1
|
Ridruejo A, Pacios LF, Arguelles J, Hayashi CY, Elices M, Guinea GV, Pérez-Rigueiro J. Elastomeric behavior of the Bombyx mori fibroin (GAGAGS) n tandem motifs. J Mech Behav Biomed Mater 2025; 168:107002. [PMID: 40209336 DOI: 10.1016/j.jmbbm.2025.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
The mechanical properties of tandems composed by a repetition of the -GAGAGS- motif characteristic of Bombyx mori silk fibroin are explored using molecular dynamics simulations. For each tandem the calculation starts from the configuration reached upon minimizing the initial energy and proceeds by determining representative stationary states obtained from molecular dynamics simulations at a temperature of T = 300 K. Subsequently, the tandems are loaded by applying force to the α-carbon atoms at their ends and the force-displacement curve is built from the force exerted on the tandem as a function of the end-to-end distance between these atoms. The results obtained reveal two regimes as a function of the number of repetitions: tandems with one or two repetitions do not show a characteristic elastomeric behavior, while the curves calculated for tandems with a number of repetitions of three or greater can be fitted to the theoretical curves of a freely jointed chain.
Collapse
Affiliation(s)
- Alvaro Ridruejo
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Luis F Pacios
- Departamento de Biotecnología-Biología Vegetal, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Joseph Arguelles
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| | - Cheryl Y Hayashi
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| | - Manuel Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Gustavo V Guinea
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain; Centro de Tecnología Biomédica (CTB) , Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain; Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/ Prof. Martín Lagos s/n, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - José Pérez-Rigueiro
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain; Centro de Tecnología Biomédica (CTB) , Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain; Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/ Prof. Martín Lagos s/n, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| |
Collapse
|
2
|
Lu H, Jian M, Liang X, Wang Y, Niu J, Zhang Y. Strong Silkworm Silk Fibers through CNT-Feeding and Forced Reeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408385. [PMID: 39400397 DOI: 10.1002/adma.202408385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Indexed: 10/15/2024]
Abstract
High-performance silk fibers, with their eco-friendly degradability and renewability, have long captivated researchers as an alternative to synthetic fibers. Spider dragline silk, renowned for its exceptional strength (>1 GPa), has an extremely low yield, hindering its widespread use. While domesticated silkworms (Bombyx mori) can produce silk fibers industrially, their moderate strength (≈0.5 GPa) pales in comparison to the formidable spider dragline silk. In this study, naturally produced strong silkworm silk fibers are reported with a tensile strength of ≈1.2 GPa achieved through combining feeding carbon nanotubes (CNTs) to silkworms and in situ forced reeling for alignment. Molecular dynamics simulations confirm the interaction between the CNTs and silk fibroin, while the forced reeling process aligns these reinforcing fillers and the silk fibroin β-sheet nanocrystals along the fiber axis. Structural analysis reveals a significant enhancement in the content and alignment of β-sheet nanocrystals within the silk fibers, accounting for their superior mechanical properties, including tensile strength of ≈1.2 GPa and Young's modulus of 24.4 GPa, surpassing various types of silkworm silk and spider silk. This advancement addresses the historical trade-off between the strength and scalability of silk, potentially paving the way for eco-friendly, biodegradable, and renewable alternatives to synthetic fibers in a variety of applications.
Collapse
Affiliation(s)
- Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Muqiang Jian
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yida Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiali Niu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
De Oliveira DH, Gowda V, Sparrman T, Gustafsson L, Sanches Pires R, Riekel C, Barth A, Lendel C, Hedhammar M. Structural conversion of the spidroin C-terminal domain during assembly of spider silk fibers. Nat Commun 2024; 15:4670. [PMID: 38821983 PMCID: PMC11143275 DOI: 10.1038/s41467-024-49111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
The major ampullate Spidroin 1 (MaSp1) is the main protein of the dragline spider silk. The C-terminal (CT) domain of MaSp1 is crucial for the self-assembly into fibers but the details of how it contributes to the fiber formation remain unsolved. Here we exploit the fact that the CT domain can form silk-like fibers by itself to gain knowledge about this transition. Structural investigations of fibers from recombinantly produced CT domain from E. australis MaSp1 reveal an α-helix to β-sheet transition upon fiber formation and highlight the helix No4 segment as most likely to initiate the structural conversion. This prediction is corroborated by the finding that a peptide corresponding to helix No4 has the ability of pH-induced conversion into β-sheets and self-assembly into nanofibrils. Our results provide structural information about the CT domain in fiber form and clues about its role in triggering the structural conversion of spidroins during fiber assembly.
Collapse
Affiliation(s)
- Danilo Hirabae De Oliveira
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vasantha Gowda
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Linnea Gustafsson
- Spiber Technologies AB, Roslagstullsbacken 15, 114 21, Stockholm, Sweden
| | | | - Christian Riekel
- European Synchrotron Radiation Facility, B.P. 220, F-38043, Grenoble Cedex, France
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - My Hedhammar
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden.
| |
Collapse
|
4
|
Peng Z, Hu W, Yang X, Liu Q, Shi X, Tang X, Zhao P, Xia Q. Overexpression of bond-forming active protein for efficient production of silk with structural changes and properties enhanced in silkworm. Int J Biol Macromol 2024; 264:129780. [PMID: 38290638 DOI: 10.1016/j.ijbiomac.2024.129780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Silkworm silk exhibits excellent mechanical properties, biocompatibility, and has potential applications in the biomedical sector. This study focused on enhancing the mechanical properties of Bombyx mori silk by overexpressing three bond-forming active proteins (BFAPs): AFP, HSP, and CRP in the silk glands of silkworms. Rheological tests confirmed increased viscoelasticity in the liquid fibroin stock solution of transgenic silkworms, and dynamic mechanical thermal analysis (DMTA) indicated that all three BFAPs participated in the interactions between fibroin molecular networks in transgenic silk. The mechanical property assay indicated that all three BFAPs improved the mechanical characteristics of transgenic silk, with AFP and HSP having the most significant effects. A synchrotron radiation Fourier transform infrared spectroscopy assay showed that all three BFAPs increased the β-sheet content of transgenic silk. Synchrotron radiation wide-angle X-ray diffraction assay showed that all three BFAPs changed the crystallinity, crystal size, and orientation factor of the silk. AFP and HSP significantly improved the mechanical attributes of transgenic silk through increased crystallinity, refined crystal size, and a slight decrease in orientation. This study opens new possibilities for modifying silk and other fiber materials.
Collapse
Affiliation(s)
- Zhangchuan Peng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, China
| | - Wenbo Hu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xi Yang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qingsong Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - XiaoTing Shi
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xin Tang
- Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China.
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China.
| |
Collapse
|
5
|
Naghilou A, Peter K, Millesi F, Stadlmayr S, Wolf S, Rad A, Semmler L, Supper P, Ploszczanski L, Liu J, Burghammer M, Riekel C, Bismarck A, Backus EHG, Lichtenegger H, Radtke C. Insights into the material properties of dragline spider silk affecting Schwann cell migration. Int J Biol Macromol 2023:125398. [PMID: 37330085 DOI: 10.1016/j.ijbiomac.2023.125398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Dragline silk of Trichonephila spiders has attracted attention in various applications. One of the most fascinating uses of dragline silk is in nerve regeneration as a luminal filling for nerve guidance conduits. In fact, conduits filled with spider silk can measure up to autologous nerve transplantation, but the reasons behind the success of silk fibers are not yet understood. In this study dragline fibers of Trichonephila edulis were sterilized with ethanol, UV radiation, and autoclaving and the resulting material properties were characterized with regard to the silk's suitability for nerve regeneration. Rat Schwann cells (rSCs) were seeded on these silks in vitro and their migration and proliferation were investigated as an indication for the fiber's ability to support the growth of nerves. It was found that rSCs migrate faster on ethanol treated fibers. To elucidate the reasons behind this behavior, the fiber's morphology, surface chemistry, secondary protein structure, crystallinity, and mechanical properties were studied. The results demonstrate that the synergy of dragline silk's stiffness and its composition has a crucial effect on the migration of rSCs. These findings pave the way towards understanding the response of SCs to silk fibers as well as the targeted production of synthetic alternatives for regenerative medicine applications.
Collapse
Affiliation(s)
- Aida Naghilou
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Karolina Peter
- University of Natural Resources and Life Sciences, Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, Peter-Jordan-Strasse 82, 1190 Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sarah Stadlmayr
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sonja Wolf
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Anda Rad
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Lorenz Semmler
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Paul Supper
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Leon Ploszczanski
- University of Natural Resources and Life Sciences, Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, Peter-Jordan-Strasse 82, 1190 Vienna, Austria
| | - Jiliang Liu
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Manfred Burghammer
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Christian Riekel
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Alexander Bismarck
- University of Vienna, Faculty of Chemistry, Institute of Materials Chemistry & Research, Währingerstraße 42, 1090 Vienna, Austria
| | - Ellen H G Backus
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währingerstraße 42, 1090 Vienna, Austria
| | - Helga Lichtenegger
- University of Natural Resources and Life Sciences, Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, Peter-Jordan-Strasse 82, 1190 Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
6
|
Jiang P, Wu L, Hu M, Tang S, Qiu Z, Lv T, Elices M, Guinea GV, Pérez-Rigueiro J. Variation in the Elastic Modulus and Increased Energy Dissipation Induced by Cyclic Straining of Argiope bruennichi Major Ampullate Gland Silk. Biomimetics (Basel) 2023; 8:biomimetics8020164. [PMID: 37092416 PMCID: PMC10123757 DOI: 10.3390/biomimetics8020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023] Open
Abstract
The trends exhibited by the parameters that describe the mechanical behaviour of major ampullate gland silk fibers spun by Argiope bruennichi spiders is explored by performing a series of loading-unloading tests at increasing values of strain, and by the subsequent analysis of the true stress-true strain curves obtained from these cycles. The elastic modulus, yields stress, energy absorbed, and energy dissipated in each cycle are computed in order to evaluate the evolution of these mechanical parameters with this cyclic straining. The elastic modulus is observed to increase steadily under these loading conditions, while only a moderate variation is found in the yield stress. It is also observed that a significant proportion of the energy initially absorbed in each cycle is not only dissipated, but that the material may recover partially from the associated irreversible deformation. This variation in the mechanical performance of spider silk is accounted for through a combination of irreversible and reversible deformation micromechanisms in which the viscoelasticity of the material plays a leading role.
Collapse
Affiliation(s)
- Ping Jiang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Environment and Resources, College of Life Sciences, Jinggangshan University, Ji'an 343009, China
| | - Lihua Wu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Menglei Hu
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Environment and Resources, College of Life Sciences, Jinggangshan University, Ji'an 343009, China
| | - Sisi Tang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Zhimin Qiu
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Environment and Resources, College of Life Sciences, Jinggangshan University, Ji'an 343009, China
| | - Taiyong Lv
- Department of Nuclear Medicine, Affiliated Hospital in Southwest Medical University, Sichuan Key Laboratory of Nuclear Medicine and Molecular Imaging, Luzhou 646000, China
| | - Manuel Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo V Guinea
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Prof. Martín Lagos s/n, 28040 Madrid, Spain
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - José Pérez-Rigueiro
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Prof. Martín Lagos s/n, 28040 Madrid, Spain
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
7
|
Blamires S, Lozano-Picazo P, Bruno AL, Arnedo M, Ruiz-León Y, González-Nieto D, Rojo FJ, Elices M, Guinea GV, Pérez-Rigueiro J. The Spider Silk Standardization Initiative (S3I): A powerful tool to harness biological variability and to systematize the characterization of major ampullate silk fibers spun by spiders from suburban Sydney, Australia. J Mech Behav Biomed Mater 2023; 140:105729. [PMID: 36801780 DOI: 10.1016/j.jmbbm.2023.105729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/23/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023]
Abstract
The true stress-true strain curves of 11 Australian spider species from the Entelegynae lineage were tensile tested and classified based on the values of the alignment parameter, α*, in the framework of the Spider Silk Standardization Initiative (S3I). The application of the S3I methodology allowed the determination of the alignment parameter in all cases, and were found to range between α* = 0.03 and α* = 0.65. These data, in combination with previous results on other species included in the Initiative, were exploited to illustrate the potential of this approach by testing two simple hypotheses on the distribution of the alignment parameter throughout the lineage: (1) whether a uniform distribution may be compatible with the values obtained from the studied species, and (2) whether any trend may be established between the distribution of the α* parameter and phylogeny. In this regard, the lowest values of the α* parameter are found in some representatives of the Araneidae group, and larger values seem to be found as the evolutionary distance from this group increases. However, a significant number of outliers to this apparent general trend in terms of the values of the α* parameter are described.
Collapse
Affiliation(s)
- Sean Blamires
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia; NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia; School of Mechanical and Mechatronic Engineering, University of Technology, Sydney, NSW, 2007, Australia
| | - Paloma Lozano-Picazo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Augusto Luis Bruno
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Miquel Arnedo
- Department de Biologia Evolutiva, Ecologia i Ciencies Ambientals, and Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Yolanda Ruiz-León
- Research Support Unit, Real Jardín Botánico, Consejo Superior de Investigaciones Científicas (CSIC), 28014, Madrid, Spain
| | - Daniel González-Nieto
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain; Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| | - Francisco Javier Rojo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain; Grupo de Biomateriales y Medicina Regenerativa, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| | - Manuel Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Gustavo Víctor Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain; Grupo de Biomateriales y Medicina Regenerativa, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain; Grupo de Biomateriales y Medicina Regenerativa, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Nakamura H, Kono N, Mori M, Masunaga H, Numata K, Arakawa K. Composition of Minor Ampullate Silk Makes Its Properties Different from Those of Major Ampullate Silk. Biomacromolecules 2023; 24:2042-2051. [PMID: 37002945 DOI: 10.1021/acs.biomac.2c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Spider's minor ampullate silk, or MI-silk, exhibits distinct mechanical properties and water resistance compared to its major ampullate counterpart (MA-silk). The principal protein constituent of MI-silk is known as minor ampullate spidroin, or MiSp, and while its sequence has been deciphered and is thought to underlie the differences in properties with MA-silk, the composition of MI-silk and the relationship between its composition and properties remain elusive. In this study, we set out to investigate the mechanical properties, water resistance, and proteome of MA-silk and MI-silk from Araneus ventricosus and Trichonephila clavata. We also synthesized artificial fibers from major ampullate spidroin, MaSp1 and 2, and MiSp to compare their properties. Our proteomic analysis reveals that the MI-silk of both araneids is composed of MiSp, MaSp1, and spidroin constituting elements (SpiCEs). The absence of MaSp2 in the MI-silk proteome and the comparison of the water resistance of artificial fibers suggest that the presence of MaSp2 is the reason for the disparity in water resistance between MI-silk and MA-silk.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Keiji Numata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|
9
|
Massive production of fibroin nano-fibrous biomaterial by turbulent co-flow. Sci Rep 2022; 12:21924. [PMID: 36536025 PMCID: PMC9763433 DOI: 10.1038/s41598-022-26137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Among the different polymers (proteins, polysaccharides, etc.) that make up natural fibers, fibroin is a protein produced by silk spinning animals, which have developed an optimized system for the conversion of a highly concentrated solution of this protein into high-performance solid fibers. This protein undergoes a self-assembly process in the silk glands that result from chemical gradients and by the application of mechanical stresses during the last step of the process. In the quest for a process that could mimic natural spinning at massive scales, we have discovered that turbulence offers a novel and promising solution: a turbulent liquid jet can be formed by a chemically green and simple coagulating liquid (a diluted solution of acetic acid in etanol) co-flowing with a concentrated solution of fibroin in water by the use of a Flow Blurring nebulizer. In this system, (a) the co-flowing coagulant liquid extracts water from the original protein solution and, simultaneously, (b) the self-assembled proteins are subjected to mechanical actions, including splitting and stretching. Given the non-negligible produced content with the size and appearance of natural silk, the stochastic distribution of those effects in our process should contain the range of natural ones found in animals. The resulting easily functionalizable and tunable one-step material is 100% biocompatible, and our method a perfect candidate to large-scale, low-cost, green and sustainable processing of fibroin for fibres and textiles.
Collapse
|
10
|
Differences in the Elastomeric Behavior of Polyglycine-Rich Regions of Spidroin 1 and 2 Proteins. Polymers (Basel) 2022; 14:polym14235263. [PMID: 36501657 PMCID: PMC9738160 DOI: 10.3390/polym14235263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Two different polyglycine-rich fragments were selected as representatives of major ampullate gland spidroins (MaSp) 1 and 2 types, and their behavior in a water-saturated environment was simulated within the framework of molecular dynamics (MD). The selected fragments are found in the sequences of the proteins MaSp1a and MaSp2.2a of Argiope aurantia with respective lengths of 36 amino acids (MaSp1a) and 50 amino acids (MaSp2.2s). The simulation took the fully extended β-pleated conformation as reference, and MD was used to determine the equilibrium configuration in the absence of external forces. Subsequently, MD were employed to calculate the variation in the distance between the ends of the fragments when subjected to an increasing force. Both fragments show an elastomeric behavior that can be modeled as a freely jointed chain with links of comparable length, and a larger number of links in the spidroin 2 fragment. It is found, however, that the maximum recovery force recorded from the spidroin 2 peptide (Fmax ≈ 400 pN) is found to be significantly larger than that of the spidroin 1 (Fmax ≈ 250 pN). The increase in the recovery force of the spidroin 2 polyglycine-rich fragment may be correlated with the larger values observed in the strain at breaking of major ampullate silk fibers spun by Araneoidea species, which contain spidroin 2 proteins, compared to the material produced by spider species that lack these spidroins (RTA-clade).
Collapse
|
11
|
Evolution of conformation and thermal properties of bovine hides collagen in the sodium sulphide solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Aznar-Cervantes SD, Cenis JL, Lozano-Picazo P, Bruno AL, Pagán A, Ruiz-León Y, Candel MJ, González-Nieto D, Rojo FJ, Elices M, Guinea GV, Pérez-Rigueiro J. Unexpected high toughness of Samia cynthia ricini silk gut. SOFT MATTER 2022; 18:4973-4982. [PMID: 35748816 DOI: 10.1039/d2sm00340f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silk gut fibers were produced from the silkworm Samia cynthia ricini silk glands by the usual procedure of immersion in a mildly acidic solution and subsequent stretching. The morphology of the silk guts was assessed by scanning electron microscopy, and their microstructure was assessed by infrared spectroscopy and X-ray diffraction. It was found that both naturally spun and Samia silk guts share a common semicrystalline microstructure. The mechanical characterization of the silk guts revealed that these fibers show an elastomeric behavior when tested in water, and exhibit a genuine ground state to which the fiber may revert independently of its previous loading history. In spite of its large cross-sectional area compared with naturally spun silk fibers, Samia silk guts show values of work to fracture up to 160 MJ m-3, much larger than those of most of their natural counterparts, and establish a new record value for this parameter in silk guts.
Collapse
Affiliation(s)
- Salvador D Aznar-Cervantes
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - José Luis Cenis
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - Paloma Lozano-Picazo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Augusto Luis Bruno
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Ana Pagán
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - Yolanda Ruiz-León
- Research Support Unit, Real Jardín Botánico, Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain
| | - María José Candel
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - Daniel González-Nieto
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Javier Rojo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| | - Manuel Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo Víctor Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| |
Collapse
|
13
|
Strategies for the Biofunctionalization of Straining Flow Spinning Regenerated Bombyx mori Fibers. Molecules 2022; 27:molecules27134146. [PMID: 35807389 PMCID: PMC9267934 DOI: 10.3390/molecules27134146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
High-performance regenerated silkworm (Bombyx mori) silk fibers can be produced efficiently through the straining flow spinning (SFS) technique. In addition to an enhanced biocompatibility that results from the removal of contaminants during the processing of the material, regenerated silk fibers may be functionalized conveniently by using a range of different strategies. In this work, the possibility of implementing various functionalization techniques is explored, including the production of fluorescent fibers that may be tracked when implanted, the combination of the fibers with enzymes to yield fibers with catalytic properties, and the functionalization of the fibers with cell-adhesion motifs to modulate the adherence of different cell lineages to the material. When considered globally, all these techniques are a strong indication not only of the high versatility offered by the functionalization of regenerated fibers in terms of the different chemistries that can be employed, but also on the wide range of applications that can be covered with these functionalized fibers.
Collapse
|
14
|
Jorge I, Ruiz V, Lavado-García J, Vázquez J, Hayashi C, Rojo FJ, Atienza JM, Elices M, Guinea GV, Pérez-Rigueiro J. Expression of spidroin proteins in the silk glands of golden orb-weaver spiders. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:241-253. [PMID: 34981640 DOI: 10.1002/jez.b.23117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The expression of spidroins in the major ampullate, minor ampullate, flagelliform, and tubuliform silk glands of Trichonephila clavipes spiders was analyzed using proteomics analysis techniques. Spidroin peptides were identified and assigned to different gene products based on sequence concurrence when compared with the whole genome of the spider. It was found that only a relatively low proportion of the spidroin genes are expressed as proteins in any of the studied glands. In addition, the expression of spidroin genes in different glands presents a wide range of patterns, with some spidroins being found in a single gland exclusively, while others appear in the content of several glands. The combination of precise genomics, proteomics, microstructural, and mechanical data provides new insights both on the design principles of these materials and how these principles might be translated for the production of high-performance bioinspired artificial fibers.
Collapse
Affiliation(s)
- Inmaculada Jorge
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Víctor Ruiz
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Jesús Lavado-García
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departament d'Enginyeria Química, Grup d'Enginyeria Cel·lular i de Bioprocessos (GECIB), Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Cheryl Hayashi
- Division of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, USA
| | - Francisco J Rojo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - José M Atienza
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Elices
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
15
|
Chan NJ, Lentz S, Gurr PA, Scheibel T, Qiao GG. Mimicry of silk utilizing synthetic polypeptides. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Secondary structure of peptides mimicking the Gly-rich regions of major ampullate spidroin protein 1 and 2. Biophys Chem 2022; 284:106783. [DOI: 10.1016/j.bpc.2022.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
|
17
|
Troy E, Tilbury MA, Power AM, Wall JG. Nature-Based Biomaterials and Their Application in Biomedicine. Polymers (Basel) 2021; 13:3321. [PMID: 34641137 PMCID: PMC8513057 DOI: 10.3390/polym13193321] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Natural polymers, based on proteins or polysaccharides, have attracted increasing interest in recent years due to their broad potential uses in biomedicine. The chemical stability, structural versatility, biocompatibility and high availability of these materials lend them to diverse applications in areas such as tissue engineering, drug delivery and wound healing. Biomaterials purified from animal or plant sources have also been engineered to improve their structural properties or promote interactions with surrounding cells and tissues for improved in vivo performance, leading to novel applications as implantable devices, in controlled drug release and as surface coatings. This review describes biomaterials derived from and inspired by natural proteins and polysaccharides and highlights their promise across diverse biomedical fields. We outline current therapeutic applications of these nature-based materials and consider expected future developments in identifying and utilising innovative biomaterials in new biomedical applications.
Collapse
Affiliation(s)
- Eoin Troy
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
| | - Maura A. Tilbury
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| | - Anne Marie Power
- Zoology, School of Natural Sciences, NUI Galway, H91 TK33 Galway, Ireland;
| | - J. Gerard Wall
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
18
|
Htut KZ, Alicea-Serrano AM, Singla S, Agnarsson I, Garb JE, Kuntner M, Gregorič M, Haney RA, Marhabaie M, Blackledge TA, Dhinojwala A. Correlation between protein secondary structure and mechanical performance for the ultra-tough dragline silk of Darwin's bark spider. J R Soc Interface 2021; 18:20210320. [PMID: 34129788 PMCID: PMC8205537 DOI: 10.1098/rsif.2021.0320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/24/2021] [Indexed: 11/12/2022] Open
Abstract
The spider major ampullate (MA) silk exhibits high tensile strength and extensibility and is typically a blend of MaSp1 and MaSp2 proteins with the latter comprising glycine-proline-glycine-glycine-X repeating motifs that promote extensibility and supercontraction. The MA silk from Darwin's bark spider (Caerostris darwini) is estimated to be two to three times tougher than the MA silk from other spider species. Previous research suggests that a unique MaSp4 protein incorporates proline into a novel glycine-proline-glycine-proline motif and may explain C. darwini MA silk's extraordinary toughness. However, no direct correlation has been made between the silk's molecular structure and its mechanical properties for C. darwini. Here, we correlate the relative protein secondary structure composition of MA silk from C. darwini and four other spider species with mechanical properties before and after supercontraction to understand the effect of the additional MaSp4 protein. Our results demonstrate that C. darwini MA silk possesses a unique protein composition with a lower ratio of helices (31%) and β-sheets (20%) than other species. Before supercontraction, toughness, modulus and tensile strength correlate with percentages of β-sheets, unordered or random coiled regions and β-turns. However, after supercontraction, only modulus and strain at break correlate with percentages of β-sheets and β-turns. Our study highlights that additional information including crystal size and crystal and chain orientation is necessary to build a complete structure-property correlation model.
Collapse
Affiliation(s)
- K Zin Htut
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Angela M. Alicea-Serrano
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Saranshu Singla
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Jessica E. Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Matjaž Kuntner
- Jovan Hadži Institute of Biology ZRC SAZU, Novi trg 2, 1000 Ljubljana, Slovenia
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Matjaž Gregorič
- Jovan Hadži Institute of Biology ZRC SAZU, Novi trg 2, 1000 Ljubljana, Slovenia
| | - Robert A. Haney
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Mohammad Marhabaie
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Todd A. Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
19
|
Pérez-Rigueiro J, Elices M, Plaza GR, Guinea GV. Basic Principles in the Design of Spider Silk Fibers. Molecules 2021; 26:molecules26061794. [PMID: 33806736 PMCID: PMC8004941 DOI: 10.3390/molecules26061794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
The prominence of spider silk as a hallmark in biomimetics relies not only on its unrivalled mechanical properties, but also on how these properties are the result of a set of original design principles. In this sense, the study of spider silk summarizes most of the main topics relevant to the field and, consequently, offers a nice example on how these topics could be considered in other biomimetic systems. This review is intended to present a selection of some of the essential design principles that underlie the singular microstructure of major ampullate gland silk, as well as to show how the interplay between them leads to the outstanding tensile behavior of spider silk. Following this rationale, the mechanical behavior of the material is analyzed in detail and connected with its main microstructural features, specifically with those derived from the semicrystalline organization of the fibers. Establishing the relationship between mechanical properties and microstructure in spider silk not only offers a vivid image of the paths explored by nature in the search for high performance materials, but is also a valuable guide for the development of new artificial fibers inspired in their natural counterparts.
Collapse
Affiliation(s)
- José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (M.E.); (G.R.P.); (G.V.G.)
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-9174304
| | - Manuel Elices
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (M.E.); (G.R.P.); (G.V.G.)
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo R. Plaza
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (M.E.); (G.R.P.); (G.V.G.)
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo V. Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (M.E.); (G.R.P.); (G.V.G.)
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
20
|
Craig HC, Piorkowski D, Nakagawa S, Kasumovic MM, Blamires SJ. Meta-analysis reveals materiomic relationships in major ampullate silk across the spider phylogeny. J R Soc Interface 2020; 17:20200471. [PMID: 32993436 PMCID: PMC7536055 DOI: 10.1098/rsif.2020.0471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/07/2020] [Indexed: 01/17/2023] Open
Abstract
Spider major ampullate (MA) silk, with its combination of strength and extensibility, outperforms any synthetic equivalents. There is thus much interest in understanding its underlying materiome. While the expression of the different silk proteins (spidroins) appears an integral component of silk performance, our understanding of the nature of the relationship between the spidroins, their constituent amino acids and MA silk mechanics is ambiguous. To provide clarity on these relationships across spider species, we performed a meta-analysis using phylogenetic comparative methods. These showed that glycine and proline, both of which are indicators of differential spidroin expression, had effects on MA silk mechanics across the phylogeny. We also found serine to correlate with silk mechanics, probably via its presence within the carboxyl and amino-terminal domains of the spidroins. From our analyses, we concluded that the spidroin expression shifts across the phylogeny from predominantly MaSp1 in the MA silks of ancestral spiders to predominantly MaSp2 in the more derived spiders' silks. This trend was accompanied by an enhanced ultimate strain and decreased Young's modulus in the silks. Our meta-analysis enabled us to decipher between real and apparent influences on MA silk properties, providing significant insights into spider silk and web coevolution and enhancing our capacity to create spider silk-like materials.
Collapse
Affiliation(s)
- Hamish C. Craig
- Evolution and Ecology Research Centre and School of Biological Earth and Environmental Sciences, UNSW, Sydney, Australia
| | | | - Shinichi Nakagawa
- Evolution and Ecology Research Centre and School of Biological Earth and Environmental Sciences, UNSW, Sydney, Australia
| | - Michael M. Kasumovic
- Evolution and Ecology Research Centre and School of Biological Earth and Environmental Sciences, UNSW, Sydney, Australia
| | - Sean J. Blamires
- Evolution and Ecology Research Centre and School of Biological Earth and Environmental Sciences, UNSW, Sydney, Australia
| |
Collapse
|
21
|
Application of the Spider Silk Standardization Initiative (S 3I) methodology to the characterization of major ampullate gland silk fibers spun by spiders from Pantanos de Villa wetlands (Lima, Peru). J Mech Behav Biomed Mater 2020; 111:104023. [PMID: 32818773 DOI: 10.1016/j.jmbbm.2020.104023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022]
Abstract
Spider silk is a natural material with unique properties and a great potential for engineering and biomedical applications. In spite of its simple composition and highly conserved and stereotypical production, spider silks show a wide range of variability in their mechanical properties which, for long, have defied their classification and standardization. Here we propose to launch the Spider Silk Standardization Initiative (S3I), a methodology based on the definition of the α* parameter, in an attempt to define a systematic procedure to classify the tensile properties exhibited by major ampullate gland silk (MAS) spun by Entelegynae spiders. The α* parameter is calculated from the comparison of the true stress-true strain curve of any MAS fiber after being subjected to maximum supercontraction, with the true stress-true strain curve of the species Argiope aurantia, which is set as a reference curve. This work presents the details of the S3I methodology and, as an example, shows its application to an assemblage of Entelegynae spiders from different families collected at the Pantanos de Villa wetlands (Lima, Peru). The systematic and objective classification of the tensile properties of MAS fibers allowed by the S3I will offer insights into key aspects of the biological evolution of the material, and address questions such as how history and adaptation contributed to shape those properties. In addition, it will surely have far reaching consequences in fields such as Materials Science, and Molecular and Evolutionary Biology, by organizing the range of tensile properties exhibited by spider silk fibers.
Collapse
|
22
|
Tsuchiya K, Numata K. Facile terminal functionalization of peptides by protease-catalyzed chemoenzymatic polymerization toward synthesis of polymeric architectures consisting of peptides. Polym Chem 2020. [DOI: 10.1039/c9py01335k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Terminal functionalized polypeptides were synthesized in one-pot chemoenzymatic polymerization using protease for constructing special polymeric architectures.
Collapse
Affiliation(s)
- Kousuke Tsuchiya
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama 351-0198
- Japan
| | - Keiji Numata
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama 351-0198
- Japan
| |
Collapse
|
23
|
Craig HC, Blamires SJ, Sani MA, Kasumovic MM, Rawal A, Hook JM. DNP NMR spectroscopy reveals new structures, residues and interactions in wild spider silks. Chem Commun (Camb) 2019; 55:4687-4690. [PMID: 30938741 DOI: 10.1039/c9cc01045a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNP solid state NMR spectroscopy allows non-targeted analysis of wild spider silk in unprecedented detail at natural abundance, revealing hitherto unreported features across several species. A >50-fold signal enhancement for each silk, enables the detection of novel H-bonding networks and arginine conformations, and the post-translational modified amino acid, hydroxyproline.
Collapse
Affiliation(s)
- Hamish C Craig
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, 2052, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Ruiz V, Jiang P, Müller C, Jorge I, Vázquez J, Ridruejo Á, Aznar-Cervantes SD, Cenis JL, Messeguer-Olmo L, Elices M, Guinea GV, Pérez-Rigueiro J. Preparation and characterization of Nephila clavipes tubuliform silk gut. SOFT MATTER 2019; 15:2960-2970. [PMID: 30901019 DOI: 10.1039/c9sm00212j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tubuliform silk glands were dissected from Nephila clavipes spiders, and silk gut fibers were produced by immersing the glands in a mild acid solution and subsequent stretching. The tensile properties of the as produced fibers were obtained through tensile tests, and the stress-strain curves were compared with those of naturally spun tubuliform silk fibers. The influence on the mechanical properties of the fibers after immersion in water and drying was also discerned. The microstructure of the silk guts was obtained by X-ray diffraction (XRD) and infrared spectroscopy (FTIR). It was found that the stress-strain curves of the stretched tubuliform silk guts concur with those of their natural counterparts (tubuliform silk fibers).
Collapse
Affiliation(s)
- Víctor Ruiz
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu D, Tarakanova A, Hsu CC, Yu M, Zheng S, Yu L, Liu J, He Y, Dunstan DJ, Buehler MJ. Spider dragline silk as torsional actuator driven by humidity. SCIENCE ADVANCES 2019; 5:eaau9183. [PMID: 30838327 PMCID: PMC6397028 DOI: 10.1126/sciadv.aau9183] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/14/2019] [Indexed: 05/25/2023]
Abstract
Self-powered actuation driven by ambient humidity is of practical interest for applications such as hygroscopic artificial muscles. We demonstrate that spider dragline silk exhibits a humidity-induced torsional deformation of more than 300°/mm. When the relative humidity reaches a threshold of about 70%, the dragline silk starts to generate a large twist deformation independent of spider species. The torsional actuation can be precisely controlled by regulating the relative humidity. The behavior of humidity-induced twist is related to the supercontraction behavior of spider dragline silk. Specifically, molecular simulations of MaSp1 and MaSp2 proteins in dragline silk reveal that the unique torsional property originates from the presence of proline in MaSp2. The large proline rings also contribute to steric exclusion and disruption of hydrogen bonding in the molecule. This property of dragline silk and its structural origin can inspire novel design of torsional actuators or artificial muscles and enable the development of designer biomaterials.
Collapse
Affiliation(s)
- Dabiao Liu
- Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Wuhan 430074, China
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, UK
| | - Anna Tarakanova
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Claire C. Hsu
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Miao Yu
- Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shimin Zheng
- Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Longteng Yu
- Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jie Liu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yuming He
- Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Wuhan 430074, China
| | - D. J. Dunstan
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, UK
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Pérez-Rigueiro J, Madurga R, Gañán-Calvo AM, Elices M, Guinea GV, Tasei Y, Nishimura A, Matsuda H, Asakura T. Emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers. Sci Rep 2019; 9:2398. [PMID: 30787337 PMCID: PMC6382804 DOI: 10.1038/s41598-019-38712-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/17/2018] [Indexed: 12/01/2022] Open
Abstract
The conditions required for the emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers are assessed through an experimental approach that combines the spinning of regenerated fibers with controlled properties and their characterization by 13C solid-state nuclear magnetic resonance (NMR). Both supercontracting and non-supercontracting regenerated fibers are produced using the straining flow spinning (SFS) technique from 13C labeled cocoons. The short-range microstructure of the fibers is assessed through 13C CP/MAS in air and 13C DD/MAS in water, and the main microstructural features are identified and quantified. The mechanical properties of the regenerated fibers and their microstructures are compared with those of natural silkworm silk. The combined analysis highlights two possible key elements as responsible for the emergence of supercontraction: (1) the existence of an upper and a lower limit of the amorphous phase compatible with supercontraction, and (2) the existence of two ordered phases, β-sheet A and B, which correspond to different packing arrangements of the protein chains.
Collapse
Affiliation(s)
- José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, (Madrid), Spain. .,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain. .,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| | - Rodrigo Madurga
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, (Madrid), Spain.,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Alfonso M Gañán-Calvo
- Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, 41092, Sevilla, Spain
| | - Manuel Elices
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, (Madrid), Spain.,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, (Madrid), Spain.,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
27
|
Shi S, Zhao K, Wang L, Lu B, Zheng G. Crystallization Behavior and Mechanical Properties of Microinjection Molded High Density Polyethylene Parts. J MACROMOL SCI B 2018. [DOI: 10.1080/00222348.2018.1449930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Suyu Shi
- College of Materials and Chemical Engineering, Henan Institute of Engineering, Zhengzhou, 450007, P.R. China
| | - Kang Zhao
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, P.R. China
| | - Lina Wang
- College of Materials and Chemical Engineering, Henan Institute of Engineering, Zhengzhou, 450007, P.R. China
| | - Bo Lu
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, P.R. China
| | - Guoqiang Zheng
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, P.R. China
| |
Collapse
|
28
|
Asakura T, Tasei Y, Matsuda H, Naito A. Dynamics of Alanine Methyl Groups in Alanine Oligopeptides and Spider Dragline Silks with Different Packing Structures As Studied by 13C Solid-State NMR Relaxation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
29
|
Zhang W, Ye C, Zheng K, Zhong J, Tang Y, Fan Y, Buehler MJ, Ling S, Kaplan DL. Tensan Silk-Inspired Hierarchical Fibers for Smart Textile Applications. ACS NANO 2018; 12:6968-6977. [PMID: 29932636 PMCID: PMC6501189 DOI: 10.1021/acsnano.8b02430] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tensan silk, a natural fiber produced by the Japanese oak silk moth ( Antherea yamamai, abbreviated to A. yamamai), features superior characteristics, such as compressive elasticity and chemical resistance, when compared to the more common silk produced from the domesticated silkworm, Bombyx mori ( B. mori). In this study, the "structure-property" relationships within A. yamamai silk are disclosed from the different structural hierarchies, confirming the outstanding toughness as dominated by the distinct mesoscale fibrillar architectures. Inspired by this hierarchical construction, we fabricated A. yamamai silk-like regenerated B. mori silk fibers (RBSFs) with mechanical properties (extensibility and modulus) comparable to natural A. yamamai silk. These RBSFs were further functionalized to form conductive RBSFs that were sensitive to force and temperature stimuli for applications in smart textiles. This study provides a blueprint in exploiting rational designs from A. yamanmai, which is rare and expensive in comparison to the common and cost-effective B. mori silk to empower enhanced material properties.
Collapse
Affiliation(s)
- Wenwen Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuel & Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Chao Ye
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jiajia Zhong
- Shanghai Advanced Research Institute (Zhangjiang Lab), Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yuzhao Tang
- Shanghai Advanced Research Institute (Zhangjiang Lab), Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuel & Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
30
|
Lacava M, Camargo A, Garcia LF, Benamú MA, Santana M, Fang J, Wang X, Blamires SJ. Web building and silk properties functionally covary among species of wolf spider. J Evol Biol 2018; 31:968-978. [DOI: 10.1111/jeb.13278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/18/2018] [Accepted: 04/04/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Mariángeles Lacava
- Centro Universitario de Rivera Universidad de la República Rivera Uruguay
- Centro Universitario Regional del Este (CURE) Universidad de la República Treinta y Tres Uruguay
| | - Arley Camargo
- Centro Universitario de Rivera Universidad de la República Rivera Uruguay
| | - Luis F. Garcia
- Centro Universitario Regional del Este (CURE) Universidad de la República Treinta y Tres Uruguay
- Laboratorio Ecología del Comportamiento (IIBCE) Montevideo Uruguay
| | - Marco A. Benamú
- Centro Universitario de Rivera Universidad de la República Rivera Uruguay
- Laboratorio Ecología del Comportamiento (IIBCE) Montevideo Uruguay
| | - Martin Santana
- Laboratorio Ecología del Comportamiento (IIBCE) Montevideo Uruguay
| | - Jian Fang
- Institute for Frontier Materials (IFM) Deakin University Geelong Vic. Australia
| | - Xungai Wang
- Institute for Frontier Materials (IFM) Deakin University Geelong Vic. Australia
| | - Sean J. Blamires
- Evolution & Ecology Research Centre School of Biological, Earth & Environmental Sciences The University of New South Wales Sydney NSW Australia
| |
Collapse
|
31
|
Tsuchiya K, Ishii T, Masunaga H, Numata K. Spider dragline silk composite films doped with linear and telechelic polyalanine: Effect of polyalanine on the structure and mechanical properties. Sci Rep 2018; 8:3654. [PMID: 29483536 PMCID: PMC5827030 DOI: 10.1038/s41598-018-21970-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022] Open
Abstract
Spider dragline silks have attracted intensive attention as eco-friendly tough materials because of their excellent mechanical property and biomass-based origin. Composite films based on a recombinant spider dragline silk protein (ADF3) from Araneus diadematus were prepared by doping with linear or telechelic poly(L-alanine) (L- or T-polyA, respectively) as a reinforcing agent. Higher tensile strength and toughness of the composite films were achieved with the addition of polyA compared with the tensile strength and toughness of the silk-only film. The difference in the reinforcing behavior between L- and T-polyA was associated with their primary structures, which were revealed by wide angle X-ray diffraction analysis. L-polyA showed a tendency to aggregate in the composite films and induce crystallization of the inherent silk β-sheet to afford rigid but brittle films. By contrast, T-polyA dispersion in the composite films led to the formation of β-sheet crystal of both T-polyA and the inherent silk, which imparted high strength and toughness to the silk films.
Collapse
Affiliation(s)
- Kousuke Tsuchiya
- Enzyme Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Takaoki Ishii
- Enzyme Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Keiji Numata
- Enzyme Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
32
|
Asakura T, Tasei Y, Aoki A, Nishimura A. Mixture of Rectangular and Staggered Packing Arrangements of Polyalanine Region in Spider Dragline Silk in Dry and Hydrated States As Revealed by 13C NMR and X-ray Diffraction. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02627] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akihiro Aoki
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
33
|
Abstract
The emergence of order from disorder is a topic of vital interest. We here propose that long-range order can arise from a randomly arranged two-phase material under mechanical load. Using Small-Angle Neutron Scattering (SANS) experiments and Molecular Dynamics based finite element (FE) models we show evidence for stress-induced ordering in spider dragline silk. Both methods show striking quantitative agreement of the position, shift and intensity increase of the long period upon stretching. We demonstrate that mesoscopic ordering does not originate from silk-specific processes such as strain-induced crystallization on the atomistic scale or the alignment of tilted crystallites. It instead is a general phenomenon arising from a non-affine deformation that enhances density fluctuations of the stiff and soft phases along the direction of stress. Our results suggest long-range ordering, analogously to the coalescence of defects in materials, as a wide-spread phenomenon to be exploited for tuning the mechanical properties of many hybrid stiff and soft materials.
Collapse
|
34
|
Orientational Mapping Augmented Sub-Wavelength Hyper-Spectral Imaging of Silk. Sci Rep 2017; 7:7419. [PMID: 28785090 PMCID: PMC5547124 DOI: 10.1038/s41598-017-07502-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
Molecular alignment underpins optical, mechanical, and thermal properties of materials, however, its direct measurement from volumes with micrometer dimensions is not accessible, especially, for structurally complex bio-materials. How the molecular alignment is linked to extraordinary properties of silk and its amorphous-crystalline composition has to be accessed by a direct measurement from a single silk fiber. Here, we show orientation mapping of the internal silk fiber structure via polarisation-dependent IR absorbance at high spatial resolution of 4.2 μm and 1.9 μm in a hyper-spectral IR imaging by attenuated total reflection using synchrotron radiation in the spectral fingerprint region around 6 μm wavelength. Free-standing longitudinal micro-slices of silk fibers, thinner than the fiber cross section, were prepared by microtome for the four polarization method to directly measure the orientational sensitivity of absorbance in the molecular fingerprint spectral window of the amide bands of β-sheet polypeptides of silk. Microtomed lateral slices of silk fibers, which may avoid possible artefacts that affect spectroscopic measurements with fibers of an elliptical cross sections were used in the study. Amorphisation of silk by ultra-short laser single-pulse exposure is demonstrated.
Collapse
|
35
|
Benamú M, Lacava M, García LF, Santana M, Fang J, Wang X, Blamires SJ. Nanostructural and mechanical property changes to spider silk as a consequence of insecticide exposure. CHEMOSPHERE 2017; 181:241-249. [PMID: 28445817 DOI: 10.1016/j.chemosphere.2017.04.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Neonicotinoids are one of the world's most extensively used insecticides, but their sub-lethal influences on non-target and beneficial organisms are not well known. Here we exposed the orb web spider Parawixia audax, which is found on arable lands in Uruguay, to a sub-lethal concentration of the broad spectrum insecticide Geonex (thiamethoxam + lambda-cyhalothrin) and monitored their web building. We collected their major ampullate silk and subjected it to tensile tests, wide-angle X-ray diffraction (WAXS) analysis, and amino acid composition analysis. Around half of the exposed spiders failed to build webs. Those that built webs produced irregular webs lacking spiral threads. The mechanical properties, nanostructures, and amino acid compositions of the silk were all significantly affected when the spiders were exposed to insecticides. We found that silk proline, glutamine, alanine and glycine compositions differed between treatments, indicating that insecticide exposure induced downregulation of the silk protein MaSp2. The spiders in the control group had stronger, tougher and more extensible silks than those in the insecticide exposed group. Our WAXS analyses showed the amorphous region nanostructures became misaligned in insecticide exposed silks, explaining their greater stiffness. While the insecticide dose we subjected P. audax to was evidently sub-lethal, the changes in silk physicochemical properties and the impairment to web building will indelibly affect their ability to catch prey.
Collapse
Affiliation(s)
- Marco Benamú
- Centro Universitario de Rivera (Universidad de la República), Rivera, Uruguay; Laboratorio Ecología del Comportamiento (Instituto de Investigaciones Biológicas Clemente Estable), Montevideo, Uruguay
| | - Mariángeles Lacava
- Centro Universitario de Rivera (Universidad de la República), Rivera, Uruguay; Laboratorio Ecología del Comportamiento (Instituto de Investigaciones Biológicas Clemente Estable), Montevideo, Uruguay
| | - Luis F García
- Centro Universitario Regional del Este (Universidad de la República) Treinta y Tres, Uruguay
| | - Martín Santana
- Laboratorio Ecología del Comportamiento (Instituto de Investigaciones Biológicas Clemente Estable), Montevideo, Uruguay
| | - Jian Fang
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds Campus, Geelong, Vic 3220, Australia
| | - Xungai Wang
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds Campus, Geelong, Vic 3220, Australia
| | - Sean J Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
36
|
Tsuchiya K, Numata K. Chemical Synthesis of Multiblock Copolypeptides Inspired by Spider Dragline Silk Proteins. ACS Macro Lett 2017; 6:103-106. [PMID: 35632900 DOI: 10.1021/acsmacrolett.7b00006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel multiblock polypeptides with a structure similar to the unique sequence observed in spider silk proteins (spidroins) were synthesized via a two-step chemical synthesis method, that is, chemoenzymatic polymerization, using papain followed by postpolycondensation. Two types of polypeptide fragments were prepared by chemoenzymatic polymerization: polyalanine as a hard block, which forms β-sheets in the spider silk fibers, and poly(glycine-random-leucine) as a soft block. These two fragments were ligated by postpolycondensation using polyphosphoric acid as a condensing agent. Wide-angle X-ray diffraction (WAXD) and IR measurements revealed that the resulting multiblock polypeptides formed an antiparallel β-sheet structure with a degree of crystallinity similar to that of spider silk, which resulted in a fibrous morphology. This work provides the first example of a synthetic multiblock polypeptide mimicking the secondary structures of spider silk.
Collapse
Affiliation(s)
- Kousuke Tsuchiya
- Enzyme Research Team, RIKEN
Center for
Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiji Numata
- Enzyme Research Team, RIKEN
Center for
Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
37
|
Blamires SJ, Blackledge TA, Tso IM. Physicochemical Property Variation in Spider Silk: Ecology, Evolution, and Synthetic Production. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:443-460. [PMID: 27959639 DOI: 10.1146/annurev-ento-031616-035615] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The unique combination of great stiffness, strength, and extensibility makes spider major ampullate (MA) silk desirable for various biomimetic and synthetic applications. Intensive research on the genetics, biochemistry, and biomechanics of this material has facilitated a thorough understanding of its properties at various levels. Nevertheless, methods such as cloning, recombination, and electrospinning have not successfully produced materials with properties as impressive as those of spider silk. It is nevertheless becoming clear that silk properties are a consequence of whole-organism interactions with the environment in addition to genetic expression, gland biochemistry, and spinning processes. Here we assimilate the research done and assess the techniques used to determine distinct forms of spider silk chemical and physical property variability. We suggest that more research should focus on testing hypotheses that explain spider silk property variations in ecological and evolutionary contexts.
Collapse
Affiliation(s)
- Sean J Blamires
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan;
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney 2052, Australia;
| | - Todd A Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325;
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan;
| |
Collapse
|
38
|
Riekel C, Burghammer M, Dane TG, Ferrero C, Rosenthal M. Nanoscale Structural Features in Major Ampullate Spider Silk. Biomacromolecules 2016; 18:231-241. [PMID: 28001374 DOI: 10.1021/acs.biomac.6b01537] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spider major ampullate silk is often schematically represented as a two-phase material composed of crystalline nanodomains in an amorphous matrix. Here we are interested in revealing its more complex nanoscale organization by probing Argiope bruennichi dragline-type fibers using scanning X-ray nanodiffraction. This allows resolving transversal structural features such as an about 1 μm skin layer composed of around 100 nm diameter nanofibrils serving presumably as an elastic sheath. The core consists of a composite of several nm size crystalline nanodomains with poly(l-alanine) microstructure, embedded in a polypeptide network with short-range order. Stacks of nanodomains separated by less ordered nanosegments form nanofibrils with a periodic axial density modulation which is particularly sensitive to radiation damage. The precipitation of larger β-type nanocrystallites in the outer core-shell is attributed to MaSp1 protein molecules.
Collapse
Affiliation(s)
- Christian Riekel
- The European Synchrotron (ESRF) , CS40220, F-38043 Grenoble Cedex 9, France
| | - Manfred Burghammer
- The European Synchrotron (ESRF) , CS40220, F-38043 Grenoble Cedex 9, France.,Department of Analytical Chemistry, Ghent University , Krijgslaan 281, S12B-9000 Ghent, Belgium
| | - Thomas G Dane
- The European Synchrotron (ESRF) , CS40220, F-38043 Grenoble Cedex 9, France
| | - Claudio Ferrero
- The European Synchrotron (ESRF) , CS40220, F-38043 Grenoble Cedex 9, France
| | - Martin Rosenthal
- The European Synchrotron (ESRF) , CS40220, F-38043 Grenoble Cedex 9, France
| |
Collapse
|
39
|
Dionne J, Lefèvre T, Auger M. Major Ampullate Spider Silk with Indistinguishable Spidroin Dope Conformations Leads to Different Fiber Molecular Structures. Int J Mol Sci 2016; 17:E1353. [PMID: 27548146 PMCID: PMC5000749 DOI: 10.3390/ijms17081353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 11/17/2022] Open
Abstract
To plentifully benefit from its properties (mechanical, optical, biological) and its potential to manufacture green materials, the structure of spider silk has to be known accurately. To this aim, the major ampullate (MA) silk of Araneus diadematus (AD) and Nephila clavipes (NC) has been compared quantitatively in the liquid and fiber states using Raman spectromicroscopy. The data show that the spidroin conformations of the two dopes are indistinguishable despite their specific amino acid composition. This result suggests that GlyGlyX and GlyProGlyXX amino acid motifs (X = Leu, Glu, Tyr, Ser, etc.) are conformationally equivalent due to the chain flexibility in the aqueous environment. Species-related sequence specificity is expressed more extensively in the fiber: the β-sheet content is lower and width of the orientation distribution of the carbonyl groups is broader for AD (29% and 58°, respectively) as compared to NC (37% and 51°, respectively). β-Sheet content values are close to the proportion of polyalanine segments, suggesting that β-sheet formation is mainly dictated by the spidroin sequence. The extent of molecular alignment seems to be related to the presence of proline (Pro) that may decrease conformational flexibility and inhibit chain extension and alignment upon drawing. It appears that besides the presence of Pro, secondary structure and molecular orientation contribute to the different mechanical properties of MA threads.
Collapse
Affiliation(s)
- Justine Dionne
- Regroupement québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines (PROTEO), Centre de Recherche sur les Matériaux Avancés (CERMA), Centre Québécois sur les Matériaux Fonctionnels (CQMF), Département de Chimie, Université Laval, Pavillon Alexandre-Vachon, Ville de Québec, QC G1V 0A6, Canada.
| | - Thierry Lefèvre
- Regroupement québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines (PROTEO), Centre de Recherche sur les Matériaux Avancés (CERMA), Centre Québécois sur les Matériaux Fonctionnels (CQMF), Département de Chimie, Université Laval, Pavillon Alexandre-Vachon, Ville de Québec, QC G1V 0A6, Canada.
| | - Michèle Auger
- Regroupement québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines (PROTEO), Centre de Recherche sur les Matériaux Avancés (CERMA), Centre Québécois sur les Matériaux Fonctionnels (CQMF), Département de Chimie, Université Laval, Pavillon Alexandre-Vachon, Ville de Québec, QC G1V 0A6, Canada.
| |
Collapse
|
40
|
Fang G, Sapru S, Behera S, Yao J, Shao Z, Kundu SC, Chen X. Exploration of the tight structural-mechanical relationship in mulberry and non-mulberry silkworm silks. J Mater Chem B 2016; 4:4337-4347. [PMID: 32263416 DOI: 10.1039/c6tb01049k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Bombyx mori silkworm is well known as it has been bred by our ancestors with mulberry tree leaves for thousands of years. However, Bombyx mori is not the only silkworm that can produce silk, many other kinds of silkworms can also make silks for commercial use. In this research, we compare the mechanical properties of five different commercial silk fibres including domesticated mulberry Bombyx mori, non-mulberry semi-domesticated eri Samia ricini, and wild tropical tasar Antheraea mylitta and muga Antheraea assamensis. The results demonstrate that the non-mulberry silk fibres have a relatively high extensibility as compared to the mulberry silk fibres. In the meantime, the non-mulberry silk fibres show comparatively unique toughness to the mulberry silk fibres. Synchrotron radiation FTIR microspectroscopy, synchrotron radiation wide angle X-ray diffraction, and Raman dichroism spectroscopy are used to analyze the structural differences among the five species of silk fibres comprehensively. The results clearly show that the mechanical properties of both mulberry and non-mulberry silk fibres are closely related to their structures, such as β-sheet content, crystallinity, and the molecular orientation along the fibre axis. This study aims to understand the differences in the structural and mechanical properties of different mulberry and non-mulberry silk fibres, which are of importance to the related research on understanding and utilizing the non-mulberry silk as a biomaterial. We believe these investigations not only provide insight into the biology of silk fibroins from the non-mulberry silkworms but also offer guidelines for further biomimetic investigations into the design and manufacture of artificial silk protein fibres with novel morphologies and associated material properties for future use in different fields like bioelectronics, biomaterials and biomedical devices.
Collapse
Affiliation(s)
- Guangqiang Fang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Cenis JL, Madurga R, Aznar-Cervantes SD, Lozano-Pérez AA, Marí-Buyé N, Meseguer-Olmo L, Plaza GR, Guinea GV, Elices M, Del Pozo F, Pérez-Rigueiro J. Mechanical behaviour and formation process of silkworm silk gut. SOFT MATTER 2015; 11:8981-8991. [PMID: 26403149 DOI: 10.1039/c5sm01877c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High performance silk fibers were produced directly from the silk glands of silkworms (Bombyx mori) following an alternative route to natural spinning. This route is based on a traditional procedure that consists of soaking the silk glands in a vinegar solution and stretching them by hand leading to the so called silkworm guts. Here we present, to the authors' best knowledge, the first comprehensive study on the formation, properties and microstructure of silkworm gut fibers. Comparison of the tensile properties and microstructural organization of the silkworm guts with those of naturally spun fibers allows gain of a deeper insight into the mechanisms that lead to the formation of the fiber, as well as the relationship between the microstructure and properties of these materials. In this regard, it is proved that an acidic environment and subsequent application of tensile stress in the range of 1000 kPa are sufficient conditions for the formation of a silk fiber.
Collapse
Affiliation(s)
- José L Cenis
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 La Alberca (Murcia), Spain
| | - Rodrigo Madurga
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain and Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Salvador D Aznar-Cervantes
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 La Alberca (Murcia), Spain
| | - A Abel Lozano-Pérez
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 La Alberca (Murcia), Spain
| | - Núria Marí-Buyé
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain and Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Luis Meseguer-Olmo
- Universidad Católica San Antonio de Murcia (UCAM) and Hospital Universitario "Virgen de la Arrixaca", 30120 El Palmar, Murcia, Spain
| | - Gustavo R Plaza
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain and Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain and Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Manuel Elices
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain and Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Francisco Del Pozo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain and Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
43
|
Loo Y, Goktas M, Tekinay AB, Guler MO, Hauser CAE, Mitraki A. Self-Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration. Adv Healthc Mater 2015; 4:2557-86. [PMID: 26461979 DOI: 10.1002/adhm.201500402] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/24/2015] [Indexed: 12/15/2022]
Abstract
Self-assembling proteins and peptides are increasingly gaining interest for potential use as scaffolds in tissue engineering applications. They self-organize from basic building blocks under mild conditions into supramolecular structures, mimicking the native extracellular matrix. Their properties can be easily tuned through changes at the sequence level. Moreover, they can be produced in sufficient quantities with chemical synthesis or recombinant technologies to allow them to address homogeneity and standardization issues required for applications. Here. recent advances in self-assembling proteins, peptides, and peptide amphiphiles that form scaffolds suitable for tissue engineering are reviewed. The focus is on a variety of motifs, ranging from minimalistic dipeptides, simplistic ultrashort aliphatic peptides, and peptide amphiphiles to large "recombinamer" proteins. Special emphasis is placed on the rational design of self-assembling motifs and biofunctionalization strategies to influence cell behavior and modulate scaffold stability. Perspectives for combination of these "bottom-up" designer strategies with traditional "top-down" biofabrication techniques for new generations of tissue engineering scaffolds are highlighted.
Collapse
Affiliation(s)
- Yihua Loo
- Institute for Bioengineering and Nanotechnology; A* STAR; 31 Biopolis Way The Nanos 138669 Singapore
| | - Melis Goktas
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara Turkey 06800
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara Turkey 06800
| | - Mustafa O. Guler
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara Turkey 06800
| | - Charlotte A. E. Hauser
- Institute for Bioengineering and Nanotechnology; A* STAR; 31 Biopolis Way The Nanos 138669 Singapore
| | - Anna Mitraki
- Department of Materials Science and Technology; University of Crete; Greece 70013
- Institute for Electronic Structure and Lasers (IESL); Foundation for Research and Technology Hellas (FORTH); Vassilika Vouton; Heraklion Crete Greece 70013
| |
Collapse
|
44
|
Xu D, Shi X, Thompson F, Weber WS, Mou Q, Yarger JL. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction. Int J Biol Macromol 2015; 81:171-9. [PMID: 26226457 PMCID: PMC4874476 DOI: 10.1016/j.ijbiomac.2015.07.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 01/22/2023]
Abstract
In this study, the secondary structure of the major ampullate silk from Peucetia viridans (Green Lynx) spiders is characterized by X-ray diffraction and solid-state NMR spectroscopy. From X-ray diffraction measurement, β-sheet nanocrystallites were observed and found to be highly oriented along the fiber axis, with an orientational order, fc≈0.98. The size of the nanocrystallites was determined to be on average 2.5nm×3.3nm×3.8nm. Besides a prominent nanocrystalline region, a partially oriented amorphous region was also observed with an fa≈0.89. Two-dimensional (13)C-(13)C through-space and through-bond solid-state NMR experiments were employed to elucidate structure details of P. viridans silk proteins. It reveals that β-sheet nanocrystallites constitutes 40.0±1.2% of the protein and are dominated by alanine-rich repetitive motifs. Furthermore, based upon the NMR data, 18±1% of alanine, 60±2% glycine and 54±2% serine are incorporated into helical conformations.
Collapse
Affiliation(s)
- Dian Xu
- Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-1604, United States
| | - Xiangyan Shi
- Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-1604, United States
| | - Forrest Thompson
- Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-1604, United States
| | - Warner S Weber
- Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-1604, United States
| | - Qiushi Mou
- Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-1604, United States
| | - Jeffery L Yarger
- Department of Chemistry and Biochemistry, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-1604, United States.
| |
Collapse
|
45
|
Persistence and variation in microstructural design during the evolution of spider silk. Sci Rep 2015; 5:14820. [PMID: 26438975 PMCID: PMC4594040 DOI: 10.1038/srep14820] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/24/2015] [Indexed: 01/17/2023] Open
Abstract
The extraordinary mechanical performance of spider dragline silk is explained by its highly ordered microstructure and results from the sequences of its constituent proteins. This optimized microstructural organization simultaneously achieves high tensile strength and strain at breaking by taking advantage of weak molecular interactions. However, elucidating how the original design evolved over the 400 million year history of spider silk, and identifying the basic relationships between microstructural details and performance have proven difficult tasks. Here we show that the analysis of maximum supercontracted single spider silk fibers using X ray diffraction shows a complex picture of silk evolution where some key microstructural features are conserved phylogenetically while others show substantial variation even among closely related species. This new understanding helps elucidate which microstructural features need to be copied in order to produce the next generation of biomimetic silk fibers.
Collapse
|
46
|
Numata K, Masunaga H, Hikima T, Sasaki S, Sekiyama K, Takata M. Use of extension-deformation-based crystallisation of silk fibres to differentiate their functions in nature. SOFT MATTER 2015; 11:6335-6342. [PMID: 26166211 DOI: 10.1039/c5sm00757g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
β-Sheet crystals play an important role in determining the stiffness, strength, and optical properties of silk and in the exhibition of silk-type-specific functions. It is important to elucidate the structural changes that occur during the stretching of silk fibres to understand the functions of different types of fibres. Herein, we elucidate the initial crystallisation behaviour of silk molecules during the stretching of three types of silk fibres using synchrotron radiation X-ray analysis. When spider dragline silk was stretched, it underwent crystallisation and the alignment of the β-sheet crystals became disordered initially but was later recovered. On the other hand, silkworm cocoon silk did not exhibit further crystallisation, whereas capture spiral silk was predominantly amorphous. Structural analyses showed that the crystallisation of silks following extension deformation has a critical effect on their mechanical and optical properties. These findings should aid the production of artificial silk fibres and facilitate the development of silk-inspired functional materials.
Collapse
Affiliation(s)
- Keiji Numata
- Enzyme Research Team, Biomass Engineering Program Cooperative Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Koh LD, Cheng Y, Teng CP, Khin YW, Loh XJ, Tee SY, Low M, Ye E, Yu HD, Zhang YW, Han MY. Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.02.001] [Citation(s) in RCA: 605] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Li K, Zhao J, Zhang J, Ji J, Ma Y, Liu X, Xu H. Direct in Vivo Functionalizing Silkworm Fibroin via Molecular Recognition. ACS Biomater Sci Eng 2015; 1:494-503. [DOI: 10.1021/ab5001468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Xiangyang Liu
- Research
Institute for Biomimetics and Soft Matter, College of Materials, Xiamen University, Xiamen 361005, P. R. China
- Department
of Physics and Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117542
| | | |
Collapse
|
49
|
Asakura T, Okushita K, Williamson MP. Analysis of the Structure of Bombyx mori Silk Fibroin by NMR. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00160] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tetsuo Asakura
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Institute for
Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Keiko Okushita
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Mike P. Williamson
- Department
of Molecular Biology and Biotechnology, University of Sheffield, Firth Court,
Western Bank, Sheffield S10 2TN, U.K
| |
Collapse
|
50
|
Blamires SJ, Liao CP, Chang CK, Chuang YC, Wu CL, Blackledge TA, Sheu HS, Tso IM. Mechanical Performance of Spider Silk Is Robust to Nutrient-Mediated Changes in Protein Composition. Biomacromolecules 2015; 16:1218-25. [DOI: 10.1021/acs.biomac.5b00006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean J. Blamires
- Department
of Life Science, Tunghai University, Taichung 40704, Taiwan
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney 2052, Australia
| | - Chen-Pan Liao
- Department
of Life Science, Tunghai University, Taichung 40704, Taiwan
| | - Chung-Kai Chang
- National Synchrotron
Radiation Research Center, Hsinchu 3000, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron
Radiation Research Center, Hsinchu 3000, Taiwan
| | - Chung-Lin Wu
- Center
for Measurement Standards, Industrial Technology Research Institute, Hsinchu 30011, Taiwan
| | - Todd A. Blackledge
- Department
of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
| | - Hwo-Shuenn Sheu
- National Synchrotron
Radiation Research Center, Hsinchu 3000, Taiwan
| | - I-Min Tso
- Department
of Life Science, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|