA receptor, which may contribute to the electrical remodeling of heart during postnatal development and cardiac hypertrophy.
Collapse
Affiliation(s)
- Liangzhu Yu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Peoples Republic of China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Endothelin-1 (ET-1) is a locally acting vasoactive peptide that also has profound effects on the contractile properties and growth of the cardiac myocyte. Binding of ET-1 to its transmembrane heptahelical receptors activates G proteins of the G(q) and G(i) classes. Activation of G(q) stimulates hydrolysis of phosphatidylinositol-4,5-bisphosphate, and the diacylglycerol thus formed stimulates protein kinase C. Subsequently, the protein kinase Raf is activated and this leads to activation of the extracellular signal-regulated protein kinase (ERK) subfamily of mitogen-activated protein kinases. Activation of G(i) counteracts β-adrenoceptor-mediated increases in cAMP concentrations. We have attempted to rationalize the established physiological consequences of ET-1 agonism in the cardiac myocyte (that is, on contraction and growth) in terms of activation of these signaling pathways.
Collapse
Affiliation(s)
- P H Sugden
- Peter H. Sugden is at the National Heart and Lung Institute (Cardiac Medicine), Imperial College of Science, Technology and Medicine, London SW3 6LY, United Kingdom
| | | |
Collapse
|
18
|
Ferreira JCB, Brum PC, Mochly-Rosen D. βIIPKC and εPKC isozymes as potential pharmacological targets in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 2011; 51:479-84. [PMID: 21035454 PMCID: PMC3135714 DOI: 10.1016/j.yjmcc.2010.10.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 01/19/2023]
Abstract
Cardiac hypertrophy is a complex adaptive response to mechanical and neurohumoral stimuli and under continual stressor, it contributes to maladaptive responses, heart failure and death. Protein kinase C (PKC) and several other kinases play a role in the maladaptative cardiac responses, including cardiomyocyte hypertrophy, myocardial fibrosis and inflammation. Identifying specific therapies that regulate these kinases is a major focus of current research. PKC, a family of serine/threonine kinases, has emerged as potential mediators of hypertrophic stimuli associated with neurohumoral hyperactivity in heart failure. In this review, we describe the role of PKC isozymes that is involved in cardiac hypertrophy and heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure".
Collapse
Affiliation(s)
- Julio Cesar Batista Ferreira
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CCSR, Rm 3145A, 269 Campus Drive, Stanford, CA 94305-5174, USA
- School of Physical Education and Sport, University of Sao Paulo, SP 05508-900, Brazil
| | - Patricia Chakur Brum
- School of Physical Education and Sport, University of Sao Paulo, SP 05508-900, Brazil
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CCSR, Rm 3145A, 269 Campus Drive, Stanford, CA 94305-5174, USA
| |
Collapse
|
19
|
Chu M, Iyengar R, Koshman YE, Kim T, Russell B, Martin JL, Heroux AL, Robia SL, Samarel AM. Serine-910 phosphorylation of focal adhesion kinase is critical for sarcomere reorganization in cardiomyocyte hypertrophy. Cardiovasc Res 2011; 92:409-19. [PMID: 21937583 DOI: 10.1093/cvr/cvr247] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS Tyrosine-phosphorylated focal adhesion kinase (FAK) is required for the hypertrophic response of cardiomyocytes to growth factors and mechanical load, but the role of FAK serine phosphorylation in this process is unknown. The aims of the present study were to characterize FAK serine phosphorylation in cultured neonatal rat ventricular myocytes (NRVM), analyse its functional significance during hypertrophic signalling, and examine its potential role in the pathogenesis of human dilated cardiomyopathy (DCM). METHODS AND RESULTS Endothelin-1 (ET-1) and other hypertrophic factors induced a time- and dose-dependent increase in FAK-S910 phosphorylation. ET-1-induced FAK-S910 phosphorylation required ET(A)R-dependent activation of PKCδ and Src via parallel Raf-1 → MEK1/2 → ERK1/2 and MEK5 → ERK5 signalling pathways. Replication-deficient adenoviruses expressing wild-type (WT) FAK and a non-phosphorylatable, S910A-FAK mutant were then used to examine the functional significance of FAK-S910 phosphorylation. Unlike WT-FAK, S910A-FAK increased the half-life of GFP-tagged paxillin within costameres (as determined by total internal reflection fluorescence microscopy and fluorescence recovery after photobleaching) and increased the steady-state FAK-paxillin interaction (as determined by co-immunoprecipitation and western blotting). These alterations resulted in reduced NRVM sarcomere reorganization and cell spreading. Finally, we found that FAK was serine-phosphorylated at multiple sites in non-failing, human left ventricular tissue. FAK-S910 phosphorylation and ERK5 expression were dramatically reduced in patients undergoing heart transplantation for end-stage DCM. CONCLUSION FAK undergoes S910 phosphorylation via PKCδ and Src-dependent pathways that are important for cell spreading and sarcomere reorganization. Reduced FAK-S910 phosphorylation may contribute to sarcomere disorganization in DCM.
Collapse
Affiliation(s)
- Miensheng Chu
- Department of Physiology, Loyola University Medical Center, Maywood, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Responses of hypertrophied myocytes to reactive species: implications for glycolysis and electrophile metabolism. Biochem J 2011; 435:519-28. [PMID: 21275902 DOI: 10.1042/bj20101390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During cardiac remodelling, the heart generates higher levels of reactive species; yet an intermediate 'compensatory' stage of hypertrophy is associated with a greater ability to withstand oxidative stress. The mechanisms underlying this protected myocardial phenotype are poorly understood. We examined how a cellular model of hypertrophy deals with electrophilic insults, such as would occur upon ischaemia or in the failing heart. For this, we measured energetics in control and PE (phenylephrine)-treated NRCMs (neonatal rat cardiomyocytes) under basal conditions and when stressed with HNE (4-hydroxynonenal). PE treatment caused hypertrophy as indicated by augmented atrial natriuretic peptide and increased cellular protein content. Hypertrophied myocytes demonstrated a 2.5-fold increase in ATP-linked oxygen consumption and a robust augmentation of oligomycin-stimulated glycolytic flux and lactate production. Hypertrophied myocytes displayed a protected phenotype that was resistant to HNE-induced cell death and a unique bioenergetic response characterized by a delayed and abrogated rate of oxygen consumption and a 2-fold increase in glycolysis upon HNE exposure. This augmentation of glycolytic flux was not due to increased glucose uptake, suggesting that electrophile stress results in utilization of intracellular glycogen stores to support the increased energy demand. Hypertrophied myocytes also had an increased propensity to oxidize HNE to 4-hydroxynonenoic acid and sustained less protein damage due to acute HNE insults. Inhibition of aldehyde dehydrogenase resulted in bioenergetic collapse when myocytes were challenged with HNE. The integration of electrophile metabolism with glycolytic and mitochondrial energy production appears to be important for maintaining myocyte homoeostasis under conditions of increased oxidative stress.
Collapse
|
21
|
Duquesnes N, Lezoualc'h F, Crozatier B. PKC-delta and PKC-epsilon: foes of the same family or strangers? J Mol Cell Cardiol 2011; 51:665-73. [PMID: 21810427 DOI: 10.1016/j.yjmcc.2011.07.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/24/2011] [Accepted: 07/15/2011] [Indexed: 11/30/2022]
Abstract
Protein kinase C (PKC) is a family of 10 serine/threonine kinases divided into 3 subfamilies, classical, novel and atypical classes. Two PKC isozymes of the novel group, PKCε and PKCδ, have different and sometimes opposite effects. PKCε stimulates cell growth and differentiation while PKCδ is apoptotic. In the heart, they are among the most expressed PKC isozymes and they are opposed in the preconditioning process with a positive role of PKCε and an inhibiting role of PKCδ. The goal of this review is to analyze the structural differences of these 2 enzymes that may explain their different behaviors and properties.
Collapse
|
22
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ku PM, Chen LJ, Liang JR, Cheng KC, Li YX, Cheng JT. Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility. Cardiovasc Diabetol 2011; 10:57. [PMID: 21702924 PMCID: PMC3141394 DOI: 10.1186/1475-2840-10-57] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/24/2011] [Indexed: 01/10/2023] Open
Abstract
Background Diabetic cardiomyopathy, a diabetes-specific complication, refers to a disorder that eventually leads to left ventricular hypertrophy in addition to diastolic and systolic dysfunction. In recent studies, hyperglycemia-induced reactive oxygen species (ROS) in cardiomyocytes have been linked to diabetic cardiomyopathy. GATA binding protein 4 (GATA-4) regulates the expression of many cardio-structural genes including cardiac troponin-I (cTnI). Methods Streptozotocin-induced diabetic rats and H9c2 embryonic rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr) were used to examine the effect of hyperglycemia on GATA-4 accumulation in the nucleus. cTnI expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of cTnI and GATA-4 by Western blot analysis. Results Cardiac output was lowered in STZ-induced diabetic rats. In addition, higher expressions of cardiac troponin I (cTnI) and phosphorylated GATA-4 were identified in these rats by Western blotting. The changes were reversed by treatment with insulin or phlorizin after correction of the blood sugar level. In H9c2 cells, ROS production owing to the high glucose concentration increased the expression of cTnI and GATA-4 phosphorylation. However, hyperglycemia failed to increase the expression of cTnI when GATA-4 was silenced by small interfering RNA (siRNA) in H9c2 cells. Otherwise, activation of ERK is known to be a signal for phosphorylation of serine105 in GATA-4 to increase the DNA binding ability of this transcription factor. Moreover, GSK3β could directly interact with GATA-4 to cause GATA-4 to be exported from the nucleus. GATA-4 nuclear translocation and GSK3β ser9 phosphorylation were both elevated by a high glucose concentration in H9c2 cells. These changes were reversed by tiron (ROS scavenger), PD98059 (MEK/ERK inhibitor), or siRNA of GATA-4. Cell contractility measurement also indicated that the high glucose concentration decreased the contractility of H9c2 cells, and this was reduced by siRNA of GATA-4. Conclusions Hyperglycemia can cause systolic dysfunction and a higher expression of cTnI in cardiomyocytes through ROS, enhancing MEK/ERK-induced GATA-4 phosphorylation and accumulation in the cell nucleus.
Collapse
Affiliation(s)
- Po-Ming Ku
- Department of Medical Research, Chi-Mei Medical Center, No, 901 Chon-Hwa Road, Yong Kang, Tainan City, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Choudhary G, Troncales F, Martin D, Harrington EO, Klinger JR. Bosentan attenuates right ventricular hypertrophy and fibrosis in normobaric hypoxia model of pulmonary hypertension. J Heart Lung Transplant 2011; 30:827-33. [PMID: 21550822 DOI: 10.1016/j.healun.2011.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/14/2011] [Accepted: 03/06/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Maladaptive right ventricular (RV) hypertrophic responses lead to RV dysfunction and failure in patients with pulmonary arterial hypertension, but the mechanisms responsible for these changes are not well understood. The objective of this study was to evaluate the effect of treatment with bosentan on RV hypertrophy (RVH), fibrosis and expression of protein kinase C (PKC) isoforms in the RV of rats exposed to chronic hypoxia. METHODS Adult Sprague-Dawley rats were housed in normoxia or hypoxia (FIO(2) = 10%) and administered vehicle or 100 mg/kg/day bosentan. After 3 weeks, echocardiographic and hemodynamic assessment was performed. PKC, procollagen-1 and collagen expression levels were assessed using immunoblot or colorimetric assay. RESULTS RV systolic pressure (RVSP) and RVH were higher in hypoxic compared with normoxic animals (RVSP: 72 ± 4 vs 25 ± 2 mm Hg, p < 0.05; RVH: 1.2 ± 0.06 vs 0.5 ± 0.03 mg/g body weight, p < 0.05). Bosentan had no effect on RVSP or mass in normoxic animals, but did attenuate RVH in hypoxic animals (hypoxic/vehicle: 1.2 ± 0.06; hypoxic/bosentan: 1.0 ± 0.05 mg/g body weight; p < 0.05). Hypoxia increased RV procollagen-1, and total collagen expression, effects that were attenuated by bosentan treatment. Hypoxia increased RV total and cytosolic PKC-δ protein expression, but had no effect on PKC-α or -ε isoforms. Administration with bosentan did not affect total PKC-δ protein expression. However, animals treated with bosentan had an increase in membranous PKC-δ when exposed to hypoxia. CONCLUSIONS Bosentan inhibits RVH and RV collagen expression in rats exposed to chronic hypoxia, possibly via alteration of PKC-δ activity.
Collapse
Affiliation(s)
- Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA.
| | | | | | | | | |
Collapse
|
25
|
Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91:1-77. [PMID: 21248162 DOI: 10.1152/physrev.00060.2009] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
26
|
Huang Y, Zhang H, Shao Z, O'Hara KA, Kopilas MA, Yu L, Netticadan T, Anderson HD. Suppression of endothelin-1-induced cardiac myocyte hypertrophy by PPAR agonists: role of diacylglycerol kinase zeta. Cardiovasc Res 2010; 90:267-75. [DOI: 10.1093/cvr/cvq401] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
27
|
Sugden PH, Markou T, Fuller SJ, Tham EL, Molkentin JD, Paterson HF, Clerk A. Monophosphothreonyl extracellular signal-regulated kinases 1 and 2 (ERK1/2) are formed endogenously in intact cardiac myocytes and are enzymically active. Cell Signal 2010; 23:468-77. [PMID: 21044683 PMCID: PMC3038257 DOI: 10.1016/j.cellsig.2010.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/23/2010] [Indexed: 01/19/2023]
Abstract
ERK1 and ERK2 (ERK1/2) are central to the regulation of cell division, growth and survival. They are activated by phosphorylation of the Thr- and the Tyr- residues in their Thr-Glu-Tyr activation loops. The dogma is that dually-phosphorylated ERK1/2 constitute the principal activities in intact cells. We previously showed that, in neonatal rat cardiac myocytes, endothelin-1 and phorbol 12-myristate 13-acetate (PMA) powerfully and rapidly (maximal at ~ 5 min) activate ERK1/2. Here, we show that dually-phosphorylated ERK1/2 rapidly (< 2 min) appear in the nucleus following stimulation with endothelin-1. We characterized the active ERK1/2 species in myocytes exposed to endothelin-1 or PMA using MonoQ FPLC. Unexpectedly, two peaks of ERK1 and two peaks of ERK2 activity were resolved using in vitro kinase assays. One of each of these represented the dually-phosphorylated species. The other two represented activities for ERK1 or ERK2 which were phosphorylated solely on the Thr- residue. Monophosphothreonyl ERK1/2 represented maximally ~ 30% of total ERK1/2 activity after stimulation with endothelin-1 or PMA, and their kcat values were estimated to be minimally ~ 30% of the dually-phosphorylated species. Appearance of monophosphothreonyl ERK1/2 was rapid but delayed in comparison with dually-phosphorylated ERK1/2. Of 10 agonists studied, endothelin-1 and PMA were most effective in terms of ERK1/2 activation and in stimulating the appearance of monophosphothreonyl and dually-phosphorylated ERK1/2. Thus, enzymically active monophosphothreonyl ERK1/2 are formed endogenously following activation of the ERK1/2 cascade and we suggest that monophosphothreonyl ERK1/2 arise by protein tyrosine phosphatase-mediated dephosphorylation of dually-phosphorylated ERK1/2.
Collapse
Affiliation(s)
- Peter H Sugden
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Komukai K, O-Uchi J, Morimoto S, Kawai M, Hongo K, Yoshimura M, Kurihara S. Role of Ca(2+)/calmodulin-dependent protein kinase II in the regulation of the cardiac L-type Ca(2+) current during endothelin-1 stimulation. Am J Physiol Heart Circ Physiol 2010; 298:H1902-7. [PMID: 20304814 DOI: 10.1152/ajpheart.01141.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin-1 (ET-1) shows a positive inotropic effect on cardiac muscle. Although the L-type Ca(2+) current (I(Ca)) is one of the important determinants of cardiac excitation-contraction coupling, the effect of ET-1 on the I(Ca) is not always clear. The controversial results appear to be due to different patch-clamp methods. The present study measured the effect of ET-1 on the I(Ca) of rat ventricular myocytes using the perforated patch-clamp technique. The holding potential was set to -40 mV, and depolarization was applied every 10 s. ET-1 (10 nM) increased the I(Ca) in a monophasic manner. The current reached a steady state 15 min after the application of ET-1, when the measurement was done. Endothelin receptor subtype expression was also investigated using Western immunoblotting. ET(A)-receptor protein was expressed, but ET(B)-receptor protein was not expressed, in the cell membranes of rat ventricular myocytes. The effect of ET-1 on the I(Ca) was inhibited by a selective ET(A)-receptor antagonist, BQ-123, but not by a selective ET(B)-receptor antagonist, BQ-788. The effect was inhibited by protein kinase C (PKC) inhibitor chelerythrine and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93, but not by its inactive analog KN-92. The effect of ET-1 was also blocked by another CaMKII inhibitor, autocamtide-2-related inhibitory peptide. These results suggest that ET-1 increases the I(Ca) via the ET(A)-receptor-PKC-CaMKII pathway.
Collapse
Affiliation(s)
- Kimiaki Komukai
- Division of Cardiology, The Jikei Univ. School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width. J Mol Cell Cardiol 2010; 48:817-23. [PMID: 20188736 DOI: 10.1016/j.yjmcc.2010.02.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 12/27/2022]
Abstract
A ventricular myocyte experiences changes in length and load during every beat of the heart and has the ability to remodel cell shape to maintain cardiac performance. Specifically, myocytes elongate in response to increased diastolic strain by adding sarcomeres in series, and they thicken in response to continued systolic stress by adding filaments in parallel. Myocytes do this while still keeping the resting sarcomere length close to its optimal value at the peak of the length-tension curve. This review focuses on the little understood mechanisms by which direction of growth is matched in a physiologically appropriate direction. We propose that the direction of strain is detected by differential phosphorylation of proteins in the costamere, which then transmit signaling to the Z-disc for parallel or series addition of thin filaments regulated via the actin capping processes. In this review, we link mechanotransduction to the molecular mechanisms for regulation of myocyte length and width.
Collapse
|
30
|
Chronic inhibition of farnesyl pyrophosphate synthase attenuates cardiac hypertrophy and fibrosis in spontaneously hypertensive rats. Biochem Pharmacol 2010; 79:399-406. [DOI: 10.1016/j.bcp.2009.08.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/18/2009] [Accepted: 08/24/2009] [Indexed: 01/19/2023]
|
31
|
Thorin E, Clozel M. The cardiovascular physiology and pharmacology of endothelin-1. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 60:1-26. [PMID: 21081213 PMCID: PMC3693982 DOI: 10.1016/b978-0-12-385061-4.00001-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One year after the discovery in 1980 that the endothelium was obligatory for acetylcholine to relax isolated arteries, it was clearly shown that the endothelium could also promote contraction. In 1988, Dr Yanagisawa's group identified endothelin-1 (ET-1) as the first endothelium-derived contracting factor. The circulating levels of this short (21 amino acids) peptide were quickly determined in humans and it was reported that in most cardiovascular diseases, circulating levels of ET-1 were increased and ET-1 was then recognized as a likely mediator of pathological vasoconstriction in human. The discovery of two receptor subtypes in 1990, ET(A) and ET(B), permitted optimization of bosentan, which entered clinical development in 1993, and was offered to patients with pulmonary arterial hypertension in 2001. In this report, we discuss the physiological and pathophysiological role of endothelium-derived ET-1, the pharmacology of its two receptors, focusing on the regulation of the vascular tone and as much as possible in humans. The coronary bed will be used as a running example, but references to the pulmonary, cerebral, and renal circulation will also be made. Many of the cardiovascular complications associated with aging and cardiovascular risk factors are initially attributable, at least in part, to endothelial dysfunction, particularly dysregulation of the vascular function associated with an imbalance in the close interdependence of NO and ET-1, in which the implication of the ET(B) receptor may be central.
Collapse
Affiliation(s)
- Eric Thorin
- Department of Surgery, Montreal Heart Institute, Research Center, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
32
|
Modulation of interleukin signalling and gene expression in cardiac myocytes by endothelin-1. Int J Biochem Cell Biol 2009; 42:263-72. [PMID: 19861169 DOI: 10.1016/j.biocel.2009.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/14/2009] [Accepted: 10/16/2009] [Indexed: 12/26/2022]
Abstract
The related inflammatory cytokines, interleukin- (IL-) 1beta and IL-33, are both implicated in the response of the heart to injury. They also activate mitogen-activated protein kinases (MAPKs) in cardiac myocytes. The hypertrophic Gq protein-coupled receptor agonist endothelin-1 is a potentially cardioprotective peptide and may modulate the inflammatory response. Endothelin-1 also stimulates (MAPKs) in cardiac myocytes and promotes rapid changes in expression of mRNAs encoding intercellular and intracellular signalling components including receptors for IL-33 (ST2) and phosphoprotein phosphatases. Prior exposure to endothelin-1 may specifically modulate the response to IL-33 and, more globally, influence MAPK activation by different stimuli. Neonatal rat ventricular myocytes were exposed to IL-1beta or IL-33 with or without pre-exposure to endothelin-1 (5h) and MAPK activation assessed. IL-33 activated ERK1/2, JNKs and p38-MAPK, but to a lesser degree than IL-1beta. Endothelin-1 increased expression of soluble IL-33 receptors (sST2 receptors) which may prevent binding of IL-33 to the cell-surface receptors. However, pretreatment with endothelin-1 only inhibited activation of p38-MAPK by IL-33 with no significant influence on ERK1/2 and a small increase in activation of JNKs. Inhibition of p38-MAPK signalling following pretreatment with endothelin-1 was also detected with IL-1beta, H(2)O(2) or tumour necrosis factor alpha (TNFalpha) indicating an effect intrinsic to the signalling pathway. Endothelin-1 pretreatment suppressed the increase in expression of IL-6 mRNA induced by IL-1beta and decreased the duration of expression of TNFalpha mRNA. Coupled with the general decrease in p38-MAPK signalling, we conclude that endothelin-1 attenuates the cardiac myocyte inflammatory response, potentially to confer cardioprotection.
Collapse
|
33
|
Watanabe K, Thandavarayan RA, Gurusamy N, Zhang S, Muslin AJ, Suzuki K, Tachikawa H, Kodama M, Aizawa Y. Role of 14-3-3 protein and oxidative stress in diabetic cardiomyopathy. ACTA ACUST UNITED AC 2009; 96:277-87. [PMID: 19706371 DOI: 10.1556/aphysiol.96.2009.3.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide. Diabetes mellitus is a well-known and important risk factor for cardiovascular diseases. The occurrence of diabetic cardiomyopathy is independent of hypertension, coronary artery disease, or any other known cardiac diseases. There is growing evidence that excess generation of highly reactive free radicals, largely due to hyperglycemia, causes oxidative stress, which further exacerbates the development and progression of diabetes and its complications. Diabetic cardiomyopathy is characterized by morphologic and structural changes in the myocardium and coronary vasculature mediated by the activation of various signaling pathways. Myocardial apoptosis, hypertrophy and fibrosis are the most frequently proposed mechanisms to explain cardiac changes in diabetic cardiomyopathy. Mammalian 14-3-3 proteins are dimeric phosphoserine-binding proteins that participate in signal transduction and regulate several aspects of cellular biochemistry. 14-3-3 protein regulates diabetic cardiomyopathy via multiple signaling pathways. This review focuses on emerging evidence suggesting that 14-3-3 protein plays a key role in the pathogenesis of the cardiovascular complications of diabetes, which underlie the development and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Kenichi Watanabe
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata City, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Katsogiannou M, Boustany CE, Gackiere F, Delcourt P, Athias A, Mariot P, Dewailly E, Jouy N, Lamaze C, Bidaux G, Mauroy B, Prevarskaya N, Slomianny C. Caveolae contribute to the apoptosis resistance induced by the alpha(1A)-adrenoceptor in androgen-independent prostate cancer cells. PLoS One 2009; 4:e7068. [PMID: 19763272 PMCID: PMC2742726 DOI: 10.1371/journal.pone.0007068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 08/25/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND During androgen ablation prostate cancer cells' growth and survival become independent of normal regulatory mechanisms. These androgen-independent cells acquire the remarkable ability to adapt to the surrounding microenvironment whose factors, such as neurotransmitters, influence their survival. Although findings are becoming evident about the expression of alpha(1A)-adrenoceptors in prostate cancer epithelial cells, their exact functional role in androgen-independent cells has yet to be established. Previous work has demonstrated that membrane lipid rafts associated with key signalling proteins mediate growth and survival signalling pathways in prostate cancer cells. METHODOLOGY/PRINCIPAL FINDINGS In order to analyze the membrane topology of the alpha(1A)-adrenoceptor we explored its presence by a biochemical approach in purified detergent resistant membrane fractions of the androgen-independent prostate cancer cell line DU145. Electron microscopy observations demonstrated the colocalization of the alpha(1A)-adrenoceptor with caveolin-1, the major protein component of caveolae. In addition, we showed that agonist stimulation of the alpha(1A)-adrenoceptor induced resistance to thapsigargin-induced apoptosis and that caveolin-1 was necessary for this process. Further, immunohistofluorescence revealed the relation between high levels of alpha(1A)-adrenoceptor and caveolin-1 expression with advanced stage prostate cancer. We also show by immunoblotting that the TG-induced apoptosis resistance described in DU145 cells is mediated by extracellular signal-regulated kinases (ERK). CONCLUSIONS/SIGNIFICANCE In conclusion, we propose that alpha(1A)-adrenoceptor stimulation in androgen-independent prostate cancer cells via caveolae constitutes one of the mechanisms contributing to their protection from TG-induced apoptosis.
Collapse
Affiliation(s)
- Maria Katsogiannou
- Inserm U800, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
- Laboratoire de Physiologie Cellulaire, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
| | - Charbel El Boustany
- Inserm U800, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
- Laboratoire de Physiologie Cellulaire, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
| | - Florian Gackiere
- Inserm U800, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
- Laboratoire de Physiologie Cellulaire, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
| | - Philippe Delcourt
- Inserm U800, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
- Laboratoire de Physiologie Cellulaire, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
| | - Anne Athias
- Lipidomique-IFR100, Hôpital du Bocage, Dijon, France
| | - Pascal Mariot
- Inserm U800, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
- Laboratoire de Physiologie Cellulaire, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
| | - Etienne Dewailly
- Inserm U800, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
- Laboratoire de Physiologie Cellulaire, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
| | - Nathalie Jouy
- IFR 114, IMPRT, Institut de Recherche sur le Cancer de Lille, Lille, France
| | - Christophe Lamaze
- Institut Curie, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, Paris, France
- CNRS, UMR144, Paris, France
| | - Gabriel Bidaux
- Inserm U800, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
- Laboratoire de Physiologie Cellulaire, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
| | - Brigitte Mauroy
- Inserm U800, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
- Laboratoire de Physiologie Cellulaire, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm U800, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
- Laboratoire de Physiologie Cellulaire, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
| | - Christian Slomianny
- Inserm U800, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
- Laboratoire de Physiologie Cellulaire, Université Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
- * E-mail:
| |
Collapse
|
35
|
Pikkarainen S, Kennedy RA, Marshall AK, Tham EL, Lay K, Kriz TA, Handa BS, Clerk A, Sugden PH. Regulation of expression of the rat orthologue of mouse double minute 2 (MDM2) by H(2)O(2)-induced oxidative stress in neonatal rat cardiac myocytes. J Biol Chem 2009; 284:27195-210. [PMID: 19638633 DOI: 10.1074/jbc.m109.037887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mdm2 ubiquitin ligase is an important regulator of p53 abundance and p53-dependent apoptosis. Mdm2 expression is frequently regulated by a p53 Mdm2 autoregulatory loop whereby p53 stimulates Mdm2 expression and hence its own degradation. Although extensively studied in cell lines, relatively little is known about Mdm2 expression in heart where oxidative stress (exacerbated during ischemia-reperfusion) is an important pro-apoptotic stimulus. We demonstrate that Mdm2 transcript and protein expression are induced by oxidative stress (0.2 mm H(2)O(2)) in neonatal rat cardiac myocytes. In other cells, constitutive Mdm2 expression is regulated by the P1 promoter (5' to exon 1), with inducible expression regulated by the P2 promoter (in intron 1). In myocytes, H(2)O(2) increased Mdm2 expression from the P2 promoter, which contains two p53-response elements (REs), one AP-1 RE, and two Ets REs. H(2)O(2) did not detectably increase expression of p53 mRNA or protein but did increase expression of several AP-1 transcription factors. H(2)O(2) increased binding of AP-1 proteins (c-Jun, JunB, JunD, c-Fos, FosB, and Fra-1) to an Mdm2 AP-1 oligodeoxynucleotide probe, and chromatin immunoprecipitation assays showed it increased binding of c-Jun or JunB to the P2 AP-1 RE. Finally, antisense oligonucleotide-mediated reduction of H(2)O(2)-induced Mdm2 expression increased caspase 3 activation. Thus, increased Mdm2 expression is associated with transactivation at the P2 AP-1 RE (rather than the p53 or Ets REs), and Mdm2 induction potentially represents a cardioprotective response to oxidative stress.
Collapse
Affiliation(s)
- Sampsa Pikkarainen
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fuller W, Howie J, McLatchie LM, Weber RJ, Hastie CJ, Burness K, Pavlovic D, Shattock MJ. FXYD1 phosphorylation in vitro and in adult rat cardiac myocytes: threonine 69 is a novel substrate for protein kinase C. Am J Physiol Cell Physiol 2009; 296:C1346-55. [PMID: 19339511 DOI: 10.1152/ajpcell.00523.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FXYD1 (phospholemman), the primary sarcolemmal kinase substrate in the heart, is a regulator of the cardiac sodium pump. We investigated phosphorylation of FXYD1 peptides by purified kinases using HPLC, mass spectrometry, and Edman sequencing, and FXYD1 phosphorylation in cultured adult rat ventricular myocytes treated with PKA and PKC agonists by phosphospecific immunoblotting. PKA phosphorylates serines 63 and 68 (S63 and S68) and PKC phosphorylates S63, S68, and a new site, threonine 69 (T69). In unstimulated myocytes, FXYD1 is approximately 30% phosphorylated at S63 and S68, but barely phosphorylated at T69. S63 and S68 are rapidly dephosphorylated following acute inhibition of PKC in unstimulated cells. Receptor-mediated PKC activation causes sustained phosphorylation of S63 and S68, but transient phosphorylation of T69. To characterize the effect of T69 phosphorylation on sodium pump function, we measured pump currents using whole cell voltage clamping of cultured adult rat ventricular myocytes with 50 mM sodium in the patch pipette. Activation of PKA or PKC increased pump currents (from 2.1 +/- 0.2 pA/pF in unstimulated cells to 2.9 +/- 0.1 pA/pF for PKA and 3.4 +/- 0.2 pA/pF for PKC). Following kinase activation, phosphorylated FXYD1 was coimmunoprecipitated with sodium pump alpha(1)-subunit. We conclude that T69 is a previously undescribed phosphorylation site in FXYD1. Acute T69 phosphorylation elicits stimulation of the sodium pump additional to that induced by S63 and S68 phosphorylation.
Collapse
Affiliation(s)
- William Fuller
- The Institute of Cardiovascular Research, Department of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hartman TJ, Martin JL, Solaro RJ, Samarel AM, Russell B. CapZ dynamics are altered by endothelin-1 and phenylephrine via PIP2- and PKC-dependent mechanisms. Am J Physiol Cell Physiol 2009; 296:C1034-9. [PMID: 19295171 DOI: 10.1152/ajpcell.00544.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the unanswered questions in muscle hypertrophy is how new contractile units are inserted into a stable existing cytoskeletal meshwork. Regulation of actin capping by CapZ may play a role in remodeling processes, therefore, CapZ dynamics are determined during rapid growth of cardiac cells in vitro. Neonatal rat ventricular myocytes were infected with adenovirus expressing green fluorescent protein-CapZ beta1 and responded normally to hypertrophic stimuli. CapZ dynamics were analyzed by fluorescence recovery after photobleaching in cultured myocytes treated with endothelin-1 (100 nM) or phenylephrine (10 muM). Recovery by 30 s was greater with endothelin treatment. Analysis 30 min postbleach showed CapZ-infected cells treated with endothelin recovered more completely than controls (77 +/- 9% vs. 50 +/- 6%, P < 0.001). Similar results were found with phenylephrine (77 +/- 5%, P < 0.05). A potential mechanism for phosphatidylinositol bisphosphate (PIP2) mediation of increased CapZ exchange in endothelin- and phenylephrine-treated cells was tested. PIP2 sequestration with neomycin (500 muM) blocked both endothelin- (43 +/- 6%, P < 0.001) and phenylephrine (36 +/- 4%, P < 0.001)-mediated recovery. The protein kinase C inhibitor chelerythrine chloride (10 muM) also blocked endothelin- (53 +/- 10%, P < 0.001) and phenylephrine (42 +/- 3%, P < 0.001)-mediated recovery. This study demonstrates for the first time that endothelin and phenylephrine alter CapZ dynamics through PIP2- and PKC-dependent pathways, which might destabilize the existing framework and permit sarcomeric remodelling to proceed.
Collapse
Affiliation(s)
- Thomas J Hartman
- Dept. of Physiology and Biophysics, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
38
|
Clerk A, Cullingford TE, Fuller SJ, Giraldo A, Sugden PH. Endothelin-1 regulation of immediate early gene expression in cardiac myocytes: negative feedback regulation of interleukin 6 by Atf3 and Klf2. ACTA ACUST UNITED AC 2008; 49:30-42. [PMID: 19192484 DOI: 10.1016/j.advenzreg.2008.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Angela Clerk
- NHLI Division (Cardiovascular Sciences), Faculty of Medicine, Imperial College London, Flowers Building, Armstrong Road, London SW72AZ, UK.
| | | | | | | | | |
Collapse
|
39
|
Yu BC, Chang CK, Ou HY, Cheng KC, Cheng JT. Decrease of peroxisome proliferator-activated receptor delta expression in cardiomyopathy of streptozotocin-induced diabetic rats. Cardiovasc Res 2008; 80:78-87. [PMID: 18573863 DOI: 10.1093/cvr/cvn172] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIMS The role of peroxisome proliferator-activated receptor delta (PPARdelta) in the development of cardiomyopathy, which is widely observed in diabetic disorders, is likely because cardiomyocyte-restricted PPARdelta deletion causes cardiac hypertrophy. Thus, we investigated the effect of hyperglycaemia-induced oxidative stress on the expression of cardiac PPARdelta both in vivo and in vitro. METHODS AND RESULTS We used male Wistar rats to examine the effect of hyperglycaemia on PPARdelta expression in streptozotocin-induced diabetic rats, primary neonatal rat cardiomyocytes, and H9c2 embryonic rat cardiomyocytes. PPARdelta mRNA (messenger ribonucleic acid) and protein levels were measured using northern and western blotting, respectively. The lipid deposition within the heart section was assessed by oil red O staining. The formation of reactive oxygen species (ROS) and changes in morphology, protein synthesis, and alpha-actinin content in hyperglycaemic cells were also examined. Inhibitors of ROS production or mitogen-activated protein kinase (MAPK) activation were employed to investigate the possible mechanisms. Cardiomyopathy induced in streptozotocin-diabetic rats was associated with a marked decrease in cardiac PPARdelta expression. Also, ROS production, cell size, and protein synthesis were increased while PPARdelta expression was reduced in cells exposed to hyperglycaemia in vitro. However, these glucose-induced changes were abolished in the presence of tiron or PD98059 (MEK/ERK inhibitor). CONCLUSION Our results suggest that inhibitors of ROS production or MAPK activation are involved in reduction of cardiac PPARdelta expression in response to hyperglycaemia.
Collapse
Affiliation(s)
- Bu-Chin Yu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan 70101, ROC
| | | | | | | | | |
Collapse
|
40
|
Reduced troponin I phosphorylation and increased Ca(2+)-dependent ATP-consumption in triton X-skinned fiber preparations from Galphaq overexpressor mice. Mol Cell Biochem 2008; 314:133-41. [PMID: 18473122 DOI: 10.1007/s11010-008-9774-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 04/22/2008] [Indexed: 01/08/2023]
Abstract
Overexpression of the Galphaq-protein has been shown to result in hypertrophic and dilated cardiomyopathy. This study investigated Ca(2+ )sensitivity of tension and myosin-ATPase activity in skinned fiber preparations of male and female wildtype (WT; n = 12) and transgenic mice with a cardiac specific overexpression of the Galphaq-protein (Galphaq-OE; n = 11). In addition, the phosphorylation status of troponin I was measured. Ca(2+) sensitivity of tension was increased in Galphaq-OE with a significant reduction in the half-maximum Ca(2+) concentration (EC(50)) compared to WT. Similarly, Ca(2+) sensitivity of myosin ATPase activity was increased in Galphaq-OE when comparing Galphaq-OE to WT. Maximum Ca(2+)-dependent tension and ATPase activity were both enhanced in Galphaq-OE compared to WT littermates. Phosphorylation of troponin I was significantly reduced in Galphaq-OE compared to WT. In the above experiments, no gender specific differences were observed in either Gaq-OE or in WT. We conclude that, in mice, increased expression of the Galphaq-protein induces alterations of myofibrillar function and energy consumption, which are also characteristics of human heart failure. This may result from a decreased phosphorylation of troponin I in Galphaq-OE.
Collapse
|
41
|
Fuller SJ, Pikkarainen S, Tham EL, Cullingford TE, Molkentin JD, Cornils H, Hergovich A, Hemmings BA, Clerk A, Sugden PH. Nuclear Dbf2-related protein kinases (NDRs) in isolated cardiac myocytes and the myocardium: activation by cellular stresses and by phosphoprotein serine-/threonine-phosphatase inhibitors. Cell Signal 2008; 20:1564-77. [PMID: 18555663 DOI: 10.1016/j.cellsig.2008.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 04/24/2008] [Indexed: 01/03/2023]
Abstract
The nuclear Dbf2-related protein kinases 1 and 2 (NDR1/2) are closely-related AGC family kinases that are strongly conserved through evolution. In mammals, they are activated inter alia by phosphorylation of an hydrophobic domain threonine-residue [NDR1(Thr-444)/NDR2(Thr-442)] by an extrinsic protein kinase followed by autophosphorylation of a catalytic domain serine-residue [NDR1(Ser-281)/NDR2(Ser-282)]. We examined NDR1/2 expression and regulation in primary cultures of neonatal rat cardiac myocytes and in perfused adult rat hearts. In myocytes, transcripts for NDR2, but not NDR1, were induced by the hypertrophic agonist, endothelin-1. NDR1(Thr-444) and NDR2(Thr-442) were rapidly phosphorylated (maximal in 15-30 min) in myocytes exposed to some phosphoprotein Ser-/Thr-phosphatase 1/2 inhibitors (calyculin A, okadaic acid) and, to a lesser extent, by hyperosmotic shock, low concentrations of H(2)O(2), or chelerythrine. In myocytes adenovirally-transduced to express FLAG-NDR2 (which exhibited a mainly-cytoplasmic localisation), the same agents increased FLAG-NDR2 activity as assessed by in vitro protein kinase assays, indicative of FLAG-NDR2(Ser-282/Thr-442) phosphorylation. Calyculin A-induced phosphorylation of NDR1(Thr-444)/NDR2(Thr-442) and activation of FLAG-NDR2 were inhibited by staurosporine, but not by other protein kinase inhibitors tested. In ex vivo rat hearts, NDR1(Thr-444)/NDR2(Thr-442) were phosphorylated in response to ischaemia-reperfusion or calyculin A. From a pathological viewpoint, we conclude that activities of NDR1 and NDR2 are responsive to cytotoxic stresses in heart preparations and this may represent a previously-unidentified response to myocardial ischaemia in vivo.
Collapse
Affiliation(s)
- Stephen J Fuller
- National Heart and Lung Institute (NHLI) Division, Faculty of Medicine, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cullingford TE, Butler MJ, Marshall AK, Tham EL, Sugden PH, Clerk A. Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: effects of endothelin-1, oxidative stress and cytokines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1229-36. [PMID: 18406357 PMCID: PMC2396231 DOI: 10.1016/j.bbamcr.2008.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 02/03/2023]
Abstract
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased (∼ 9-fold; 15–30 min) with later increases in expression of Klf4 and Klf6 (∼ 5-fold; 30–60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1–2 h (∼ 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1β or tumor necrosis factor α downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.
Collapse
Affiliation(s)
- Timothy E Cullingford
- National Heart and Lung Institute (NHLI) Division, Faculty of Medicine, Imperial College London, Flowers Building (4th Floor), Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
43
|
Fuller SJ, Sivarajah K, Sugden PH. ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium. J Mol Cell Cardiol 2008; 44:831-54. [PMID: 18430438 DOI: 10.1016/j.yjmcc.2008.02.278] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/17/2008] [Accepted: 02/23/2008] [Indexed: 12/12/2022]
Abstract
The epidermal growth factor (EGF) receptor (or ErbB1) and the related ErbB4 are transmembrane receptor protein tyrosine kinases which bind extracellular ligands of the EGF family. ErbB2 and ErbB3 are "co-receptors" structurally related to ErbB1/ErbB4, but ErbB2 is an "orphan" receptor and ErbB3 lacks tyrosine kinase activity. However, both are important in transmembrane signalling. All ErbB receptors/ligands are intimately involved in the regulation of cell growth, differentiation and survival, and their dysregulation contributes to some human malignancies. After extracellular ligand binding, receptor dimerisation and transautophosphorylation of intracellular C-terminal tyrosine residues, they bind signalling proteins which recognise specific tyrosine-phosphorylated motifs. This leads to activation of multiple signalling pathways, notably the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade and the phosphoinositide 3-kinase (PI3K)/protein kinase B [PKB/(Akt)] pathway. In heart, targeted deletion of ErbB2, ErbB3, ErbB4 and some ErbB receptor extracellular ligands leads to embryonic lethality resulting from cardiovascular defects. ErbB receptor ligands improve cardiac myocyte viability and are hypertrophic, partly because of activation of ERK1/2 and/or PI3K/PKB(Akt). Furthermore, ErbB transactivation by Gq protein-coupled receptor (GqPCR) signalling may mediate the hypertrophic effects of GqPCR agonists. The utility of anthracyclines in cancer chemotherapy can be limited by their cardiotoxic side effects and these may be counteracted by ErbB receptor ligands. ErbB2 is the target of anti-cancer monoclonal antibody trastuzumab (Herceptin), and its myocardial downregulation may account for the occasional cardiotoxicity of this therapy. Here, we review the basic biochemistry of ErbB receptors/ligands, and emphasise their particular roles in the myocardium.
Collapse
Affiliation(s)
- Stephen J Fuller
- NHLI Division, Faculty of Medicine, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
44
|
Alibin CP, Kopilas MA, Anderson HDI. Suppression of cardiac myocyte hypertrophy by conjugated linoleic acid: role of peroxisome proliferator-activated receptors alpha and gamma. J Biol Chem 2008; 283:10707-15. [PMID: 18283099 DOI: 10.1074/jbc.m800035200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conjugated linoleic acid (CLA) refers to a naturally occurring mixture of positional and geometric isomers of linoleic acid. Evidence suggests that CLA is a dietary constituent and nutraceutical with anti-cancer, insulin-sensitizing, immunomodulatory, weight-partitioning, and cardioprotective properties. The aim of this study was to evaluate the effects of intervention with CLA on cardiac hypertrophy. In vitro, CLA prevented indicators of cardiomyocyte hypertrophy elicited by endothelin-1, including cell size augmentation, protein synthesis, and fetal gene activation. Similar anti-hypertrophic effects of CLA were observed in hypertrophy induced by angiotensin II, fibroblast growth factor, and mechanical strain. CLA may inhibit hypertrophy through activation of peroxisome proliferator-activated receptors (PPARs). CLA stimulated PPAR activity in cardiomyocytes, and the anti-hypertrophic effects of CLA were blocked by genetic and pharmacological inhibitors of PPAR isoforms alpha and gamma. CLA may disrupt hypertrophic signaling by stimulating diacylglycerol kinase zeta, which decreases availability of diacylglycerol and thereby inhibits the protein kinase Cepsilon pathway. In vivo, dietary CLA supplementation significantly reduced blood pressure and cardiac hypertrophy in spontaneously hypertensive heart failure rats. These data suggest that dietary supplementation with CLA may be a viable strategy to prevent pathological cardiac hypertrophy, a major risk factor for heart failure.
Collapse
Affiliation(s)
- Caroline P Alibin
- Faculty of Pharmacy, University of Manitoba and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | | | | |
Collapse
|
45
|
Calcium in the heart: when it's good, it's very very good, but when it's bad, it's horrid. Biochem Soc Trans 2008; 35:957-61. [PMID: 17956254 DOI: 10.1042/bst0350957] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ca(2+) increases in the heart control both contraction and transcription. To accommodate a short-term increased cardiovascular demand, neurohormonal modulators acting on the cardiac pacemaker and individual myocytes induce an increase in frequency and magnitude of myocyte contraction respectively. Prolonged, enhanced function results in hypertrophic growth of the heart, which is initially also associated with greater Ca(2+) signals and cardiac contraction. As a result of disease, however, hypertrophy progresses to a decompensated state and Ca(2+) signalling capacity and cardiac output are reduced. Here, the role that Ca(2+) plays in the induction of hypertrophy as well as the impact that cardiac hypertrophy and failure has on Ca(2+) fluxes will be discussed.
Collapse
|
46
|
Nishimaru K, Arimoto T, Takeishi Y, Kubota I, Ishii K, Endoh M. Overexpression of diacylglycerol kinase zeta inhibits endothelin-1-induced decreases in Ca2+ transients and cell shortening in mouse ventricular myocytes. J Mol Cell Cardiol 2008; 44:520-6. [PMID: 18275971 DOI: 10.1016/j.yjmcc.2007.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/13/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
Abstract
Endothelin-1 (ET-1) is released in various cardiovascular disorders including congestive heart failure, and may modulate significantly the disease process by its potent action on vascular and cardiac muscle cell function and gene regulation. In adult mouse ventricular cardiomyocytes loaded with indo-1, ET-1 induced a sustained negative inotropic effect (NIE) in association with decreases in Ca(2+) transients. The ET-1-induced effects on Ca(2+) transients and cell shortening were abolished in diacylglycerol (DAG) kinase zeta-overexpressing mouse ventricular myocytes. A nonselective protein kinase C (PKC) inhibitor, GF109203X, inhibited the ET-1-induced decreases in Ca(2+) transients and cell shortening in concentration-dependent manners, whereas a selective Ca(2+)-dependent PKC inhibitor, Gö6976, did not affect the ET-1-induced effects. A phospholipase Cbeta inhibitor, U73122, and an inhibitor of phospholipase D, C(2)-ceramide, partially, but significantly, attenuated the ET-1-induced effects. Derivatives of the respective inhibitors with no specific effects, U73343 and dihydro-C(2)-ceramide, did not affect the ET-1-induced effects. Taken together, these results indicate that activation of a Ca(2+)-independent PKC isozyme by 1,2-DAG, which is generated by phospholipase Cbeta and phospholipase D activation and inactivated by phosphorylation via DAG kinase, is responsible for the ET-1-induced decreases in Ca(2+) transients and cell shortening in mouse ventricular cardiomyocytes.
Collapse
Affiliation(s)
- Kazuhide Nishimaru
- Department of Cardiovascular Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585 Japan
| | | | | | | | | | | |
Collapse
|
47
|
Markou T, Cullingford TE, Giraldo A, Weiss SC, Alsafi A, Fuller SJ, Clerk A, Sugden PH. Glycogen synthase kinases 3alpha and 3beta in cardiac myocytes: regulation and consequences of their inhibition. Cell Signal 2007; 20:206-18. [PMID: 17993264 DOI: 10.1016/j.cellsig.2007.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/07/2007] [Indexed: 01/22/2023]
Abstract
Inhibition of glycogen synthase kinase 3beta (GSK3beta) as a consequence of its phosphorylation by protein kinase B/Akt (PKB/Akt) has been implicated in cardiac myocyte hypertrophy in response to endothelin-1 or phenylephrine. We examined the regulation of GSK3alpha (which we show to constitute a significant proportion of the myocyte GSK3 pool) and GSK3beta in cardiac myocytes. Although endothelin increases phosphorylation of GSK3 and decreases its activity, the response is less than that induced by insulin (which does not promote cardiac myocyte hypertrophy). GSK3 phosphorylation induced by endothelin requires signalling through the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade and not the PKB/Akt pathway, whereas the reverse is true for insulin. Cardiac myocyte hypertrophy involves changes in morphology, and in gene and protein expression. The potent GSK3 inhibitor 1-azakenpaullone increases myocyte area as a consequence of increased cell length whereas phenylephrine increases both length and width. Azakenpaullone or insulin promotes AP1 transcription factor binding to an AP1 consensus oligonucleotide, but this was significantly less than that induced by endothelin and derived principally from increased binding of JunB protein, the expression of which was increased. Azakenpaullone promotes significant changes in gene expression (assessed by Affymetrix microarrays), but the overall response is less than with endothelin and there is little overlap between the genes identified. Thus, although GSK3 may contribute to cardiac myocyte hypertrophy in some respects (and presumably plays an important role in myocyte metabolism), it does not appear to contribute as significantly to the response induced by endothelin as has been maintained.
Collapse
Affiliation(s)
- Thomais Markou
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Takeishi Y, Goto K, Kubota I. Role of diacylglycerol kinase in cellular regulatory processes: A new regulator for cardiomyocyte hypertrophy. Pharmacol Ther 2007; 115:352-9. [PMID: 17659347 DOI: 10.1016/j.pharmthera.2007.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
Diacylglycerol (DAG) kinase (DGK) phosphorylates and converts DAG to phosphatidic acid. DGK regulates cellular DAG levels and attenuates DAG signaling. The 10 mammalian DGK isoforms have been identified to date. In cardiac myocytes, DGKalpha, epsilon, and zeta are expressed, and DGKzeta is the predominant isoform. DGKzeta inhibits protein kinase C (PKC) activation and subsequent hypertrophic programs in response to endothelin-1 (ET-1) in neonatal rat cardiomyocytes. DGKzeta blocks cardiac hypertrophy induced by G protein-coupled receptor agonists and pressure overload in vivo. DGKzeta attenuates ventricular remodeling and improves survival after myocardial infarction. These data provide a novel insight for subcellular mechanisms of cardiac hypertrophy and heart failure, and DGKzeta may be a new therapeutic target to prevent cardiac hypertrophy and progression to heart failure.
Collapse
Affiliation(s)
- Yasuchika Takeishi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, Japan.
| | | | | |
Collapse
|
49
|
Heidkamp MC, Iyengar R, Szotek EL, Cribbs LL, Samarel AM. Protein kinase Cepsilon-dependent MARCKS phosphorylation in neonatal and adult rat ventricular myocytes. J Mol Cell Cardiol 2006; 42:422-31. [PMID: 17157309 PMCID: PMC1810205 DOI: 10.1016/j.yjmcc.2006.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 10/20/2006] [Accepted: 10/24/2006] [Indexed: 11/25/2022]
Abstract
The myristoylated, alanine-rich protein kinase C substrate (MARCKS) is a cytoskeletal protein implicated in the regulation of cell spreading, stress fiber formation, and focal adhesion assembly in nonmuscle cells. However, its precise role in cardiomyocyte growth, and its PKC-dependent regulation have not been fully explored. In this report, we show that MARCKS is expressed and phosphorylated under basal conditions in cultured neonatal and adult rat ventricular myocytes (NRVM and ARVM, respectively). The PKC activators phenylephrine, angiotensin II, and endothelin-1 (ET) further increased MARCKS phosphorylation, with ET inducing the greatest response. To determine which PKC isoenzyme was responsible for agonist-induced MARCKS phosphorylation, NRVM and ARVM were infected with replication-defective adenoviruses (Adv) encoding wildtype (wt) and constitutively active (ca) mutants of PKCepsilon, PKCdelta, and PKCalpha. Only PKCepsilon increased phosphorylated MARCKS (pMARCKS). In contrast, Adv-mediated overexpression of a dominant-negative (dn) mutant of PKCepsilon reduced basal and ET-stimulated pMARCKS. dnPKCepsilon overexpression also prevented ET-induced, apparent co-localization of pMARCKS with f-actin staining structures. Adv-mediated overexpression of GFP-tagged, wtMARCKS (wtMARCKS-GFP) increased phosphorylation of focal adhesion kinase (FAK) and also increased NRVM surface area. In contrast, overexpression of a GFP-tagged, non-phosphorylatable (np) MARCKS mutant (npMARCKS-GFP) decreased basal and ET-induced endogenous MARCKS and FAK phosphorylation, and blocked the ET-induced increase in NRVM surface area. We conclude that MARCKS is expressed in cardiomyocytes, is phosphorylated by PKCepsilon, and participates in the regulation of FAK phosphorylation and cell spreading.
Collapse
Affiliation(s)
- Maria C Heidkamp
- The Cardiovascular Institute, Loyola University Chicago Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
50
|
Sugden PH, Clerk A. Oxidative stress and growth-regulating intracellular signaling pathways in cardiac myocytes. Antioxid Redox Signal 2006; 8:2111-24. [PMID: 17034354 DOI: 10.1089/ars.2006.8.2111] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The toxic effects of oxidative stress on cells (including cardiac myocytes, the contractile cells of the heart) are well known. However, an increasing body of evidence has suggested that increased production of reactive oxygen species (ROS) promotes cardiac myocyte growth. Thus, ROS may be 'second messenger' molecules in their own right, and growth-promoting neurohumoral agonists might exert their effects by stimulating production of ROS. The authors review the principal growth-promoting intracellular signaling pathways that are activated by ROS in cardiac myocytes, namely the mitogen-activated protein kinase cascades (extracellular signal-regulated kinases 1/2, c-Jun N-terminal kinases, and p38-mitogen-activated protein kinases) and the phosphoinositide 3-kinase/protein kinase B (Akt) pathway. Possible mechanisms are discussed by which these pathways are activated by ROS, including the oxidation of active site cysteinyl residues of protein and lipid phosphatases with their consequent inactivation, the potential involvement of protein kinase C or the apoptosis signal-regulating kinase 1, and the current models for the activation of the guanine nucleotide binding protein Ras.
Collapse
Affiliation(s)
- Peter H Sugden
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | | |
Collapse
|