1
|
Brown EF, Fronius M, Brown CH. Vasopressin regulation of maternal body fluid balance in pregnancy and lactation: A role for TRPV channels? Mol Cell Endocrinol 2022; 558:111764. [PMID: 36038076 DOI: 10.1016/j.mce.2022.111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Renal water reabsorption increases in pregnancy and lactation to expand maternal blood volume to cope with the cardiovascular demands of the developing fetus and new-born baby. Vasopressin (antidiuretic hormone) promotes renal water reabsorption and its secretion is principally stimulated by body fluid osmolality. Hence, lowered osmolality normally decreases vasopressin secretion. However, despite water retention profoundly reducing osmolality in pregnancy and lactation, vasopressin levels are maintained to drive blood volume expansion. Despite its importance for successful reproduction, the cellular mechanisms that maintain vasopressin secretion in the face of decreased osmolality during pregnancy and lactation are unknown. Vasopressin is secreted by neurons that are intrinsically osmosensitive through expression of N-terminal truncated-transient receptor potential vanilloid-1 channel, ΔN-TRPV1, which is mechanically activated by osmotically-induced cell shrinkage to increase vasopressin neuron activity. Vasopressin neurons also express TRPV4 but the role of TRPV4 in vasopressin neuron function is not well characterised. Here, we summarise our novel evidence showing that TRPV4 forms functional channels with ΔN-TRPV1 that have a greater single-channel conductance compared to channels with ΔN-TRPV1 alone. We propose that upregulation of TRPV4 heteromerisation with ΔN-TRPV1 might maintain vasopressin secretion in pregnancy and lactation to expand blood volume for successful reproduction.
Collapse
Affiliation(s)
- Emily F Brown
- Brain Health Research Centre, University of Otago, Dunedin, Aotearoa New Zealand; Centre for Neuroendocrinology, University of Otago, Dunedin, Aotearoa New Zealand; HeartOtago, University of Otago, Dunedin, Aotearoa New Zealand; Department of Physiology, University of Otago, Dunedin, Aotearoa New Zealand.
| | - Martin Fronius
- HeartOtago, University of Otago, Dunedin, Aotearoa New Zealand; Department of Physiology, University of Otago, Dunedin, Aotearoa New Zealand.
| | - Colin H Brown
- Brain Health Research Centre, University of Otago, Dunedin, Aotearoa New Zealand; Centre for Neuroendocrinology, University of Otago, Dunedin, Aotearoa New Zealand; HeartOtago, University of Otago, Dunedin, Aotearoa New Zealand; Department of Physiology, University of Otago, Dunedin, Aotearoa New Zealand.
| |
Collapse
|
2
|
Sudbury JR, Zaelzer C, Trudel E, Bumagin A, Bourque CW. Synaptic control of rat magnocellular neurosecretory cells by warm-sensing neurons in the organum vasculosum lamina terminalis. J Neuroendocrinol 2022; 34:e13214. [PMID: 36426844 DOI: 10.1111/jne.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Increases in core body temperature cause secretion of vasopressin (vasopressin, antidiuretic hormone) to promote water reabsorption and blunt water losses incurred through homeostatic evaporative cooling. Subtypes of transient receptor potential vanilloid (Trpv) channels have been shown to contribute to the intrinsic regulation of vasopressin-releasing magnocellular neurosecretory cells (MNCs) in the supraoptic nucleus (SON) and paraventricular nucleus (PVN). However, MNCs in vivo can also be excited by local heating of the adjacent preoptic area, indicating they receive thermosensory information from other areas. Here, we investigated whether neurons in the organum vasculosum lamina terminalis (OVLT) contribute to this process using in vitro electrophysiological approaches in male rats. We found that the majority of OVLT neurons are thermosensitive in the physiological range (36-39°C) and that this property is retained under conditions blocking synaptic transmission. A subset of these neurons could be antidromically activated by electrical stimulation in the SON. Whole cell recordings from SON MNCs revealed that heating significantly increases the rate of spontaneous excitatory postsynaptic currents (sEPCSs), and that this response is abolished by lesions targeting the OVLT, but not by bilateral lesions placed in the adjacent preoptic area. Finally, local heating of the OVLT caused a significant excitation of MNCs in the absence of temperature changes in the SON, and this effect was blocked by inhibitors of ionotropic glutamate receptors. These findings indicate that the OVLT serves as an important thermosensory nucleus and contributes to the activation of MNCs during physiological heating.
Collapse
Affiliation(s)
- Jessica R Sudbury
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Cristian Zaelzer
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Eric Trudel
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Anna Bumagin
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Charles W Bourque
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Mecawi AS, Varanda WA, da Silva MP. Osmoregulation and the Hypothalamic Supraoptic Nucleus: From Genes to Functions. Front Physiol 2022; 13:887779. [PMID: 35685279 PMCID: PMC9171026 DOI: 10.3389/fphys.2022.887779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the relatively high permeability to water of the plasma membrane, water tends to equilibrate its chemical potential gradient between the intra and extracellular compartments. Because of this, changes in osmolality of the extracellular fluid are accompanied by changes in the cell volume. Therefore, osmoregulatory mechanisms have evolved to keep the tonicity of the extracellular compartment within strict limits. This review focuses on the following aspects of osmoregulation: 1) the general problems in adjusting the "milieu interieur" to challenges imposed by water imbalance, with emphasis on conceptual aspects of osmosis and cell volume regulation; 2) osmosensation and the hypothalamic supraoptic nucleus (SON), starting with analysis of the electrophysiological responses of the magnocellular neurosecretory cells (MNCs) involved in the osmoreception phenomenon; 3) transcriptomic plasticity of SON during sustained hyperosmolality, to pinpoint the genes coding membrane channels and transporters already shown to participate in the osmosensation and new candidates that may have their role further investigated in this process, with emphasis on those expressed in the MNCs, discussing the relationships of hydration state, gene expression, and MNCs electrical activity; and 4) somatodendritic release of neuropeptides in relation to osmoregulation. Finally, we expect that by stressing the relationship between gene expression and the electrical activity of MNCs, studies about the newly discovered plastic-regulated genes that code channels and transporters in the SON may emerge.
Collapse
Affiliation(s)
- André Souza Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Wamberto Antonio Varanda
- Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Melina Pires da Silva
- Laboratory of Cellular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Martin A, Mecawi AS, Antunes VR, Yao ST, Antunes-Rodrigues J, Paton JFR, Paterson A, Greenwood M, Šarenac O, Savić B, Japundžić-Žigon N, Murphy D, Hindmarch CCT. Transcriptome Analysis Reveals Downregulation of Urocortin Expression in the Hypothalamo-Neurohypophysial System of Spontaneously Hypertensive Rats. Front Physiol 2021; 11:599507. [PMID: 33815127 PMCID: PMC8011454 DOI: 10.3389/fphys.2020.599507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022] Open
Abstract
The chronically increased blood pressure characteristic of essential hypertension represents an insidious and cumulative risk for cardiovascular disease. Essential hypertension is a multifactorial condition, with no known specific aetiology but a strong genetic component. The Spontaneously Hypertensive rat (SHR) shares many characteristics of human essential hypertension, and as such is a commonly used experimental model. The mammalian hypothalamo-neurohypophyseal system (HNS) plays a pivotal role in the regulation of blood pressure, volume and osmolality. In order to better understand the possible role of the HNS in hypertension, we have used microarray analysis to reveal differential regulation of genes in the HNS of the SHR compared to a control normotensive strain, the Wistar Kyoto rat (WKY). These results were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). One of the genes identified and validated as being downregulated in SHR compared to WKY was that encoding the neuropeptide urocortin (Ucn). Immunohistochemical analyses revealed Ucn to be highly expressed within magnocellular neurons of the PVN and SON, with pronounced localisation in dendritic projections containing oxytocin and vasopressin. When Ucn was overexpressed in the PVN of the SHR by in vivo lentiviral mediated gene transfer, blood pressure was unaffected but there were significant, transient reductions in the VLF spectra of systolic blood pressure consistent with an action on autonomic balance. We suggest that Ucn may act, possibly via dendritic release, to subtly regulate neurohumoral aspects of arterial pressure control.
Collapse
Affiliation(s)
- Andrew Martin
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Andre S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Vagner R Antunes
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom.,Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Song T Yao
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Jose Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Julian F R Paton
- Manaaki Mānawa, The Heart Research Centre, University of Auckland, Auckland, New Zealand
| | - Alex Paterson
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Michael Greenwood
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Olivera Šarenac
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom.,Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Bojana Savić
- Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Nina Japundžić-Žigon
- Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Charles C T Hindmarch
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom.,Queen's Cardiopulmonary Unit, Department of Medicine, Translational Institute of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
5
|
Seale AP, Malintha GHT, Celino-Brady FT, Head T, Belcaid M, Yamaguchi Y, Lerner DT, Baltzegar DA, Borski RJ, Stoytcheva ZR, Breves JP. Transcriptional regulation of prolactin in a euryhaline teleost: Characterisation of gene promoters through in silico and transcriptome analyses. J Neuroendocrinol 2020; 32:e12905. [PMID: 32996203 PMCID: PMC8612711 DOI: 10.1111/jne.12905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
The sensitivity of prolactin (Prl) cells of the Mozambique tilapia (Oreochromis mossambicus) pituitary to variations in extracellular osmolality enables investigations into how osmoreception underlies patterns of hormone secretion. Through the actions of their main secretory products, Prl cells play a key role in supporting hydromineral balance of fishes by controlling the major osmoregulatory organs (ie, gill, intestine and kidney). The release of Prl from isolated cells of the rostral pars distalis (RPD) occurs in direct response to physiologically relevant reductions in extracellular osmolality. Although the particular signal transduction pathways that link osmotic conditions to Prl secretion have been identified, the processes that underlie hyposmotic induction of prl gene expression remain unknown. In this short review, we describe two distinct tilapia gene loci that encode Prl177 and Prl188 . From our in silico analyses of prl177 and prl188 promoter regions (approximately 1000 bp) and a transcriptome analysis of RPDs from fresh water (FW)- and seawater (SW)-acclimated tilapia, we propose a working model for how multiple transcription factors link osmoreceptive processes with adaptive patterns of prl177 and prl188 gene expression. We confirmed via RNA-sequencing and a quantitative polymerase chain reaction that multiple transcription factors emerging as predicted regulators of prl gene expression are expressed in the RPD of tilapia. In particular, gene transcripts encoding pou1f1, stat3, creb3l1, pbxip1a and stat1a were highly expressed; creb3l1, pbxip1a and stat1a were elevated in fish acclimated to SW vs FW. Combined, our in silico and transcriptome analyses set a path for resolving how adaptive patterns of Prl secretion are achieved via the integration of osmoreceptive processes with the control of prl gene transcription.
Collapse
Affiliation(s)
- Andre P. Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | | | - Fritzie T. Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Tony Head
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Mahdi Belcaid
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kaneohe, HI, USA
| | - Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Darren T. Lerner
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - David A. Baltzegar
- Genomic Sciences Laboratory, Office of Research and Innovation, North Carolina State University, Raleigh, NC, USA
| | - Russell J. Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Zoia R. Stoytcheva
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Jason P. Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| |
Collapse
|
6
|
Abstract
In the pregnant patient, hypotonic polyuria in the setting of elevated serum osmolality and polydipsia should narrow the differential to causes related to diabetes insipidus (DI). Gestational DI, also called transient DI of pregnancy, is a distinct entity, unique from central DI or nephrogenic DI which may both become exacerbated during pregnancy. These three different processes relate to vasopressin, where increased metabolism, decreased production or altered renal sensitivity to this neuropeptide should be considered. Gestational DI involves progressively rising levels of placental vasopressinase throughout pregnancy, resulting in decreased endogenous vasopressin and resulting hypotonic polyuria worsening through the pregnancy. Gestational DI should be distinguished from central and nephrogenic DI that may be seen during pregnancy through use of clinical history, urine and serum osmolality measurements, response to desmopressin and potentially, the newer, emerging copeptin measurement. This review focuses on a brief overview of osmoregulatory and vasopressin physiology in pregnancy and how this relates to the clinical presentation, pathophysiology, diagnosis and management of gestational DI, with comparisons to the other forms of DI during pregnancy. Differentiating the subtypes of DI during pregnancy is critical in order to provide optimal management of DI in pregnancy and avoid dehydration and hypernatremia in this vulnerable population.
Collapse
Affiliation(s)
- Sonia Ananthakrishnan
- Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine/Boston Medical Center, 72 Concord Street, Evans 122, Boston, MA, 02118, United States.
| |
Collapse
|
7
|
Balapattabi K, Little JT, Bachelor M, Cunningham JT. Brain-Derived Neurotrophic Factor and Supraoptic Vasopressin Neurons in Hyponatremia. Neuroendocrinology 2019; 110:630-641. [PMID: 31557760 PMCID: PMC7385921 DOI: 10.1159/000503723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022]
Abstract
Hyponatremia due to elevated arginine vasopressin (AVP) secretion increases mortality in liver failure patients. The mechanisms causing dysregulation of AVP secretion are unknown. Our hypothesis is that inappropriate AVP release associated with liver failure is due to increased brain-derived neurotrophic factor (BDNF) in the supraoptic nucleus (SON). BDNF diminishes GABAA inhibition in SON AVP neurons by increasing intracellular chloride through tyrosine receptor kinase B (TrkB) activation and downregulation of K+/Cl- cotransporter 2 (KCC2). This loss of inhibition could increase AVP secretion. This hypothesis was tested using shRNA against BDNF (shBDNF) in the SON in bile duct ligated (BDL) male rats. All BDL rats had significantly increased liver weight (p < 0.05; 6-9) compared to shams. BDL rats with control -shRNA injections (BDL scrambled [SCR]) developed hyponatremia with increased plasma AVP and copeptin (CPP; all p < 0.05; 6-9) compared to sham groups. This is the first study to show that phosphorylation of TrkB is significantly increased along with significant decrease in phosphorylation of KCC2 in BDL SCR rats compared to the sham rats (p < 0.05;6-8). Knockdown of BDNF in the SON of BDL rats (BDL shBDNF) significantly increased plasma osmolality and hematocrit compared to BDL SCR rats (p < 0.05; 6-9). The BDL shBDNF rats had significant (p < 0.05; 6-9) decreases in plasma AVP and CPP concentration compared to BDL SCR rats. The BDNF knockdown also significantly blocked the increase in TrkB phosphorylation and decrease in KCC2 phosphorylation (p < 0.05; 6-8). The results indicate that BDNF produced in the SON contributes to increased AVP secretion and hyponatremia during liver failure.
Collapse
Affiliation(s)
- Kirthikaa Balapattabi
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Martha Bachelor
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA,
| |
Collapse
|
8
|
Shenton FC, Pyner S. Transient receptor potential vanilloid type 4 is expressed in vasopressinergic neurons within the magnocellular subdivision of the rat paraventricular nucleus of the hypothalamus. J Comp Neurol 2018; 526:3035-3044. [PMID: 30078222 PMCID: PMC6492187 DOI: 10.1002/cne.24514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/28/2023]
Abstract
Changes in plasma osmolality can drive changes in the output from brain centres known to control cardiovascular homeostasis, such as the paraventricular nucleus of the hypothalamus (PVN). Within the PVN hypotonicity reduces the firing rate of parvocellular neurons, a neuronal pool known to be involved in modulating sympathetic vasomotor tone. Also present in the PVN is the transient receptor potential vanilloid type 4 (TRPV4) ion channel. Activation of TRPV4 within the PVN mimics the reduction in firing rate of the parvocellular neurons but it is unknown if these neurons express the channel. We used neuronal tracing and immunohistochemistry to investigate which neurons expressed the TRPV4 ion channel protein and its relationship with neurons known to play a role in plasma volume regulation. Spinally projecting preautonomic neurons within the PVN were labelled after spinal cord injection of FluoroGold (FG). This was followed by immunolabelling with anti‐TRPV4 antibody in combination with either anti‐oxytocin (OXT) or anti‐vasopressin (AVP). The TRPV4 ion channel was expressed on 63% of the vasopressinergic magnocellular neurosecretory cells found predominantly within the posterior magnocellular division of the PVN. Oxytocinergic neurons and FG labelled preautonomic neurons were present in the same location, but were distinct from the TRPV4/vasopressin expressing neurons. Vasopressinergic neurons within the supraoptic nucleus (SON) were also found to express TRPV4 and the fibres extending between the SON and PVN. In conclusion within the PVN, TRPV4 is well placed to respond to changes in osmolality by regulating vasopressin secretion, which in turn influences sympathetic output via preautonomic neurons.
Collapse
Affiliation(s)
- F C Shenton
- Department of Biosciences, Durham University, Durham, UK
| | - S Pyner
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
9
|
Sifi M, Benabdesselam R, Souttou S, Annese T, Rendon A, Nico B, Dorbani-Mamine L. Dystrophin 71 and α1syntrophin in morpho-functional plasticity of rat supraoptic nuclei: Effect of saline surcharge and reversibly normal hydration. Acta Histochem 2018; 120:187-195. [PMID: 29395317 DOI: 10.1016/j.acthis.2018.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/25/2017] [Accepted: 01/09/2018] [Indexed: 02/02/2023]
Abstract
Dystrophin (Dp) is a multidomain protein that links the actin cytoskeleton to the extracellular matrix through the dystrophin associated proteins complex (DAPC). Dp of 71 kDa (Dp71), corresponding to the COOH-terminal domain of dystrophin, and α1-syntrophin (α1Syn) as the principal component of the DAPC, are strongly expressed in the brain. To clarify their involvement in the central control of osmotic homeostasis, we investigated the effect of 14 days of salt loading (with drinking water containing 2% NaCl) and then reversibly to 30 days of normal hydration (with drinking water without salt), first on the expression by western-blotting and the distribution by immunochemistry of Dp71 and α1Syn in the SON of the rat and, second, on the level of some physiological parameters, as the plasma osmolality, natremia and hematocrit. Dp71 is the most abundant form of dystrophin revealed in the supraoptic nucleu (SON) of control rat. Dp71 was localized in magnocellular neurons (MCNs) and astrocytes, when α1Syn was observed essentially in astrocytes end feet. After 14 days of salt-loading, Dp71 and α1Syn signals decreased and a dual signal for these two proteins was revealed in the astrocytes processes SON surrounding blood capillaries. In addition, salt loading leads to an increase in plasma osmolality, natremia and hematocrit. Reversibly, after 30 days of normal hydration, the intensity of the signal for the two proteins, Dp71 and α1Syn, increased and approached that of control. Furtheremore, the levels of the physiological parameters decreased and approximated those of control. This suggests that Dp71 and α1Syn may be involved in the functional activity of the SON. Their localization in astrocyte end feet emphasizes their importance in neuronal-vascular-astrocyte interactions for the central detection of osmolality. In the SON, Dp71 and α1Syn may be involved in osmosensitivity.
Collapse
Affiliation(s)
- Madina Sifi
- Equipe de Neurochimie, LBPO, Faculté des Sciences Biologiques, USTHB, Alger, Algeria
| | - Roza Benabdesselam
- Equipe de Neurochimie, LBPO, Faculté des Sciences Biologiques, USTHB, Alger, Algeria; Département de Biologie, Faculté des Sciences Biologiques et Agronomiques, UMMTO, Tizi Ouzou, Algeria.
| | - Sabrina Souttou
- Equipe de Neurochimie, LBPO, Faculté des Sciences Biologiques, USTHB, Alger, Algeria
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organes, University of Bari "Aldo Moro", Bari, Italy
| | - Alvaro Rendon
- Laboratoire de Physiopathologie Cellulaire et Moleculaire de la Retine, INSERM UMRS-592, Institut de la Vision, Paris, France
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sensory Organes, University of Bari "Aldo Moro", Bari, Italy
| | - Latifa Dorbani-Mamine
- Equipe de Neurochimie, LBPO, Faculté des Sciences Biologiques, USTHB, Alger, Algeria
| |
Collapse
|
10
|
Gizowski C, Trudel E, Bourque CW. Central and peripheral roles of vasopressin in the circadian defense of body hydration. Best Pract Res Clin Endocrinol Metab 2017; 31:535-546. [PMID: 29224666 DOI: 10.1016/j.beem.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Vasopressin is a neuropeptide synthesized by specific subsets of neurons within the eye and brain. Studies in rats and mice have shown that vasopressin produced by magnocellular neurosecretory cells (MNCs) that project to the neurohypophysis is released into the blood circulation where it serves as an antidiuretic hormone to promote water reabsorption from the kidney. Moreover vasopressin is a neurotransmitter and neuromodulator that contributes to time-keeping within the master circadian clock (i.e. the suprachiasmatic nucleus, SCN) and is also used as an output signal by SCN neurons to direct centrally mediated circadian rhythms. In this chapter, we review recent cellular and network level studies in rodents that have provided insight into how circadian rhythms in vasopressin mediate changes in water intake behavior and renal water conservation that protect the body against dehydration during sleep.
Collapse
Affiliation(s)
- Claire Gizowski
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, 1650 Cedar Avenue, Montreal, QC, H3G1A4, Canada.
| | - Eric Trudel
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, 1650 Cedar Avenue, Montreal, QC, H3G1A4, Canada.
| | - Charles W Bourque
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, 1650 Cedar Avenue, Montreal, QC, H3G1A4, Canada.
| |
Collapse
|
11
|
Gunduz-Bruce H, Kenney J, Changlani S, Peixoto A, Gueorguieva R, Leone C, Stachenfeld N. A translational approach for NMDA receptor profiling as a vulnerability biomarker for depression and schizophrenia. Exp Physiol 2017; 102:587-597. [PMID: 28294453 DOI: 10.1113/ep086212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can the change in plasma arginine vasopressin concentration (P[AVP] ) in response to osmotic stimulation (POsm ) serve as a biomarker for NMDA receptor signalling in schizophrenia and depression and thereby distinguish between these mental illnesses? What is the main finding and its importance? In response to hyperosmotic challenge, depressed subjects showed increased P[AVP] response compared with healthy control and schizophrenic subjects. However, schizophrenic subjects were not different from healthy control subjects in this small sample. The 'P[AVP] response to POsm ' is a suitable biomarker to distinguish depressed versus schizophrenic patients when used with psychiatric screening. This is the first objective physiological measure for schizophrenia or depression. Altered NMDA receptor activity and glutamate signalling might underlie the pathogenesis of both schizophrenia and depression in subgroups of patients. In schizophrenia, pharmacological modelling, post-mortem and imaging data suggest reduced NMDA signalling. In contrast, recent clinical trials demonstrating the efficacy of the NMDA antagonist ketamine in severely depressed patients suggest increased NMDA receptor signalling. We conducted a proof-of-concept study to assess whether there is any in vivo evidence for an inverse association in depression and schizophrenia with respect to the NMDA receptor function. For this purpose, we used a translational approach, based on findings from animal studies that NMDA receptor is a key mediator of arginine vasopressin (AVP) release into the bloodstream. Using hypertonic saline to increase plasma osmolality (POsm ) and thereby induce AVP release, as done in animal studies, we found that in depressed patients the NMDA receptor-mediated AVP release induced by hypertonic saline infusion was significantly increased [0.24 (0.15) pg ml-1 mosmol-1 , P < 0.05] compared with schizophrenia patients [0.07 (0.07) pg ml-1 mosmol-1 ]. Slopes for healthy control subjects were 0.11 (0.09) pg ml-1 mosmol-1 which was less than the depressed group. These findings are consistent with implicated NMDA receptor-related abnormalities in depression and schizophrenia in subgroups of patients and provide the first in vivo evidence of this dichotomy.
Collapse
Affiliation(s)
- Handan Gunduz-Bruce
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,VA Medical Center, Psychiatry Service 116A, 950 Campbell Avenue, West Haven, CT, USA.,Current affiliation: Sage Therapeutics, Cambridge, MA, USA
| | - Joshua Kenney
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,VA Medical Center, Psychiatry Service 116A, 950 Campbell Avenue, West Haven, CT, USA
| | - Suravi Changlani
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,VA Medical Center, Psychiatry Service 116A, 950 Campbell Avenue, West Haven, CT, USA
| | - Aldo Peixoto
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ralitza Gueorguieva
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Cheryl Leone
- The John B. Pierce Laboratory, New Haven, CT, USA
| | - Nina Stachenfeld
- The John B. Pierce Laboratory, New Haven, CT, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Ponti G, Rodriguez-Gomez A, Farinetti A, Marraudino M, Filice F, Foglio B, Sciacca G, Panzica GC, Gotti S. Early postnatal genistein administration permanently affects nitrergic and vasopressinergic systems in a sex-specific way. Neuroscience 2017; 346:203-215. [PMID: 28131623 DOI: 10.1016/j.neuroscience.2017.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/01/2022]
Abstract
Genistein (GEN) is a natural xenoestrogen (isoflavonoid) that may interfere with the development of estrogen-sensitive neural circuits. Due to the large and increasing use of soy-based formulas for babies (characterized by a high content of GEN), there are some concerns that this could result in an impairment of some estrogen-sensitive neural circuits and behaviors. In a previous study, we demonstrated that its oral administration to female mice during late pregnancy and early lactation induced a significant decrease of nitric oxide synthase-positive cells in the amygdala of their male offspring. In the present study, we have used a different experimental protocol mimicking, in mice, the direct precocious exposure to GEN. Mice pups of both sexes were fed either with oil, estradiol or GEN from birth to postnatal day 8. Nitric oxide synthase and vasopressin neural systems were analyzed in adult mice. Interestingly, we observed that GEN effect was time specific (when compared to our previous study), sex specific, and not always comparable to the effects of estradiol. This last observation suggests that GEN may act through different intracellular pathways. Present results indicate that the effect of natural xenoestrogens on the development of the brain may be highly variable: a plethora of neuronal circuits may be affected depending on sex, time of exposure, intracellular pathway involved, and target cells. This raises concern on the possible long-term effects of the use of soy-based formulas for babies, which may be currently underestimated.
Collapse
Affiliation(s)
- G Ponti
- Department of Veterinary Sciences, Largo Braccini 2, 10095 Grugliasco (TO), University of Torino, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy.
| | - A Rodriguez-Gomez
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - A Farinetti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - F Filice
- Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - B Foglio
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - G Sciacca
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - S Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| |
Collapse
|
13
|
Papoff P, Mancuso M, Barbara CS, Moretti C. The Role of Terlipressin in Pediatric Septic Shock: A Review of the Literature and Personal Experience. Int J Immunopathol Pharmacol 2016; 20:213-21. [PMID: 17624234 DOI: 10.1177/039463200702000201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vasopressin and its synthetic analog terlipressin are potent vasopressors that could be useful in vasodilatory septic shock. In septic adults, vasopressin/terlipressin have been shown to increase mean arterial pressure and to decrease the necessity for catecholamines. Moreover, low doses of vasopressin (or terlipressin) increase urine output and ameliorate oxygenation. Although pediatric septic shock is more often hypodynamic, both vasopressin and terlipressin have proved to be effective in restoring blood pressure or increasing the diuresis in this setting. The purpose of this review is to summarize the physiology of vasopressin and to report the available evidence for the use of vasopressin or terlipressin in pediatric septic shock in order to make best use in this population. We also report our experience with the continuous infusion of terlipressin in two pediatric patients who developed catecholamine refractory septic shock.
Collapse
Affiliation(s)
- P Papoff
- Department of Pediatrics, Pediatric Intensive Care Unit, University of Rome "La Sapienza", Italy.
| | | | | | | |
Collapse
|
14
|
Choe KY, Trudel E, Bourque CW. Effects of Salt Loading on the Regulation of Rat Hypothalamic Magnocellular Neurosecretory Cells by Ionotropic GABA and Glycine Receptors. J Neuroendocrinol 2016; 28. [PMID: 26833894 DOI: 10.1111/jne.12372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/12/2016] [Accepted: 01/23/2016] [Indexed: 12/18/2022]
Abstract
Synaptic and extrasynaptic transmission mediated by ionotropic GABA and glycine receptors plays a critical role in shaping the action potential firing (spiking) activity of hypothalamic magnocellular neurosecretory cells and therefore determines the rate at which vasopressin and oxytocin are released from the neurohypophysis. The inhibitory effect of these transmitters relies on the maintenance of a low concentration of intracellular chloride ions such that, when activated by GABA or glycine, a hyperpolarisation of the neuronal membrane potential results. In this review, we highlight the various ways by which the two types of inhibitory receptors contribute to homeostasis by fine-tuning the spiking rate of vasopressin-releasing magnocellular neurosecretory cells in a manner dependent on the hydration state of the animal. In addition, we review the currently available evidence on how the strength of these inhibitory pathways can be regulated during chronic hypernatraemia via a form of activity-dependent depolarisation of the chloride reversal potential, leading to an abolition of these inhibitory pathways potentially causing sodium-dependent elevations in blood pressure.
Collapse
Affiliation(s)
- K Y Choe
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - E Trudel
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - C W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
15
|
Greenwood MP, Greenwood M, Gillard BT, Loh SY, Paton JFR, Murphy D. Epigenetic Control of the Vasopressin Promoter Explains Physiological Ability to Regulate Vasopressin Transcription in Dehydration and Salt Loading States in the Rat. J Neuroendocrinol 2016; 28. [PMID: 26833868 PMCID: PMC4855680 DOI: 10.1111/jne.12371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/06/2016] [Accepted: 01/23/2016] [Indexed: 02/06/2023]
Abstract
The synthesis of arginine vasopressin (AVP) in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus is sensitive to increased plasma osmolality and a decreased blood volume, and thus is robustly increased by both dehydration (increased plasma osmolality and decreased blood volume) and salt loading (increased plasma osmolality). Both stimuli result in functional remodelling of the SON and PVN, a process referred to as functional-related plasticity. Such plastic changes in the brain have recently been associated with altered patterns of DNA methylation at CpG (cytosine-phosphate-guanine) residues, a process considered to be important for the regulation of gene transcription. In this regard, the proximal Avp promoter contains a number of CpG sites and is recognised as one of four CpG islands for the Avp gene, suggesting that methylation may be regulating Avp transcription. In the present study, we show that, in an immortalised hypothalamic cell line 4B, the proximal Avp promoter is highly methylated, and treatment of these cells with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine to demethylate DNA dramatically increases basal and stimulated Avp biosynthesis. We report no changes in the expression of DNA methyltransferases, Dnmt1 and Dnmt3a, whereas there is decreased expression of the demethylating enzyme ten-eleven-translocation 2, Tet2, in the SON by dehydration and salt loading. We found higher methylation of the SON Avp promoter in dehydrated but not salt-loaded rats. By analysis of individual CpG sites, we observed hypomethylation, hypermethylation and no change in methylation of specific CpGs in the SON Avp promoter of the dehydrated rat. Using reporter gene assays, we show that mutation of individual CpGs can result in altered Avp promoter activity. We propose that methylation of the SON Avp promoter is necessary to co-ordinate the duel inputs of increased plasma osmolality and decreased blood volume on Avp transcription in the chronically dehydrated rat.
Collapse
Affiliation(s)
- M P Greenwood
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - M Greenwood
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - B T Gillard
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - S Y Loh
- Department of Physiology, University of Malaya, Kuala Lumpur, Malaysia
| | - J F R Paton
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - D Murphy
- School of Clinical Sciences, University of Bristol, Bristol, UK
- Department of Physiology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Abstract
Diabetes insipidus (DI) in pregnancy is a heterogeneous syndrome, most classically presenting with polyuria and polydipsia that can complicate approximately 1 in 30,000 pregnancies. The presentation can involve exacerbation of central or nephrogenic DI during pregnancy, which may have been either overt or subclinical prior to pregnancy. Women without preexisting DI can also be affected by the actions of placental vasopressinase which increases in activity between the 4th and 38th weeks of gestation, leading to accelerated metabolism of AVP and causing a transient form of DI of pregnancy. This type of DI may be associated with certain complications during pregnancy and delivery, such as preeclampsia. Management of DI of pregnancy depends on the pathophysiology of the disease; forms of DI that lack AVP can be treated with desmopressin (DDAVP), while forms of DI that involve resistance to AVP require evaluation of the underlying causes.
Collapse
Affiliation(s)
- Sonia Ananthakrishnan
- Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine/Boston Medical Center, 88 East Newton Street, H-3600, Boston, MA 02118, USA.
| |
Collapse
|
17
|
Greenwood MP, Greenwood M, Paton JFR, Murphy D. Control of Polyamine Biosynthesis by Antizyme Inhibitor 1 Is Important for Transcriptional Regulation of Arginine Vasopressin in the Male Rat Hypothalamus. Endocrinology 2015; 156:2905-17. [PMID: 25961839 PMCID: PMC4511134 DOI: 10.1210/en.2015-1074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The polyamines spermidine and spermine are small cations present in all living cells. In the brain, these cations are particularly abundant in the neurons of the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus, which synthesize the neuropeptide hormones arginine vasopressin (AVP) and oxytocin. We recently reported increased mRNA expression of antizyme inhibitor 1 (Azin1), an important regulator of polyamine synthesis, in rat SON and PVN as a consequence of 3 days of dehydration. Here we show that AZIN1 protein is highly expressed in both AVP- and oxytocin-positive magnocellular neurons of the SON and PVN together with antizyme 1 (AZ1), ornithine decarboxylase, and polyamines. Azin1 mRNA expression increased in the SON and PVN as a consequence of dehydration, salt loading, and acute hypertonic stress. In organotypic hypothalamic cultures, addition of the irreversible ornithine decarboxylase inhibitor DL-2-(difluoromethyl)-ornithine hydrochloride significantly increased the abundance of heteronuclear AVP but not heteronuclear oxytocin. To identify the function of Azin1 in vivo, lentiviral vectors that either overexpress or knock down Azin1 were stereotaxically delivered into the SON and/or PVN. Azin1 short hairpin RNA delivery resulted in decreased plasma osmolality and had a significant effect on food intake. The expression of AVP mRNA was also significantly increased in the SON by Azin1 short hairpin RNA. In contrast, Azin1 overexpression in the SON decreased AVP mRNA expression. We have therefore identified AZIN1, and hence by inference, polyamines as novel regulators of the expression of the AVP gene.
Collapse
Affiliation(s)
- Michael P Greenwood
- School of Clinical Sciences (M.P.G., M.G., D.M.), University of Bristol, Bristol BS1 3NY, United Kingdom; School of Physiology and Pharmacology (J.F.R.P.), University of Bristol, Bristol BS8 1TD, United Kingdom; and Department of Physiology (D.M.), University of Malaya, Kuala Lumpur, Malaysia 50603
| | - Mingkwan Greenwood
- School of Clinical Sciences (M.P.G., M.G., D.M.), University of Bristol, Bristol BS1 3NY, United Kingdom; School of Physiology and Pharmacology (J.F.R.P.), University of Bristol, Bristol BS8 1TD, United Kingdom; and Department of Physiology (D.M.), University of Malaya, Kuala Lumpur, Malaysia 50603
| | - Julian F R Paton
- School of Clinical Sciences (M.P.G., M.G., D.M.), University of Bristol, Bristol BS1 3NY, United Kingdom; School of Physiology and Pharmacology (J.F.R.P.), University of Bristol, Bristol BS8 1TD, United Kingdom; and Department of Physiology (D.M.), University of Malaya, Kuala Lumpur, Malaysia 50603
| | - David Murphy
- School of Clinical Sciences (M.P.G., M.G., D.M.), University of Bristol, Bristol BS1 3NY, United Kingdom; School of Physiology and Pharmacology (J.F.R.P.), University of Bristol, Bristol BS8 1TD, United Kingdom; and Department of Physiology (D.M.), University of Malaya, Kuala Lumpur, Malaysia 50603
| |
Collapse
|
18
|
Neuronal-derived nitric oxide and somatodendritically released vasopressin regulate neurovascular coupling in the rat hypothalamic supraoptic nucleus. J Neurosci 2015; 35:5330-41. [PMID: 25834057 DOI: 10.1523/jneurosci.3674-14.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The classical model of neurovascular coupling (NVC) implies that activity-dependent axonal glutamate release at synapses evokes the production and release of vasoactive signals from both neurons and astrocytes, which dilate arterioles, increasing in turn cerebral blood flow (CBF) to areas with increased metabolic needs. However, whether this model is applicable to brain areas that also use less conventional neurotransmitters, such as neuropeptides, is currently unknown. To this end, we studied NVC in the rat hypothalamic magnocellular neurosecretory system (MNS) of the supraoptic nucleus (SON), in which dendritic release of neuropeptides, including vasopressin (VP), constitutes a key signaling modality influencing neuronal and network activity. Using a multidisciplinary approach, we investigated vasopressin-mediated vascular responses in SON arterioles of hypothalamic brain slices of Wistar or VP-eGFP Wistar rats. Bath-applied VP significantly constricted SON arterioles (Δ-41 ± 7%) via activation of the V1a receptor subtype. Vasoconstrictions were also observed in response to single VP neuronal stimulation (Δ-18 ± 2%), an effect prevented by V1a receptor blockade (V2255), supporting local dendritic VP release as the key signal mediating activity-dependent vasoconstrictions. Conversely, osmotically driven magnocellular neurosecretory neuronal population activity leads to a predominant nitric oxide-mediated vasodilation (Δ19 ± 2%). Activity-dependent vasodilations were followed by a VP-mediated vasoconstriction, which acted to limit the magnitude of the vasodilation and served to reset vascular tone following activity-dependent vasodilation. Together, our results unveiled a unique and complex form of NVC in the MNS, supporting a competitive balance between nitric oxide and activity-dependent dendritic released VP, in the generation of proper NVC responses.
Collapse
|
19
|
Abstract
The Na-K-2Cl cotransporter 2 (NKCC2) was thought to be kidney specific. Here we show expression in the brain hypothalamo-neurohypophyseal system (HNS), wherein upregulation follows osmotic stress. The HNS controls osmotic stability through the synthesis and release of the neuropeptide hormone, arginine vasopressin (AVP). AVP travels through the bloodstream to the kidney, where it promotes water conservation. Knockdown of HNS NKCC2 elicited profound effects on fluid balance following ingestion of a high-salt solution-rats produced significantly more urine, concomitant with increases in fluid intake and plasma osmolality. Since NKCC2 is the molecular target of the loop diuretics bumetanide and furosemide, we asked about their effects on HNS function following disturbed water balance. Dehydration-evoked GABA-mediated excitation of AVP neurons was reversed by bumetanide, and furosemide blocked AVP release, both in vivo and in hypothalamic explants. Thus, NKCC2-dependent brain mechanisms that regulate osmotic stability are disrupted by loop diuretics in rats.
Collapse
|
20
|
Cheuvront SN, Kenefick RW. Dehydration: physiology, assessment, and performance effects. Compr Physiol 2014; 4:257-85. [PMID: 24692140 DOI: 10.1002/cphy.c130017] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This article provides a comprehensive review of dehydration assessment and presents a unique evaluation of the dehydration and performance literature. The importance of osmolality and volume are emphasized when discussing the physiology, assessment, and performance effects of dehydration. The underappreciated physiologic distinction between a loss of hypo-osmotic body water (intracellular dehydration) and an iso-osmotic loss of body water (extracellular dehydration) is presented and argued as the single most essential aspect of dehydration assessment. The importance of diagnostic and biological variation analyses to dehydration assessment methods is reviewed and their use in gauging the true potential of any dehydration assessment method highlighted. The necessity for establishing proper baselines is discussed, as is the magnitude of dehydration required to elicit reliable and detectable osmotic or volume-mediated compensatory physiologic responses. The discussion of physiologic responses further helps inform and explain our analysis of the literature suggesting a ≥ 2% dehydration threshold for impaired endurance exercise performance mediated by volume loss. In contrast, no clear threshold or plausible mechanism(s) support the marginal, but potentially important, impairment in strength, and power observed with dehydration. Similarly, the potential for dehydration to impair cognition appears small and related primarily to distraction or discomfort. The impact of dehydration on any particular sport skill or task is therefore likely dependent upon the makeup of the task itself (e.g., endurance, strength, cognitive, and motor skill).
Collapse
Affiliation(s)
- Samuel N Cheuvront
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | |
Collapse
|
21
|
Qureshi S, Galiveeti S, Bichet DG, Roth J. Diabetes insipidus: celebrating a century of vasopressin therapy. Endocrinology 2014; 155:4605-21. [PMID: 25211589 DOI: 10.1210/en.2014-1385] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diabetes mellitus, widely known to the ancients for polyuria and glycosuria, budded off diabetes insipidus (DI) about 200 years ago, based on the glucose-free polyuria that characterized a subset of patients. In the late 19th century, clinicians identified the posterior pituitary as the site of pathology, and pharmacologists found multiple bioactivities there. Early in the 20th century, the amelioration of the polyuria with extracts of the posterior pituitary inaugurated a new era in therapy and advanced the hypothesis that DI was due to a hormone deficiency. Decades later, a subset of patients with polyuria unresponsive to therapy were recognized, leading to the distinction between central DI and nephrogenic DI, an early example of a hormone-resistant condition. Recognition that the posterior pituitary had 2 hormones was followed by du Vigneaud's Nobel Prize winning isolation, sequencing, and chemical synthesis of oxytocin and vasopressin. The pure hormones accelerated the development of bioassays and immunoassays that confirmed the hormone deficiency in vasopressin-sensitive DI and abundant levels of hormone in patients with the nephrogenic disorder. With both forms of the disease, acquired and inborn defects were recognized. Emerging concepts of receptors and of genetic analysis led to the recognition of patients with mutations in the genes for 1) arginine vasopressin (AVP), 2) the AVP receptor 2 (AVPR2), and 3) the aquaporin 2 water channel (AQP2). We recount here the multiple skeins of clinical and laboratory research that intersected frequently over the centuries since the first recognition of DI.
Collapse
Affiliation(s)
- Sana Qureshi
- Laboratory of Diabetes and Diabetes-Related Disorders (S.Q., S.G., J.R.), Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York 11030; Albert Einstein College of Medicine (S.Q., J.R.), Yeshiva University, Bronx, New York 10461; James J Peters VA Medical Center (S.G.), Mount Sinai Medical Center Health System, Bronx, New York 10029; Hôpital du Sacré-Coeur de Montréal (D.G.B.), Groupe des Protéines Membranaires, Université de Montréal, Montréal, Québec, Canada H4J IC5; and Hofstra North Shore-Long Island Jewish School of Medicine (J.R.), North Shore-Long Island Jewish Health System, Hempstead, New York 11549
| | | | | | | |
Collapse
|
22
|
Qiu J, Kleineidam A, Gouraud S, Yao ST, Greenwood M, Hoe SZ, Hindmarch C, Murphy D. The use of protein-DNA, chromatin immunoprecipitation, and transcriptome arrays to describe transcriptional circuits in the dehydrated male rat hypothalamus. Endocrinology 2014; 155:4380-90. [PMID: 25144923 PMCID: PMC4256826 DOI: 10.1210/en.2014-1448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The supraoptic nucleus (SON) of the hypothalamus is responsible for maintaining osmotic stability in mammals through its elaboration of the antidiuretic hormone arginine vasopressin. Upon dehydration, the SON undergoes a function-related plasticity, which includes remodeling of morphology, electrical properties, and biosynthetic activity. This process occurs alongside alterations in steady state transcript levels, which might be mediated by changes in the activity of transcription factors. In order to identify which transcription factors might be involved in changing patterns of gene expression, an Affymetrix protein-DNA array analysis was carried out. Nuclear extracts of SON from dehydrated and control male rats were analyzed for binding to the 345 consensus DNA transcription factor binding sequences of the array. Statistical analysis revealed significant changes in binding to 26 consensus elements, of which EMSA confirmed increased binding to signal transducer and activator of transcription (Stat) 1/Stat3, cellular Myelocytomatosis virus-like cellular proto-oncogene (c-Myc)-Myc-associated factor X (Max), and pre-B cell leukemia transcription factor 1 sequences after dehydration. Focusing on c-Myc and Max, we used quantitative PCR to confirm previous transcriptomic analysis that had suggested an increase in c-Myc, but not Max, mRNA levels in the SON after dehydration, and we demonstrated c-Myc- and Max-like immunoreactivities in SON arginine vasopressin-expressing cells. Finally, by comparing new data obtained from Roche-NimbleGen chromatin immunoprecipitation arrays with previously published transcriptomic data, we have identified putative c-Myc target genes whose expression changes in the SON after dehydration. These include known c-Myc targets, such as the Slc7a5 gene, which encodes the L-type amino acid transporter 1, ribosomal protein L24, histone deactylase 2, and the Rat sarcoma proto-oncogene (Ras)-related nuclear GTPase.
Collapse
Affiliation(s)
- Jing Qiu
- School of Clinical Sciences (J.Q., A.K., S.G., S.T.Y., M.G., C.H., D.M.), University of Bristol, Bristol BS1 3NY, United Kingdom; and Department of Physiology (S.Z.H., C.H., D.M.), Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
van Gastel MDA, Meijer E, Scheven LE, Struck J, Bakker SJL, Gansevoort RT. Modifiable factors associated with copeptin concentration: a general population cohort. Am J Kidney Dis 2014; 65:719-27. [PMID: 25500109 DOI: 10.1053/j.ajkd.2014.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Vasopressin plays an important role in maintaining volume homeostasis. However, recent studies suggest that vasopressin also may play a detrimental role in the progression of chronic kidney disease. It therefore is of interest to identify factors that influence vasopressin concentration, particularly modifiable ones. STUDY DESIGN Cross-sectional analyses. SETTING & PARTICIPANTS Data used are from participants in a large general-population cohort study (Prevention of Renal and Vascular Endstage Disease [PREVEND]). Patients with a missing copeptin value (n=888), nonfasting blood sample (n=495), missing or assumed incorrect 24-hour urine collection (n=388), or heart failure (n=20) were excluded, leaving 6,801 participants for analysis. FACTOR Identification of lifestyle- and diet-related factors that are associated with copeptin concentration. OUTCOMES Copeptin concentration as surrogate for vasopressin. MEASUREMENTS Copeptin was measured by an immunoluminometric assay as a surrogate for vasopressin. Associations were assessed in uni- and multivariable linear regression analyses. RESULTS Median copeptin concentration was 4.7 (IQR, 2.9-7.6) pmol/L. When copeptin was studied as a dependent variable, the final stepwise backward model revealed associations with higher copeptin concentrations for lower 24-hour urine volume (P < 0.001), higher sodium excretion (P < 0.001), higher systolic blood pressure (P < 0.001), current smoking (P < 0.001), higher alcohol use (P < 0.001), higher urea excretion (P = 0.003), lower potassium excretion (P = 0.002), use of glucose-lowering drugs (P = 0.02), higher body mass index (P < 0.001), and higher plasma glucose level (P < 0.001). No associations with copeptin concentration were found for C-reactive protein or use of diuretics or nondiuretic antihypertensives. LIMITATIONS The cross-sectional study design does not allow firm conclusions on cause-effect relationships. CONCLUSIONS Important lifestyle- and diet-related factors associated with copeptin concentration are current smoking, alcohol use, protein and potassium intake, and particularly fluid and sodium intake. These data form a rationale to investigate whether intervening on these factors results in a lower vasopressin concentration with concomitant beneficial renal effects.
Collapse
Affiliation(s)
- Maatje D A van Gastel
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Esther Meijer
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lieneke E Scheven
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Joachim Struck
- ThermoFisher Scientific, Clinical Diagnostics, Hennigsdorf, Germany
| | - Stephan J L Bakker
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
24
|
Schoepf I, Schradin C. Arginine vasopressin plasma levels change seasonally in African striped mice but do not differ between alternative reproductive tactics. Gen Comp Endocrinol 2014; 204:43-8. [PMID: 24842715 DOI: 10.1016/j.ygcen.2014.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/20/2022]
Abstract
Arginine vasopressin (AVP) is an important hormone for osmoregulation, while as a neuropeptide in the brain it plays an important role in the regulation of social behaviors. Dry habitats are often the home of obligately sociable species such as meerkats and Damaraland mole-rats, leading to the hypothesis that high plasma AVP levels needed for osmoregulation might be associated with the regulation of social behavior. We tested this in a facultative sociable species, the African striped mouse (Rhabdomys pumilio). During the moist breeding season, both solitary- and group-living reproductive tactics occur in this species, which is obligatory sociable in the dry season. We collected 196 plasma samples from striped mice following different reproductive tactics both during the moist and the dry season. Solitary mice did not have lower AVP levels than sociable mice, rejecting the hypothesis that peripheral AVP is involved in the regulation of alternative reproductive tactics. However, we found significantly higher AVP levels during the dry season, with AVP levels correlated with the abundance of food plants, the main source of water for striped mice. Plasma AVP levels were not correlated with testosterone or corticosterone levels. Our study underlines the important role that AVP plays in osmoregulation, particularly for a free ranging mammal living under harsh arid conditions.
Collapse
Affiliation(s)
- Ivana Schoepf
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Carsten Schradin
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa; Université de Strasbourg, IPHC-DEPE, 23 rue Becquerel, 67087 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France.
| |
Collapse
|
25
|
Dine J, Ducourneau VRR, Fénelon VS, Fossat P, Amadio A, Eder M, Israel JM, Oliet SHR, Voisin DL. Extracellular signal-regulated kinase phosphorylation in forebrain neurones contributes to osmoregulatory mechanisms. J Physiol 2014; 592:1637-54. [PMID: 24492838 DOI: 10.1113/jphysiol.2013.261008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vasopressin secretion from the magnocellular neurosecretory cells (MNCs) is crucial for body fluid homeostasis. Osmotic regulation of MNC activity involves the concerted modulation of intrinsic mechanosensitive ion channels, taurine release from local astrocytes as well as excitatory inputs derived from osmosensitive forebrain regions. Extracellular signal-regulated protein kinases (ERK) are mitogen-activated protein kinases that transduce extracellular stimuli into intracellular post-translational and transcriptional responses, leading to changes in intrinsic neuronal properties and synaptic function. Here, we investigated whether ERK activation (i.e. phosphorylation) plays a role in the functioning of forebrain osmoregulatory networks. We found that within 10 min after intraperitoneal injections of hypertonic saline (3 m, 6 m) in rats, many phosphoERK-immunopositive neurones were observed in osmosensitive forebrain regions, including the MNC containing supraoptic nuclei. The intensity of ERK labelling was dose-dependent. Reciprocally, slow intragastric infusions of water that lower osmolality reduced basal ERK phosphorylation. In the supraoptic nucleus, ERK phosphorylation predominated in vasopressin neurones vs. oxytocin neurones and was absent from astrocytes. Western blot experiments confirmed that phosphoERK expression in the supraoptic nucleus was dose dependent. Intracerebroventricular administration of the ERK phosphorylation inhibitor U 0126 before a hyperosmotic challenge reduced the number of both phosphoERK-immunopositive neurones and Fos expressing neurones in osmosensitive forebrain regions. Blockade of ERK phosphorylation also reduced hypertonically induced depolarization and an increase in firing of the supraoptic MNCs recorded in vitro. It finally reduced hypertonically induced vasopressin release in the bloodstream. Altogether, these findings identify ERK phosphorylation as a new element contributing to the osmoregulatory mechanisms of vasopressin release.
Collapse
Affiliation(s)
- Julien Dine
- Inserm, U862, Neurocentre Magendie, Université de Bordeaux, 146 Rue Léo-Saignat, F-33077 Bordeaux, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hindmarch CCT, Franses P, Goodwin B, Murphy D. Whole transcriptome organisation in the dehydrated supraoptic nucleus. Braz J Med Biol Res 2013; 46:1000-1006. [PMID: 24345907 PMCID: PMC3935270 DOI: 10.1590/1414-431x20133328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/11/2013] [Indexed: 01/20/2023] Open
Abstract
The supraoptic nucleus (SON) is part of the central osmotic circuitry that synthesises the hormone vasopressin (Avp) and transports it to terminals in the posterior lobe of the pituitary. Following osmotic stress such as dehydration, this tissue undergoes morphological, electrical and transcriptional changes to facilitate the appropriate regulation and release of Avp into the circulation where it conserves water at the level of the kidney. Here, the organisation of the whole transcriptome following dehydration is modelled to fit Zipf's law, a natural power law that holds true for all natural languages, that states if the frequency of word usage is plotted against its rank, then the log linear regression of this is -1. We have applied this model to our previously published euhydrated and dehydrated SON data to observe this trend and how it changes following dehydration. In accordance with other studies, our whole transcriptome data fit well with this model in the euhydrated SON microarrays, but interestingly, fit better in the dehydrated arrays. This trend was observed in a subset of differentially regulated genes and also following network reconstruction using a third-party database that mines public data. We make use of language as a metaphor that helps us philosophise about the role of the whole transcriptome in providing a suitable environment for the delivery of Avp following a survival threat like dehydration.
Collapse
Affiliation(s)
- C C T Hindmarch
- University of Bristol, The Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol, UK
| | | | | | - D Murphy
- University of Bristol, The Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol, UK
| |
Collapse
|
27
|
da Silva MP, Ventura RR, Varanda WA. Hypertonicity increases NO production to modulate the firing rate of magnocellular neurons of the supraoptic nucleus of rats. Neuroscience 2013; 250:70-9. [PMID: 23850590 DOI: 10.1016/j.neuroscience.2013.06.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 06/10/2013] [Accepted: 06/29/2013] [Indexed: 11/27/2022]
Abstract
Increases in plasma osmolality enhance nitric oxide (NO) levels in magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) and modulate the secretion of both vasopressin (VP) and oxytocin (OT). In this paper, we describe the effects of hypertonicity on the electrical properties of MNCs by focusing on the nitrergic modulation of their activity in this condition. Membrane potentials were measured using the patch clamp technique, in the presence of both glutamatergic and GABAergic neurotransmission blockers, in coronal brain slices of male Wistar rats. The recordings were first made under a control condition (295 mosm/kg H2O), then in the presence of a hypertonic stimulus (330 mosm/kg H2O) and, finally, with a hypertonic stimulus plus 500 μM L-Arginine or 100 μM N-nitro-L-Arginine methyl ester hydrochloride (L-NAME). Hypertonicity per se increased the firing frequency of the neurons. L-Arginine prevented the increase in fire frequency induced by hypertonic stimulus, and L-NAME (inhibitor of nitric oxide synthase) induced an additional increase in frequency when applied together with the hypertonic solution. Moreover, L-Arginine hyperpolarizes the resting potential and decreases the peak value of the after-hyperpolarization; both effects were blocked by L-NAME and hypertonicity and/or L-NAME reduced the time constant of the rising phase of the after-depolarization. These results demonstrate that an intrinsic nitrergic system is part of the mechanisms controlling the excitability of MNCs of the SON when the internal fluid homeostasis is disturbed.
Collapse
Affiliation(s)
- M P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
28
|
Nadeau L, Mouginot D. Quantitative prediction of vasopressin secretion using a computational population model of rat magnocellular neurons. J Comput Neurosci 2012; 33:533-45. [DOI: 10.1007/s10827-012-0399-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|
29
|
Seale AP, Watanabe S, Grau EG. Osmoreception: perspectives on signal transduction and environmental modulation. Gen Comp Endocrinol 2012; 176:354-60. [PMID: 22036842 DOI: 10.1016/j.ygcen.2011.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/05/2011] [Accepted: 10/12/2011] [Indexed: 01/16/2023]
Abstract
Osmoregulation is essential to life in vertebrates and osmoreception is a fundamental element in osmoregulation. Progress in characterizing the mechanisms that mediate osmoreception has been made possible by using a uniquely accessible cell model, the prolactin (PRL) cell of the euryhaline tilapia, Oreochromis mossambicus. In addition to a brief historical overview, we offer a summary of our recent progress on signal transduction and osmosensitivity in the tilapia PRL cell model. Prolactin is a central regulator of hydromineral balance in teleosts in freshwater (FW). Consistent with its essential role in FW osmoregulation, PRL release in tilapia is inversely related to extracellular osmolality, both in vivo and in vitro. Osmotically-driven changes in PRL cell volume control PRL release. A decrease in extracellular osmolality increases cell volume, leading to a rapid influx of Ca(2+) through stretch-activated channels followed by a sharp rise in PRL release. Our recent studies also suggest that cAMP is involved in the osmotic signal transduction, and that acclimation salinity can modulate PRL cell osmosensitivity. Prolactin cells from FW tilapia show a larger rise in PRL release after a reduction in medium osmolality than those from SW fish. Paradoxically, hyposmotically-induced increase in PRL mRNA was observed only in cells from SW fish. Our studies have revealed differences in the abundance of the water channel, aquaporin 3 (AQP3), and the stretch activated Ca(2+) channel, transient receptor potential vanilloid 4 (TRPV4) in PRL cells of FW and SW fish that may explain their differing osmosensitivity and osmoreceptive output in differing acclimation salinities.
Collapse
Affiliation(s)
- A P Seale
- Hawai'i Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.
| | | | | |
Collapse
|
30
|
Macchione A, Caeiro X, Godino A, Amigone J, Antunes-Rodrigues J, Vivas L. Availability of a rich source of sodium during the perinatal period programs the fluid balance restoration pattern in adult offspring. Physiol Behav 2012; 105:1035-44. [DOI: 10.1016/j.physbeh.2011.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
|
31
|
Qiu J, Hindmarch CCT, Yao ST, Tasker JG, Murphy D. Transcriptomic analysis of the osmotic and reproductive remodeling of the female rat supraoptic nucleus. Endocrinology 2011; 152:3483-91. [PMID: 21791562 PMCID: PMC3159778 DOI: 10.1210/en.2011-1044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The supraoptic nucleus (SON) of the hypothalamus is an important integrative brain structure that coordinates responses to perturbations in water balance and regulates maternal physiology through the release of the neuropeptide hormones vasopressin and oxytocin into the circulation. Both dehydration and lactation evoke a dramatic morphological remodeling of the SON, a process known as function-related plasticity. We hypothesize that some of the changes seen in SON remodeling are mediated by differential gene expression, and have thus used microarrays to document global changes in transcript abundance that accompany chronic dehydration in female rats, and in lactation. In situ hybridization analysis has confirmed the differential expression of three of these genes, namely TNF-induced protein 6, gonadotropin-inducible transcription factor 1, and ornithine decarboxylase antizyme inhibitor 1. Comparison of differential gene expression patterns in male and female rats subjected to dehydration and in lactating rats has enabled the identification of common elements that are significantly enriched in gene classes with particular functions. Two of these are related to the requirement for increased protein synthesis and hormone delivery in the physiologically stimulated SON (translation initiation factor activity and endoplasmic reticulum-Golgi intermediate compartment, respectively), whereas others are consistent with the concept of SON morphological plasticity (collagen fibril organization, extracellular matrix organization and biogenesis, extracellular structure organization and biogenesis, and homophilic cell adhesion). We suggest that the genes coordinately regulated in the SON as a consequence of dehydration and lactation form a network that mediates the plastic processes operational in the physiologically activated SON.
Collapse
Affiliation(s)
- Jing Qiu
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
New determinants of firing rates and patterns of vasopressinergic magnocellular neurons: predictions using a mathematical model of osmodetection. J Comput Neurosci 2011; 31:441-51. [DOI: 10.1007/s10827-011-0321-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
|
33
|
Stewart L, Hindmarch CCT, Qiu J, Tung YCL, Yeo GSH, Murphy D. Hypothalamic transcriptome plasticity in two rodent species reveals divergent differential gene expression but conserved pathways. J Neuroendocrinol 2011; 23:177-85. [PMID: 21070396 DOI: 10.1111/j.1365-2826.2010.02093.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have addressed the question of how different rodent species cope with the life-threatening homeostatic challenge of dehydration at the level of transcriptome modulation in the supraoptic nucleus (SON), a specialised hypothalamic neurosecretory apparatus responsible for the production of the antidiuretic peptide hormone arginine vasopressin (AVP). AVP maintains water balance by promoting water conservation at the level of the kidney. Dehydration evokes a massive increase in the regulated release of AVP from SON axon terminals located in the posterior pituitary, and this is accompanied by a plethora of changes in the morphology, electrophysiological properties, biosynthetic and secretory activity of this structure. Microarray analysis was used to generate a definitive catalogue of the genes expressed in the mouse SON, and to describe how the gene expression profile changes in response to dehydration. Comparison of the genes differentially expressed in the mouse SON as a consequence of dehydration with those of the rat has revealed many similarities, pointing to common processes underlying the function-related plasticity in this nucleus. In addition, we have identified many genes that are differentially expressed in a species-specific manner. However, in many cases, we have found that the hyperosmotic cue can induce species-specific alterations in the expression of different genes in the same pathway. The same functional end can be served by different means, via differential modulation, in different species, of different molecules in the same pathway. We suggest that pathways, rather than specific genes, should be the focus of integrative physiological studies based on transcriptome data.
Collapse
Affiliation(s)
- L Stewart
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
34
|
Sato K, Numata T, Saito T, Ueta Y, Okada Y. V₂ receptor-mediated autocrine role of somatodendritic release of AVP in rat vasopressin neurons under hypo-osmotic conditions. Sci Signal 2011; 4:ra5. [PMID: 21266716 DOI: 10.1126/scisignal.2001279] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Arginine vasopressin (AVP) neurons in the hypothalamus are osmosensory neurons that respond to increased or decreased plasma osmolarity by releasing more or less AVP, respectively, from their axon terminals. Here, we found that, in contrast, hypo-osmotic stress enhanced somatodendritic AVP secretion from isolated rat AVP neurons, and this somatodendritic release depended on actin depolymerization. In AVP neurons identified by transgenic expression of green fluorescent protein, hypo-osmotic stimulation led to activation of anion currents and a slow regulatory volume decrease (RVD). Bath application of AVP increased the volume-sensitive anion current and accelerated RVD; these effects were abolished by inhibition of adenylate cyclase or by a specific antagonist of the V(2)-type vasopressin receptor. The V(2) receptor antagonist slowed the RVD rate of AVP neurons even in the absence of exogenous AVP when the volume of bath solution was reduced. Reverse transcription polymerase chain reaction and immunostaining both indicated that the V(2) receptor was present in AVP neurons. We conclude that somatodendritic release of AVP under hypo-osmotic conditions acts through the V(2) receptor as an autocrine signal to enhance volume-sensitive anion channel activity and thereby facilitate cell volume regulation.
Collapse
Affiliation(s)
- Kaori Sato
- Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
35
|
ORTIZ-MIRANDA SONIAI, DAYANITHI GOVINDAN, VELÁZQUEZ-MARRERO CRISTINA, CUSTER EDWARDE, TREISTMAN STEVENN, LEMOS JOSÉR. Differential modulation of N-type calcium channels by micro-opioid receptors in oxytocinergic versus vasopressinergic neurohypophysial terminals. J Cell Physiol 2010; 225:276-88. [PMID: 20509142 PMCID: PMC4060829 DOI: 10.1002/jcp.22263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Opioids modulate the electrical activity of magnocellular neurons (MCN) and inhibit neuropeptide release at their terminals in the neurohypophysis. We have previously shown that micro-opioid receptor (MOR) activation induces a stronger inhibition of oxytocin (OT) than vasopressin (AVP) release from isolated MCN terminals. This higher sensitivity of OT release is due, at least in part, to the selective targeting of R-type calcium channels. We now describe the underlying basis for AVP's weaker inhibition by MOR activation and provide a more complete explanation of the complicated effects on neuropeptide release. We found that N-type calcium channels in AVP terminals are differentially modulated by MOR; enhanced at lower concentrations but increasingly inhibited at higher concentrations of agonists. On the other hand, N-type calcium channels in OT terminals were always inhibited. The response pattern in co-labeled terminals was analogous to that observed in AVP-containing terminals. Changes in intracellular calcium concentration and neuropeptide release corroborated these results as they showed a similar pattern of enhancement and inhibition in AVP terminals contrasting with solely inhibitory responses in OT terminals to MOR agonists. We established that fast translocation of Ca(2+) channels to the plasma membrane was not mediating current increments and thus, changes in channel kinetic properties are most likely involved. Finally, we reveal a distinct Ca-channel beta-subunit expression between each type of nerve endings that could explain some of the differences in responses to MOR activation. These results help advance our understanding of the complex modulatory mechanisms utilized by MORs in regulating presynaptic neuropeptide release.
Collapse
Affiliation(s)
- SONIA I. ORTIZ-MIRANDA
- Department of Physiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - CRISTINA VELÁZQUEZ-MARRERO
- Department of Physiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts
| | - EDWARD E. CUSTER
- Department of Physiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts
| | - STEVEN N. TREISTMAN
- Brudnick Neuropsychiatric Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - JOSÉ R. LEMOS
- Department of Physiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
36
|
Benabdesselam R, Sene A, Raison D, Benmessaoud-Mesbah O, Ayad G, Mornet D, Yaffe D, Rendon A, Hardin-Pouzet HÃ, Dorbani-Mamine L. A deficit of brain dystrophin 71 impairs hypothalamic osmostat. J Neurosci Res 2010; 88:324-34. [DOI: 10.1002/jnr.22198] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Summy-Long JY, Hu S. Peripheral osmotic stimulation inhibits the brain's innate immune response to microdialysis of acidic perfusion fluid adjacent to supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1532-45. [PMID: 19759333 DOI: 10.1152/ajpregu.00340.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During the brain's innate immune response microglia, astroglia and ependymal cells resolve/repair damaged tissue and control infection. Released interleukin-1beta (IL-1beta) reaching cerebroventricles stimulates circumventricular organs (CVOs; subfornical organ, SFO; organum vasculosum lamina terminalis, OVLT), the median preoptic nucleus (MePO), and magnocellular and parvocellular neurons in the supraoptic (SON) and paraventricular (PVN) nuclei. Hypertonic saline (HS) also activates these osmosensory CVOs and neuroendocrine systems, but, in contrast to IL-1beta, inhibits the peripheral immune response. To examine whether the brain's innate immune response is attenuated by osmotic stimulation, sterile acidic perfusion fluid was microdialyzed (2 microl/min) in the SON area of conscious rats for 6 h with sterile HS (1.5 M NaCl) injected subcutaneously (15 ml/kg) at 5 h. Immunohistochemistry identified cytokine sources (IL-1beta(+); OX-42(+) microglia) and targets (IL-1R(+); inducible cyclooxygenase, COX-2(+); c-Fos(+)) near the probe, in CVOs, MePO, ependymal cells, periventricular hypothalamus, SON, and PVN. Inserting the probe stimulated magnocellular neurons (c-Fos(+); SON; PVN) via the MePO (c-Fos(+)), a response enhanced by HS. Microdialysis activated microglia (OX-42(+); amoeboid/hypertrophied; IL-1beta(+)) in the adjacent SON and bilaterally in perivascular areas of the PVN, periventricular hypothalamus and ependyma, coincident with c-Fos expression in ependymal cells and COX-2 in the vasculature. These microglial responses were attenuated by HS, coincident with activating parvocellular and magnocellular neuroendocrine systems and elevating circulating IL-1beta, oxytocin, and vasopressin. Acidosis-induced cellular injury from microdialysis activated the brain's innate immune response by a mechanism inhibited by peripheral osmotic stimulation.
Collapse
Affiliation(s)
- Joan Y Summy-Long
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
38
|
Coleman CG, Anrather J, Iadecola C, Pickel VM. Angiotensin II type 2 receptors have a major somatodendritic distribution in vasopressin-containing neurons in the mouse hypothalamic paraventricular nucleus. Neuroscience 2009; 163:129-42. [PMID: 19539723 DOI: 10.1016/j.neuroscience.2009.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/21/2009] [Accepted: 06/12/2009] [Indexed: 01/16/2023]
Abstract
The hypothalamic paraventricular nucleus (PVN) and angiotensin II (AngII) play critical roles in cardiovascular and neurohumoral regulation ascribed in part to vasopressin (VP) release. The AngII actions in the PVN are mediated largely through angiotensin II type 1 (AT1) receptors. However, there is indirect evidence that the functionally elusive central angiotensin II type 2 (AT2) receptors are also mediators of AngII signaling in the PVN. We used electron microscopic dual immunolabeling of antisera recognizing the AT2 receptor and VP to test the hypothesis that mouse PVN neurons expressing VP are among the cellular sites where this receptor has a subcellular distribution conducive to local activation. Immunoreactivity for the AT2 receptor was detected in somatodendritic profiles, of which approximately 60% of the somata and approximately 28% of the dendrites also contained VP. In comparison with somata and dendrites, axons, axon terminals, and glia less frequently contained the AT2 receptor. Somatic labeling for the AT2 receptor was often seen in the cytoplasm near the Golgi lamellae and other endomembrane structures implicated in receptor trafficking. AT2 receptor immunoreactivity in dendrites was commonly localized to cytoplasmic endomembranes, but was occasionally observed on extra- or peri-synaptic portions of the plasma membrane apposed by astrocytic processes or by unlabeled axon terminals. The labeled dendritic plasmalemmal segments containing AT2 receptors received asymmetric excitatory-type or more rarely symmetric inhibitory-type contacts from unlabeled axon terminals containing dense core vesicles, many of which are known to store neuropeptides. These results provide the first ultrastructural evidence that AT2 receptors in PVN neurons expressing VP and other neuromodulators are strategically positioned for surface activation by AngII and/or intracellular trafficking.
Collapse
Affiliation(s)
- C G Coleman
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Medical College of Cornell University, 407 E 61st Street, New York, NY, USA.
| | | | | | | |
Collapse
|
39
|
Kawasaki M, Ponzio TA, Yue C, Fields RL, Gainer H. Neurotransmitter regulation of c-fos and vasopressin gene expression in the rat supraoptic nucleus. Exp Neurol 2009; 219:212-22. [PMID: 19463813 DOI: 10.1016/j.expneurol.2009.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/04/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
Acute increases in plasma osmotic pressure produced by intraperitoneal injection of hypertonic NaCl are sensed by osmoreceptors in the brain, which excite the magnocellular neurons (MCNs) in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) in the hypothalamus inducing the secretion of vasopressin (VP) into the general circulation. Such systemic osmotic stimulation also causes rapid and transient increases in the gene expression of c-fos and VP in the MCNs. In this study we evaluated potential signals that might be responsible for initiating these gene expression changes during acute hyperosmotic stimulation. We use an in vivo paradigm in which we stereotaxically deliver putative agonists and antagonists over the SON unilaterally, and use the contralateral SON in the same rat, exposed only to vehicle solutions, as the control SON. Quantitative real time-PCR was used to compare the levels of c-fos mRNA, and VP mRNA and VP heteronuclear (hn)RNA in the SON. We found that the ionotropic glutamate agonists (NMDA plus AMPA) caused an approximately 6-fold increase of c-fos gene expression in the SON, and some, but not all, G-coupled protein receptor agonists (e.g., phenylephrine, senktide, a NK-3-receptor agonist, and alpha-MSH) increased the c-fos gene expression in the SON from between 1.5 to 2-fold of the control SONs. However, none of these agonists were effective in increasing VP hnRNA as is seen with acute salt-loading. This indicates that the stimulus-transcription coupling mechanisms that underlie the c-fos and VP transcription increases during acute osmotic stimulation differ significantly from one another.
Collapse
Affiliation(s)
- Makoto Kawasaki
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Systemic osmoregulation is a vital process whereby changes in plasma osmolality, detected by osmoreceptors, modulate ingestive behaviour, sympathetic outflow and renal function to stabilize the tonicity and volume of the extracellular fluid. Furthermore, changes in the central processing of osmosensory signals are likely to affect the hydro-mineral balance and other related aspects of homeostasis, including thermoregulation and cardiovascular balance. Surprisingly little is known about how the brain orchestrates these responses. Here, recent advances in our understanding of the molecular, cellular and network mechanisms that mediate the central control of osmotic homeostasis in mammals are reviewed.
Collapse
Affiliation(s)
- Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Room L7-216, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.
| |
Collapse
|
41
|
Saito T, Dayanithi G, Saito J, Onaka T, Urabe T, Watanabe TX, Hashimoto H, Yokoyama T, Fujihara H, Yokota A, Nishizawa S, Hirata Y, Ueta Y. Chronic osmotic stimuli increase salusin-beta-like immunoreactivity in the rat hypothalamo-neurohypophyseal system: possible involvement of salusin-beta on [Ca2+]i increase and neurohypophyseal hormone release from the axon terminals. J Neuroendocrinol 2008; 20:207-19. [PMID: 18047553 DOI: 10.1111/j.1365-2826.2007.01632.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salusin-alpha and -beta were recently discovered as bioactive endogenous peptides. In the present study, we investigated the effects of chronic osmotic stimuli on salusin-beta-like immunoreactivity (LI) in the rat hypothalamo-neurohypophyseal system. We examined the effects of salusin-beta on synaptic inputs to the rat magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) and neurohypophyseal hormone release from both freshly dissociated SONs and neurohypophyses in rats. Immunohistochemical studies revealed that salusin-beta-LI neurones and fibres were markedly increased in the SON and the magnocellular division of the paraventricular nucleus after chronic osmotic stimuli resulting from salt loading for 5 days and dehydration for 3 days. Salusin-beta-LI fibres and varicosities in the internal zone of the median eminence and the neurohypophysis were also increased after osmotic stimuli. Whole-cell patch-clamp recordings from rat SON slice preparations showed that salusin-beta did not cause significant changes in the excitatory and inhibitory postsynaptic currents of the MNCs. In vitro hormone release studies showed that salusin-beta evoked both arginine vasopressin (AVP) and oxytocin release from the neurohypophysis, but not the SON. In our hands, in the neurohypophysis, a significant release of AVP and oxytocin was observed only at concentrations from 100 nm and above of salusin-beta. Low concentrations below 100 nm were ineffective both on AVP and oxytocin release. We also measured intracellular calcium ([Ca(2+)](i)) increase induced by salusin-beta on freshly-isolated single nerve terminals from the neurohypophysis devoid of pars intermedia. Furthermore, this salusin-beta-induced [Ca(2+)](i) increase was blocked in the presence of high voltage activated Ca(2+)channel blockers. Our results suggest that salusin-beta may be involved in the regulation of body fluid balance by stimulating neurohypophyseal hormone release from nerve endings by an autocrine/paracrine mechanism.
Collapse
Affiliation(s)
- T Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hindmarch C, Yao S, Hesketh S, Jessop D, Harbuz M, Paton J, Murphy D. The transcriptome of the rat hypothalamic-neurohypophyseal system is highly strain-dependent. J Neuroendocrinol 2007; 19:1009-12. [PMID: 18001331 DOI: 10.1111/j.1365-2826.2007.01612.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have used microarrays to comprehensively describe the transcriptomes of the supraoptic nucleus (SON), the paraventricular nucleus (PVN) and the neurointermediate lobe of adult male Sprague-Dawley (SD) and Wistar-Kyoto (WKY) rats, as well as the PVN of Wistar rats. Comparison of these gene lists has enabled us to identify surprisingly large differences in hypothalamic-neurohypophyseal system gene expression patterns in these three strains. We have also shown that different transcript populations are enriched in the PVN and the SON of SD and WKY rats. The transcriptome differences catalogued here may be molecular substrates for the neuro-humoral phenotypic differences exhibited by different strains of rats.
Collapse
Affiliation(s)
- C Hindmarch
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Cohen DM. The transient receptor potential vanilloid-responsive 1 and 4 cation channels: role in neuronal osmosensing and renal physiology. Curr Opin Nephrol Hypertens 2007; 16:451-8. [PMID: 17693761 DOI: 10.1097/mnh.0b013e32821f6060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To provide an overview of recent developments in the field of systemic osmoregulation, with attention to the brain and kidney. RECENT FINDINGS A number of pivotal observations underscore the primary importance of transient receptor potential channels in systemic osmoregulation and their involvement constitutes the focus of this review. Recent data suggest that transient receptor potential vanilloid-responsive 4 is a central sensor or effector of systemic hypotonicity, whereas an unidentified variant of transient receptor potential vanilloid-responsive 1 potentially serves an analogous role in systemic hypertonicity. SUMMARY Members of the transient receptor potential vanilloid-responsive subfamily of transient receptor potential channels are likely to serve as central sensors of systemic anisotonicity.
Collapse
Affiliation(s)
- David M Cohen
- Nephrology Section, Portland Veterans Affairs Medical Center and Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
44
|
Gouraud SS, Yao ST, Heesom KJ, Paton JFR, Murphy D. 14-3-3 proteins within the hypothalamic-neurohypophyseal system of the osmotically stressed rat: transcriptomic and proteomic studies. J Neuroendocrinol 2007; 19:913-22. [PMID: 17927670 DOI: 10.1111/j.1365-2826.2007.01604.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The hypothalamic-neurohypophyseal system (HNS) mediates neuroendocrine responses to dehydration through the actions of the antidiuretic hormone vasopressin (VP) and the natriuetic peptide oxytocin (OT). VP and OT are synthesised as separate prepropeptide precursors in the cell bodies of magnocellular neurones in the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus, the axons of which innervate the posterior pituitary gland (PP). Dehydration evokes a massive release of both peptides into the circulation, and this is accompanied by a function-related remodelling of the HNS. Microarray studies on mRNAs differentially expressed in the SON revealed that transcripts encoding the Ywhag and Ywhaz isoforms of the 14-3-3 family of regulatory proteins, are increased in the rat SON by 3 days of water deprivation; findings that we have confirmed by the real-time polymerase chain reaction. Because there is no necessary proportionality between transcript and protein abundance, we next examined Ywhag and Ywhaz translation products throughout the HNS in parallel with 14-3-3 post-translational modification, which is known to be an important determinant of functional activity. Both proteins are robustly expressed in the SON in VP- and OT-containing neurones, but the abundance of neither changes with dehydration. However, the total level of Ywhaz protein is increased in the neurointermediate lobe of the pituitary (NIL, which includes the PP), in parallel with a basic post-translationally modified isoform, suggesting transport from the cell bodies of the SON of newly-synthesised protein and changes in its activity. The level of an acidic, probably phosphorylated, Ywhag isoform is down-regulated in the SON by dehydration, although total levels are unchanged. Finally, based on the presence of a phosphorylated 14-3-3 binding motif, we have identified a 14-3-3 binding partner, proteasome subunit, beta type 7, in the NIL. Thus, we suggest that, through complex transcriptional, and post-translational processes, 14-3-3 proteins are involved in the regulation or mediation of HNS plasticity following dehydration.
Collapse
Affiliation(s)
- S S Gouraud
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|
45
|
Gouraud SS, Heesom K, Yao ST, Qiu J, Paton JFR, Murphy D. Dehydration-induced proteome changes in the rat hypothalamo-neurohypophyseal system. Endocrinology 2007; 148:3041-52. [PMID: 17412804 DOI: 10.1210/en.2007-0181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamo-neurohypophyseal system (HNS) mediates neuroendocrine responses to dehydration through the action of the antidiuretic hormone vasopressin (VP). VP is synthesized as part of a prepropeptide in magnocellular neurons of the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus. This precursor is processed during transport to axon terminals in the posterior pituitary gland, in which biologically active VP is stored until mobilized for secretion by electrical activity evoked by osmotic cues. During release, VP travels through the blood stream to specific receptor targets located in the kidney in which it increases the permeability of the collecting ducts to water, reducing the renal excretion of water, thus promoting water conservation. The HNS undergoes a dramatic function-related plasticity during dehydration. We hypothesize that alterations in steady-state protein levels might be partially responsible for this remodeling. We investigated dehydration-induced changes in the SON and pituitary neurointermediate lobe (NIL) proteomes using two-dimensional fluorescence difference gel electrophoresis. Seventy proteins were altered by dehydration, including 45 in the NIL and 25 in the SON. Using matrix-assisted laser desorption/ionization mass spectrometry, we identified six proteins in the NIL (four down, two up) and nine proteins in the SON (four up, five down) that are regulated as a consequence of chronic dehydration. Results for five of these proteins, namely Hsp1alpha (heat shock protein 1alpha), NAP22 (neuronal axonal membrane protein 22), GRP58 (58 kDa glucose regulated protein), calretinin, and ProSAAS (proprotein convertase subtilisin/kexin type 1 inhibitor), have been confirmed using independent methods such as semiquantitative Western blotting, two-dimensional Western blotting, enzyme-linked immunoassay, and immunohistochemistry. These proteins may have roles in regulating and effecting HNS remodeling.
Collapse
Affiliation(s)
- S S Gouraud
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Department of Biochemistry Proteomics Facility, Bristol Heart Institute, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Qiu J, Yao S, Hindmarch C, Antunes V, Paton J, Murphy D. Transcription factor expression in the hypothalamo-neurohypophyseal system of the dehydrated rat: upregulation of gonadotrophin inducible transcription factor 1 mRNA is mediated by cAMP-dependent protein kinase A. J Neurosci 2007; 27:2196-203. [PMID: 17329416 PMCID: PMC6673476 DOI: 10.1523/jneurosci.5420-06.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/15/2007] [Accepted: 01/15/2007] [Indexed: 11/21/2022] Open
Abstract
The supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamo-neurohypophyseal system (HNS) undergo a dramatic function-related plasticity during dehydration. We hypothesize that alterations in steady-state transcript levels might be partially responsible for this remodeling. In turn, regulation of transcript abundance might be mediated by transcription factors. We used microarrays to identify changes in the expression of mRNAs encoding transcription factors in response to water deprivation in the SON. We observed downregulation of 10 and upregulation of 28 transcription factor transcripts. For five of the upregulated mRNAs, namely gonadotropin inducible ovarian transcription factor 1 (Giot1), Giot2, cAMP-responsive element binding protein 3-like 1, CCAAT/enhancer binding protein beta, and activating transcription factor 4, in situ hybridization was used to confirm the array results, demonstrating a significant increase in expression in SON and PVN magnocellular neurons (MCNs) after 3 d of water deprivation and, in some cases, upregulation in parvocellular PVN neurons. Using a viral vector expressing a potent inhibitor of cAMP-dependent protein kinase A (PKA), we show that the osmotically induced increase in the abundance of transcripts encoding Giot1 is mediated in vivo by the PKA pathway. We thus suggest that signaling pathways activated by dehydration in MCNs mediate transcription factor gene activation, which, in turn, regulate target genes that mediate HNS remodeling.
Collapse
Affiliation(s)
- Jing Qiu
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom, and
| | - Song Yao
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom, and
| | - Charles Hindmarch
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom, and
| | - Vagner Antunes
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom, and
| | - Julian Paton
- Department of Physiology, Bristol Heart Institute, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - David Murphy
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom, and
| |
Collapse
|
47
|
Abstract
Metal complexation is a key mediator or modifier of enzyme structure and function. In addition to divalent and polyvalent metals, group IA metals Na+and K+play important and specific roles that assist function of biological macromolecules. We examine the diversity of monovalent cation (M+)-activated enzymes by first comparing coordination in small molecules followed by a discussion of theoretical and practical aspects. Select examples of enzymes that utilize M+as a cofactor (type I) or allosteric effector (type II) illustrate the structural basis of activation by Na+and K+, along with unexpected connections with ion transporters. Kinetic expressions are derived for the analysis of type I and type II activation. In conclusion, we address evolutionary implications of Na+binding in the trypsin-like proteases of vertebrate blood coagulation. From this analysis, M+complexation has the potential to be an efficient regulator of enzyme catalysis and stability and offers novel strategies for protein engineering to improve enzyme function.
Collapse
Affiliation(s)
- Michael J Page
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
48
|
Chakfe Y, Zhang Z, Bourque CW. IL-1β directly excites isolated rat supraoptic neurons via upregulation of the osmosensory cation current. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1183-90. [PMID: 16293679 DOI: 10.1152/ajpregu.00716.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that IL-1β can excite the magnocellular neurosecretory cells (MNCs) of the hypothalamus. However, it is not known whether IL-1β can have direct IL-1 receptor type 1 (IL-1R1)-mediated effects on MNCs, and little is known about the cellular mechanisms by which IL-1β influences electrical activity in these cells. Here, we used patch-clamp recordings to examine the effects of IL-1β on acutely isolated rat MNCs. We found that IL-1β directly excites MNCs in a dose-dependent manner and that this response can be blocked by an inhibitor of the IL-1R1. Voltage-clamp analysis of the current evoked by IL-1β revealed a linear current-voltage relationship between −90 and −20 mV, and a reversal potential near −35 mV. This value was not affected by reducing the concentration of chloride ions in the external solution, indicating the involvement of a nonselective cation conductance. The effects of IL-1β were inhibited by Na-salicylate, an inhibitor of cyclooxygenase. Moreover. the effects of IL-1β were mimicked and occluded by PGE2, and were inhibited by AH-23848, an antagonist of the PGE2 type 4 (i.e., EP4) receptor. The current evoked by IL-1β was also abolished by 100 μM gadolinium (Gd3+), but was significantly larger when examined in cells preshrunk by negative pressure applied via the recording pipette. IL-1β alone did not cause changes in cell volume nor in the mechanosensitivity of MNCs. We conclude that IL-1β directly excites MNCs via an IL-1R1-mediated induction of PGE2 synthesis and EP4 receptor-dependent autocrine upregulation of the nonselective cation conductance that underlies osmoreception.
Collapse
Affiliation(s)
- Yassar Chakfe
- Centre for Research in Neuroscience, Montreal General Hospital and McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
49
|
Ster J, Colomer C, Monzo C, Duvoid-Guillou A, Moos F, Alonso G, Hussy N. Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors. J Neurosci 2006; 25:2267-76. [PMID: 15745952 PMCID: PMC6726091 DOI: 10.1523/jneurosci.4053-04.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the CNS, insulin-like growth factor-1 (IGF-1) is mainly known for its trophic effect both during development and in adulthood. Here, we show than in adult rat supraoptic nucleus (SON), IGF-1 receptor immunoreactivity is present in neurons, whereas IGF-1 immunoreactivity is found principally in astrocytes and more moderately in neurons. In vivo application of IGF-1 within the SON acutely inhibits the activity of both vasopressin and oxytocin neurons, the two populations of SON neuroendocrine cells. Recordings of acutely isolated SON neurons showed that this inhibition occurs through two rapid and reversible mechanisms, both involving the neuronal IGF-1 receptor but different intracellular messengers. IGF-1 inhibits Gd3+-sensitive and osmosensitive mechanoreceptor cation current via phosphatidylinositol-3 (PI3) kinase activation. IGF-1 also potentiates taurine-activated glycine receptor (GlyR) Cl- currents by increasing the agonist sensitivity through a extremely rapid (within a second) PI3 kinase-independent mechanism. Both mechanoreceptor channels and GlyR, which form the excitatory and inhibitory components of SON neuron osmosensitivity, are active at rest, and their respective inhibition and potentiation will both be inhibitory, leading to strong decrease in neuronal activity. It will be of interest to determine whether IGF-1 is released by neurons, thus participating in an inhibitory autocontrol, or astrocytes, then joining the growing family of glia-to-neuron transmitters that modulate neuronal and synaptic activity. Through the opposite and complementary acute regulation of mechanoreceptors and GlyR, IGF-1 appears as a new important neuromodulator in the adult CNS, participating in the complex integration of neural messages that regulates the level of neuronal excitability.
Collapse
Affiliation(s)
- Jeanne Ster
- Biologie des Neurones Endocrines, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5101, Institut National de la Santé et de la Recherche Médicale de Pharmacologie et d'Endocrinologie, 34094 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Seale AP, Fiess JC, Hirano T, Cooke IM, Grau EG. Disparate release of prolactin and growth hormone from the tilapia pituitary in response to osmotic stimulation. Gen Comp Endocrinol 2006; 145:222-31. [PMID: 16242686 DOI: 10.1016/j.ygcen.2005.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 07/21/2005] [Accepted: 09/01/2005] [Indexed: 11/21/2022]
Abstract
In most teleost fishes, prolactin (PRL) plays a key role in freshwater (FW) adaptation, whereas growth hormone (GH) is involved in seawater (SW) adaptation in salmonids and certain euryhaline species including the tilapia, Oreochromis mossambicus. Consistent with its osmoregulatory activity, PRL release increases in response to physiologically relevant reductions in extracellular osmolality. When dispersed PRL and GH cells from FW-acclimatized fish were incubated in media of varying osmolalities, PRL release increased significantly in response to a 12% reduction in medium osmolality during 1 and 4h of exposure. By contrast, cells from SW-acclimatized fish responded only to a 24% reduction in osmolality. Growth hormone release on the other hand increased whether medium osmolality was reduced or raised. Cell volume increased together with PRL release during the perifusion of dispersed PRL cells in direct proportion to the reduction in medium osmolality. Growth hormone release increased whether GH cell volume increased or decreased. In in vivo studies, circulating PRL levels increased as early as 1h after the transfer of fish from SW to FW, whereas GH levels remained unchanged during 24h of acclimatization. These results indicate that while PRL and GH cells are osmosensitive, the PRL cells respond to reductions in extracellular osmolality in a manner that is consistent with PRL's physiological role in the tilapia. While the rise in GH release following the reduction in osmolality is of uncertain physiological significance, the rise in GH release with the elevation of medium osmolality may be connected to its role in SW adaptation.
Collapse
Affiliation(s)
- A P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | | | |
Collapse
|