1
|
Gangavarapu A, Tapia-Lopez LV, Sarkar B, Pena-Zacarias J, Badruddoza AZM, Nurunnabi M. Lipid nanoparticles for enhancing oral bioavailability. NANOSCALE 2024; 16:18319-18338. [PMID: 39291697 DOI: 10.1039/d4nr01487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent studies, lipid nanoparticles have attracted attention as drug delivery systems owing to their preeminent potential in achieving the desired bioavailability of biopharmaceutics (BCS) class II and class IV drugs. The current debate concerns the bioavailability of these poorly absorbed drugs with their simultaneous oral degradation. Lipid nanoparticles, including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), are lipid-based carrier systems that can effectively encapsulate both lipophilic and hydrophilic drugs, offering versatile drug delivery systems. The unique properties of lipids (biodegradability and biocompatibility) and their transportation pathways enhance the biological availability of drugs. These particles can increase the gastrointestinal absorption and solubilization of minimally bioavailable drugs via a selective lymphatic pathway. This review mainly focuses on providing a brief update on lipid nanoparticles (LNPs) that synergistically increase the bioavailability of limited permeable drugs and highlight the transversal mechanisms of LNPs across the gastrointestinal hurdles, transmembrane absorption, transport kinetics, and computational tools. Finally, the present hurdles and future perspectives of LNPs for oral drug delivery systems are discussed.
Collapse
Affiliation(s)
- Anushareddy Gangavarapu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS 38677, USA.
| | - Lillian V Tapia-Lopez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Barnali Sarkar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Jaqueline Pena-Zacarias
- Biological Sciences Program, College of Science, University of Texas at El Paso, El Paso, TX 79965, USA
| | - Abu Zayed Md Badruddoza
- Pharmaceutical Sciences Small Molecule, Pfizer Worldwide Research and Development, Groton, CT 06340, USA.
| | - Md Nurunnabi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS 38677, USA.
| |
Collapse
|
2
|
Zewail M, Abbas H, El Sayed N, Abd-El-Azim H. Combined photodynamic therapy and hollow microneedle approach for effective non-invasive delivery of hypericin for the management of imiquimod-induced psoriasis. J Drug Target 2024; 32:941-952. [PMID: 38853622 DOI: 10.1080/1061186x.2024.2365930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Conventional topical psoriasis treatments suffer from limited delivery to affected areas and skin irritation due to high local drug concentration. PURPOSE This study aims to prepare hypericin (HYP) loaded nanostructured lipid carriers (NLCs) and their application in psoriasis treatment through intradermal administration using hollow microneedles assisted by photodynamic therapy. METHODS The colloidal characteristics of NLCs, entrapment efficiency and morphology were evaluated. An ex-vivo skin distribution study was conducted along with testing the in vivo antipsoriatic activity in mice with the imiquimod-induced psoriasis model. RESULTS The particle size and zeta potential of HYP-NLCs were 167.70 nm and -18.1, respectively. The ex-vivo skin distribution study demonstrated the superior distribution of HYP-NLCs to a depth of 1480 µm within the skin layers relative to only 750 µm for free HYP. In vivo studies revealed that the levels of NF-KB, IL 6, MMP1, GSH, and catalase in the group treated with HYP-NLCs in the presence of light were comparable to the negative control. CONCLUSIONS The histopathological inspection of dissected skin samples reflected the superiority of HYP-NLCs over HYP ointment. This could be ascribed to the effect of nanoencapsulation on improving HYP properties besides the ability of hollow microneedles to ensure effective HYP delivery to the affected psoriatic area.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
3
|
Patel V, Mehta T, Shah J, Soni K. Quality by design driven development of lipid nanoparticles for cutaneous targeting: a preliminary approach. Drug Deliv Transl Res 2024:10.1007/s13346-024-01685-9. [PMID: 39145818 DOI: 10.1007/s13346-024-01685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/16/2024]
Abstract
Fungal infections are the fourth common cause of infection affecting around 50 million populations across the globe. Dermatophytes contribute to the majority of superficial fungal infections. Clotrimazole (CTZ), an imidazole derivative is widely preferred for the treatment of topical fungal infections. Conventional topical formulations enable effective penetration of CTZ into the stratum corneum, however, its low solubility results in poor dermal bioavailability, and variable drug levels limit the efficacy. The aim was to increase dermal bioavailability and sustain drug release, thereby potentially enhancing drug retention and reducing its side effects. This work evaluated the CTZ loaded solid lipid nanoparticles (SLN) consisting of precirol and polysorbate-80 developed using high pressure homogenization and optimized with QbD approach. Prior to release studies, CTZ-SLNs were characterized by different analytical techniques. The laser diffractometry and field emission scanning electron microscopy indicated that SLNs were spherical in shape with mean diameter of 450 ± 3.45 nm. DSC and XRD results revealed that the drug remained molecularly dispersed in the lipid matrix. The CTZ-SLNs showed no physicochemical instability during 6 months of storage at different temperatures. Further, the Carbopol with its pseudoplastic behavior showed a crucial role in forming homogenous and stable network for imbibing the CTZ-SLN dispersion for effective retention in skin. As examined, in-vitro drug release was sustained up to 24 h while ex-vivo skin retention and drug permeation studies showed the highest accumulation and lowest permeation with nanogel in comparison to pure drug and Candid® cream. Further, the in-vivo antifungal efficacy of nanogel suggested once-a-day application for 10 days, supported by histopathological analysis for complete eradication infection. In summary, the findings suggest, that nanogel-loaded with CTZ-SLNs has great potential for the management of fungal infections caused by Candida albicans.
Collapse
Affiliation(s)
- Viral Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa-388421, Anand, Gujarat, India.
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S G Highway, Ahmedabad, 382481, Gujarat, India.
| | - Tejal Mehta
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S G Highway, Ahmedabad, 382481, Gujarat, India.
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S G Highway, Ahmedabad, 382481, Gujarat, India
| | - Kinal Soni
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S G Highway, Ahmedabad, 382481, Gujarat, India
| |
Collapse
|
4
|
Matarazzo AP, Rios CA, Gerônimo G, Ondei R, de Paula E, Breitkreitz MC. Development of a Versatile Nanostructured Lipid Carrier (NLC) Using Design of Experiments (DoE)-Part II: Incorporation and Stability of Butamben with Different Surfactants. Pharmaceutics 2024; 16:863. [PMID: 39065560 PMCID: PMC11280378 DOI: 10.3390/pharmaceutics16070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Nanostructured lipid carriers (NLCs) are typically composed of liquid lipids, solid lipids, and surfactants, enabling the encapsulation of lipophilic drugs. Butamben is a Class II anesthetic drug, according to the Biopharmaceutical Classification System (BCS); it has a log P of 2.87 and is considered a 'brick dust' (poorly water-soluble and poorly lipid-soluble) drug. This characteristic poses a challenge for the development of NLCs, as they are not soluble in the liquid lipid present in the NLC core. In a previous study, we developed an NLC core consisting of a solid lipid (CrodamolTM CP), a lipophilic liquid with medium polarity (SRTM Lauryl lactate), and a hydrophilic excipient (SRTM DMI) that allowed the solubilization of 'brick dust' types of drugs, including butamben. In this study, starting from the NLC core formulation previously developed we carried out an optimization of the surfactant system and evaluated their performance in aqueous medium. Three different surfactants (CrodasolTM HS HP, SynperonicTM PE/F68, and CroduretTM 40) were studied and, for each of them, a 23 factorial design was stablished, with total lipids, % surfactant, and sonication time (min) as the input variables and particle size (nm), polydispersity index (PDI), and zeta potential (mV) as the response variables. Stable NLCs were obtained using CrodasolTM HS HP and SynperonicTM PE/F68 as surfactants. Through a comparison between NLCs developed with and without SRTM DMI, it was observed that besides helping the solubilization of butamben in the NLC core, this excipient helped in stabilizing the system and decreasing particle size. NLCs containing CrodasolTM HS HP and SynperonicTM PE/F68 presented particle size values in the nanometric scale, PDI values lower than 0.3, and zeta potentials above |10|mV. Concerning NLCs' stability, SBTB-NLC with SynperonicTM PE/F68 and butamben demonstrated stability over a 3-month period in aqueous medium. The remaining NLCs showed phase separation or precipitation during the 3-month analysis. Nevertheless, these formulations could be freeze-dried after preparation, which would avoid precipitation in an aqueous medium.
Collapse
Affiliation(s)
- Ananda P. Matarazzo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil;
| | - Carlos A. Rios
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| | - Gabriela Gerônimo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas 13083-862, SP, Brazil; (G.G.); (E.d.P.)
| | - Roberta Ondei
- Croda Brazil, R. Croda, 580—Distrito Industrial, Campinas 13054-710, SP, Brazil;
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas 13083-862, SP, Brazil; (G.G.); (E.d.P.)
| | - Márcia C. Breitkreitz
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil;
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| |
Collapse
|
5
|
Li M, Fang G, Zahid F, Saleem R, Ishrat G, Ali Z, Naeem M, Din FU. Co-delivery of paclitaxel and curcumin loaded solid lipid nanoparticles for improved targeting of lung cancer: In vitro and in vivo investigation. Heliyon 2024; 10:e30290. [PMID: 38720725 PMCID: PMC11076978 DOI: 10.1016/j.heliyon.2024.e30290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
The objective of this study was to develop nanotechnology-mediated paclitaxel (PAC) and curcumin (CUR) co-loaded solid lipid nanoparticles (PAC-CUR-SLNs) for the treatment of lung cancer, which is a leading cause of death worldwide. Around 85 % cases of lungs cancer constitute non-small cell lung cancer (NSCLC). PAC-CUR-SLNs were prepared via high pressure homogenization. The in vitro drug release of PAC-CUR-SLNs was checked followed by their in vitro cytotoxic investigation using adenocarcinomic human alveolar basal epithelial cells (A549) cell lines. Anticancer effects along with side effects of the synergistic delivery of PAC-CUR-SLNs were studied in vivo, using BALB/c mice. PAC-CUR-SLNs were nano sized (190 nm), homogeneously disseminated particles with %IE of both PAC and CUR above 94 %. PAC-CUR-SLNs released PAC and CUR in a controlled fashion when compared with free drug suspensions. The cytotoxicity of PAC-CUR-SLNs was higher than individual drug-loaded SLNs and pure drugs. Moreover, the co-delivery displayed synergistic effect, indicating potential of PAC-CUR-SLNs in lung cancer treatment. In vivo tumor investigation of PAC-CUR-SLNs exhibited 12-fold reduced tumor volume and almost no change in body weight of BALB/c mice, when compared with the experimental groups including control group. The inhibition of tumor rate on day 28 was 82.7 % in the PAC-CUR-SLNs group, which was significantly higher than the pure drugs and monotherapies. It can be concluded that, encapsulating the co-loaded antitumor drugs like PAC-CUR in SLNs may help in improved targeting of the tumor with enhanced anticancer effect.
Collapse
Affiliation(s)
- Mao Li
- Guangxi Higher Education Key Laboratory for the Research of Du-related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Gang Fang
- Guangxi Higher Education Key Laboratory for the Research of Du-related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Fatima Zahid
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Raheela Saleem
- College of Pharmacy, Liaquat University of Medical and Health Sciences Jamshoro, Pakistan
| | - Ghazala Ishrat
- Department of Pharmaceutics, Faculty of Pharmacy, Salim Habib University, Karachi, Pakistan
| | - Zakir Ali
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Muhammad Naeem
- National University of Medical Sciences, Rawalpindi, Pakistan
| | - Fakhar ud Din
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| |
Collapse
|
6
|
Bhadouria N, Alam A, Kaur A. Nanotechnology-based Herbal Drug Formulation in the Treatment of Diabetes Mellitus. Curr Diabetes Rev 2024; 21:e310124226554. [PMID: 38299420 DOI: 10.2174/0115733998282162240116202813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
The utilization of nanotechnology-based herbal medication delivery systems is gaining attention as a novel approach to treating diabetes mellitus. The incorporation of nanotechnology into herbal medicine provides benefits such as enhanced Stability, solubility, and bioavailability of herbal medications. The purpose of this paper is to summarise the present status of research on herbal medicine delivery systems based on nanotechnology for the treatment of diabetic patients. The paper evaluates the various nanocarriers and herbal drugs used, the challenges and opportunities in the development of these systems, and their potential efficacy and safety. Additionally, the paper highlights the need for further research to optimize the formulation and delivery of these systems. This review's overarching objective is to provide a complete understanding of the possibilities of herbal medication delivery systems based on nanotechnology in diabetes mellitus treatment.
Collapse
Affiliation(s)
- Namrata Bhadouria
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Kuo YC, Lin SY, De S, Rajesh R. Regeneration of Pancreatic Cells Using Optimized Nanoparticles and l-Glutamic Acid-Gelatin Scaffolds with Controlled Topography and Grafted Activin A/BMP4. ACS Biomater Sci Eng 2023; 9:6208-6224. [PMID: 37882705 DOI: 10.1021/acsbiomaterials.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Regeneration of insulin-producing cells (IPCs) from induced pluripotent stem cells (iPSCs) under controlled conditions has a lot of promise to emulate the pancreatic mechanism in vivo as a foundation of cell-based diabetic therapy. l-Glutamic acid-gelatin scaffolds with orderly pore sizes of 160 and 200 μm were grafted with activin A and bone morphogenic proteins 4 (BMP4) to differentiate iPSCs into definitive endoderm (DE) cells, which were then guided with fibroblast growth factor 7 (FGF7)-grafted retinoic acid (RA)-loaded solid lipid nanoparticles (FR-SLNs) to harvest IPCs. Response surface methodology was adopted to optimize the l-glutamic acid-to-gelatin ratio of scaffolds and to optimize surfactant concentration and lipid proportion in FR-SLNs. Experimental results of immunofluorescence, flow cytometry, and western blots revealed that activin A (100 ng/mL)-BMP4 (50 ng/mL)-l-glutamic acid (5%)-gelatin (95%) scaffolds provoked the largest number of SOX17-positive DE cells from iPSCs. Treatment with FGF7 (50 ng/mL)-RA (600 ng/mL)-SLNs elicited the highest number of PDX1-positive β-cells from differentiated DE cells. To imitate the natural pancreas, the scaffolds with controlled topography were appropriate for IPC production with sufficient insulin secretion. Hence, the current scheme using FR-SLNs and activin A-BMP4-l-glutamic acid-gelatin scaffolds in the two-stage differentiation of iPSCs can be promising for replacing impaired β-cells in diabetic management.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
- Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
| | - Sheng-Yuan Lin
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
| | - Sourav De
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
| |
Collapse
|
8
|
Kuo YC, Yen MH, De S, Rajesh R, Tai CK. Optimized lipopolymers with curcumin to enhance AZD5582 and GDC0152 activity and downregulate inhibitors of apoptosis proteins in glioblastoma multiforme. BIOMATERIALS ADVANCES 2023; 154:213639. [PMID: 37793310 DOI: 10.1016/j.bioadv.2023.213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
Inhibition to glioblastoma multiforme (GBM) propagation is a critical challenge in clinical practice because binding of inhibitors of apoptosis proteins (IAPs) to caspase prevents cancer cells from death. In this study, folic acid (FA), lactoferrin (Lf) and rabies virus glycoprotein (RVG) were grafted on lipopolymers (LPs) composed of poly(ε-caprolactone) and Compritol 888 ATO to encapsulate AZD5582 (AZD), GDC0152 (GDC) and curcumin (CURC). The standard deviations of initial particle diameter and particle diameter after storage for 30 days were involved in LP composition optimization. The functionalized LPs were used to permeate the blood-brain barrier (BBB) and constrain IAP quantity in GBM cells. Experimental results revealed that an increase in Span 20 (emulsifier) concentration enlarged the size of LPs, and enhanced the entrapment and releasing efficiency of AZD, DGC and CURC. 1H nuclear magnetic resonance spectra showed that the hydrogen bonds between the LPs and drugs supported the sustained release of AZD, DGC and CURC from the LPs. The LPs modified with the three targeting biomolecules facilitated the penetration of AZD, GDC and CURC across the BBB, and could recognize U87MG cells and human brain cancer stem cells. Immunofluorescence staining, flow cytometry and western blot demonstrated that CURC-incorporated LPs enhanced AZD and GDC activity in suppressing cellular IAP 1 (cIAP1) and X-linked IAP (XIAP) levels, and raising caspase-3 level in GBM. Surface FA, Lf and RVG also promoted the ability of the drug-loaded LPs to avoid carcinoma growth. The current FA-, Lf- and RVG-crosslinked LPs carrying AZD, DGC and CURC can be promising in hindering IAP expressions for GBM management.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC.
| | - Meng-Hui Yen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Sourav De
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Chien-Kuo Tai
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| |
Collapse
|
9
|
Fulgheri F, Manca ML, Fernàndez-Busquets X, Manconi M. Analysis of complementarities between nanomedicine and phytodrugs for the treatment of malarial infection. Nanomedicine (Lond) 2023; 18:1681-1696. [PMID: 37955573 DOI: 10.2217/nnm-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
The use of nanocarriers in medicine, so-called nanomedicine, is one of the most innovative strategies for targeting drugs at the action site and increasing their activity index and effectiveness. Phytomedicine is the oldest traditional method used to treat human diseases and solve health problems. The recent literature on the treatment of malaria infections using nanodelivery systems and phytodrugs or supplements has been analyzed. For the first time, in the present review, a careful look at the considerable potential of nanomedicine in promoting phytotherapeutic efficacy was done, and its key role in addressing a translation through a significant reduction of the current burden of malaria in many parts of the world has been underlined.
Collapse
Affiliation(s)
- Federica Fulgheri
- Department of Life & Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, 09042 CA, Italy
| | - Maria Letizia Manca
- Department of Life & Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, 09042 CA, Italy
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 1 49-153, 08036 Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Maria Manconi
- Department of Life & Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, Monserrato, 09042 CA, Italy
| |
Collapse
|
10
|
Maurya VK, Shakya A, McClements DJ, Srinivasan R, Bashir K, Ramesh T, Lee J, Sathiyamoorthi E. Vitamin C fortification: need and recent trends in encapsulation technologies. Front Nutr 2023; 10:1229243. [PMID: 37743910 PMCID: PMC10517877 DOI: 10.3389/fnut.2023.1229243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 09/26/2023] Open
Abstract
The multifaceted role of vitamin C in human health intrudes several biochemical functions that are but not limited to antioxidant activity, homoeostasis, amino acid synthesis, collagen synthesis, osteogenesis, neurotransmitter production and several yet to be explored functions. In absence of an innate biosynthetic pathway, humans are obligated to attain vitamin C from dietary sources to maintain its optimal serum level (28 μmol/L). However, a significant amount of naturally occurring vitamin C may deteriorate due to food processing, storage and distribution before reaching to the human gastrointestinal tract, thus limiting or mitigating its disease combating activity. Literature acknowledges the growing prevalence of vitamin C deficiency across the globe irrespective of geographic, economic and population variations. Several tools have been tested to address vitamin C deficiency, which are primarily diet diversification, biofortification, supplementation and food fortification. These strategies inherit their own advantages and limitations. Opportunely, nanotechnology promises an array of delivery systems providing encapsulation, protection and delivery of susceptible compounds against environmental factors. Lack of clear understanding of the suitability of the delivery system for vitamin C encapsulation and fortification; growing prevalence of its deficiency, it is a need of the hour to develop and design vitamin C fortified food ensuring homogeneous distribution, improved stability and enhanced bioavailability. This article is intended to review the importance of vitamin C in human health, its recommended daily allowance, its dietary sources, factors donating to its stability and degradation. The emphasis also given to review the strategies adopted to address vitamin c deficiency, delivery systems adopted for vitamin C encapsulation and fortification.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Field Application Specialist, PerkinElmer, New Delhi, India
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Amita Shakya
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Ramachandran Srinivasan
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard University, New Delhi, India
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | | |
Collapse
|
11
|
Muraca G, Ruiz ME, Gambaro RC, Scioli-Montoto S, Sbaraglini ML, Padula G, Cisneros JS, Chain CY, Álvarez VA, Huck-Iriart C, Castro GR, Piñero MB, Marchetto MI, Alba Soto C, Islan GA, Talevi A. Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:804-818. [PMID: 37533841 PMCID: PMC10390827 DOI: 10.3762/bjnano.14.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023]
Abstract
Chagas disease is a neglected endemic disease prevalent in Latin American countries, affecting around 8 million people. The first-line treatment, benznidazole (BNZ), is effective in the acute stage of the disease but has limited efficacy in the chronic stage, possibly because current treatment regimens do not eradicate transiently dormant Trypanosoma cruzi amastigotes. Nanostructured lipid carriers (NLC) appear to be a promising approach for delivering pharmaceutical active ingredients as they can have a positive impact on bioavailability by modifying the absorption, distribution, and elimination of the drug. In this study, BNZ was successfully loaded into nanocarriers composed of myristyl myristate/Crodamol oil/poloxamer 188 prepared by ultrasonication. A stable NLC formulation was obtained, with ≈80% encapsulation efficiency (%EE) and a biphasic drug release profile with an initial burst release followed by a prolonged phase. The hydrodynamic average diameter and zeta potential of NLC obtained by dynamic light scattering were approximately 150 nm and -13 mV, respectively, while spherical and well-distributed nanoparticles were observed by transmission electron microscopy. Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and small-angle X-ray scattering analyses of the nanoparticles indicated that BNZ might be dispersed in the nanoparticle matrix in an amorphous state. The mean size, zeta potential, polydispersity index, and %EE of the formulation remained stable for at least six months. The hemolytic effect of the nanoparticles was insignificant compared to that of the positive lysis control. The nanoparticle formulation exhibited similar performance in vitro against T. cruzi compared to free BNZ. No formulation-related cytotoxic effects were observed on either Vero or CHO cells. Moreover, BNZ showed a 50% reduction in CHO cell viability at 125 µg/mL, whereas NLC-BNZ and non-loaded NLC did not exert a significant effect on cell viability at the same concentration. These results show potential for the development of new nanomedicines against T. cruzi.
Collapse
|
12
|
Della Sala F, Borzacchiello A, Dianzani C, Muntoni E, Argenziano M, Capucchio MT, Valsania MC, Bozza A, Garelli S, Di Muro M, Scorziello F, Battaglia L. Ultrasmall Solid-Lipid Nanoparticles via the Polysorbate Sorbitan Phase-Inversion Temperature Technique: A Promising Vehicle for Antioxidant Delivery into the Skin. Pharmaceutics 2023; 15:1962. [PMID: 37514149 PMCID: PMC10383899 DOI: 10.3390/pharmaceutics15071962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Solid lipid nanoparticles promote skin hydration via stratum corneum occlusion, which prevents water loss by evaporation, and via the reinforcement of the skin's lipid-film barrier, which occurs through the adhesion of the nanoparticles to the stratum corneum. The efficacy of both phenomena correlates with lower nanoparticle size and the increased skin permeation of loaded compounds. The so-called Polysorbate Sorbitan Phase-Inversion Temperature method has, therefore, been optimized in this experimental work, in order to engineer ultrasmall solid-lipid nanoparticles that were then loaded with α-tocopherol, as the anti-age ingredient for cosmetic application. Ultrasmall solid-lipid nanoparticles have been proven to be able to favor the skin absorption of loaded compounds via the aforementioned mechanisms.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (A.B.)
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (A.B.)
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (E.M.); (M.A.); (A.B.); (S.G.)
| | - Elisabetta Muntoni
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (E.M.); (M.A.); (A.B.); (S.G.)
| | - Monica Argenziano
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (E.M.); (M.A.); (A.B.); (S.G.)
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Maria Carmen Valsania
- Department of Chemistry, University of Turin, Via Quarello 15/a, 10135 Turin, Italy;
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, 10124 Turin, Italy
| | - Annalisa Bozza
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (E.M.); (M.A.); (A.B.); (S.G.)
| | - Sara Garelli
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (E.M.); (M.A.); (A.B.); (S.G.)
| | - Maria Di Muro
- R Bio Transfer srl, Via Parmenide 156, 84131 Salerno, Italy; (M.D.M.); (F.S.)
| | - Franco Scorziello
- R Bio Transfer srl, Via Parmenide 156, 84131 Salerno, Italy; (M.D.M.); (F.S.)
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (E.M.); (M.A.); (A.B.); (S.G.)
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, 10124 Turin, Italy
| |
Collapse
|
13
|
Vejselova Sezer C, Kutlu HM. Anticancer activity of vanadium nanoparticles against human breast cancer: an in vitro study. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2188458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Canan Vejselova Sezer
- Faculty of Science, Department of Biology, Eskisehir Technical University, Eskisehir, Turkey
| | - Hatice Mehtap Kutlu
- Faculty of Science, Department of Biology, Eskisehir Technical University, Eskisehir, Turkey
| |
Collapse
|
14
|
Shafique M, Ur Rehman M, Kamal Z, Alzhrani RM, Alshehri S, Alamri AH, Bakkari MA, Sabei FY, Safhi AY, Mohammed AM, Hamd MAE, Almawash S. Formulation development of lipid polymer hybrid nanoparticles of doxorubicin and its in-vitro, in-vivo and computational evaluation. Front Pharmacol 2023; 14:1025013. [PMID: 36825154 PMCID: PMC9941671 DOI: 10.3389/fphar.2023.1025013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The purpose of this study was to assess the parameters of doxorubicin (DOX) loaded lipid polymer hybrid nanoparticles (LPHNs) formulation development, and then the bioavailability of DOX were determined in the rabbit model, in order to evaluate the intrinsic outcome of dosage form improvement after the oral administration. LPHNs were prepared by combine approach, using both magnetic stirring and probe sonication followed by its characterization in terms of size-distribution (Zeta Size), entrapment efficiency (EE), loading capacity, and the kinetics of DOX. LPHNPs were further characterized by using scanning electron microscopy (SEM), powder X-Ray diffractometry (P-XRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), in vitro and in vivo studies. The molecular modeling was determined through the density functional theory (DFT) simulations and interactions. DOX loaded and unloaded LPHNs were administered orally to the rabbits for bioavailability and pharmacokinetic parameters determinations. The plasma concentration of DOX was determined through high performance liquid chromatography (HPLC). The average size of DOX-loaded LPHNs was 121.90 ± 3.0 nm. The drug loading of DOX was 0.391% ± 0.01 of aqueous dispersion, where its encapsulation efficiency was 95.5% ± 1.39. After oral administration of the DOX-LPHNs, the area under the plasma drug concentration-time curve (AUC) improved about 2-folds comparatively (p < 0.05). DFT simulations were used to understand the interactions of polymers with different sites of DOX molecule. The larger negative binding energies (-9.33 to -18.53 kcal/mol) of the different complexes evince that the polymers have stronger affinity to bind with the DOX molecule while the negative values shows that the process is spontaneous, and the synthesis of DOX-LPHNs is energetically favorable. It was concluded that DOX-LPHNs provides a promising new formulation that can enhance the oral bioavailability, which have optimized compatibilities and improve the pharmacokinetic of DOX after oral administration.
Collapse
Affiliation(s)
- Muhammad Shafique
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Maqsood Ur Rehman
- Department of Pharmaceutics, School of Pharmacy, University College London, London, United Kingdom,Department of Pharmacy, University of Malakand, Chakdara, (Dir Lower), Pakistan
| | - Zul Kamal
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, (Dir Upper), Pakistan
| | - Rami M. Alzhrani
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Sameer Alshehri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ali H. Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Bakkari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmed M. Mohammed
- Department of pharmaceutics and pharmaceutical technology Faculty of Pharmacy Al-azhar University, Assiut, Egypt
| | - Mohamed A. El Hamd
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia,*Correspondence: Saud Almawash,
| |
Collapse
|
15
|
Hasan N, Imran M, Nadeem M, Jain D, Haider K, Moshahid Alam Rizvi M, Sheikh A, Kesharwani P, Kumar Jain G, Jalees Ahmad F. Formulation and development of novel lipid-based combinatorial advanced nanoformulation for effective treatment of non-melanoma skin cancer. Int J Pharm 2023; 632:122580. [PMID: 36608807 DOI: 10.1016/j.ijpharm.2022.122580] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
Non-melanoma skin cancer is one of the most common malignancies reported with high number of morbidities, demanding an advanced treatment option with superior chemotherapeutic effects. Due to high degree of drug resistance, conventional therapy fails to meet the desired therapeutic efficacy. To break the bottleneck, nanoparticles have been used as next generation vehicles that facilitate the efficient interaction with the cancer cells. Here, we developed combined therapy of 5-fluorouracil (5-FU) and cannabidiol (CBD)-loaded nanostructured lipid carrier gel (FU-CBD-NLCs gel). The NLCs were optimized using central composite design that showed an average particle size of 206 nm and a zeta potential of -34 mV. In addition, in vitro and ex vivo drug permeations studies demonstrated the effective delivery of both drugs in the skin layers via lipid structured nanocarriers. Also, the prepared FU-CBD-NLCs showed promising effect in-vitro cell studies including MTT assays, wound healing and cell cycle as compared to the conventional formulation. Moreover, dermatokinetic studies shows there was superior deposition of drugs at epidermal and the dermal layer when treated with FU-CBD-NLCs. In the end, overall study offered a novel combinatorial chemotherapy that could be an option for the treatment of non-melanoma skin cancer.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
| | - Masood Nadeem
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Dhara Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - M Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Delhi 110017, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
16
|
Sadeqi Nezhad M. Poly (beta-amino ester) as an in vivo nanocarrier for therapeutic nucleic acids. Biotechnol Bioeng 2023; 120:95-113. [PMID: 36266918 DOI: 10.1002/bit.28269] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Therapeutic nucleic acids are an emerging class of therapy for treating various diseases through immunomodulation, protein replacement, gene editing, and genetic engineering. However, they need a vector to effectively and safely reach the target cells. Most gene and cell therapies rely on ex vivo gene delivery, which is laborious, time-consuming, and costly; therefore, devising a systematic vector for effective and safe in vivo delivery of therapeutic nucleic acids is required to target the cells of interest in an efficient manner. Synthetic nanoparticle vector poly beta amino ester (PBAE), a class of degradable polymer, is a promising candidate for in vivo gene delivery. PBAE is considered the most potent in vivo vector due to its excellent transfection performance and biodegradability. PBAE nanoparticles showed tunable charge density, diverse structural characteristics, excellent encapsulation capacity, high stability, stimuli-responsive release, site-specific delivery, potent binding to nucleic acids, flexible binding ability to various conjugates, and effective endosomal escape. These unique properties of PBAE are an essential contribution to in vivo gene delivery. The current review discusses each of the components used for PBAE synthesis and the impact of various environmental and physicochemical factors of the body on PBAE nanocarrier.
Collapse
Affiliation(s)
- Muhammad Sadeqi Nezhad
- Clinical and Translational Science Institute, Translational Biomedical Science Department, University of Rochester Medical Center, Rochester, New York, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA.,Department of Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
17
|
Kostrzewa T, Nowak I, Feliczak-Guzik A, Drzeżdżon J, Jacewicz D, Górska-Ponikowska M, Kuban-Jankowska A. Encapsulated Oxovanadium(IV) and Dioxovanadium(V) Complexes into Solid Lipid Nanoparticles Increase Cytotoxicity Against MDA-MB-231 Cell Line. Int J Nanomedicine 2023; 18:2507-2523. [PMID: 37197025 PMCID: PMC10184862 DOI: 10.2147/ijn.s403689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction Solid lipid nanoparticles (SLN) have been considered lately as promising drug delivery system in treatment of many human diseases including cancers. We previously studied potential drug compounds that were effective inhibitors of PTP1B phosphatase - possible target for breast cancer treatment. Based on our studies, two complexes were selected for encapsulation into the SLNs, the compound 1 ([VO(dipic)(dmbipy)] · 2 H2O) and compound 2 ([VOO(dipic)](2-phepyH) · H2O). Here, we investigate the effect of encapsulation of those compounds on cell cytotoxicity against MDA-MB-231 breast cancer cell line. The study also included the stability evaluation of the obtained nanocarriers with incorporated active substances and characterization of their lipid matrix. Moreover, the cell cytotoxicity studies against the MDA-MB-231 breast cancer cell line in comparison and in combination with vincristine have been performed. Wound healing assay was carried out to observe cell migration rate. Methods The properties of the SLNs such as particle size, zeta potential (ZP), and polydispersity index (PDI) were investigated. The morphology of SLNs was observed by scanning electron microscopy (SEM), while the crystallinity of the lipid particles was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The cell cytotoxicity of complexes and their encapsulated forms was carried out against MDA-MB-231 breast cancer cell line using standard MTT protocols. The wound healing assay was performed using live imaging microscopy. Results SLNs with a mean size of 160 ± 25 nm, a ZP of -34.00 ± 0.5, and a polydispersity index of 30 ± 5% were obtained. Encapsulated forms of compounds showed significantly higher cytotoxicity also in co-incubation with vincristine. Moreover, our research shows that the best compound was complex 2 encapsulated into lipid nanoparticles. Conclusion We observed that encapsulation of studied complexes into SLNs increases their cell cytotoxicity against MDA-MB-231 cell line and enhanced the effect of vincristine.
Collapse
Affiliation(s)
- Tomasz Kostrzewa
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
- Correspondence: Tomasz Kostrzewa; Alicja Kuban-Jankowska, Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland, Tel +48 58 349 14 50, Fax +48 58 349 14 56, Email ;
| | - Izabela Nowak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Joanna Drzeżdżon
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| | - Dagmara Jacewicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| | - Magdalena Górska-Ponikowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
- IEMEST Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, 90127, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, 70174, Germany
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| |
Collapse
|
18
|
Nie Y, Wang L, You X, Wang X, Wu J, Zheng Z. Low dimensional nanomaterials for treating acute kidney injury. J Nanobiotechnology 2022; 20:505. [PMID: 36456976 PMCID: PMC9714216 DOI: 10.1186/s12951-022-01712-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Acute kidney injury (AKI) is one of the most common severe complications among hospitalized patients. In the absence of specific drugs to treat AKI, hemodialysis remains the primary clinical treatment for AKI patients. AKI treatment has received significant attention recently due to the excellent drug delivery capabilities of low-dimensional nanomaterials (LDNs) and their unique therapeutic effects. Diverse LDNs have been proposed to treat AKI, with promising results and the potential for future clinical application. This article aims to provide an overview of the pathogenesis of AKI and the recent advances in the treatment of AKI using different types of LDNs. In addition, it is intended to provide theoretical support for the design of LDNs and implications for AKI treatment.
Collapse
Affiliation(s)
- Yuanpeng Nie
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Liying Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaohua Wang
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
19
|
Synthesis of Lipid Nanoparticles Incorporated with Ferula assa-foetida L. Extract. COSMETICS 2022. [DOI: 10.3390/cosmetics9060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Solid Lipid Nanoparticles (SLN) have been prepared by high-pressure homogenization and optimized in order to protect ferulic acid from Ferula assa-foetida L. extract. The influence of lipid and surfactant concentration on the mean particle size (Z-Ave), polydispersity index (PDI), and zeta potential (ZP) of SLN was analyzed. In addition, other parameters for the preparation of ferulic acid-loaded nanoparticles, such as extract concentration and variable parameters for the synthesis method used (e.g., pressure), were adjusted to obtain the smallest particle size and polydispersity index, as well as the highest value for zeta potential, which are characteristic of the stable SLN. The established formulation obtained from the optimized synthesis was composed of 6.0 wt.% of the lipid phase and 1.5 wt.% of surfactant, giving stable SLN with Z-Ave, PDI, and ZP values of 163.00 ± 1.06 nm, 0.16 ± 0.01, and −41.97 ± 0.47 mV, respectively. The loading of ferulic acid from Ferula assa-foetida L. extract within the SLN resulted in particles with a mean size of 155.3 ± 1.1 nm, polydispersity index of 0.16 ± 0.01, zeta potential of −38.00 ± 1.12 mV, and encapsulation efficiency of 27%, the latter being quantified on the basis of RP-HPLC analysis. Our findings highlight the added value of SLN as a delivery system for phenolic phytochemical compounds extracted from Ferula assa-foetida L.
Collapse
|
20
|
Talele P, Jadhav A, Tayade S, Sahu S, Sharma KK, Shimpi N. Hydroquinone loaded solid lipid nanoparticles comprised of stearic acid and ionic emulsifiers: Physicochemical characterization and in vitro release study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Imran B, Din FU, Ali Z, Fatima A, Khan MW, Kim DW, Malik M, Sohail S, Batool S, Jawad M, Shabbir K, Zeb A, Khan BA. Statistically designed dexibuprofen loaded solid lipid nanoparticles for enhanced oral bioavailability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Ouyang H, Hu J, Qiu X, Wu S, Guo F, Tan Y. Improved biopharmaceutical performance of antipsychotic drug using lipid nanoparticles via intraperitoneal route. Pharm Dev Technol 2022; 27:853-863. [PMID: 36124550 DOI: 10.1080/10837450.2022.2124521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study aims to develop, characterize, and examine olanzapine-loaded solid lipid nanocarriers (OLAN-SLNs) for effective brain delivery. OLAN has poor water solubility and low penetration through blood-brain barrier (BBB). Herein, OLAN-SLNs were fabricated using high-pressure homogenization (HPH) method followed by their investigation for particle properties. Moreover, in vitro release and in vivo pharmacokinetics profiles of OLAN-SLNs were compared with pure drug. Anti-psychotic activity was performed in LPS-induced psychosis mice model. Furthermore, expressions of the COX-2 and NF-κB were measured trailed by histopathological examination. The optimized formulation demonstrated nanoparticle size (149.1 nm) with rounded morphology, negative zeta potential (-28.9 mV), lower PDI (0.334), and excellent entrapment efficiency (95%). OLAN-SLNs significantly retarded the drug release and showed sustained release pattern as compared to OLAN suspension. Significantly enhanced bioavailability (ninefold) was demonstrated in OLAN-SLNs when compared with OLAN suspension. Behavioral tests showed significantly less immobility and more struggling time in OLAN-SLNs treated mice group. Additionally, reduced expression of COX-2 and -NF κB in brain was found. Altogether, it can be concluded that SLNs have the potential to deliver active pharmaceutical ingredients to brain, most importantly to enhance their bioavailability and antipsychotic effect, as indicated for OLAN in this study.
Collapse
Affiliation(s)
- Hezhong Ouyang
- Department of Neurology, The People's Hospital of Danyang, Danyang, China
| | - Jinquan Hu
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - XingYing Qiu
- Department of Neurology, People's Liberation Army Joint Support Force 900th Hospital, Cangshan Hospital District, Fuzhou, China
| | - Shaochang Wu
- Department of Geriatrics, The Second People's Hospital of LiShui, Lishui, China
| | - Fudong Guo
- Department of Neurology, Affiliated Hospital of Chifeng University, Chifeng city, China
| | - Youguo Tan
- Department of Psychiatry, Zigong Mental health Centre, Zigong, China
| |
Collapse
|
23
|
Bagde A, Kouagou E, Singh M. Formulation of Topical Flurbiprofen Solid Lipid Nanoparticle Gel Formulation Using Hot Melt Extrusion Technique. AAPS PharmSciTech 2022; 23:257. [PMID: 36114430 PMCID: PMC9838183 DOI: 10.1208/s12249-022-02410-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/26/2022] [Indexed: 01/17/2023] Open
Abstract
Hot melt extrusion (HME) has been used for the formulation of topical solid lipid nanoparticle (SLN) gel without using any other size reduction technique including high pressure homogenization or sonication. SLN formulation solely using HME has not been applied to other drugs except IBU. Therefore, the purpose of the present study was to formulate FLB SLN solely using HME technique and evaluate the SLN formulation in inflammation animal model. Stable 0.5% w/v FLB SLN gel with particle size < 250 nm, PI < 0.3 and EE of > 98% was prepared. Differential scanning calorimetry (DSC) thermogram showed that the drug was converted to amorphous form in the HME process. Additionally, rheological studies demonstrated that FLB SLN gel and marketed FLB gel showed shear thinning property. FLB SLN formulation showed significantly (p < 0.05) higher peak force required to spread the formulation as compared to marketed FLB formulation. Stability studies showed that FLB SLN gel was stable for a month at room temperature and 2-4°C. Moreover, in vitro permeation test (IVPT) and ex vivo skin deposition study results revealed that FLB SLN gel showed significant (p < 0.05) increase in drug deposition in dermal layer and drug permeation as compared to control marketed formulation. Further, in vivo anti-inflammatory study showed equivalent inhibition of rat paw edema using 0.5% w/v FLB SLN gel which has 10 times less strength compared to control formulation. Overall, FLB SLN formulation was successfully manufactured solely using HME technique which resulted in enhanced the skin permeation of FLB and superior anti-inflammatory activity.
Collapse
Affiliation(s)
- Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Emmanual Kouagou
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, Florida 32307, USA
| |
Collapse
|
24
|
Wojtalewicz S, Vizmeg J, Erickson S, Lade C, Shea J, Sant H, Magda J, Gale B, Agarwal J, Davis B. Evaluating the influence of particle morphology and density on the viscosity and injectability of a novel long-acting local anesthetic suspension. J Biomater Appl 2022; 37:724-736. [PMID: 35649287 DOI: 10.1177/08853282221106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proper pain management is well understood to be one of the fundamental aspects of a healthy postoperative recovery in conjunction with mobility and nutrition. Approximately, 10% of patients prescribed opioids after surgery continue to use opioids in the long-term and as little as 10 days on opioids can result in addiction. In an effort to provide physicians with an alternative pain management technique, this work evaluates the material properties of a novel local anesthetic delivery system designed for controlled release of bupivacaine for 72 hours. The formulation utilizes solid-lipid microparticles that encapsulate the hydrophobic molecule bupivacaine in its free-base form. The lipid microparticles are suspended in a non-crosslinked hyaluronic acid hydrogel, which acts as the microparticle carrier. Two different particle manufacturing techniques, milling and hot homogenization, were evaluated in this work. The hot homogenized particles had a slower and more controlled release than the milled particles. Rheological techniques revealed that the suspension remains a viscoelastic fluid when loaded with either particle type up to 25% (w/v) particles densities. Furthermore, the shear thinning properties of the suspension media, hyaluronic acid hydrogel, were conserved when bupivacaine-loaded solid-lipid microparticles were loaded up to densities of 25% (w/v) particle loading. The force during injection was measured for suspension formulations with varying hyaluronic acid hydrogel concentrations, particle densities, particle types and particle sizes. The results indicate that the formulation viscosity is highly dependent on particle density, but hyaluronic acid hydrogel is required for lowering injection forces as well as minimizing clogging events.
Collapse
Affiliation(s)
- Susan Wojtalewicz
- Department of Mechanical Engineering, 14434University of Utah, Salt Lake City, UT, USA.,Rebel Medicine Inc., Salt Lake City, UT, USA
| | - Jonathon Vizmeg
- Rebel Medicine Inc., Salt Lake City, UT, USA.,Department of Biomedical Engineering, 14434University of Utah, Salt Lake City, UT, USA
| | | | - Caleb Lade
- Rebel Medicine Inc., Salt Lake City, UT, USA
| | - Jill Shea
- Department of Surgery, 14434University of Utah, Salt Lake City, UT, USA
| | - Himanshu Sant
- Department of Mechanical Engineering, 14434University of Utah, Salt Lake City, UT, USA
| | - Jules Magda
- Department of Chemical Engineering, 14434University of Utah, Salt Lake City, UT, USA
| | - Bruce Gale
- Department of Mechanical Engineering, 14434University of Utah, Salt Lake City, UT, USA
| | - Jayant Agarwal
- Rebel Medicine Inc., Salt Lake City, UT, USA.,Department of Surgery, 14434University of Utah, Salt Lake City, UT, USA
| | - Brett Davis
- Rebel Medicine Inc., Salt Lake City, UT, USA
| |
Collapse
|
25
|
Regeneration of insulin-producing cells from iPS cells using functionalized scaffolds and solid lipid nanoparticles. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Kuo YC, Yang IS, Rajesh R. Suppressed XIAP and cIAP expressions in human brain cancer stem cells using BV6- and GDC0152-encapsulated nanoparticles. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Prakash G, Shokr A, Willemen N, Bashir SM, Shin SR, Hassan S. Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2022; 184:114197. [PMID: 35288219 PMCID: PMC9035142 DOI: 10.1016/j.addr.2022.114197] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Gene therapy has emerged as a potential platform for treating several dreaded and rare diseases that would not have been possible with traditional therapies. Viral vectors have been widely explored as a key platform for gene therapy due to their ability to efficiently transport nucleic acid-based therapeutics into the cells. However, the lack of precision in their delivery has led to several off-target toxicities. As such, various strategies in the form of non-viral gene delivery vehicles have been explored and are currenlty employed in several therapies including the SARS-CoV-2 vaccine. In this review, we discuss the opportunities lipid nanoparticles (LNPs) present for efficient gene delivery. We also discuss various synthesis strategies via microfluidics for high throughput fabrication of non-viral gene delivery vehicles. We conclude with the recent applications and clinical trials of these vehicles for the delivery of different genetic materials such as CRISPR editors and RNA for different medical conditions ranging from cancer to rare diseases.
Collapse
Affiliation(s)
- Gyan Prakash
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ahmed Shokr
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA
| | - Niels Willemen
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar 190006, Jammu and Kashmir, India
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA.
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA; Department of Biology, Khalifa University, Abu Dhabi, P.O 127788, United Arab Emirates.
| |
Collapse
|
28
|
Kamran M, Khan MA, Shafique M, Alotaibi G, Mouslem AA, Rehman M, Khan MA, Gul S. Formulation Design, Characterization and In-Vivo Assessment of Cefixime Loaded Binary Solid Lipid Nanoparticles to Enhance Oral Bioavailability. J Biomed Nanotechnol 2022; 18:1215-1226. [PMID: 35854445 DOI: 10.1166/jbn.2022.3313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cefixime; widely employed cephalosporin antibiotic is unfortunately coupled to poor water solubility with resultant low oral bioavailability issues. To solve this problem micro-emulsion technique was used to fabricate binary SLNs using blend of solid and liquid lipids, surfactant as well as co-surfactant. The optimized nano suspension was characterized followed by modification to solidified dosage form. During characterization, optimized nano-suspension (CFX-4) produced particle size 189±2.1 nm with PDI 0.310±0.02 as well as -33.9±2 mV zeta potential. Scanning electron microscopy (SEM) presented nearly identical and spherical shaped particles. Differential scanning calorimetry and X-ray powder diffraction analysis ascertained decrease in drug's crystallinity. In-vitro release of drug pursued zero-order characteristics and demonstrated non-fickian pattern of diffusion. The freeze dried nano suspension (CFX-4) was transformed to capsule dosage form to perform comparison based In-Vivo studies. In-Vivo evaluation corresponded to 2.20-fold and 2.11-fold enhancement in relative bioavailability of CFX nano-formulation (CFX-4) as well as the prepared capsules respectively in contrast to the commercialized product (Cefiget®). In general; the obtained results substantiated superior oral bioavailability along with sustained pattern of drug release for CFX loaded binary nano particles. Thus, binary SLNs could be employed as a resourceful drug carrier for oral CFX delivery.
Collapse
Affiliation(s)
- Mahwish Kamran
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), 18800, Khyber Pakhtunkhwa, Pakistan
| | - Mir Azam Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), 18800, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Shafique
- Department of Pharmaceutical Sciences, College of Pharmacy-Boys, Al-Dawadmi Campus, Shaqra University, Shaqra, 15572, KSA
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy-Boys, Al-Dawadmi Campus, Shaqra University, Shaqra, 15572, KSA
| | - Abdulaziz Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Maqsood Rehman
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), 18800, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Asghar Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), 18800, Khyber Pakhtunkhwa, Pakistan
| | - Sumaira Gul
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| |
Collapse
|
29
|
Khan ZU, Razzaq A, Khan A, Rehman NU, Khan H, Khan T, Khan AU, Althobaiti NA, Menaa F, Iqbal H, Khan NU. Physicochemical Characterizations and Pharmacokinetic Evaluation of Pentazocine Solid Lipid Nanoparticles against Inflammatory Pain Model. Pharmaceutics 2022; 14:409. [PMID: 35214141 PMCID: PMC8876599 DOI: 10.3390/pharmaceutics14020409] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Pentazocine (PTZ), a narcotic-antagonist analgesic, has been extensively used in the treatment of initial carcinogenic or postoperative pain. Hepatic first-pass metabolism results in low oral bioavailability and high dose wastage. Herein, 10 mg (-)-Pentazocine (HPLC-grade) was incorporated to solid lipid nanoparticles (SLNs) using a double water-oil-water (w/o/w) emulsion by solvent emulsification-evaporation technique, followed by high shear homogenization to augment its oral bioavailability, considering the lymphatic uptake. The resulting SLNs were characterized for zeta potential (ZP), particle size (PS), and polydispersity index (PDI) using a zetasizer. The entrapment efficiency (EE) and loading capacity (LC) were calculated. Chemical interactions, through the identification of active functional groups, were assessed by Fourier-transformed infrared (FTIR) spectroscopy. The nature (crystallinity) of the SLNs was determined by X-ray diffractometry (XRD). The surface morphology was depicted by transmission electron microscopy (TEM). In vitro (in Caco-2 cells) and in vivo (in male Wistar rats) investigations were carried out to evaluate the PTZ release behavior and stability, as well as the cellular permeation, cytotoxicity, systemic pharmacokinetics, antinociceptive, anti-inflammatory, and antioxidative activities of PTZ-loaded SLNs, mainly compared to free PTZ (marketed conventional dosage form). The optimized PTZ-loaded SLN2 showed significantly higher in vitro cellular permeation and negligible cytotoxicity. The in vivo bioavailability and pharmacokinetics parameters (t1/2, Cmax) of the PTZ-loaded SLNs were also significantly improved, and the nociception and inflammation, following carrageenan-induced inflammatory pain, were markedly reduced. Concordantly, PTZ-loaded SLNs showed drastic reduction in the oxidative stress (e.g., malonaldehyde (MDA)) and proinflammatory cytokines (e.g., Interleukin (IL)-1β, -6, and TNF-α). The histological features of the paw tissue following, carrageenan-induced inflammation, were significantly improved. Taken together, the results demonstrated that PTZ-loaded SLNs can improve the bioavailability of PTZ by bypassing the hepatic metabolism via the lymphatic uptake, for controlled and sustained drug delivery.
Collapse
Affiliation(s)
- Zaheer Ullah Khan
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan; (Z.U.K.); (A.K.); (N.U.R.); (T.K.)
| | - Anam Razzaq
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
| | - Ahsan Khan
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan; (Z.U.K.); (A.K.); (N.U.R.); (T.K.)
| | - Naeem Ur Rehman
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan; (Z.U.K.); (A.K.); (N.U.R.); (T.K.)
| | - Hira Khan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Colombus, OH 43210, USA;
| | - Taous Khan
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan; (Z.U.K.); (A.K.); (N.U.R.); (T.K.)
| | - Ashraf Ullah Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Norah A. Althobaiti
- Department of Biology, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia;
| | - Farid Menaa
- Department of Oncology and Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA
| | - Haroon Iqbal
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences (CAS), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China;
| | - Naveed Ullah Khan
- Department of Pharmacy, Gujrat Campus, University of Lahore, Lahore 50700, Pakistan
| |
Collapse
|
30
|
Amarachi CS, Attama AA, Onunkwo GC. Assessment of the Anti-Malarial Properties of Dihydroartemisinin- Piperaquine Phosphate Solid Lipid-Based Tablets. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:103-117. [PMID: 35670344 DOI: 10.2174/2772434417666220606105822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Artemisininbased combination therapies (ACTs) typified by dihydroartemisinin- piperaquine phosphate are first-line drugs used in the treatment of Plasmodium falciparum malaria. However, the emergence of drug resistance to ACTs shows the necessity to develop novel sustained release treatments in order to ensure maximum bioavailability. OBJECTIVES To formulate dihydroartemisinin (DHA)-piperaquine phosphate (PQ) sustained release tablets based on solidified reverse micellar solutions (SRMS). METHODS The SRMS was prepared by fusion using varying ratios of Phospholipon® 90H and Softisan® 154 and characterised. The tablets were prepared by using an in-house made and validated mould. The formulations were tested for uniformity of weight, hardness, friability, softening time, erosion time and in vitro-in vivo dissolution rate. Antimalarial properties were studied using modified Peter's 4-days suppressive test in mice. One-way analysis of variance (ANOVA) was used in the analysis of results. RESULTS Smooth caplets, with average weight of 1300 ± 0.06 mg to 1312 ± 0.11 mg, drug content of 61 mg for DHA and t 450 mg for PQ. Tablet hardness ranged from 7.1 to 9.0 Kgf and softening time of 29.50 ± 1.90 min. Erosion time of 62.00 ± 2.58 to 152.00 ± 1.89 min were obtained for tablets formulated with Poloxamer 188 (Batches R2, S2 and T2) which significantly reduced the softening and erosion time (p < 0.05). In vitro release showed that the optimized formulations had a maximum release at 12 h. Formulations exhibited significantly higher parasitaemia clearance and in vivo absorption compared to marketed formulations at day 7 (p < 0.05). CONCLUSION DHA-PQ tablets based on SRMS were much easier and relatively cheaper to produce than compressed tablets. They also showed exceptionally better treatment of malaria owing to their sustained release properties and improved bioavailability and are recommended to Pharmaceutical companies for further studies.
Collapse
Affiliation(s)
- Chime Salome Amarachi
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka 410001, Nigeria
| | | | | |
Collapse
|
31
|
Dudhipala N, Ettireddy S, Youssef AAA, Puchchakayala G. Cyclodextrin Complexed Lipid Nanoparticles of Irbesartan for Oral Applications: Design, Development, and In Vitro Characterization. Molecules 2021; 26:molecules26247538. [PMID: 34946619 PMCID: PMC8704533 DOI: 10.3390/molecules26247538] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/28/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Irbesartan (IR) is an angiotensin II receptor antagonist drug with antihypertensive activity. IR bioavailability is limited due to poor solubility and first-pass metabolism. The current investigation aimed to design, develop, and characterize the cyclodextrin(s) (CD) complexed IR (IR-CD) loaded solid lipid nanoparticles (IR-CD-SLNs) for enhanced solubility, sustained release behavior, and subsequently improved bioavailability through oral administration. Based on phase solubility studies, solid complexes were prepared by the coacervation followed by lyophilization method and characterized for drug content, inclusion efficiency, solubility, and in vitro dissolution. IR-CD inclusion complexes demonstrated enhancement of solubility and dissolution rate of IR. However, the dissolution efficiency was significantly increased with hydroxypropyl-βCD (HP-βCD) inclusion complex than beta-CD (βCD). SLNs were obtained by hot homogenization coupled with the ultrasonication method with IR/HP-βCD inclusion complex loaded into Dynasan 112 and glycerol monostearate (GMS). SLNs were evaluated for physicochemical characteristics, in vitro release, differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and physical stability at room temperature for two months. The optimized SLNs formulation showed particle size, polydispersity index, zeta potential, assay, and entrapment efficiency of 257.6 ± 5.1 nm, 0.21 ± 0.03, -30.5 ± 4.1 mV, 99.8 ± 2.5, and 93.7 ± 2.5%, respectively. IR-CD-SLN and IR-SLN dispersions showed sustained release of IR compared to the IR-CD inclusion complexes. DSC results complimented PXRD results by the absence of IR endothermic peak. Optimized IR-CD complex, IR-SLN, and IR-CD-SLN formulations were stable for two months at room temperature. Thus, the current IR oral formulation may exhibit improved oral bioavailability and prolonged antihypertensive activity, which may improve therapeutic outcomes in the treatment of hypertension and heart failure.
Collapse
Affiliation(s)
- Narendar Dudhipala
- Department of Pharmaceutics, Vaagdevi Pharmacy College, Warangal 506005, Telangana, India;
- Synapse Life Sciences, Warangal 506001, Telangana, India;
- Correspondence:
| | | | - Ahmed Adel Ali Youssef
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Goverdhan Puchchakayala
- Department of Pharmaceutics, Vaagdevi Pharmacy College, Warangal 506005, Telangana, India;
- Synapse Life Sciences, Warangal 506001, Telangana, India;
| |
Collapse
|
32
|
Shakeel F, Alam P, Ali A, Alqarni MH, Alshetaili A, Ghoneim MM, Alshehri S, Ali A. Investigating Antiarthritic Potential of Nanostructured Clove Oil ( Syzygium aromaticum) in FCA-Induced Arthritic Rats: Pharmaceutical Action and Delivery Strategies. Molecules 2021; 26:molecules26237327. [PMID: 34885909 PMCID: PMC8658777 DOI: 10.3390/molecules26237327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
The combined application of clove oil in a lipid nanocarrier opens a promising avenue for bone and joints therapy. In this study, we successfully developed a tunable controlled-release lipid platform for the efficient delivery of clove oil (CO) for the treatment of rheumatoid arthritis (RA). The ultra-small nanostructured lipid carriers co-loaded with CO (CONCs) were developed through an aqueous titration method followed by microfluidization. The CONCs appeared to be spherical (particle size of 120 nm), stable (zeta potential of −27 mV), and entrapped efficiently (84.5%). In toluene:acetone:glacial acetic acid (90:9:1 percent v/v/v) solvent systems, high-performance thin layer chromatography (HPTLC) analysis revealed the primary components in CO as eugenol (RF = 0.58). The CONCs greatly increased the therapeutic impact of CO in both in vitro and in vivo biological tests, which was further supported by excellent antiarthritic action. The CONC had an antiarthritic activity that was slightly higher than neat CO and slightly lower than standard, according to our data. The improved formulation inhibited serum lysosomal enzymes and proinflammatory cytokines while also improving hind leg function. This study provides a proof of concept to treat RA with a new strategy utilizing essential oils via nanodelivery.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence:
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (P.A.); (M.H.A.)
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (P.A.); (M.H.A.)
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
33
|
Abdelhakeem E, El-Nabarawi M, Shamma R. Lipid-based nano-formulation platform for eplerenone oral delivery as a potential treatment of chronic central serous chorioretinopathy: in-vitro optimization and ex-vivo assessment. Drug Deliv 2021; 28:642-654. [PMID: 33787445 PMCID: PMC8023249 DOI: 10.1080/10717544.2021.1902023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Eplerenone (EPL) is a selective mineralocorticoid receptor antagonist used for treatment of chronic central serous chorioretinopathy which characterized by accumulation of subretinal fluid causing a localized area of retinal detachment. unfortunately, EPL suffers from poor oral bioavailability due to poor aqueous solubility in addition to high hepatic first pass metabolism. METHOD Aiming to improve its oral bioavailability, EPL-loaded nanostructured lipid carriers (NLCs) were prepared by the emulsification solvent evaporation method and in-vitro evaluated for particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE%). A D-optimal design was used for study the effect of liquid lipid to solid lipid ratio, surfactant type and percentage on PS, PDI, EE%, and for data optimization. The optimized EPL-loaded NLCs system was further evaluated using in-vitro drug release and ex-vivo permeation studies through rabbit intestine in comparison to EPL aqueous suspension. The physicochemical properties of the drug in the optimized system were further examined using FT-IR and X-ray diffraction studies. RESULTS The resultant NLCs showed small PS (100.85-346.60 nm), homogenous distribution (0.173-0.624), negatively charged particles (ZP -20.20 to -36.75 mV), in addition to EE% (34.31-70.64%). The optimized EPL-loaded NLCs system with a desirability value of 0.905 was suggested through the Design expert® software, containing liquid to solid lipid ratio (2:1) in presence of 0.43%w/v Pluronic® F127 as a surfactant. The optimized EPL-loaded NLCs system showed a PS of 134 nm and PDI of 0.31, in addition to high EE% (76 ± 6.56%w/w), and ZP (-32.37 mV). The ex-vivo permeation study showed two-fold higher drug permeation through rabbit intestine compared to that from the aqueous drug suspension after 24 h, confirming the ability of optimized EPL-loaded NLCs system as successful oral targeting delivery carrier. CONCLUSION Our results pave the way for a new oral nanotherapeutic approach toward CSCR treatment. In-vivo study is currently under investigation.
Collapse
Affiliation(s)
- Eman Abdelhakeem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
34
|
Sapino S, Chindamo G, Chirio D, Manzoli M, Peira E, Riganti C, Gallarate M. Calcium Phosphate-Coated Lipid Nanoparticles as a Potential Tool in Bone Diseases Therapy. NANOMATERIALS 2021; 11:nano11112983. [PMID: 34835747 PMCID: PMC8625061 DOI: 10.3390/nano11112983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022]
Abstract
The treatment of bone diseases (including osteoporosis, osteoarthritis, and bone cancer) often results in reduced efficiency and/or adverse reactions due to the fact that it is not specifically targeted to the site of action. The employment of a suitable carrier should increase drug location to the site of bone disease. The purpose of this study is to prepare and characterize lipid nanoparticles (NPs) coated with calcium phosphate (CaP-NPs). A coating method, to date used only to obtain liposomes covered with CaP, is herein partially-modified to prepare CaP-coated lipid NPs. An extensive physico-chemical characterization was achieved by employing several techniques (DLS, SEM and TEM, and both combined with EDS, XRD, and FTIR) that confirmed the feasibility of the developed coating method. Preliminary uptake studies on human osteosarcoma cells (U-2OS) were performed by entrapping, as a lipid probe, Sudan Red III in NPs. The obtained data provided evidence that CaP-NPs showed higher cell accumulation than uncoated NPs. This result may have important implications for the development of drug loaded CaP-NPs to be tested in vitro with a view of planning future treatment of bone diseases, and indicate that CaP-NPs are potential vehicles for selective drug delivery to bone tissue.
Collapse
Affiliation(s)
- Simona Sapino
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (S.S.); (G.C.); (M.M.); (E.P.); (M.G.)
| | - Giulia Chindamo
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (S.S.); (G.C.); (M.M.); (E.P.); (M.G.)
| | - Daniela Chirio
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (S.S.); (G.C.); (M.M.); (E.P.); (M.G.)
- Correspondence: (D.C.); (C.R.); Tel.: +39-011-6707167 (D.C.); +39-011-6705857 (C.R.)
| | - Maela Manzoli
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (S.S.); (G.C.); (M.M.); (E.P.); (M.G.)
| | - Elena Peira
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (S.S.); (G.C.); (M.M.); (E.P.); (M.G.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy
- Correspondence: (D.C.); (C.R.); Tel.: +39-011-6707167 (D.C.); +39-011-6705857 (C.R.)
| | - Marina Gallarate
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (S.S.); (G.C.); (M.M.); (E.P.); (M.G.)
| |
Collapse
|
35
|
Kumar N, Goindi S. Development and Optimization of Itraconazole-Loaded Solid Lipid Nanoparticles for Topical Administration Using High Shear Homogenization Process by Design of Experiments: In Vitro, Ex Vivo and In Vivo Evaluation. AAPS PharmSciTech 2021; 22:248. [PMID: 34647162 DOI: 10.1208/s12249-021-02118-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 01/23/2023] Open
Abstract
The aim of present study was to develop topical itraconazole (ITZ)-loaded solid lipid nanoparticles for treatment of superficial fungal infections. Formulations were prepared using high shear homogenization process, and optimized by employing a two-step design of experiments (DoE) approach. It comprised a Taguchi experimental design for screening of 'vital few' factors, and a central composite experimental design for optimization. Overlay of the response surface maps for percent drug entrapment (PDE), particle size, ITZ skin retention and permeation was performed to obtain the optimized ITZ-loaded SLNs (OPT-SLNs) suspension. The optimized ITZ-loaded SLNs (OPT-SLNs) showed mean particle size of (262.92 ± 8.56 nm) and zeta potential value of 22.36 mV. Excellent drug entrapment (94.21 ± 3.35%) and skin retention of ITZ (43.03 ± 1.86 μg/cm2) was achieved by OPT-SLNs. The hydrogel formulation of OPT-SLNs exhibited good gel consistency and spreadability characteristics. Pharmacodynamic and skin sensitivity studies in standardized rodent models revealed that OPT-SLNs hydrogel was more efficacious than conventional oral and topical antifungal therapies, and also safe for topical administration. Furthermore, the histoptahological evaluation depicted complete recovery of infected rats after 14-day treatment regimen of OPT-SLNs hydrogel. The developed formulation was found to have tremendous potential to enhance ITZ activity through topical administration approach.
Collapse
|
36
|
Calorimetric Evaluation of Glycyrrhetic Acid (GA)- and Stearyl Glycyrrhetinate (SG)-Loaded Solid Lipid Nanoparticle Interactions with a Model Biomembrane. Molecules 2021; 26:molecules26164903. [PMID: 34443491 PMCID: PMC8398178 DOI: 10.3390/molecules26164903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Glycyrrhetic acid (GA) and stearyl glycyrrhetinate (SG) are two interesting compounds from Glycyrrhiza glabra, showing numerous biological properties widely applied in the pharmaceutical and cosmetic fields. Despite these appreciable benefits, their potential therapeutic properties are strongly compromised due to unfavourable physical-chemical features. The strategy exploited in the present work was to develop solid lipid nanoparticles (SLNs) as carrier systems for GA and SG delivery. Both formulations loaded with GA and SG (GA-SLNs and SG-SLNs, respectively) were prepared by the high shear homogenization coupled to ultrasound (HSH-US) method, and we obtained good technological parameters. DSC was used to evaluate their thermotropic behaviour and ability to act as carriers for GA and SG. The study was conducted by means of a biomembrane model (multilamellar vesicles; MLVs) that simulated the interaction of the carriers with the cellular membrane. Unloaded and loaded SLNs were incubated with the biomembranes, and their interactions were evaluated over time through variations in their calorimetric curves. The results of these studies indicated that GA and SG interact differently with MLVs and SLNs; the interactions of SG-SLNs and GA-SLNs with the biomembrane model showed different variations of the MLVs calorimetric curve and suggest the potential use of SLNs as delivery systems for GA.
Collapse
|
37
|
Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, Taliyan R, Yang CH. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics 2021; 13:1183. [PMID: 34452143 PMCID: PMC8402065 DOI: 10.3390/pharmaceutics13081183] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of several neuropathological conditions where the therapeutic agents cannot cross the BBB. Drug toxicity and on-target specificity are among some of the limitations associated with current neurotherapeutics. In recent years, advances in nanodrug delivery have enabled the carrier system containing the active therapeutic drug to target the signaling pathways and pathophysiology that are closely linked to central nervous system (CNS) disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), brain tumor, epilepsy, ischemic stroke, and neurodegeneration. At present, among the nano formulations, solid lipid nanoparticles (SLNs) have emerged as a putative drug carrier system that can deliver the active therapeutics (drug-loaded SLNs) across the BBB at the target site of the brain, offering a novel approach with controlled drug delivery, longer circulation time, target specificity, and higher efficacy, and more importantly, reducing toxicity in a biomimetic way. This paper highlights the synthesis and application of SLNs as a novel nontoxic formulation strategy to carry CNS drugs across the BBB to improve the use of therapeutics agents in treating major neurological disorders in future clinics.
Collapse
Affiliation(s)
- Mantosh Kumar Satapathy
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
| | - Ruei-Dun Tang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan;
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Rajeev Taliyan
- Department of Pharmacy, Neuropsychopharmacology Division, Birla Institute of Technology and Science, Pilani 333031, India;
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
38
|
Shepherd SJ, Issadore D, Mitchell MJ. Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials 2021; 274:120826. [PMID: 33965797 PMCID: PMC8752123 DOI: 10.1016/j.biomaterials.2021.120826] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics-devices that manipulate fluids on a micrometer scale-have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques-such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets.
Collapse
Affiliation(s)
- Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
Bawazeer S, El-Telbany DFA, Al-Sawahli MM, Zayed G, Keed AAA, Abdelaziz AE, Abdel-Naby DH. Effect of nanostructured lipid carriers on transdermal delivery of tenoxicam in irradiated rats. Drug Deliv 2021; 27:1218-1230. [PMID: 32772730 PMCID: PMC7470136 DOI: 10.1080/10717544.2020.1803448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transdermal delivery of non-steroidal anti-inflammatory drugs (NSAIDs) is an effective route of drug administration, as it directs the drug to the inflamed site with reduced incidence of systemic adverse effects such as gastric hemorrhage and ulcers. Tenoxicam (TNX) is a member of NSAIDs that are marketed only as oral tablets due to very poor absorption through the skin. The current study intended to formulate and characterize a hydrogel loaded with nanostructured lipid carriers (NLCs) to enhance the transdermal delivery of TNX. Six formulations of TNX were formulated by slight modifications of high shear homogenization and ultrasonication method. The selected formula was characterized for their particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE), in-vitro drug release and ex-vivo skin permeation studies. Moreover, the effectiveness of the developed formula was studied in-vivo using carrageenan-induced paw edema and hyperalgesia model in irradiated rats. Formula F4 was chosen from six formulations, as the average diameter was 679.4 ± 51.3 nm, PDI value of about 0.02, zeta potential of -4.24 mV, EE of 92.36%, globules nanoparticles without aggregations and absence of interactions in the developed formula. Additionally, the in-vivo study showed the efficacy of formula F4 (TNX-NLCs hydrogel) equivalent to oral TNX in reducing the exaggerated inflammatory response induced by carrageenan after irradiation. In conclusion, the present findings suggest that TNX-NLCs hydrogel could be a potential transdermal drug delivery system alternative to the oral formulation for the treatment of various inflammatory conditions.
Collapse
Affiliation(s)
- Saud Bawazeer
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Dalia Farag A El-Telbany
- Department of Pharmaceutics, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Majid Mohammad Al-Sawahli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Gamal Zayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Abdelaziz E Abdelaziz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Doaa H Abdel-Naby
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
40
|
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is a frequently occurring type of cancer leading loss of huge number of lives. Folic acid (FA) conjugated solid lipid nanoparticle (SLN) loaded paclitaxel (PTX) and ascorbic acid (AA) has been used as a novel approach in this study. METHODS The FA conjugated SLN were prepared by following high speed homogenization and ultrasonication methods. FA conjugated SLN were used alone and in combination to evaluate their efficacy against OSCC induced animal model. FA conjugated PTX and FA conjugated AA loaded SLN were further subjected to pharmacokinetic and biodistribution. RESULTS The FA conjugated SLN showed a biphasic drug release behavior both in in vitro as well as in vivo system. FA conjugated PTX loaded SLN and FA conjugated AA loaded SLN shows high efficiency when used in combination as compared to when used individually in vivo. FA conjugated SLN shows a better therapeutic efficacy as compared to normal drug as depicted by the observation of pharmacokinetic and biodistribution studies. CONCLUSION The in vitro and in vivo evaluation of the FA conjugated SLN concluded with a remark that, these SLN can be effectively used in the treatment of OSCC.
Collapse
Affiliation(s)
- Rituraj Bharadwaj
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, Gauhati University, Guwahati, India
| | - Subhash Medhi
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, Gauhati University, Guwahati, India
| |
Collapse
|
41
|
Youshia J, Kamel AO, El Shamy A, Mansour S. Gamma sterilization and in vivo evaluation of cationic nanostructured lipid carriers as potential ocular delivery systems for antiglaucoma drugs. Eur J Pharm Sci 2021; 163:105887. [PMID: 34022410 DOI: 10.1016/j.ejps.2021.105887] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 02/02/2023]
Abstract
Solid lipid nanoparticles and nanostructured lipid carriers showed promising results for enhancement of ocular bioavailability of drugs with poor corneal permeability. One of these drugs is methazolamide, which is an orally administered carbonic anhydrase inhibitor for glaucoma treatment. However, sterilization by autoclaving may result in loss of the physical properties of lipid nanoparticles such as particle size and surface charge. Here, we evaluated gamma radiation as an alternative sterilization method. Methazolamide loaded nanostructured lipid carriers were optimized using 23 factorial design. Optimized formulations contained 6% lipid (85% solid lipid (Cetostearyl alcohol and glyceryl behenate) and 15% oil either medium chain triglycerides or isopropyl myristate) stabilized by 2% polysorbate 80 and 0.15% stearylamine. Nanoparticles were cationic, smaller than 500 nm, and had an entrapment efficiency of about 30%. They released methazolamide within 8 hours and showed a 5-fold enhanced reduction in intraocular pressure compared to methazolamide solution. Gamma sterilization was superior to autoclaving in preserving entrapped methazolamide, size, and surface charge of lipid nanoparticles. These findings demonstrate that gamma radiation is a viable alternative to autoclaving for sterilizing lipid nanoparticles. Moreover, this proves that nanostructured lipid carriers enhance pharmacological response of topically administered methazolamide for treating glaucoma.
Collapse
Affiliation(s)
- John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - Amany O Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Abdelhameed El Shamy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Samar Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| |
Collapse
|
42
|
Raloxifene-loaded SLNs with enhanced biopharmaceutical potential: QbD-steered development, in vitro evaluation, in vivo pharmacokinetics, and IVIVC. Drug Deliv Transl Res 2021; 12:1136-1160. [PMID: 33966178 DOI: 10.1007/s13346-021-00990-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
Raloxifene hydrochloride, a second-generation selective estrogen receptor modulator, has been approved for the management of breast cancer. However, it is known to exhibit poor (~ 2%) and inconsistent oral bioavailability in humans, primarily ascribable to its low aqueous solubility, extensive first-pass metabolism, P-gp efflux, and presystemic glucuronide conjugation. The present research work entails the systematic development and evaluation of SLNs of RLX for its enhanced biopharmaceutical performance against breast cancer. Factor screening studies were conducted using Taguchi design, followed by optimization studies employing Box-Behnken design. Preparation of SLNs was carried out using glyceryl monostearate and Compritol® 888 ATO (i.e., lipid), Phospholipid S-100 (i.e., co-surfactant), and TPGS-1000 (i.e., surfactant) employing solvent diffusion method. The optimized formulation was evaluated for zeta potential, average particle size, field emission scanning electron microscope, transmission electron microscopy, and in vitro release study. Further, MCF-7 cells (cell cytotoxicity assay, apoptosis assay, and reactive oxygen species assay) and Caco-2 cells (cell uptake studies and P-gp efflux assay) were employed to evaluate the in vitro anticancer potential of the developed optimized formulation. In vivo pharmacokinetic studies were conducted in Sprague-Dawley rats to evaluate the therapeutic profile of the developed formulation. The optimized SLN formulations exhibited a mean particle size of 109.7 nm, PDI 0.289 with a zeta potential of - 13.7 mV. In vitro drug dissolution studies showed Fickian release, with release exponent of 0.137. Cell cytotoxicity assay, apoptosis assay, and cellular uptake indicated 6.40-, 5.40-, and 3.18-fold improvement in the efficacy of RLX-SLNs vis-à-vis pure RLX. Besides, the pharmacokinetic studies indicated quite significantly improved biopharmaceutical performance of RLX-SLNs vis-à-vis pure drug, with 4.06-fold improvement in Cmax, 4.40-fold in AUC(0-72 h), 4.56-fold in AUC(0-∞), 1.53-fold in Ka, 2.12-fold in t1/2, and 1.22-fold in Tmax. Further, for RLX-SLNs and pure drug, high degree of level A linear correlation was established between fractions of drug dissolved (in vitro) and of drug absorbed (in vivo) at the corresponding time-points. Stability studies indicated the robustness of RLX-SLNs when stored at for 3 months. Results obtained from the different studies construe promising the anticancer potential of the developed RLX-SLNs, thereby ratifying the lipidic nanocarriers as an efficient drug delivery strategy for improving the biopharmaceutical attributes of RLX.
Collapse
|
43
|
Abbas H, El-Deeb NM, Zewail M. PLA-coated Imwitor ® 900 K-based herbal colloidal carriers as novel candidates for the intra-articular treatment of arthritis. Pharm Dev Technol 2021; 26:682-692. [PMID: 33952085 DOI: 10.1080/10837450.2021.1920617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although there are several treatments for rheumatoid arthritis (RA), outcomes are unsatisfactory and often associated with many side effects. We attempted to improve RA therapeutic outcomes by intra-articular administration of dual drug-loaded poly(lactic) acid (PLA)-coated herbal colloidal carriers (HCCs). Curcumin (CU) and resveratrol (RES) were loaded into HCCs because of their safety and significant anti-inflammatory activity. HCCs were prepared using a high-pressure, hot homogenization technique and evaluated in vitro and in vivo using a complete Freund's adjuvant-induced arthritis model. Transmission electron microscope (TEM) evaluated coating selected formulations with PLA, which increased particle sizes from 52 to 89.14 nm. The entrapment efficiency of both formulations was approximately 76%. HCCs significantly increased the amount of RES and CU released compared with the drug suspensions alone. The in vivo treated groups showed a significant improvement in joint healing. PLA-coated HCCs, followed by uncoated HCCs, yielded the highest reductions in knee diameter, myeloperoxidase (MPO) levels, and tumor necrosis factor-alpha (TNFα) levels. Histological examination of the dissected joints revealed that PLA-coated HCCs followed by uncoated HCCs exhibited the most significant joint healing effects. Our results demonstrate the superiority of intra-articularly administered HCCs to suppress RA progression compared with RES or CU suspensions alone.
Collapse
Affiliation(s)
- Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhur, Egypt
| | - Nehal M El-Deeb
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Egypt
| | - Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhur, Egypt
| |
Collapse
|
44
|
Zewail M, Nafee N, Boraie N. Intra-Articular Dual Drug Delivery for Synergistic Rheumatoid Arthritis Treatment. J Pharm Sci 2021; 110:2808-2822. [PMID: 33848528 DOI: 10.1016/j.xphs.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
Systemic rheumatoid arthritis (RA) regimens fail to attain effective drug level at the affected joints and are associated with serious side effects. Herein, an attempt made to improve therapeutic outcomes of both leflunomide (LEF) which is a disease modifying antirheumatic and dexamethasone (Dex) through local delivery of combination therapy by intra-articular route. LEF and Dex were encapsulated in nanostructured lipid carriers (NLCs) and PLGA nanoparticles (NPs), respectively. Both nanocarriers were loaded into chitosan/β glycerophosphate (CS/βGP) thermo-sensitive hydrogels and injected intra-articularly in adjuvant induced RA rat model. Particle size of LEF NLCs and selected Dex NPs formulations were 200 and 119 nm, respectively. Dex NPs and LEF NLCs showed a sustained release profile for up to 58 and 17 days, respectively. After 14 days of treatment remarkable joint healing was observed for groups treated with Dex NPs in combination with either free LEF or LEF NLCs in CS/βGP hydrogel. Joint diameter measurements, TNF α levels and histopathological examination of dissected joints showed comparable values to the negative control group. This might be attributed to the synergistic effect of drug combination besides the ability of nanocarriers loaded hydrogel to prolong joint residence time and enhance joint healing potential.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, El Gomhoria Street, Damanhour, Egypt.
| | - Noha Nafee
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
45
|
Levy G, Barak B. Postnatal therapeutic approaches in genetic neurodevelopmental disorders. Neural Regen Res 2021; 16:414-422. [PMID: 32985459 PMCID: PMC7996025 DOI: 10.4103/1673-5374.293133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 03/28/2020] [Indexed: 12/16/2022] Open
Abstract
Genetic neurodevelopmental disorders are characterized by abnormal neurophysiological and behavioral phenotypes, affecting individuals worldwide. While the subject has been heavily researched, current treatment options relate mostly to alleviating symptoms, rather than targeting the altered genome itself. In this review, we address the neurogenetic basis of neurodevelopmental disorders, genetic tools that are enabling precision research of these disorders in animal models, and postnatal gene-therapy approaches for neurodevelopmental disorders derived from preclinical studies in the laboratory.
Collapse
Affiliation(s)
- Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
46
|
Hasan N, Imran M, Kesharwani P, Khanna K, Karwasra R, Sharma N, Rawat S, Sharma D, Ahmad FJ, Jain GK, Bhatnagar A, Talegaonkar S. Intranasal delivery of Naloxone-loaded solid lipid nanoparticles as a promising simple and non-invasive approach for the management of opioid overdose. Int J Pharm 2021; 599:120428. [PMID: 33662465 DOI: 10.1016/j.ijpharm.2021.120428] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
Naloxone is an opioid receptor antagonist that can eradicate all pre-indications of the toxicity and inverse the opioid overdose. However, oral administration of naloxone offers limitations such as its extensive first-pass metabolism that results in poor therapeutic effects. In order to resolve this issue, we developed intranasal solid-lipid nanoparticles in which naloxone was incorporated for the higher brain disposition of naloxone with superior therapeutic effects for the reversal of toxicity of opioid overdose. The preparation of naloxone loaded solid-lipid nanoparticles was done by employing the solvent evaporation method. Later, the designed formulation was optimized by Quality by Design approach, specifically, Box-Behnken method. The composition of optimized formulation was Glyceryl monostearate as a solid lipid (40 mg), Pluronic127 (0.5%) and Tween 80 (0.1%) as a surfactant and co-surfactant, respectively. Furthermore, the characterization of optimized formulation was achieved in terms of particle size, PDI, zeta potential, entrapment efficiency, and drug loading which were 190.2 nm, 0.082, -16 mV, 95 ± 0.532% and 19.08 ± 0.106%, respectively. Afterwards, in vitro, ex vivo and in vivo experiments were performed in which higher drug release and superior drug uptake by nasal membrane were observed for naloxone-loaded solid-lipid nanoparticles, later it was confirmed by confocal microscopy of ex vivo nasal membrane tissue. The findings of gamma scintigraphy investigation exhibited better deposition of naloxone-loaded solid-lipid nanoparticles as compared to naloxone solution. Also, the better deposition of naloxone by gamma scintigraphy was further validated by the investigation through the biodistribution study. Additionally, the key findings of the pharmacokinetic study revealed Cmax, Tmax, AUC0-t, AUC0-∞, T1/2 and Ke was found to be 163.95 ± 2.64 ng/ml, 240 ± 2.1 min, 17.75 ± 1.08 ng.hr/ml, 18.82 ± 2.51 ng.hr/ml, 70.71 ± 0.115 min, 0.098 ± 0.01 h-1 respectively. Lastly, investigations such as weight variation and histopathological proved the plausible potential of naloxone-loaded solid-lipid nanoparticles in terms of safety as no toxicity was noticed even after the administration of the three-folds dose of the normal dose. Therefore, considering all these findings, it could be easy to say that these developed naloxone-loaded solid-lipid nanoparticles could be administrated via intranasal route and can act as successful novel nanoformulation for the effective treatment of opioid overdose.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of CEPIN, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, Delhi 110054, India; Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmaceutics, School of Pharmaceutical sciences, Delhi Pharmaceutical Science and Research University, Delhi 110017, India.
| | - Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Kushagra Khanna
- Department of CEPIN, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, Delhi 110054, India; Department of Pharmaceutics, School of Pharmaceutical sciences, Delhi Pharmaceutical Science and Research University, Delhi 110017, India.
| | - Ritu Karwasra
- National Institute of Pathology, Indian Council of Medical Research, New Delhi, India.
| | - Nitin Sharma
- Department of CEPIN, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, Delhi 110054, India.
| | - Sonalika Rawat
- Department of CEPIN, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, Delhi 110054, India.
| | - Deeksha Sharma
- Department of CEPIN, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, Delhi 110054, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Aseem Bhatnagar
- Department of CEPIN, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, Delhi 110054, India.
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical sciences, Delhi Pharmaceutical Science and Research University, Delhi 110017, India.
| |
Collapse
|
47
|
Liu S, Han X, Liu H, Zhao Y, Li H, D Rupenthal I, Lv Z, Chen Y, Yang F, Ping Q, Pan Y, Hou D. Incorporation of ion exchange functionalized-montmorillonite into solid lipid nanoparticles with low irritation enhances drug bioavailability for glaucoma treatment. Drug Deliv 2021; 27:652-661. [PMID: 32347126 PMCID: PMC7241551 DOI: 10.1080/10717544.2020.1756984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Montmorillonite-loaded solid lipid nanoparticles with good biocompatibility, using Betaxolol hydrochloride as model drug, were prepared by the melt-emulsion sonication and low temperature-solidification methods and drug bioavailability was significantly improved in this paper for the first time to application to the eye. The appropriate physical characteristics were showed, such as the mean particle size, Zeta potential, osmotic pressure, pH values, entrapping efficiency (EE%) and drug content (DC%), all showed well suited for possible ocular application. In vitro release experiment indicated that this novel system could continuously release 57.83% drugs within 12 h owing to the dual drug controlled-release effect that was achieved by ion-exchange feature of montmorillonite and structure of solid lipid nanoparticles. Low irritability and good compatibility of nanoparticles were proved by both CAM-TBS test and cytotoxicity experiment. We first discovered from the results of Rose Bengal experiment that the hydrophilicity of the drug-loaded nanoparticles surface was increased during the loading and releasing of the hydrophilic drug, which could contribute to prolong the ocular surface retention time of drug in the biological interface membrane of tear-film/cornea. The results of in vivo pharmacokinetic and pharmacodynamics studies further confirmed that increased hydrophilicity of nanoparticles surface help to improve the bioavailability of the drug and reduce intraocular pressure during administration. The results suggested this novel drug delivery system could be potentially used as an in situ drug controlled-release system for ophthalmic delivery to enhance the bioavailability and efficacy.
Collapse
Affiliation(s)
- Shuo Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xinyue Han
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Hanyu Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yawen Zhao
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Huamei Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Center, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Zhufen Lv
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yanzhong Chen
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Fan Yang
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Qineng Ping
- College of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Yufang Pan
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Dongzhi Hou
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
48
|
Khalil RM, El Arini SK, AbouSamra MM, Zaki HS, El-Gazaerly ON, Elbary AA. Development of Lecithin/Chitosan Nanoparticles for Promoting Topical Delivery of Propranolol Hydrochloride: Design, Optimization and In-Vivo Evaluation. J Pharm Sci 2020; 110:1337-1348. [PMID: 33271137 DOI: 10.1016/j.xphs.2020.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
Propranolol (PPL) administered orally is considered as the first line drug for the treatment of infantile hemangioma, however several systemic adverse effects limit its use. For this reason, our work tackles the development and evaluation of PPL loaded chitosan nanoparticles (NPs), as an effective alternative for the treatment of infantile hemangioma. PPL -NPs were prepared using the double emulsion technique and the influence of the formulation variables on drug entrapment efficiency (EE), particle size (PS), percent released after 24 h (%R24h) and zeta potential (ZP) were optimized using full factorial design. Two systems, namely F3 and F28 showing highest E.E., ZP and %R24h with lowest PS, were fully characterized for DSC and TEM and incorporated into hydrogel with adequate viscosity. After ensuring safety for the selected nanoparticle, the hydrogel containing the optimized system was applied topically to rats. The in-vivo skin deposition in rats showed an accumulation of propranolol from the lecithin/chitosan nanocarrier by 1.56-1.91-fold when compared to the drug solution. The obtained result was further supported by the confocal laser scanning microscopy which showed fluorescence across the skin. PPL-HCL-loaded lecithin/chitosan nanoparticles could be considered as a potential candidate for treating infantile hemangiomas (IH) by maintaining therapeutic concentration topically while minimizing systemic side effects.
Collapse
Affiliation(s)
- Rawia M Khalil
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, 12311, Egypt
| | - Silvia Kocova El Arini
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, 12311, Egypt
| | - Mona M AbouSamra
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, 12311, Egypt
| | - Heba S Zaki
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, 12311, Egypt.
| | | | | |
Collapse
|
49
|
Mahajan K, Rojekar S, Desai D, Kulkarni S, Vavia P. Efavirenz Loaded Nanostructured Lipid Carriers for Efficient and Prolonged Viral Inhibition in HIV-Infected Macrophages. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: The clinical outcome of anti-HIV therapy is poor due to the inherent fallouts ofanti-HIV therapy. It is further worsened due to the presence of viral reservoirs in immune cellslike the macrophages. An ideal anti-HIV therapy must reach, deliver the drug and exert itsaction inside macrophages. To address this, we developed novel cationic nanostructured lipidcarriers of efavirenz (cationic EFV-NLC). Methods: The developed cationic EFV NLCs were evaluated for particle size, zeta potential,encapsulation efficiency, in-vitro drug release, DSC, XRD, TEM, cytotoxicity, cellular uptakestudies and anti-HIV efficacy in a monocyte-derived macrophage cell line (THP-1). Results: Cationic EFV-NLCs showed high encapsulation efficiency (90.54 ± 1.7%), uniformparticle size distribution (PDI 0.3-0.5 range) and high colloidal stability with positive zetapotential (+23.86 ± 0.49 mV). DSC and XRD studies confirmed the encapsulation of EFVwithin NLCs. Cytotoxicity studies (MTT assay) revealed excellent cytocompatibility (CC5013.23 ± 0.54 μg/mL). Fluorescence microscopy confirmed the efficient uptake of cationic EFVNLCs,while flow cytometry revealed time and concentration dependant uptake within THP-1cells. Cationic EFV-NLCs showed higher retention and sustained release with 2.32-fold higherpercent inhibition of HIV-1 in infected macrophages as compared to EFV solution at equimolarconcentrations. Interestingly, they demonstrated 1.23-fold superior anti-HIV efficacy over EFVloadedNLCs at equimolar concentrations. Conclusion: Cationic NLCs were capable of inhibiting the viral replication at higher limitsconsistently for 6 days suggesting successful prevention of HIV-1 replication in infectedmacrophages and thus can prove to be an attractive tool for promising anti-HIV therapy.
Collapse
Affiliation(s)
- Ketan Mahajan
- Centre for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai – 400 019, India
| | - Satish Rojekar
- Centre for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai – 400 019, India
| | - Dipen Desai
- Department of Virology, National AIDS Research Institute, Plot No 73, G-block, M I D C, Bhosari, Pune, Maharashtra 411 026, India
| | - Smita Kulkarni
- Department of Virology, National AIDS Research Institute, Plot No 73, G-block, M I D C, Bhosari, Pune, Maharashtra 411 026, India
| | - Pradeep Vavia
- Centre for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga (E), Mumbai – 400 019, India
| |
Collapse
|
50
|
iPSCs-laden GDF8-grafted aldehyde hyaluronic acid-polyacrylamide inverted colloidal crystal constructs with controlled release of CHIR99021 and retinoic acid to generate insulin-producing cells. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|