1
|
Su Z, Yang T, Wu X, Liu P, Nuermaimaiti Y, Ran Y, Wang P, Cao P. Comparative Analysis and Regeneration Strategies for Three Types of Cartilage. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38970440 DOI: 10.1089/ten.teb.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Cartilage tissue, encompassing hyaline cartilage, fibrocartilage, and elastic cartilage, plays a pivotal role in the human body because of its unique composition, structure, and biomechanical properties. However, the inherent avascularity and limited regenerative capacity of cartilage present significant challenges to its healing following injury. This review provides a comprehensive analysis of the current state of cartilage tissue engineering, focusing on the critical components of cell sources, scaffolds, and growth factors tailored to the regeneration of each cartilage type. We explore the similarities and differences in the composition, structure, and biomechanical properties of the three cartilage types and their implications for tissue engineering. A significant emphasis is placed on innovative strategies for cartilage regeneration, including the potential for in situ transformation of cartilage types through microenvironmental manipulation, which may offer novel avenues for repair and rehabilitation. The review underscores the necessity of a nuanced approach to cartilage tissue engineering, recognizing the distinct requirements of each cartilage type while exploring the potential of transforming one cartilage type into another as a flexible and adaptive repair strategy. Through this detailed examination, we aim to broaden the understanding of cartilage tissue engineering and inspire further research and development in this promising field.
Collapse
Affiliation(s)
- Zhan Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinze Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yisimayili Nuermaimaiti
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxuan Ran
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pinyin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Bandyopadhyay A, Ghibhela B, Mandal BB. Current advances in engineering meniscal tissues: insights into 3D printing, injectable hydrogels and physical stimulation based strategies. Biofabrication 2024; 16:022006. [PMID: 38277686 DOI: 10.1088/1758-5090/ad22f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The knee meniscus is the cushioning fibro-cartilage tissue present in between the femoral condyles and tibial plateau of the knee joint. It is largely avascular in nature and suffers from a wide range of tears and injuries caused by accidents, trauma, active lifestyle of the populace and old age of individuals. Healing of the meniscus is especially difficult due to its avascularity and hence requires invasive arthroscopic approaches such as surgical resection, suturing or implantation. Though various tissue engineering approaches are proposed for the treatment of meniscus tears, three-dimensional (3D) printing/bioprinting, injectable hydrogels and physical stimulation involving modalities are gaining forefront in the past decade. A plethora of new printing approaches such as direct light photopolymerization and volumetric printing, injectable biomaterials loaded with growth factors and physical stimulation such as low-intensity ultrasound approaches are being added to the treatment portfolio along with the contemporary tear mitigation measures. This review discusses on the necessary design considerations, approaches for 3D modeling and design practices for meniscal tear treatments within the scope of tissue engineering and regeneration. Also, the suitable materials, cell sources, growth factors, fixation and lubrication strategies, mechanical stimulation approaches, 3D printing strategies and injectable hydrogels for meniscal tear management have been elaborated. We have also summarized potential technologies and the potential framework that could be the herald of the future of meniscus tissue engineering and repair approaches.
Collapse
Affiliation(s)
- Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Baishali Ghibhela
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Mahmoud EE, Mawas AS, Mohamed AA, Noby MA, Abdel-Hady ANA, Zayed M. Treatment strategies for meniscal lesions: from past to prospective therapeutics. Regen Med 2022; 17:547-560. [PMID: 35638397 DOI: 10.2217/rme-2021-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Menisci play an important role in the biomechanics of knee joint function, including loading transmission, joint lubrication, prevention of soft tissue impingement during motion and joint stability. Meniscal repair presents a challenge due to a lack of vascularization that limits the healing capacity of meniscal tissue. In this review, the authors aimed to untangle the available treatment options for repairing meniscal tears. Various surgical procedures have been developed to treat meniscal tears; however, clinical outcomes are limited. Consequently, numerous researchers have focused on different treatments such as the application of exogenous and/or autologous growth factors, scaffolds including tissue-derived matrix, cell-based therapy and miRNA-210. The authors present current and prospective treatment strategies for meniscal lesions.
Collapse
Affiliation(s)
- Elhussein E Mahmoud
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Amany S Mawas
- Department of Pathology & Clinical Pathology, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Alsayed A Mohamed
- Department of Anatomy & Embryology, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohammed A Noby
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | | | - Mohammed Zayed
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
4
|
Zhou YF, Zhang D, Yan WT, Lian K, Zhang ZZ. Meniscus Regeneration With Multipotent Stromal Cell Therapies. Front Bioeng Biotechnol 2022; 10:796408. [PMID: 35237572 PMCID: PMC8883323 DOI: 10.3389/fbioe.2022.796408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Meniscus is a semilunar wedge-shaped structure with fibrocartilaginous tissue, which plays an essential role in preventing the deterioration and degeneration of articular cartilage. Lesions or degenerations of it can lead to the change of biomechanical properties in the joints, which ultimately accelerate the degeneration of articular cartilage. Even with the manual intervention, lesions in the avascular region are difficult to be healed. Recent development in regenerative medicine of multipotent stromal cells (MSCs) has been investigated for the significant therapeutic potential in the repair of meniscal injuries. In this review, we provide a summary of the sources of MSCs involved in repairing and regenerative techniques, as well as the discussion of the avenues to utilizing these cells in MSC therapies. Finally, current progress on biomaterial implants was reviewed.
Collapse
Affiliation(s)
- Yun-Feng Zhou
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Zhang
- Department of Obstetrics-Gynecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Wan-Ting Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Kai Lian
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- *Correspondence: Zheng-Zheng Zhang, ; Kai Lian,
| | - Zheng-Zheng Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zheng-Zheng Zhang, ; Kai Lian,
| |
Collapse
|
5
|
Stocco E, Porzionato A, De Rose E, Barbon S, Caro RD, Macchi V. Meniscus regeneration by 3D printing technologies: Current advances and future perspectives. J Tissue Eng 2022; 13:20417314211065860. [PMID: 35096363 PMCID: PMC8793124 DOI: 10.1177/20417314211065860] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023] Open
Abstract
Meniscal tears are a frequent orthopedic injury commonly managed by conservative
strategies to avoid osteoarthritis development descending from altered
biomechanics. Among cutting-edge approaches in tissue engineering, 3D printing
technologies are extremely promising guaranteeing for complex biomimetic
architectures mimicking native tissues. Considering the anisotropic
characteristics of the menisci, and the ability of printing over structural
control, it descends the intriguing potential of such vanguard techniques to
meet individual joints’ requirements within personalized medicine. This
literature review provides a state-of-the-art on 3D printing for meniscus
reconstruction. Experiences in printing materials/technologies, scaffold types,
augmentation strategies, cellular conditioning have been compared/discussed;
outcomes of pre-clinical studies allowed for further considerations. To date,
translation to clinic of 3D printed meniscal devices is still a challenge:
meniscus reconstruction is once again clear expression of how the integration of
different expertise (e.g., anatomy, engineering, biomaterials science, cell
biology, and medicine) is required to successfully address native tissues
complexities.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Enrico De Rose
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Silvia Barbon
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Veronica Macchi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| |
Collapse
|
6
|
Wu J, Xu J, Huang Y, Tang L, Hong Y. Regional-specific meniscal extracellular matrix hydrogels and their effects on cell-matrix interactions of fibrochondrocytes. Biomed Mater 2021; 17. [PMID: 34883474 DOI: 10.1088/1748-605x/ac4178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Decellularized meniscal extracellular matrix (ECM) material holds great potential for meniscus repair and regeneration. Particularly, injectable ECM hydrogel is highly desirable for the minimally invasive treatment of irregularly shaped defects. Although regional-specific variations of the meniscus are well documented, no ECM hydrogel has been reported to simulate zonally specific microenvironments of the native meniscus. To fill the gap, different (outer, middle, and inner) zones of porcine menisci were separately decellularized. Then the regionally decellularized meniscal ECMs were solubilized by pepsin digestion, neutralized, and then form injectable hydrogels. The hydrogels were characterized in gelation behaviors and mechanical properties and seeded with bovine fibrochondrocytes to evaluate the regionally biochemical effects on the cell-matrix interactions. Our results showed that the decellularized inner meniscal ECM (IM) contained the greatest glycosaminoglycan (GAG) content and the least collagen content compared with the decellularized outer meniscal ECM (OM) and middle meniscal ECM (MM). The IM hydrogel showed lower compressive strength than the OM hydrogel. When encapsulated with fibrochondrocytes, the IM hydrogel accumulated more GAG, contracted to a greater extent and reached higher compressive strength than that of the OM hydrogel at 28 days. Our findings demonstrate that the regionally specific meniscal ECMs present biochemical variation and show various effects on the cell behaviors, thus providing information on how meniscal ECM hydrogels may be utilized to reconstruct the microenvironments of the native meniscus.
Collapse
Affiliation(s)
- Jinglei Wu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Jiazhu Xu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yihui Huang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Liping Tang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yi Hong
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| |
Collapse
|
7
|
Dai TY, Pan ZY, Yin F. In Vivo Studies of Mesenchymal Stem Cells in the Treatment of Meniscus Injury. Orthop Surg 2021; 13:2185-2195. [PMID: 34747566 PMCID: PMC8654668 DOI: 10.1111/os.13002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022] Open
Abstract
This review summarizes the literature of preclinical studies and clinical trials on the use of mesenchymal stem cells (MSCs) to treat meniscus injury and promote its repair and regeneration and provide guidance for future clinical research. Due to the special anatomical features of the meniscus, conservative or surgical treatment can hardly achieve complete physiological and histological repair. As a new method, stem cells promote meniscus regeneration in preclinical research and human preliminary research. We expect that, in the near future, in vivo injection of stem cells to promote meniscus repair can be used as a new treatment model in clinical treatment. The treatment of animal meniscus injury, and the clinical trial of human meniscus injury has begun preliminary exploration. As for the animal experiments, most models of meniscus injury are too simple, which can hardly simulate the complexity of actual meniscal tears, and since the follow-up often lasts for only 4-12 weeks, long-term results could not be observed. Lastly, animal models failed to simulate the actual stress environment faced by the meniscus, so it needs to be further studied if regenerated meniscus has similar anti-stress or anti-twist features. Despite these limitations, repair of the meniscus by MSCs has great potential in clinics. MSCs can differentiate into fibrous chondrocytes, which can possibly repair the meniscus and provide a new strategy for repairing meniscus injury.
Collapse
Affiliation(s)
- Tian-Yu Dai
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhang-Yi Pan
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Biomaterials and Meniscal Lesions: Current Concepts and Future Perspective. Pharmaceutics 2021; 13:pharmaceutics13111886. [PMID: 34834301 PMCID: PMC8617690 DOI: 10.3390/pharmaceutics13111886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Menisci are crucial structures for knee homeostasis. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible; only the meniscus tissue that is identified as unrepairable should be excised, and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The aim of this literature review is to analyze possible therapeutic and surgical options that go beyond traditional meniscal surgery: from scaffolds, which are made of different kind of polymers, such as natural, synthetic or hydrogel components, to new technologies, such as 3-D printing construct or hybrid biomaterials made of scaffolds and specific cells. These recent advances show that there is great interest in the development of new materials for meniscal reconstruction and that, with the development of new biomaterials, there will be the possibility of better management of meniscal injuries
Collapse
|
9
|
Jeong HJ, Lee SW, Hong MW, Kim YY, Seo KD, Cho YS, Lee SJ. Total Meniscus Reconstruction Using a Polymeric Hybrid-Scaffold: Combined with 3D-Printed Biomimetic Framework and Micro-Particle. Polymers (Basel) 2021; 13:polym13121910. [PMID: 34201327 PMCID: PMC8229034 DOI: 10.3390/polym13121910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
The meniscus has poor intrinsic regenerative capability, and its injury inevitably leads to articular cartilage degeneration. Although there are commercialized off-the-shelf alternatives to achieve total meniscus regeneration, each has its own shortcomings such as individualized size matching issues and inappropriate mechanical properties. We manufactured a polycaprolactone-based patient-specific designed framework via a Computed Tomography scan images and 3D-printing technique. Then, we completed the hybrid-scaffold by combining the 3D-printed framework and mixture micro-size composite which consists of polycaprolactone and sodium chloride to create a cell-friendly microenvironment. Based on this hybrid-scaffold with an autograft cell source (fibrochondrocyte), we assessed mechanical and histological results using the rabbit total meniscectomy model. At postoperative 12-week, hybrid-scaffold achieved neo-meniscus tissue formation, and its shape was maintained without rupture or break away from the knee joint. Histological and immunohistochemical analysis results showed obvious ingrowth of the fibroblast-like cells and chondrocyte cells as well as mature lacunae that were embedded in the extracellular matrix. Hybrid-scaffolding resulted in superior shape matching as compared to original meniscus tissue. Histological analysis showed evidence of extensive neo-meniscus cell ingrowth. Additionally, the hybrid-scaffold did not induce osteoarthritis on the femoral condyle surface. The 3D-printed hybrid-scaffold may provide a promising approach that can be applied to those who received total meniscal resection, using patient-specific design and autogenous cell source.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea;
| | - Se-Won Lee
- Department of Orthopedic Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea;
| | - Myoung Wha Hong
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 64, Daeheung-ro, Jung-gu, Daejeon 34943, Korea; (M.W.H.); (Y.Y.K.)
| | - Young Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 64, Daeheung-ro, Jung-gu, Daejeon 34943, Korea; (M.W.H.); (Y.Y.K.)
| | - Kyoung Duck Seo
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea;
- Correspondence: (K.D.S.); (Y.-S.C.); (S.-J.L.)
| | - Young-Sam Cho
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea;
- Department of Mechanical and Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea
- Correspondence: (K.D.S.); (Y.-S.C.); (S.-J.L.)
| | - Seung-Jae Lee
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea;
- Department of Mechanical and Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea
- Correspondence: (K.D.S.); (Y.-S.C.); (S.-J.L.)
| |
Collapse
|
10
|
Biomechanical Performance of Menisci under Cyclic Loads. Appl Bionics Biomech 2021. [DOI: 10.1155/2021/5512762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The meniscus, composed of fibrocartilage, is a very important part of the human knee joint that behaves like a buffer. Located in the middle of the femoral condyles and the tibial plateau, it is a necessary structure to maintain normal biomechanical properties of the knee. Whether walking or exercising, the meniscus plays a vital role to protect the articular surface of both the femoral condyles and the tibial plateau by absorbing the conveying shock from body weight. However, modern people often suffer from irreversible degeneration of joint tissue due to exercise-induced harm or aging. Therefore, understanding its dynamic characteristics will help to learn more about the actual state of motion and to avoid unnecessary injury. This study uses reverse engineering equipment, a 3D optical scanner, and a plastic teaching human body model to build the geometry of knee joint meniscus. Then, the finite element method (FEM) is employed to obtain the dynamic characteristics of the meniscus. The results show the natural frequencies, mode shapes, and fatigue life analysis of meniscus, with real human material parameters. The achieved results can be applied to do subsequent knee dynamic simulation analysis, to reduce the knee joint and lower external impacts, and to manufacture artificial meniscus through tissue engineering.
Collapse
|
11
|
Szojka AR, Marqueti RDC, Li DX, Molter CW, Liang Y, Kunze M, Mulet-Sierra A, Jomha NM, Adesida AB. Human engineered meniscus transcriptome after short-term combined hypoxia and dynamic compression. J Tissue Eng 2021; 12:2041731421990842. [PMID: 33613959 PMCID: PMC7874349 DOI: 10.1177/2041731421990842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/10/2021] [Indexed: 12/30/2022] Open
Abstract
This study investigates the transcriptome response of meniscus fibrochondrocytes (MFCs) to the low oxygen and mechanical loading signals experienced in the knee joint using a model system. We hypothesized that short term exposure to the combined treatment would promote a matrix-forming phenotype supportive of inner meniscus tissue formation. Human MFCs on a collagen scaffold were stimulated to form fibrocartilage over 6 weeks under normoxic (NRX, 20% O2) conditions with supplemented TGF-β3. Tissues experienced a delayed 24h hypoxia treatment (HYP, 3% O2) and then 5 min of dynamic compression (DC) between 30 and 40% strain. Delayed HYP induced an anabolic and anti-catabolic expression profile for hyaline cartilage matrix markers, while DC induced an inflammatory matrix remodeling response along with upregulation of both SOX9 and COL1A1. There were 41 genes regulated by both HYP and DC. Overall, the combined treatment supported a unique gene expression profile favouring the hyaline cartilage aspect of inner meniscus matrix and matrix remodeling.
Collapse
Affiliation(s)
- Alexander Ra Szojka
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Rita de Cássia Marqueti
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada.,Graduate Program of Rehabilitation Sciences, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - David Xinzheyang Li
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada.,Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Clayton W Molter
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Yan Liang
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Melanie Kunze
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Nadr M Jomha
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| |
Collapse
|
12
|
Kara A, Koçtürk S, Bilici G, Havitcioglu H. Development of biological meniscus scaffold: Decellularization method and recellularization with meniscal cell population derived from mesenchymal stem cells. J Biomater Appl 2021; 35:1192-1207. [PMID: 33444085 DOI: 10.1177/0885328220981189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering approaches which include a combination of cells and scaffold materials provide an alternative treatment for meniscus regeneration. Decellularization and recellularization techniques are potential treatment options for transplantation. Maintenance of the ultrastructure composition of the extracellular matrix and repopulation with cells are important factors in constructing a biological scaffold and eliminating immunological reactions.The aim of the study is to develop a method to obtain biological functional meniscus scaffolds for meniscus regeneration. For this purpose, meniscus tissue was decellularized by our modified method, a combination of physical, chemical, and enzymatic methods and then recellularized with a meniscal cell population composed of fibroblasts, chondrocytes and fibrochondrocytes that obtained from mesenchymal stem cells. Decellularized and recellularized meniscus scaffolds were analysed biochemically, biomechanically and histologically. Our results revealed that cellular components of the meniscus were successfully removed by preserving collagen and GAG structures without any significant loss in biomechanical properties. Recellularization results showed that the meniscal cells were localized in the empty lacuna on the decellularized meniscus, and also well distributed and proliferated consistently during the cell culture period (p < 0.05). Furthermore, a high amount of DNA, collagen, and GAG contents (p < 0.05) were obtained with the meniscal cell population in recellularized meniscus tissue.The study demonstrates that our decellularization and recellularization methods were effective to develop a biological functional meniscus scaffold and can mimic the meniscus tissue with structural and biochemical features. We predict that the obtained biological meniscus scaffolds may provide avoidance of adverse immune reactions and an appropriate microenvironment for allogeneic or xenogeneic recipients in the transplantation process. Therefore, as a promising candidate, the obtained biological meniscus scaffolds might be verified with a transplantation experiment.
Collapse
Affiliation(s)
- Aylin Kara
- Department of Bioengineering, İzmir Institute of Technology, İzmir, Turkey
| | - Semra Koçtürk
- Faculty of Medicine, Department of Biochemistry, Dokuz Eylül University, İzmir, Turkey
| | - Gokcen Bilici
- Faculty of Medicine, Department of Biochemistry, Dokuz Eylül University, İzmir, Turkey
| | - Hasan Havitcioglu
- Department of Bioengineering, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|
13
|
Elkhenany HA, Szojka ARA, Mulet-Sierra A, Liang Y, Kunze M, Lan X, Sommerfeldt M, Jomha NM, Adesida AB. Bone Marrow Mesenchymal Stem Cell-Derived Tissues are Mechanically Superior to Meniscus Cells. Tissue Eng Part A 2020; 27:914-928. [PMID: 32940137 DOI: 10.1089/ten.tea.2020.0183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential to form the mechanically responsive matrices of joint tissues, including the menisci of the knee joint. The purpose of this study is to assess BMSC's potential to engineer meniscus-like tissue relative to meniscus fibrochondrocytes (MFCs). MFCs were isolated from castoffs of partial meniscectomy from nonosteoarthritic knees. BMSCs were developed from bone marrow aspirates of the iliac crest. All cells were of human origin. Cells were cultured in type I collagen scaffolds under normoxia (21% O2) for 2 weeks followed by hypoxia (3% O2) for 3 weeks. The structural and functional assessment of the generated meniscus constructs were based on glycosaminoglycan (GAG) content, histological appearance, gene expression, and mechanical properties. The tissues formed by both cell types were histologically positive for Safranin O stain and appeared more intense in the BMSC constructs. This observation was confirmed by a 2.7-fold higher GAG content. However, there was no significant difference in collagen I (COL1A2) expression in BMSC- and MFC-based constructs (p = 0.17). The expression of collagen II (COL2A1) and aggrecan (ACAN) were significantly higher in BMSCs than MFC (p ≤ 0.05). Also, the gene expression of the hypertrophic marker collagen X (COL10A1) was 199-fold higher in BMSCs than MFC (p < 0.001). Moreover, relaxation moduli were significantly higher in BMSC-based constructs at 10-20% strain step than MFC-based constructs. BMSC-based constructs expressed higher COL2A1, ACAN, COL10A1, contained higher GAG content, and exhibited higher relaxation moduli at 10-20% strain than MFC-based construct. Impact statement Cell-based tissue engineering (TE) has the potential to produce functional tissue replacements for irreparably damaged knee meniscus. But the source of cells for the fabrication of the tissue replacements is currently unknown and of research interest in orthopedic TE. In this study, we fabricated tissue-engineered constructs using type I collagen scaffolds and two candidate cell sources in meniscus TE. We compared the mechanical properties of the tissues formed from human meniscus fibrochondrocytes and bone marrow-derived mesenchymal stem cells (BMSCs). Our data show that the tissues engineered from the BMSC are mechanically superior in relaxation modulus.
Collapse
Affiliation(s)
- Hoda A Elkhenany
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Alexander R A Szojka
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Aillette Mulet-Sierra
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Yan Liang
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Melanie Kunze
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Xiaoyi Lan
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Mark Sommerfeldt
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Glen Sather Sports Medicine Clinic, University of Alberta, Edmonton, Canada
| | - Nadr M Jomha
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
14
|
Haunschild ED, Huddleston HP, Chahla J, Gilat R, Cole BJ, Yanke AB. Platelet-Rich Plasma Augmentation in Meniscal Repair Surgery: A Systematic Review of Comparative Studies. Arthroscopy 2020; 36:1765-1774. [PMID: 32057981 DOI: 10.1016/j.arthro.2020.01.038] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/04/2019] [Accepted: 01/18/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To systematically review the literature on meniscal repair surgery and assess functional and radiographic outcomes of platelet-rich plasma (PRP)-augmented repair compared with standard repair techniques. METHODS A systematic review of the literature was completed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines using the PubMed, MEDLINE, Embase, and Cochrane databases. The inclusion criteria included all human studies testing PRP augmentation of meniscal repair written in the English language. All cadaveric, animal, and basic science studies were excluded from review. The quality of the included publications was assessed prior to data extraction through the Jadad score. Risk of bias was further determined by Methodological Index for Non-randomized Studies (MINORS) and Cochrane risk-of-bias assessments. Heterogeneity in outcomes reported across studies was evaluated using I2 statistic calculations. RESULTS A total of 5 studies (1 with Level I evidence; 1, Level II; and 3, Level III) met the inclusion criteria for this review, all comparing PRP augmentation of meniscal repair surgery versus meniscal repair with no augmentation. Overall quality and risk of bias in the included studies varied substantially (Jadad score, 1-5; Methodological Index for Non-randomized Studies score, 7-18). Three comparative studies found no significant difference in outcome or failure, whereas the other two showed a significant improvement in PRP-augmented repairs at final follow-up. Two studies assessed healing with postoperative magnetic resonance imaging or second-look arthroscopy, with both showing significantly improved outcomes in the PRP-treated groups (P < .01 and P = .048). PRP preparation techniques and composition differed among all studies and were inconsistently reported. CONCLUSIONS In early and limited investigations, there is insufficient evidence to support PRP augmentation of meniscal repair surgery improving functional and radiographic outcomes and resulting in lower failure rates compared with standard repair techniques. There is considerable heterogeneity in the reporting and preparation of PRP used for augmentation. LEVEL OF EVIDENCE Level III, systematic review of Level I to III studies.
Collapse
Affiliation(s)
| | | | - Jorge Chahla
- Midwest Orthopedics at Rush University, Chicago, Illinois, U.S.A
| | - Ron Gilat
- Midwest Orthopedics at Rush University, Chicago, Illinois, U.S.A
| | - Brian J Cole
- Midwest Orthopedics at Rush University, Chicago, Illinois, U.S.A..
| | - Adam B Yanke
- Midwest Orthopedics at Rush University, Chicago, Illinois, U.S.A
| |
Collapse
|
15
|
Beeler S, Vlachopoulos L, Jud L, Sutter R, Götschi T, Fürnstahl P, Fucentese SF. Meniscus sizing using three-dimensional models of the ipsilateral tibia plateau based on CT scans - an experimental study of a new sizing approach. J Exp Orthop 2020; 7:36. [PMID: 32458090 PMCID: PMC7251042 DOI: 10.1186/s40634-020-00252-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/08/2020] [Indexed: 11/26/2022] Open
Abstract
Purpose Selection of a meniscus allograft with a similar three-dimensional (3D) size is essential for good clinical results in meniscus allograft surgery. Direct meniscus sizing by MRI scan is not possible in total meniscectomy and indirect sizing by conventional radiography is often inaccurate. The purpose of this study was to develop a new indirect sizing method, based on the 3D shape of the ipsilateral tibia plateau, which is independent of the meniscus condition. Methods MRI and CT scans of fifty healthy knee joints were used to create 3D surface models of both menisci (MRI) and tibia plateau (CT). 3D bone models of the proximal 10 mm of the entire and half tibia plateau (with / without intercondylar area) were created in a standardized fashion. For each meniscus, the best fitting “allograft” couple out of all other 49 menisci were assessed by the surface distance of the 3D meniscus (best available allograft), of the 3D tibia plateau (3D-CT) and by the radiographic method of Pollard (2D-RX). Results 3D-CT sizing was significantly better by using only the half tibia plateau without the intercondylar area (p < 0.001). But neither sizing by 3D-CT, nor by 2D-RX could select the best available allograft. Compared to 2D-RX, 3D-CT sizing was significantly better for the medial, but not for the lateral meniscus. Conclusions Automatized, indirect meniscus sizing using the 3D bone models of the tibia plateau is feasible and more precise than the previously described 2D-RX method.. However, further technical improvement is needed to select always the best available allograft.
Collapse
Affiliation(s)
- Silvan Beeler
- Department of Orthopaedic Surgery, University of Zurich, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland.
| | - Lazaros Vlachopoulos
- Department of Orthopaedic Surgery, University of Zurich, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Lukas Jud
- Department of Orthopaedic Surgery, University of Zurich, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Reto Sutter
- Department of Orthopaedic Surgery, University of Zurich, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Tobias Götschi
- Department of Orthopaedic Surgery, University of Zurich, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Philipp Fürnstahl
- Department of Orthopaedic Surgery, University of Zurich, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Sandro F Fucentese
- Department of Orthopaedic Surgery, University of Zurich, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|
16
|
Anderson-Baron M, Kunze M, Mulet-Sierra A, Adesida AB. Effect of cell seeding density on matrix-forming capacity of meniscus fibrochondrocytes and nasal chondrocytes in meniscus tissue engineering. FASEB J 2020; 34:5538-5551. [PMID: 32090374 DOI: 10.1096/fj.201902559r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
The presence of intact menisci is imperative for the proper function of the knee joint. Meniscus injuries are often treated by the surgical removal of the damaged tissue, which increases the likelihood of post-traumatic osteoarthritis. Tissue engineering holds great promise in producing viable engineered meniscal tissue for implantation using the patient's own cells; however, the cell source for producing the engineered tissue is unclear. Nasal chondrocytes (NC) possess many attractive features for engineering meniscus. However, in order to validate the use of NC for engineering meniscus fibrocartilage, a thorough comparison of NC and meniscus fibrochondrocytes (MFC) must be considered. Our study presents an analysis of the relative features of NC and MFC and their respective chondrogenic potential in a pellet culture model. We showed considerable differences in the cartilage tissue formed by the two different cell types. Our data showed that NC were more proliferative in culture, deposited more extracellular matrix, and showed higher expression of chondrogenic genes than MFC. Overall, our data suggest that NC produce superior cartilage tissue to MFC in a pellet culture model. In addition, NCs produce higher quality cartilage tissue at higher cell seeding densities during cell expansion.
Collapse
Affiliation(s)
- Matthew Anderson-Baron
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, 3-021 Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Melanie Kunze
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, 3-021 Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, 3-021 Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, 3-021 Li Ka Shing Centre for Health Research Innovation, Edmonton, AB, Canada
| |
Collapse
|
17
|
Biosynthesis of Silver nanoparticles using Bauhinia acuminate flower extract and their effect to promote osteogenesis of MSCs and improve meniscus injury healing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111536. [DOI: 10.1016/j.jphotobiol.2019.111536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022]
|
18
|
Zellmann P, Ribitsch I, Handschuh S, Peham C. Finite Element Modelling Simulated Meniscus Translocation and Deformation during Locomotion of the Equine Stifle. Animals (Basel) 2019; 9:ani9080502. [PMID: 31370196 PMCID: PMC6720206 DOI: 10.3390/ani9080502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Meniscal tears are one of the most common soft tissue injuries in the equine stifle joint. To date no optimal treatment strategy to heal meniscal tissue is available. Accordingly, there is a need to improve treatment for meniscal injuries and thus to identify appropriate translational animal models. A possible alternative to animal experimentation is the use of finite element modelling (FEMg). FEMg allows simulation of time dependent changes in tissues resulting from biomechanical strains. We developed a finite element model (FEM) of the equine stifle joint to identify pressure peaks and simulate translocation and deformation of the menisci at different joint angles under loading conditions. The FEM model was tested across a range of motion of approximately 30°. Pressure load was higher overall in the lateral meniscus than in the medial meniscus. Accordingly, the simulation showed higher translocation and deformation throughout the whole range of motion in the lateral compared to the medial meniscus. The results encourage further refinement of this FEM model for studying loading patterns on menisci and articular cartilages as well as the resulting mechanical stress in the subchondral bone. A functional FEM model can not only help identify segments in the femoro–tibial joint which are predisposed to injury, but also provide better understanding of the progression of certain stifle disorders, simulate treatment/surgery effects and to optimize implant/transplant properties in order to most closely resemble natural tissue. Abstract We developed a finite element model (FEM) of the equine stifle joint to identify pressure peaks and simulate translocation and deformation of the menisci. A series of sectional magnetic resonance images (1.5 T) of the stifle joint of a 23 year old Shetland pony gelding served as basis for image segmentation. Based on the 3D polygon models of femur, tibia, articular cartilages, menisci, collateral ligaments and the meniscotibial ligaments, an FEM model was generated. Tissue material properties were assigned based on data from human (Open knee(s) project) and bovine femoro-tibial joint available in the literature. The FEM model was tested across a range of motion of approximately 30°. Pressure load was overall higher in the lateral meniscus than in the medial. Accordingly, the simulation showed higher translocation and deformation in the lateral compared to the medial meniscus. The results encourage further refinement of this model for studying loading patterns on menisci and articular cartilages as well as the resulting mechanical stress in the subchondral bone (femur and tibia). A functional FEM model can not only help identify segments in the stifle which are predisposed to injury, but also to better understand the progression of certain stifle disorders, simulate treatment/surgery effects and to optimize implant/transplant properties.
Collapse
Affiliation(s)
- Pasquale Zellmann
- Department for Companion Animals and Horses, University Equine Hospital, Vetmeduni Vienna, 1210 Vienna, Austria
| | - Iris Ribitsch
- Department for Companion Animals and Horses, University Equine Hospital, Vetmeduni Vienna, 1210 Vienna, Austria.
| | - Stephan Handschuh
- VetCore Facility for Research, Imaging Unit, Vetmeduni Vienna, 1210 Vienna, Austria
| | - Christian Peham
- Department for Companion Animals and Horses, University Equine Hospital, Vetmeduni Vienna, 1210 Vienna, Austria
| |
Collapse
|
19
|
Liu F, Xu H, Huang H. A novel kartogenin-platelet-rich plasma gel enhances chondrogenesis of bone marrow mesenchymal stem cells in vitro and promotes wounded meniscus healing in vivo. Stem Cell Res Ther 2019; 10:201. [PMID: 31287023 PMCID: PMC6615105 DOI: 10.1186/s13287-019-1314-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
Background The meniscus tear is one of the most common knee injuries particularly seen in athletes and aging populations. Subchondral bone sclerosis, irreparable joint damage, and the early onset of osteoarthritis make the injured meniscus heal difficultly. Methods The study was performed by in vitro and in vivo experiments. The in vitro experiments were carried out using the bone marrow stem cells (BMSCs) isolated from the rabbits, and the stemness of the BMSCs was tested by immunostaining. The BMSCs positively expressed stem cell markers were cultured with various concentrations of kartogenin (KGN) for 2 weeks. The chondrogenesis of BMSCs induced by KGN was examined by histochemical staining and quantitative RT-PCR. The in vivo experiments were completed by a rabbit model. Three holes were created in each meniscus by a biopsy punch. The rabbits were treated with four different conditions in each group. Group 1 was treated with 20 μl of saline (saline); group 2 was treated with 5 μl of 100 μM KGN and 15 μl saline (KGN); group 3 was treated with 5 μl of 100 μM KGN, 5 μl of 10,000 U/ ml thrombin, and 10 μl of PRP (KGN+PRP); group 4 was treated with 10,000 BMSCs in 10 μl of PRP, 5 μl of saline solution, and 5 μl of 10,000 U/ml thrombin (PRP+BMSC); group 5 was treated with 10,000 BMSCs in 10 μl of PRP, 5 μl of 100 μM KGN, and 5 μl of 10,000 U/ml thrombin (KGN+PRP+BMSC). The menisci were collected at day 90 post-surgery for gross inspection and histochemical analysis. Results The histochemical staining showed that KGN induced chondrogenesis of BMSCs in a concentration-dependent manner. The RT-PCR results indicated that chondrocyte-related genes were also increased in the BMSCs cultured with KGN in a dose-dependent manner. The in vivo results showed that large unhealed wound areas were still found in the wounds treated with saline and KGN groups. The wounds treated with BMSCs-containing PRP gel healed much faster than the wounds treated without BMSCs. Furthermore, the wounds treated with BMSCs-containing KGN-PRP gel have healed completely and formed more cartilage-like tissues than the wounds treated with BMSCs-containing PRP gel. Conclusions BMSCs could be differentiated into chondrocytes when they were cultured with KGN-PRP gel in vitro and formed more cartilage-like tissues in the wounded rabbit meniscus when the wounds were treated with BMSCs-containing KGN-PRP gel. The results indicated that the BMSCs-containing KGN-PRP gel is a good substitute for injured meniscus repair and regeneration.
Collapse
Affiliation(s)
- Feng Liu
- Department of Orthopaedics, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Hongyao Xu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - He Huang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China. .,China Orthopaedic Regeneration Medicine Group, Zhejiang, 310000, Hangzhou, China.
| |
Collapse
|
20
|
Otsuki S, Nakagawa K, Murakami T, Sezaki S, Sato H, Suzuki M, Okuno N, Wakama H, Kaihatsu K, Neo M. Evaluation of Meniscal Regeneration in a Mini Pig Model Treated With a Novel Polyglycolic Acid Meniscal Scaffold. Am J Sports Med 2019; 47:1804-1815. [PMID: 31172797 DOI: 10.1177/0363546519850578] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Meniscal injury is a severe impediment to movement and results in accelerated deterioration of the knee joint. PURPOSE To evaluate the effect of a novel meniscal scaffold prepared from polyglycolic acid coated with polylactic acid/caprolactone on the treatment of meniscal injury in a mini pig model. STUDY DESIGN Controlled laboratory study. METHODS The model was established with a 10-mm resection at the anterior medial meniscus on both knee joints. A scaffold was implanted in the right knee joint. The meniscal scaffold was inserted and sutured next to the native meniscus. The histological analysis was performed to determine meniscal regeneration with safranin O staining, cell proliferation with PCNA, inflammation with TNF, and collagen structure and production with picrosirius red and immunofluorescence. Cartilage degeneration was evaluated with Safranin O. Meniscal regeneration and joint fluid were evaluated with magnetic resonance imaging. RESULTS Although compressive stress and elastic modulus were significantly lower in the scaffold than in the native porcine menisci, ultimate tensile stress was similar. Implanted scaffolds were covered with tissue beginning at 4 weeks, with increased migration of proliferating cells to the implant area at 4 and 8 weeks. Scaffolds were absorbed with freshly produced collagen at 24 weeks. Cartilage degeneration was significantly lower in the meniscus-implanted group than in the meniscectomy group. Magnetic resonance imaging results did not show severe accumulation of joint fluids, suggesting negligible inflammation. Density of the implanted menisci was comparable with that of the native menisci. CONCLUSION Meniscal scaffold prepared from polyglycolic acid has therapeutic potential for meniscal regeneration. CLINICAL RELEVANCE This meniscal scaffold can improve biological knee reconstruction and prevent the increase of total knee arthroplasty.
Collapse
Affiliation(s)
- Shuhei Otsuki
- Department of Orthopedic Surgery, Osaka Medical College, Takatsuki, Japan
| | - Kosuke Nakagawa
- Department of Orthopedic Surgery, Osaka Medical College, Takatsuki, Japan
| | - Tomohiko Murakami
- Department of Orthopedic Surgery, Osaka Medical College, Takatsuki, Japan
| | | | - Hideki Sato
- Gunze Limited, QOL Research Laboratory, Kyoto, Japan
| | | | - Nobuhiro Okuno
- Department of Orthopedic Surgery, Osaka Medical College, Takatsuki, Japan
| | - Hitoshi Wakama
- Department of Orthopedic Surgery, Osaka Medical College, Takatsuki, Japan
| | | | - Masashi Neo
- Department of Orthopedic Surgery, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|
21
|
Zhang Z, Wu Q, Zeng L, Wang S. Modeling-Based Assessment of 3D Printing-Enabled Meniscus Transplantation. Healthcare (Basel) 2019; 7:E69. [PMID: 31083361 PMCID: PMC6627735 DOI: 10.3390/healthcare7020069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 02/02/2023] Open
Abstract
3D printing technology is able to produce personalized artificial substitutes for patients with damaged menisci. However, there is a lack of thorough understanding of 3D printing-enabled (3DP-enabled) meniscus transplantation and its long-term advantages over traditional transplantation. To help health care stakeholders and patients assess the value of 3DP-enabled meniscus transplantation, this study compares the long-term cost and risk of this new paradigm with traditional transplantation by simulation. Pathway models are developed to simulate patients' treatment process during a 20-year period, and a Markov process is used to model the state transitions of patients after transplantation. A sensitivity analysis is also conducted to show the effect of quality of 3D-printed meniscus on model outputs. The simulation results suggest that the performance of 3DP-enabled meniscus transplantation depends on quality of 3D-printed meniscus. The conclusion of this study is that 3DP-enabled meniscus transplantation has many advantages over traditional meniscus transplantation, including a minimal waiting time, perfect size and shape match, and potentially lower cost and risk in the long term.
Collapse
Affiliation(s)
- Zimeng Zhang
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Qian Wu
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Li Zeng
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Shiren Wang
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
22
|
Demirkıran ND, Havıtçıoğlu H, Ziylan A, Cankurt Ü, Hüsemoğlu B. Novel multilayer meniscal scaffold provides biomechanical and histological results comparable to polyurethane scaffolds: An 8 week rabbit study. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2019; 53:120-128. [PMID: 30826138 PMCID: PMC6506817 DOI: 10.1016/j.aott.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/11/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
Abstract
Objective The aim of this study was to evaluate the meniscal regeneration and arthritic changes after partial meniscectomy and application of either polyurethane scaffold or novel multilayer meniscal scaffold in a rabbit model. Methods Sixteen NewZealand rabbits were randomly divided into three groups. A reproducible 1.5-mm cylindrical defect was created in the avascular zone of the anterior horn of the medial meniscus bilaterally. Defects were filled with the polyurethane scaffold in Group 1 (n:6) and with novel multilayer scaffold in Group 2 (n:6). Rabbits in Group 3 (n:4) did not receive any treatment and defects were left empty. All animals were sacrificed after 8 weeks and bilateral knee joints were taken for macroscopic, biomechanical, and histological analysis. After excision of menisci, inked condylar surfaces and tibial plateaus were evaluated for arthritic changes. Digital photographs of excised menisci were also obtained and surface areas were measured by a computer software. Indentation testing of the tibial condyles and compression tests for the relevant meniscal areas was also performed in all groups. Histological analysis was made and all specimens were scored according to Rodeo scoring system. Results No signs of inflammation or infection were observed in any animals. A significant difference was observed between meniscus surface areas of the multilayer scaffold group (20.13 ± 1.91 mm2) and the group with empty meniscus defects (15.62 ± 2.04 mm2) (p = 0.047). The results of biomechanical compression tests revealed a significant difference between the Hayes scores of the second group (1.728) and the empty defect group (0,467) (p = 0.029). Intact meniscal tissue showed higher mechanical properties than all the defected samples. Multilayer scaffold group demonstrated the closest results compared to healthy meniscus tissue. Tibia indentation tests and histological evaluation showed no significant differences between groups (p = 0.401 and p = 0.186 respectively). Conclusions In this study, the initial evaluation of novel multilayer meniscal scaffold prevented the shrinkage that may occur in the meniscus area and demonstrated superior biomechanical results compared to empty defects. No adverse events related to scaffold material was observed. Besides, promising biomechanical and histological results, comparable to polyurethane scaffold, were obtained.
Collapse
|
23
|
Szojka ARA, Lyons BD, Moore CN, Liang Y, Kunze M, Idrees E, Mulet-Sierra A, Jomha NM, Adesida AB. Hypoxia and TGF-β3 Synergistically Mediate Inner Meniscus-Like Matrix Formation by Fibrochondrocytes. Tissue Eng Part A 2019; 25:446-456. [PMID: 30343640 DOI: 10.1089/ten.tea.2018.0211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The interactions of hypoxia and TGF-β3 in aggregates of human meniscus fibrochondrocytes are synergistic in nature, suggesting combinatorial strategies using these factors are promising for tissue engineering the inner meniscus regions. Hypoxia alone in the absence of TGF-β supplementation may be insufficient to initiate an inner meniscus-like extracellular matrix-forming response in this model.
Collapse
Affiliation(s)
- Alexander R A Szojka
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Brayden D Lyons
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Colleen N Moore
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Yan Liang
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
- 2 Division of Burn and Reconstructive Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, People's Republic of China
| | - Melanie Kunze
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Enaam Idrees
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Aillette Mulet-Sierra
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Nadr M Jomha
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- 1 Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
24
|
Vadodaria K, Kulkarni A, Santhini E, Vasudevan P. Materials and structures used in meniscus repair and regeneration: a review. Biomedicine (Taipei) 2019; 9:2. [PMID: 30794149 PMCID: PMC6385612 DOI: 10.1051/bmdcn/2019090102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Meniscus is a vital functional unit in knee joint. It acts as a lubricating structure, a nutrient transporting structure, as well as shock absorber during jumping, twisting and running and offers stability within the knee joint. It helps in load distribution, in bearing the tensile hoop stresses and balancing by providing a cushion effect between hard surfaces of two bones. Meniscus may be injured in sports, dancing, accident or any over stressed condition. Any meniscal lesion can lead to a gradual development of osteoarthritis or erosion of bone contact surface due to disturbed load and contact stress distribution caused by injury/pain. Once injured, the possibilities of self-repair are rare in avascular region of meniscus, due to lack of blood supply in avascular region. Meniscus has vascular and avascular regions in structure. Majority of the meniscus parts turn avascular with increase in age. Purpose of this review is to highlight advances in meniscus repair with special focus on tissue engineering using textile/fiber based scaffolds, as well as the recent technical advances in scaffolds for meniscus recon- struction/ regeneration treatment.
Collapse
Affiliation(s)
- Ketankumar Vadodaria
- Centre of Excellence for Medical Textiles, The South India Textile Research Association, Coimbatore, Tamilnadu, India
| | - Abhilash Kulkarni
- Centre of Excellence for Medical Textiles, The South India Textile Research Association, Coimbatore, Tamilnadu, India
| | - E Santhini
- Centre of Excellence for Medical Textiles, The South India Textile Research Association, Coimbatore, Tamilnadu, India
| | - Prakash Vasudevan
- Centre of Excellence for Medical Textiles, The South India Textile Research Association, Coimbatore, Tamilnadu, India
| |
Collapse
|
25
|
Yan R, Chen Y, Gu Y, Tang C, Huang J, Hu Y, Zheng Z, Ran J, Heng B, Chen X, Yin Z, Chen W, Shen W, Ouyang H. A collagen-coated sponge silk scaffold for functional meniscus regeneration. J Tissue Eng Regen Med 2019; 13:156-173. [PMID: 30485706 DOI: 10.1002/term.2777] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/09/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
Tissue engineering is a promising solution for meniscal regeneration after meniscectomy. However, in situ reconstruction still poses a formidable challenge due to multifunctional roles of the meniscus in the knee. In this study, we fabricate a silk sponge from 9% (w/v) silk fibroin solution through freeze drying and then coat its internal space and external surface with collagen sponge. Subsequently, various characteristics of the silk-collagen scaffold are evaluated, and cytocompatibility of the construct is assessed in vitro and subcutaneously. The efficacy of this composite scaffold for meniscal regeneration is evaluated through meniscus reconstruction in a rabbit meniscectomy model. It is found that the internally coated collagen sponge enhances the cytocompatibility of the silk sponge, and the external layer of collagen sponge significantly improves the initial frictional property. Additionally, the silk-collagen composite group shows more tissue ingrowth and less cartilage wear than the pure silk sponge group at 3 months postimplantation in situ. These findings thus demonstrate that the composite scaffold had less damage to the joint surface than the silk alone through promoting functional meniscal regeneration after meniscectomy, which indicates its clinical potential in meniscus reconstruction.
Collapse
Affiliation(s)
- Ruijian Yan
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Yanjia Gu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Yejun Hu
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Zefeng Zheng
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China.,Department of Orthopedic Surgery, The Children's Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Boonchin Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, China.,China Orthopaedic Regenerative Medicine (CORMed), Zhejiang University, Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, China
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, China.,China Orthopaedic Regenerative Medicine (CORMed), Zhejiang University, Hangzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, China.,China Orthopaedic Regenerative Medicine (CORMed), Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Zhang K, Wu J, Zhang W, Yan S, Ding J, Chen X, Cui L, Yin J. In situ formation of hydrophobic clusters to enhance mechanical performance of biodegradable poly(l-glutamic acid)/poly(ε-caprolactone) hydrogel towards meniscus tissue engineering. J Mater Chem B 2018; 6:7822-7833. [PMID: 32255028 DOI: 10.1039/c8tb01453a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The preparation of scaffolds represents a huge challenge for meniscus tissue engineering, as there are particular biomechanical and biodegradability requirements. Here, an amphiphilic polymer was prepared by grafting hydrophobic poly(ε-caprolactone) (PCL) with short chains onto hydrophilic biodegradable poly(l-glutamic acid) (PLGA). PLGA-g-PCL was then crosslinked with triethylene glycol (TEG) to form a chemically crosslinked network (CCN), followed by the in situ formation of stable hydrophobic PCL clusters inside the preformed CCN to increase the strength and elasticity of the hydrogel. The spindle-like PCL clusters in the hydrogel were observed to possess a mean size of 5-10 μm on the long axis and 3-4 μm on the minor axis, with no crystallization according to WAXS. Owing to the hydrophobic association of PCL, the swollen CCN was secondarily crosslinked and stiffened. Dynamic mechanical analysis (DMA) demonstrated excellent rebound resilience, and the maximum compressive strength of all the PLGA-g-PCL hydrogels was greater than 0.60 MPa with a maximum strain of about 70%, which represented significant increases in comparison with a PLGA hydrogel. Owing to the short chains of PCL, degradation of the PLGA-g-PCL hydrogel was accelerated within 3 months in vivo. A hydrogel carrying adipose-derived stem cells (ASCs) effectively regenerated meniscus-like tissue in vivo and preserved the corresponding articular cartilage from degeneration over a 16 week period.
Collapse
Affiliation(s)
- Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pérez-Castrillo S, González-Fernández ML, López-González ME, Villar-Suárez V. Effect of ascorbic and chondrogenic derived decellularized extracellular matrix from mesenchymal stem cells on their proliferation, viability and differentiation. Ann Anat 2018; 220:60-69. [PMID: 30114449 DOI: 10.1016/j.aanat.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND The development and application of biomaterials to promote stem cell proliferation and differentiation has undergone major expansion over the last few years. Decellularized stem cell matrix (DSCMs) represent bioactive and biocompatible materials which achieve similar characteristics of native extracellular matrix. DSCMs have given promising outcomes in generating novel cell culture substrates mimicking specific niche microenvironments in tissue engineering. AIMS This research aims at producing two different DSCMs obtained from adipose derived mesenchymal stem cells and bone marrow mesenchymal stem cells, characterize them and evaluate the DSCMs bioactivity on mesenchymal stem cells. METHODS DSCMs were produced using ascorbic or chondrogenic medium, which were then used as a scaffold for adipose derived mesenchymal stem cells and bone marrow mesenchymal stem cells, respectively. The biological characteristics of both types of DSCMs, including cell attachment, morphology, proliferation, viability, and chondrogenic and osteogenic differentiation were evaluated and compared. RESULTS Differences between ascorbic derived-DSCMs and chondrogenic derived DSCMs were found. Chondrogenic derived-DSCMs remained compact and stronger during extraction and this made their handling easier. Ascorbic derived-DSCMs showed a different protein composition to chondrogenic-DSCMs. Bioactive characteristics analyzed were different depending on the cellular origin of DSCM and the method used to produce them. CONCLUSIONS The DSCMs obtained in this work constitutes favorable structure- and growth factors providing a microenvironment which is very similar to that of native ECM, which results in enhanced biological potential of the MSCs and responsiveness to the induction of differentiation. We found differences between ascorbic derived-DSCMs and chondrogenic derived DSCMs. Our results suggest that the cell source used to produce DSCMs is highly related to the bioactive characteristics of DSCMs.
Collapse
Affiliation(s)
- S Pérez-Castrillo
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - M L González-Fernández
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - M E López-González
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - V Villar-Suárez
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, Campus de Vegazana s/n, 24071, León, Spain; Institute of Biomedicine (IBIOMED), University of León-Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
28
|
Costa JB, Silva-Correia J, Reis RL, Oliveira JM. Recent advances on 3D printing of patient-specific implants for fibrocartilage tissue regeneration. ACTA ACUST UNITED AC 2018. [DOI: 10.2217/3dp-2018-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fibrocartilage is a very peculiar type of tissue found in intervertebral disc and meniscus. It is characterized by its avascular nature and for the shear and compressive forces that it can be subjected to. The number of individuals affected by the degeneration of fibrocartilaginous tissues has been growing and the poor outcomes of current treatments have led to an increased interest in new alternative approaches. Therefore, the combination of reverse engineering with 3D printing has been extensively explored in order to produce patient-specific implants capable of improving the current clinical outcomes. This review outlines the recent advances achieved in the tissue engineering field, especially focusing on fibrocartilaginous tissue.
Collapse
Affiliation(s)
- João B Costa
- 3B’s Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative & Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Joana Silva-Correia
- 3B’s Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B’s Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative & Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B’s Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative & Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
29
|
Warnecke D, Stein S, Haffner-Luntzer M, de Roy L, Skaer N, Walker R, Kessler O, Ignatius A, Dürselen L. Biomechanical, structural and biological characterisation of a new silk fibroin scaffold for meniscal repair. J Mech Behav Biomed Mater 2018; 86:314-324. [PMID: 30006280 PMCID: PMC6079190 DOI: 10.1016/j.jmbbm.2018.06.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 11/20/2022]
Abstract
Meniscal injury is typically treated surgically via partial meniscectomy, which has been shown to cause cartilage degeneration in the long-term. Consequently, research has focused on meniscal prevention and replacement. However, none of the materials or implants developed for meniscal replacement have yet achieved widespread acceptance or demonstrated conclusive chondroprotective efficacy. A redesigned silk fibroin scaffold, which already displayed promising results regarding biocompatibility and cartilage protection in a previous study, was characterised in terms of its biomechanical, structural and biological functionality to serve as a potential material for permanent partial meniscal replacement. Therefore, different quasi-static but also dynamic compression tests were performed. However, the determined compressive stiffness (0.56 ± 0.31 MPa and 0.30 ± 0.12 MPa in relaxation and creep configuration, respectively) was higher in comparison to the native meniscal tissue, which could potentially disturb permanent integration into the host tissue. Nevertheless, µ-CT analysis met the postulated requirements for partial meniscal replacement materials in terms of the microstructural parameters, like mean pore size (215.6 ± 10.9 µm) and total porosity (80.1 ± 4.3%). Additionally, the biocompatibility was reconfirmed during cell culture experiments. The current study provides comprehensive mechanical and biological data for the characterisation of this potential replacement material. Although some further optimisation of the silk fibroin scaffold may be advantageous, the silk fibroin scaffold showed sufficient biomechanical competence to support loads already in the early postoperative phase.
Collapse
Affiliation(s)
- Daniela Warnecke
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Helmholtzstr. 14, 89081 Ulm, Germany.
| | - Svenja Stein
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Helmholtzstr. 14, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Helmholtzstr. 14, 89081 Ulm, Germany
| | - Luisa de Roy
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Helmholtzstr. 14, 89081 Ulm, Germany
| | | | | | - Oliver Kessler
- Centre of Orthopaedics and Sports, Zurich, Switzerland; University Medical Centre, Clinic for Orthopaedic Surgery, Magdeburg, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Helmholtzstr. 14, 89081 Ulm, Germany
| | - Lutz Dürselen
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University Medical Centre, Helmholtzstr. 14, 89081 Ulm, Germany
| |
Collapse
|
30
|
A Hydrogel Meniscal Replacement: Knee Joint Pressure and Distribution in an Ovine Model Compared to Native Tissue. Ann Biomed Eng 2018; 46:1785-1796. [PMID: 29922953 DOI: 10.1007/s10439-018-2069-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
Abstract
Pressure distribution of the native ovine knee meniscus was compared to a medial meniscectomy and three treatment conditions including a suture reattachment of the native tissue, an allograft, and a novel thermoplastic elastomer hydrogel (TPE) construct. The objective of this study was to assess the efficacy of a novel TPE hydrogel construct at restoring joint pressure and distribution. Limbs were loaded in uniaxial compression at 45°, 60°, and 75° flexion and from 0 to 181 kg. The medial meniscectomy decreased contact area by approximately 50% and doubled the mean and maximum pressure reading for the medial hemijoint. No treatment condition tested within this study was able to fully restore medial joint contact area and pressures to the native condition. A decrease in lateral contact area and increase in pressures with the meniscectomy was also seen; and to some degree, all reattachment and replacement conditions including the novel TPE hydrogel replacement helped to restore lateral pressures. Although the TPE construct did not perform as well as hoped in the medial compartment, it performed as well as, if not better, than the other reattachment and replacement options in the lateral. Further work is necessary to determine the best anchoring and attachment methods.
Collapse
|
31
|
Tarafder S, Gulko J, Sim KH, Yang J, Cook JL, Lee CH. Engineered Healing of Avascular Meniscus Tears by Stem Cell Recruitment. Sci Rep 2018; 8:8150. [PMID: 29802356 PMCID: PMC5970239 DOI: 10.1038/s41598-018-26545-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022] Open
Abstract
Meniscus injuries are extremely common with approximately one million patients undergoing surgical treatment annually in the U.S. alone. Upon injury, the outer zone of the meniscus can be repaired and expected to functionally heal but tears in the inner avascular region are unlikely to heal. To date, no regenerative therapy has been proven successful for consistently promoting healing in inner-zone meniscus tears. Here, we show that controlled applications of connective tissue growth factor (CTGF) and transforming growth factor beta 3 (TGFβ3) can induce seamless healing of avascular meniscus tears by inducing recruitment and step-wise differentiation of synovial mesenchymal stem/progenitor cells (syMSCs). A short-term release of CTGF, a selected chemotactic and profibrogenic cue, successfully recruited syMSCs into the incision site and formed an integrated fibrous matrix. Sustain-released TGFβ3 then led to a remodeling of the intermediate fibrous matrix into fibrocartilaginous matrix, fully integrating incised meniscal tissues with improved functional properties. Our data may represent a novel clinically relevant strategy to improve healing of avascular meniscus tears by recruiting endogenous stem/progenitor cells.
Collapse
Affiliation(s)
- Solaiman Tarafder
- Regenerative Engineering Laboratory Columbia University Medical Center, 630W. 168 St. - VC12-230, New York, NY, 10032, USA
| | - Joseph Gulko
- Regenerative Engineering Laboratory Columbia University Medical Center, 630W. 168 St. - VC12-230, New York, NY, 10032, USA
| | - Kun Hee Sim
- Regenerative Engineering Laboratory Columbia University Medical Center, 630W. 168 St. - VC12-230, New York, NY, 10032, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, 205 Hallowell Building, University Park, Pennsylvania, PA, 16802-4400, USA
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics Missouri Orthopaedic institute, University of Missouri, 1100 Virginia Avenue, Columbia, Missouri, 65212, USA
| | - Chang H Lee
- Regenerative Engineering Laboratory Columbia University Medical Center, 630W. 168 St. - VC12-230, New York, NY, 10032, USA.
| |
Collapse
|
32
|
Tissue Engineering of Large Full-Size Meniscus Defects by a Polyurethane Scaffold: Accelerated Regeneration by Mesenchymal Stromal Cells. Stem Cells Int 2018; 2018:8207071. [PMID: 29853919 PMCID: PMC5964612 DOI: 10.1155/2018/8207071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/06/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022] Open
Abstract
The endogenous healing potential of avascular meniscal lesions is poor. Up to now, partial meniscectomy is still the treatment of choice for meniscal lesions within the avascular area. However, the large loss of meniscus substance predisposes the knee for osteoarthritic changes. Tissue engineering techniques for the replacement of such lesions could be a promising alternative treatment option. Thus, a polyurethane scaffold, which is already in clinical use, loaded with mesenchymal stromal cells, was analyzed for the repair of critical meniscus defects in the avascular zone. Large, approximately 7 mm broad meniscus lesions affecting both the avascular and vascular area of the lateral rabbit meniscus were treated with polyurethane scaffolds either loaded or unloaded with mesenchymal stromal cells. Menisci were harvested at 6 and 12 weeks after initial surgery. Both cell-free and cell-loaded approaches led to well-integrated and stable meniscus-like repair tissue. However, an accelerated healing was achieved by the application of mesenchymal stromal cells. Dense vascularization was detected throughout the repair tissue of both treatment groups. Overall, the polyurethane scaffold seems to promote the vessel ingrowth. The application of mesenchymal stromal cells has the potential to speed up the healing process.
Collapse
|
33
|
Ribitsch I, Peham C, Ade N, Dürr J, Handschuh S, Schramel JP, Vogl C, Walles H, Egerbacher M, Jenner F. Structure-Function relationships of equine menisci. PLoS One 2018. [PMID: 29522550 PMCID: PMC5844599 DOI: 10.1371/journal.pone.0194052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Meniscal pathologies are among the most common injuries of the femorotibial joint in both human and equine patients. Pathological forces and ensuing injuries of the cranial horn of the equine medial meniscus are considered analogous to those observed in the human posterior medial horn. Biomechanical properties of human menisci are site- and depth- specific. However, the influence of equine meniscus topography and composition on its biomechanical properties is yet unknown. A better understanding of equine meniscus composition and biomechanics could advance not only veterinary therapies for meniscus degeneration or injuries, but also further substantiate the horse as suitable translational animal model for (human) meniscus tissue engineering. Therefore, the aim of this study was to investigate the composition and structure of the equine knee meniscus in a site- and age-specific manner and their relationship with potential site-specific biomechanical properties. The meniscus architecture was investigated histologically. Biomechanical testing included evaluation of the shore hardness (SH), stiffness and energy loss of the menisci. The SH was found to be subjected to both age and site-specific changes, with an overall higher SH of the tibial meniscus surface and increase in SH with age. Stiffness and energy loss showed neither site nor age related significant differences. The macroscopic and histologic similarities between equine and human menisci described in this study, support continued research in this field.
Collapse
Affiliation(s)
- Iris Ribitsch
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Vienna, Austria
- * E-mail:
| | - Christian Peham
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Vienna, Austria
| | - Nicole Ade
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Vienna, Austria
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Zurich, Switzerland
| | - Julia Dürr
- Department of Pathobiology, Unit of Histology and Embryology, Vetmeduni Vienna, Vienna, Vienna, Austria
| | - Stephan Handschuh
- Vetcore Facility for Research, Vetmeduni Vienna, Vienna, Vienna, Austria
| | - Johannes Peter Schramel
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Vienna, Austria
| | - Claus Vogl
- Department of Biomedical Sciences, Unit of Molecular Genetics, Vetmeduni Vienna, Vienna, Vienna, Austria
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg and Translational Center Wuerzburg, Wuerzburg, Baveria, Germany
| | - Monika Egerbacher
- Department of Pathobiology, Unit of Histology and Embryology, Vetmeduni Vienna, Vienna, Vienna, Austria
| | - Florien Jenner
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Vienna, Austria
| |
Collapse
|
34
|
Chen M, Guo W, Gao S, Hao C, Shen S, Zhang Z, Wang Z, Wang Z, Li X, Jing X, Zhang X, Yuan Z, Wang M, Zhang Y, Peng J, Wang A, Wang Y, Sui X, Liu S, Guo Q. Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8472309. [PMID: 29581987 PMCID: PMC5822894 DOI: 10.1155/2018/8472309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Abstract
Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds of the meniscus remain incurable. Tissue-engineered meniscus strategies seem to offer a new approach for treating meniscus injuries with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play a pivotal role in meniscus regeneration. Similarly, biochemical and biomechanical stimulation are also important. Seed cells and scaffolds can be used to construct a tissue-engineered tissue; however, stimulation to enhance tissue maturation and remodeling is still needed. Such stimulation can be biomechanical or biochemical, but this review focuses only on biochemical stimulation. Growth factors (GFs) are one of the most important forms of biochemical stimulation. Frequently used GFs always play a critical role in normal limb development and growth. Further understanding of the functional mechanism of GFs will help scientists to design the best therapy strategies. In this review, we summarize some of the most important GFs in tissue-engineered menisci, as well as other types of biological stimulation.
Collapse
Affiliation(s)
- Mingxue Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Weimin Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shunag Gao
- Center for Biomaterial and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, No. 5 Yiheyuan Road, Haidian District, Peking University, Beijing 100871, China
| | - Chunxiang Hao
- Institute of Anesthesiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shi Shen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou 646000, China
| | - Zengzeng Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, No. 348 Dexiang Road, Xiangyang District, Jiamusi 154002, China
| | - Zhenyong Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, No. 348 Dexiang Road, Xiangyang District, Jiamusi 154002, China
| | - Zehao Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xu Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoguang Jing
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, No. 348 Dexiang Road, Xiangyang District, Jiamusi 154002, China
| | - Xueliang Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- Shanxi Traditional Chinese Hospital, No. 46 Binzhou West Street, Yingze District, Taiyuan 030001, China
| | - Zhiguo Yuan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Mingjie Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Aiyuan Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
35
|
Chen M, Gao S, Wang P, Li Y, Guo W, Zhang Y, Wang M, Xiao T, Zhang Z, Zhang X, Jing X, Li X, Liu S, Guo Q, Xi T. The application of electrospinning used in meniscus tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:461-475. [PMID: 29308701 DOI: 10.1080/09205063.2018.1425180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mingxue Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People’s Republic of China
| | - Shuang Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People’s Republic of China
| | - Pei Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People’s Republic of China
| | - Yan Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People’s Republic of China
| | - Weimin Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People’s Republic of China
| | - Yu Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People’s Republic of China
| | - Mingjie Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People’s Republic of China
| | - Tongguang Xiao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People’s Republic of China
| | - Zengzeng Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People’s Republic of China
| | - Xueliang Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People’s Republic of China
| | - Xiaoguang Jing
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People’s Republic of China
| | - Xu Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People’s Republic of China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People’s Republic of China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People’s Republic of China
| | - Tingfei Xi
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People’s Republic of China
- Shenzhen Institute, Peking University, Shenzhen, People’s Republic of China
| |
Collapse
|
36
|
Kean CO, Brown RJ, Chapman J. The role of biomaterials in the treatment of meniscal tears. PeerJ 2017; 5:e4076. [PMID: 29158995 PMCID: PMC5695244 DOI: 10.7717/peerj.4076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
Extensive investigations over the recent decades have established the anatomical, biomechanical and functional importance of the meniscus in the knee joint. As a functioning part of the joint, it serves to prevent the deterioration of articular cartilage and subsequent osteoarthritis. To this end, meniscus repair and regeneration is of particular interest from the biomaterial, bioengineering and orthopaedic research community. Even though meniscal research is previously of a considerable volume, the research community with evolving material science, biology and medical advances are all pushing toward emerging novel solutions and approaches to the successful treatment of meniscal difficulties. This review presents a tactical evaluation of the latest biomaterials, experiments to simulate meniscal tears and the state-of-the-art materials and strategies currently used to treat tears.
Collapse
Affiliation(s)
- Crystal O. Kean
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | | | - James Chapman
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
37
|
Coculture of meniscus cells and mesenchymal stem cells in simulated microgravity. NPJ Microgravity 2017; 3:28. [PMID: 29147680 PMCID: PMC5681589 DOI: 10.1038/s41526-017-0032-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 01/03/2023] Open
Abstract
Simulated microgravity has been shown to enhance cartilaginous matrix formation by chondrocytes and chondrogenesis of mesenchymal stem cells (MSCs). Similarly, coculture of primary chondrocytes with MSCs has been shown as a strategy to simultaneously retain the differentiated phenotype of chondrocytes and enhance cartilaginous matrix formation. In this study, we investigated the effect of simulated microgravity on cocultures of primary human meniscus cells and adipose-derived MSCs. We used biochemical, qPCR, and immunofluorescence assays to conduct our investigation. Simulated microgravity significantly enhanced cartilaginous matrix formation in cocultures of primary meniscus cells and adipose-derived MSCs. The enhancement was accompanied by increased hypertrophic differentiation markers, COL10A1 and MMP-13, and suppression of hypertrophic differentiation inhibitor, gremlin 1 (GREM1). Co-culture of meniscal cartilage-forming cells with fat-derived stem cells can lead to enhanced cartilage matrix production when cultured under simulated microgravity. Adetola Adesida from the University of Alberta in Edmonton, Canada, and colleagues cultured two types of cells found together in the knee—cartilage-forming chondrocyte cells (taken from the meniscus) and mesenchymal stem cells (isolated from the infrapatellar fat pad)—in a rotary cell culture system designed to model weightlessness on Earth. Simulated microgravity enhanced the synergistic interaction between the two types of cells in culture, resulting in more matrix production, but it also prompted the cartilage-forming cells to differentiate towards bone-forming cells, as evidenced by gene expression analysis. These findings suggest that microgravity and simulated microgravity-based culture technologies could help bioengineers grow knee replacements for people with meniscus tears, but increased bone-directed differentiation could pose a possible problem for astronauts on prolonged missions.
Collapse
|
38
|
Freymann U, Degrassi L, Krüger JP, Metzlaff S, Endres M, Petersen W. Effect of serum and platelet-rich plasma on human early or advanced degenerative meniscus cells. Connect Tissue Res 2017; 58:509-519. [PMID: 27929701 DOI: 10.1080/03008207.2016.1260563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The purpose of this in vitro study was to evaluate the migratory, proliferating, and extracellular matrix (ECM) forming effect of human serum (HS) and platelet-rich plasma (PRP) on meniscus cells derived from human knees with early or advanced degenerative changes. MATERIALS AND METHODS Medial menisci from knees with early degenerative changes (n = 5; mean Kellgren score of 1) undergoing arthroscopic meniscal surgery and advanced degenerative changes (n = 5; mean Kellgren score of 4) undergoing total knee replacement were collected. Cell migration and proliferation upon stimulation with HS and PRP were assessed by migration and proliferation assays. Induction of meniscal ECM was evaluated histologically by hematoxylin and eosin, collagen type I, and alcian blue staining and by gene expression analysis of meniscus-related genes in pellets that have been stimulated with 10% HS or 5% PRP. RESULTS Meniscal cells from knees with early and advanced degenerative changes were significantly attracted by 2.5%-30% PRP or 10% HS. Cell proliferation was significantly increased upon stimulation with 10% HS or 5% PRP. Both cell groups showed the formation of a well-structured, meniscus-like ECM after stimulation with 10% HS, whereas stimulation with 5% PRP led to inhomogeneous, more fibrous ECM. Stimulation with 10% HS showed a significant induction of aggrecan and COMP, while 5% PRP showed no inducing effect. CONCLUSIONS Only stimulation with HS showed the formation of meniscal ECM as well as cell proliferating and migratory effects on meniscal cells derived from knees with early or advanced degenerative changes. Thus, we suggest that the selected stimulating factor itself and not the status of the knee may primarily affect repair processes. HS may have a potential to augment in meniscal repair procedures.
Collapse
Affiliation(s)
| | - Lucia Degrassi
- a TransTissue Technologies GmbH , Berlin , Germany.,b Dipartimento di Oncologia , Laboratorio di Medicina Rigenerativa, Biologia e Genetica , Genova , Italy
| | | | - Sebastian Metzlaff
- c Clinic for Traumatic Surgery and Orthopedics, Martin-Luther-Hospital , Berlin , Germany
| | - Michaela Endres
- a TransTissue Technologies GmbH , Berlin , Germany.,d Department of Rheumatology and Immunology , Tissue Engineering Laboratory, Charité Campus Mitte, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Wolf Petersen
- b Dipartimento di Oncologia , Laboratorio di Medicina Rigenerativa, Biologia e Genetica , Genova , Italy
| |
Collapse
|
39
|
Critchley SE, Kelly DJ. Bioinks for bioprinting functional meniscus and articular cartilage. ACTA ACUST UNITED AC 2017. [DOI: 10.2217/3dp-2017-0012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
3D bioprinting can potentially enable the engineering of biological constructs mimicking the complex geometry, composition, architecture and mechanical properties of different tissues and organs. Integral to the successful bioprinting of functional articular cartilage and meniscus is the identification of suitable bioinks and cell sources to support chondrogenesis or fibrochondrogenesis, respectively. Such bioinks must also possess the appropriate rheological properties to be printable and support the generation of complex geometries. This review will outline the parameters required to develop bioinks for such applications and the current recent advances in 3D bioprinting of functional meniscus and articular cartilage. The paper will conclude by discussing key scientific and technical hurdles in this field and by defining future research directions for cartilage and meniscus bioprinting.
Collapse
Affiliation(s)
- Susan E Critchley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
40
|
Boys AJ, McCorry MC, Rodeo S, Bonassar LJ, Estroff LA. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces. MRS COMMUNICATIONS 2017; 7:289-308. [PMID: 29333332 PMCID: PMC5761353 DOI: 10.1557/mrc.2017.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/28/2017] [Indexed: 05/17/2023]
Abstract
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.
Collapse
Affiliation(s)
- Alexander J Boys
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | | | - Scott Rodeo
- Orthopedic Surgery, Hospital for Special Surgery, New York, NY
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, NY
- Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, NY
- Orthopedic Surgery, Weill Medical College of Cornell University, Cornell University, New York, NY
- New York Giants, East Rutherford, NJ
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Kavli Institute at Cornell, Cornell University, Ithaca, NY
| |
Collapse
|
41
|
Yuan X, Wei Y, Villasante A, Ng JJD, Arkonac DE, Chao PHG, Vunjak-Novakovic G. Stem cell delivery in tissue-specific hydrogel enabled meniscal repair in an orthotopic rat model. Biomaterials 2017; 132:59-71. [PMID: 28407495 PMCID: PMC5473162 DOI: 10.1016/j.biomaterials.2017.04.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 01/21/2023]
Abstract
Interest in non-invasive injectable therapies has rapidly risen due to their excellent safety profile and ease of use in clinical settings. Injectable hydrogels can be derived from the extracellular matrix (ECM) of specific tissues to provide a biomimetic environment for cell delivery and enable seamless regeneration of tissue defects. We investigated the in situ delivery of human mesenchymal stem cells (hMSCs) in decellularized meniscus ECM hydrogel to a meniscal defect in a nude rat model. First, decellularized meniscus ECM hydrogel retained tissue-specific proteoglycans and collagens, and significantly upregulated expression of fibrochondrogenic markers by hMSCs versus collagen hydrogel alone in vitro. The meniscus ECM hydrogel in turn supported delivery of hMSCs for integrative repair of a full-thickness defect model in meniscal explants after in vitro culture and in vivo subcutaneous implantation. When applied to an orthotopic model of meniscal injury in nude rat, hMSCs in meniscus ECM hydrogel were retained out to eight weeks post-injection, contributing to tissue regeneration and protection from joint space narrowing, pathologic mineralization, and osteoarthritis development, as evidenced by macroscopic and microscopic image analysis. Based on these findings, we propose the use of tissue-specific meniscus ECM-derived hydrogel for the delivery of therapeutic hMSCs to treat meniscal injury.
Collapse
Affiliation(s)
- Xiaoning Yuan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yiyong Wei
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aránzazu Villasante
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Johnathan J D Ng
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Derya E Arkonac
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Pen-Hsiu Grace Chao
- Institute of Biomedical Engineering, School of Medicine and School of Engineering, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
42
|
Dernek B, Kesiktas FN, Duymus TM, Diracoglu D, Aksoy C. Therapeutic efficacy of three hyaluronic acid formulations in young and middle-aged patients with early-stage meniscal injuries. J Phys Ther Sci 2017; 29:1148-1153. [PMID: 28744035 PMCID: PMC5509579 DOI: 10.1589/jpts.29.1148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022] Open
Abstract
[Purpose] To investigate and compare the efficacy of three hyaluronic acid formulations in patients with early-stage meniscal injuries. [Subjects and Methods] Male and female patients who were admitted to our clinic between January 2013 and December 2013, diagnosed with early-stage meniscus lesions of the knee, and given a hyaluronic acid treatment were included in this retrospective study. Patients were categorized into 3 groups according to their treatments: MONOVISC, OSTENIL PLUS, or ORTHOVISC. Scores from a Visual Analog Scale and the Western Ontario and McMaster Universities Arthritis Index were evaluated at baseline and one, three, and six months after baseline. [Results] A total of 55 patients were included in this study. Most of the patients were female (55%), and the mean age of the patients was 42.4 (± 8.1) years. Based on the pre- and post-injection data, there was significant reductions both in the Visual Analog Scale score and the Western Ontario and McMaster Universities Arthritis Index score after the injections for all groups. According to intergroup comparisons, no significant difference was observed in terms of efficacy. [Conclusion] Three hyaluronic acid formulations produced a similar efficacy in patients with meniscal injuries, and further studies are needed to evaluate long-term results.
Collapse
Affiliation(s)
- Bahar Dernek
- Istanbul Kanuni Sultan Suleyman Training and Research
Hospital, Physical Medicine and Rehabilitation Clinic, Turkey
| | - Fatma Nur Kesiktas
- Istanbul Kanuni Sultan Suleyman Training and Research
Hospital, Physical Medicine and Rehabilitation Clinic, Turkey
| | - Tahir Mutlu Duymus
- Istanbul Kanuni Sultan Suleyman Training and Research
Hospital, Orthopedics Clinic, Turkey
| | - Demirhan Diracoglu
- Department of Physical Medicine and Rehabilitation,
Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Cihan Aksoy
- Department of Physical Medicine and Rehabilitation,
Istanbul Faculty of Medicine, Istanbul University, Turkey
| |
Collapse
|
43
|
Ding J, Niu X, Su Y, Li X. Expression of synovial fluid biomarkers in patients with knee osteoarthritis and meniscus injury. Exp Ther Med 2017; 14:1609-1613. [PMID: 28810626 PMCID: PMC5526113 DOI: 10.3892/etm.2017.4636] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/12/2017] [Indexed: 12/11/2022] Open
Abstract
In the present study, the levels of synovial fluid biomarkers of patients with knee osteoarthritis (OA) and those with meniscus injury (MI) were compared to associate the levels of synovial fluid biomarkers with the degree of OA and MI. Synovial fluid samples were obtained from 51 cases with OA and 40 patients with MI. Severity of OA and MI were evaluated using the Kellgren-Lawrence (K-L) classification and Magnetic Resonance Imaging Osteoarthritis Knee Score, respectively. A comparative analysis of the levels of matrix metalloproteinase-13 (MMP-13), vascular endothelial growth factor (VEGF), interleukin (IL)-10, IL-8, IL-6, IL-1, tumor necrosis factor-α (TNF-α), as well as collagenase 2 in synovial fluid was made between patients with OA and MI. We found that synovial fluid levels of VEGF and IL-6 were significantly higher in patients with OA than in patients with MI, and IL-10 was lower in patients with OA compared to MI patients (p<0.05). After adjusting for sex, course of disease, and surgical history, no significant associations between K-L scores and biomarker levels were found for patients with OA. In the MI patients, TNF-α was significantly associated with magnetic resonance imaging (MRI) score. In conclusion, patients with knee OA and MI have different patterns of biomarker expression in their synovial fluid.
Collapse
Affiliation(s)
- Jian Ding
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xin Niu
- Institute of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yan Su
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiaolin Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
44
|
Kremer A, Ribitsch I, Reboredo J, Dürr J, Egerbacher M, Jenner F, Walles H. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix—A Pilot Study Toward Equine Meniscus Tissue Engineering. Tissue Eng Part A 2017; 23:390-402. [DOI: 10.1089/ten.tea.2016.0317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Antje Kremer
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center Wuerzburg ‘Regenerative therapies,’ Wuerzburg Branch of the Fraunhofer IGB, Wuerzburg, Germany
| | - Iris Ribitsch
- Vienna Equine Tissue Engineering and Regenerative Medicine, Equine Clinic, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jenny Reboredo
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center Wuerzburg ‘Regenerative therapies,’ Wuerzburg Branch of the Fraunhofer IGB, Wuerzburg, Germany
| | - Julia Dürr
- Department of Pathobiology, Institute of Histology & Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Egerbacher
- Department of Pathobiology, Institute of Histology & Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Florien Jenner
- Vienna Equine Tissue Engineering and Regenerative Medicine, Equine Clinic, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center Wuerzburg ‘Regenerative therapies,’ Wuerzburg Branch of the Fraunhofer IGB, Wuerzburg, Germany
| |
Collapse
|
45
|
Gelse K, Körber L, Schöne M, Raum K, Koch P, Pachowsky M, Welsch G, Breiter R. Transplantation of Chemically Processed Decellularized Meniscal Allografts. Cartilage 2017; 8:180-190. [PMID: 28345410 PMCID: PMC5358822 DOI: 10.1177/1947603516646161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objective The aim of this study was to evaluate the chondroprotective effect of chemically decellularized meniscal allografts transplanted into the knee joints of adult merino sheep. Methods Lateral sheep meniscal allografts were chemically processed by a multistep method to yield acellular, sterile grafts. The grafts were transplanted into the knee joints of sheep that were treated by lateral meniscectomy. Joints treated by meniscectomy only and untreated joints served as controls. The joints were analyzed morphologically 6 and 26 weeks after surgery by the macroscopical and histological OARSI (Osteoarthritis Research Society International) score. Additionally, the meniscal grafts were biomechanically tested by cyclic indentation. Results Lateral meniscectomy was associated with significant degenerative changes of the articular cartilage of the lateral joint compartment. Transplanted lateral meniscal allografts retained their integrity during the observation period without inducing significant synovitis or foreign body reactions. Cellular repopulation of the grafts was only present on the surface and the periphery of the lateral meniscus, but was still completely lacking in the center of the grafts at week 26. Transplantation of processed meniscal allografts could not prevent degenerative changes of the articular cartilage in the lateral joint compartment. Compared with healthy menisci, the processed grafts were characterized by a significantly reduced dynamic modulus, which did not improve during the observation period of 26 weeks in vivo. Conclusion Chemically decellularized meniscal allografts proved their biocompatibility and durability without inducing immunogenic reactions. However, insufficient recellularization and inferior stiffness of the grafts hampered chondroprotective effects on the articular cartilage.
Collapse
Affiliation(s)
- Kolja Gelse
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, Erlangen, Germany,Kolja Gelse, Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Ludwig Körber
- Institute of Bioprocess Engineering, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Schöne
- Berlin Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kay Raum
- Berlin Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Koch
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Milena Pachowsky
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Götz Welsch
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Roman Breiter
- Institute of Bioprocess Engineering, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
46
|
Preparation and Characterization of Polyurethanes with Cross-Linked Siloxane in the Side Chain by Sol-Gel Reactions. MATERIALS 2017; 10:ma10030247. [PMID: 28772607 PMCID: PMC5503350 DOI: 10.3390/ma10030247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/25/2017] [Indexed: 11/26/2022]
Abstract
A series of novel polyurethanes containing cross-linked siloxane in the side chain (SPU) were successfully synthesized through a sol-gel process. The SPU was composed of 0%–20% N-(n-butyl)-3-aminopropyltriethoxysilane (HDI-T) modified hexamethylene diisocynate homopolymer. The effects of HDI-T content on both the structure and properties of SPU were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), mechanical properties tests, gel content test, water contact angle measurement and water absorption test. FT-IR, XPS and XRD results confirmed the successful incorporation of HDI-T onto polyurethanes and the formation of Si–O–Si. The surface roughness and the Si content of SPU enhanced with the increase of HDI-T content. Both crystallization and melting temperature shifted to a lower point after the incorporation of HDI-T. The hydrophobicity, tensile strength, Young’s modulus and pencil hardness overall increased with the increasing of HDI-T content, whereas the thermal stability and the elongation at break of SPU slightly decreased.
Collapse
|
47
|
Moradi L, Vasei M, Dehghan MM, Majidi M, Farzad Mohajeri S, Bonakdar S. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: In vivo study. Biomaterials 2017; 126:18-30. [PMID: 28242519 DOI: 10.1016/j.biomaterials.2017.02.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 01/01/2023]
Abstract
The meniscus has poor intrinsic regenerative capacity and its damage inevitably leads to articular cartilage degeneration. We focused on evaluating the effects of Polyvinyl alcohol/Chitosan (PVA/Ch) scaffold seeded by adipose-derived mesenchymal stem cell (ASC) and articular chondrocytes (AC) in meniscus regeneration. The PVA/Ch scaffolds with different molar contents of Ch (Ch1, Ch2, Ch4 and Ch8) were cross-linked by pre-polyurethane chains. By increasing amount of Ch tensile modulus was increased from 83.51 MPa for Ch1 to 110 MPa for Ch8 while toughness showed decrease from 0.33 mJ/mm3 in Ch1 to 0.11 mJ/mm3 in Ch8 constructs. Moreover, swelling ratio and degradation rate increased with an increase in Ch amount. Scanning electron microscopy imaging was performed for pore size measurement and cell attachment. At day 21, Ch4 construct seeded by AC showed the highest expression with 24.3 and 22.64 folds increase in collagen II and aggrecan (p ≤ 0.05), respectively. Since, the mechanical properties, water uptake and degradation rate of Ch4 and Ch8 compositions had no statistically significant differences, Ch4 was selected for in vivo study. New Zealand rabbits were underwent unilateral total medial meniscectomy and AC/scaffold, ASC/scaffold, AC-ASC (co-culture)/scaffold and cell-free scaffold were engrafted. At 7 months post-implantation, macroscopic, histologic, and immunofluorescent studies for regenerated meniscus revealed better results in AC/scaffold group followed by AC-ASC/scaffold and ASC/scaffold groups. In the cell-free scaffold group, there was no obvious meniscus regeneration. Articular cartilages were best preserved in AC/scaffold group. The best histological score was observed in AC/scaffold group. Our results support that Ch4 scaffold seeded by AC alone can successfully regenerate meniscus in tearing injury and ASC has no significant contribution in the healing process.
Collapse
Affiliation(s)
- Lida Moradi
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Vasei
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Molecular and Cell Biology Laboratory, Department of Pathology, Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad M Dehghan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Majidi
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Farzad Mohajeri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
48
|
Cardoso TP, Ursolino APS, Casagrande PDM, Caetano EB, Mistura DV, Duek EADR. In vivo evaluation of porous hydrogel pins to fill osteochondral defects in rabbits. Rev Bras Ortop 2017; 52:95-102. [PMID: 28194388 PMCID: PMC5290073 DOI: 10.1016/j.rboe.2016.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/29/2016] [Indexed: 11/29/2022] Open
Abstract
Objective This experimental study aimed to evaluate the biological performance of poly (l-co-D, l-lactic acid)-co-trimetilene carbonate/poly (vinyl alcohol) (PLDLA-co TMC/PVA), hydrogel scaffolds, as an implant in the filling (and not in the repair) of osteochondral defects in New Zealand rabbits, assessing the influence of the material in tissue protection in vivo. Methods Twelve rabbits were divided into groups of nine and 16 weeks. In each animal, an osteochondral defect was created in both medial femoral condyles. In one knee, a hydrogel scaffold was implanted (pin group) and in the other, the defect was maintained (control group). A histological analysis of the material was performed after euthanasia. Results The condyles of the pin group showed no inflammatory reaction and were surrounded by a fibrous capsule. The control group presented higher bone growth in the areas of the defect, but with disorganized articular cartilage, evident fibrosis, bone exposure, atrophy, and proliferation of synovial membrane. Conclusion The hydrogel pins are promising in filling osteochondral defects, generally do not cause inflammatory reactions, and are not effective in the repair of osteochondral defects.
Collapse
Affiliation(s)
- Túlio Pereira Cardoso
- Pontifícia Universidade Católica de São Paulo, Faculdade de Ciências Médicas e da Saúde de Sorocaba, Sorocaba, SP, Brazil
| | - André Petry Sandoval Ursolino
- Pontifícia Universidade Católica de São Paulo, Faculdade de Ciências Médicas e da Saúde de Sorocaba, Sorocaba, SP, Brazil
| | - Pamela de Melo Casagrande
- Pontifícia Universidade Católica de São Paulo, Faculdade de Ciências Médicas e da Saúde de Sorocaba, Sorocaba, SP, Brazil
| | - Edie Benedito Caetano
- Pontifícia Universidade Católica de São Paulo, Faculdade de Ciências Médicas e da Saúde de Sorocaba, Sorocaba, SP, Brazil
| | | | | |
Collapse
|
49
|
Anisotropy in the viscoelastic response of knee meniscus cartilage. J Appl Biomater Funct Mater 2017; 15:e77-e83. [PMID: 27647392 DOI: 10.5301/jabfm.5000319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The knee meniscus is instrumental to stability, shock absorption, load transmission and stress distribution within the knee joint. Such functions are mechanically demanding, and replacement constructs used in meniscus repair often fail because of a poor match with the surrounding tissue. This study focused on the native structure-mechanics relationships and on their anisotropic behavior in meniscus, to define the target biomechanical viscoelastic properties required by scaffolds upon loading. METHODS To show regional orientation of the collagen fibers and their viscoelastic behavior, bovine lateral menisci were characterized by second harmonic generation microscopy and through time-dependent mechanical tests. Furthermore, their dynamic viscoelastic response was analyzed over a wide range of frequencies. RESULTS AND CONCLUSIONS Multilevel characterization aims to expand the biomimetic approach from the structure itself, to include the mechanical characteristics that give the meniscus its peculiar properties, thus providing tools for the design of novel, effective scaffolds. An example of modeling of anisotropic open-cell porous material tailored to fulfill the measured requirements is presented, leading to a definition of additional parameters for a better understanding of the load transmission mechanism and for better scaffold functionality.
Collapse
|
50
|
González-Fernández ML, Pérez-Castrillo S, Sánchez-Lázaro JA, Prieto-Fernández JG, López-González ME, Lobato-Pérez S, Colaço BJ, Olivera ER, Villar-Suárez V. Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Am J Vet Res 2017; 77:779-88. [PMID: 27347833 DOI: 10.2460/ajvr.77.7.779] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess the ability to regenerate an equine meniscus by use of a collagen repair patch (scaffold) seeded with mesenchymal stem cells (MSCs) derived from bone marrow (BM) or adipose tissue (AT). SAMPLE 6 female Hispano-Breton horses between 4 and 7 years of age; MSCs from BM and AT were obtained for the in vitro experiment, and the horses were subsequently used for the in vivo experiment. PROCEDURES Similarities and differences between MSCs derived from BM or AT were investigated in vitro by use of cell culture. In vivo assessment involved use of a meniscus defect and implantation on a scaffold. Horses were allocated into 2 groups. In one group, defects in the medial meniscus were treated with MSCs derived from BM, whereas in the other group, defects were treated with MSCs derived from AT. Defects were created in the contralateral stifle joint but were not treated (control samples). RESULTS Both types of MSCs had universal stem cell characteristics. For in vivo testing, at 12 months after treatment, treated defects were regenerated with fibrocartilaginous tissue, whereas untreated defects were partially repaired or not repaired. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that MSCs derived from AT could be a good alternative to MSCs derived from BM for use in regenerative treatments. Results also were promising for a stem cell-based implant for use in regeneration in meniscal lesions. IMPACT FOR HUMAN MEDICINE Because of similarities in joint disease between horses and humans, these results could have applications in humans.
Collapse
|