1
|
Hu C, Liu J, Cheng F, Bai Y, Mao Q, Xu M, Liang Z. Amplifying mRNA vaccines: potential versatile magicians for oncotherapy. Front Immunol 2023; 14:1261243. [PMID: 37936701 PMCID: PMC10626473 DOI: 10.3389/fimmu.2023.1261243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Cancer vaccines drive the activation and proliferation of tumor-reactive immune cells, thereby eliciting tumor-specific immunity that kills tumor cells. Accordingly, they possess immense potential in cancer treatment. However, such vaccines are also faced with challenges related to their design and considerable differences among individual tumors. The success of messenger RNA (mRNA) vaccines against coronavirus disease 2019 has prompted the application of mRNA vaccine technology platforms to the field of oncotherapy. These platforms include linear, circular, and amplifying mRNA vaccines. In particular, amplifying mRNA vaccines are characterized by high-level and prolonged antigen gene expression at low doses. They can also stimulate specific cellular immunity, making them highly promising in cancer vaccine research. In this review, we summarize the research progress in amplifying mRNA vaccines and provide an outlook of their prospects and future directions in oncotherapy.
Collapse
Affiliation(s)
- Chaoying Hu
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Health Commission (NHC), Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- National Medical Products Administration (NMPA), Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyang Liu
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Health Commission (NHC), Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- National Medical Products Administration (NMPA), Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Feiran Cheng
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Health Commission (NHC), Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- National Medical Products Administration (NMPA), Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Bai
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Health Commission (NHC), Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- National Medical Products Administration (NMPA), Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Health Commission (NHC), Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- National Medical Products Administration (NMPA), Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Health Commission (NHC), Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- National Medical Products Administration (NMPA), Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China
- National Health Commission (NHC), Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing, China
- National Medical Products Administration (NMPA), Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
2
|
Tur-Planells V, García-Sastre A, Cuadrado-Castano S, Nistal-Villan E. Engineering Non-Human RNA Viruses for Cancer Therapy. Vaccines (Basel) 2023; 11:1617. [PMID: 37897020 PMCID: PMC10611381 DOI: 10.3390/vaccines11101617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Alongside the development and progress in cancer immunotherapy, research in oncolytic viruses (OVs) continues advancing novel treatment strategies to the clinic. With almost 50 clinical trials carried out over the last decade, the opportunities for intervention using OVs are expanding beyond the old-fashioned concept of "lytic killers", with promising breakthrough therapeutic strategies focused on leveraging the immunostimulatory potential of different viral platforms. This review presents an overview of non-human-adapted RNA viruses engineered for cancer therapy. Moreover, we describe the diverse strategies employed to manipulate the genomes of these viruses to optimize their therapeutic capabilities. By focusing on different aspects of this particular group of viruses, we describe the insights into the promising advancements in the field of virotherapy and its potential to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Vicent Tur-Planells
- Microbiology Section, Department of Pharmaceutical Science and Health, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain;
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Genomics Institute (IGI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Estanislao Nistal-Villan
- Microbiology Section, Department of Pharmaceutical Science and Health, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain;
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28668 Boadilla del Monte, Spain
| |
Collapse
|
3
|
Lundstrom K. Alphaviruses in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:143-168. [PMID: 37541722 DOI: 10.1016/bs.ircmb.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Alphaviruses have frequently been engineered for cancer therapy, cancer immunotherapy, and cancer vaccine development. As members of self-replicating RNA viruses, alphaviruses provide high levels of transgene expression through efficient self-amplifying of their RNA genome in host cells. Alphavirus vectors can be used as recombinant viral particles or oncolytic viruses. Alternatively, either naked or nanoparticle-encapsulated RNA and DNA replicons can be utilized. In the context of cancer prevention and treatment, antitumor, cytotoxic and suicide genes have been expressed from alphavirus vectors to provide tumor regression and tumor eradication. Moreover, immunostimulatory genes such as cytokines and chemokines have been used for cancer immunotherapy approaches. Expression of tumor antigens has been applied for cancer vaccine development. Alphavirus vectors has demonstrated tumor regression and even cure in various preclinical animal models. Immunization has elicited strong immune responses and showed protection against challenges with tumor cells in animal models. Several clinical trials have confirmed good safety and tolerability of alphaviruses in cancer patients although therapeutic efficacy will still require optimization.
Collapse
|
4
|
Dailey GP, Crosby EJ, Hartman ZC. Cancer vaccine strategies using self-replicating RNA viral platforms. Cancer Gene Ther 2023; 30:794-802. [PMID: 35821284 PMCID: PMC9275542 DOI: 10.1038/s41417-022-00499-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/21/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
The development and success of RNA-based vaccines targeting SARS-CoV-2 has awakened new interest in utilizing RNA vaccines against cancer, particularly in the emerging use of self-replicating RNA (srRNA) viral vaccine platforms. These vaccines are based on different single-stranded RNA viruses, which encode RNA for target antigens in addition to replication genes that are capable of massively amplifying RNA messages after infection. The encoded replicase genes also stimulate innate immunity, making srRNA vectors ideal candidates for anti-tumor vaccination. In this review, we summarize different types of srRNA platforms that have emerged and review evidence for their efficacy in provoking anti-tumor immunity to different antigens. These srRNA platforms encompass the use of naked RNA, DNA-launched replicons, viral replicon particles (VRP), and most recently, synthetic srRNA replicon particles. Across these platforms, studies have demonstrated srRNA vaccine platforms to be potent inducers of anti-tumor immunity, which can be enhanced by homologous vaccine boosting and combining with chemotherapies, radiation, and immune checkpoint inhibition. As such, while this remains an active area of research, the past and present trajectory of srRNA vaccine development suggests immense potential for this platform in producing effective cancer vaccines.
Collapse
Affiliation(s)
| | | | - Zachary C Hartman
- Department of Surgery, Duke University, Durham, NC, USA.
- Department of Pathology, Duke University, Durham, NC, USA.
- Department of Immunology, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Ramos da Silva J, Bitencourt Rodrigues K, Formoso Pelegrin G, Silva Sales N, Muramatsu H, de Oliveira Silva M, Porchia BFMM, Moreno ACR, Aps LRMM, Venceslau-Carvalho AA, Tombácz I, Fotoran WL, Karikó K, Lin PJC, Tam YK, de Oliveira Diniz M, Pardi N, de Souza Ferreira LC. Single immunizations of self-amplifying or non-replicating mRNA-LNP vaccines control HPV-associated tumors in mice. Sci Transl Med 2023; 15:eabn3464. [PMID: 36867683 DOI: 10.1126/scitranslmed.abn3464] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
As mRNA vaccines have proved to be very successful in battling the coronavirus disease 2019 (COVID-19) pandemic, this new modality has attracted widespread interest for the development of potent vaccines against other infectious diseases and cancer. Cervical cancer caused by persistent human papillomavirus (HPV) infection is a major cause of cancer-related deaths in women, and the development of safe and effective therapeutic strategies is urgently needed. In the present study, we compared the performance of three different mRNA vaccine modalities to target tumors associated with HPV-16 infection in mice. We generated lipid nanoparticle (LNP)-encapsulated self-amplifying mRNA as well as unmodified and nucleoside-modified non-replicating mRNA vaccines encoding a chimeric protein derived from the fusion of the HPV-16 E7 oncoprotein and the herpes simplex virus type 1 glycoprotein D (gDE7). We demonstrated that single low-dose immunizations with any of the three gDE7 mRNA vaccines induced activation of E7-specific CD8+ T cells, generated memory T cell responses capable of preventing tumor relapses, and eradicated subcutaneous tumors at different growth stages. In addition, the gDE7 mRNA-LNP vaccines induced potent tumor protection in two different orthotopic mouse tumor models after administration of a single vaccine dose. Last, comparative studies demonstrated that all three gDE7 mRNA-LNP vaccines proved to be superior to gDE7 DNA and gDE7 recombinant protein vaccines. Collectively, we demonstrated the immunogenicity and therapeutic efficacy of three different mRNA vaccines in extensive comparative experiments. Our data support further evaluation of these mRNA vaccines in clinical trials.
Collapse
Affiliation(s)
- Jamile Ramos da Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karine Bitencourt Rodrigues
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Guilherme Formoso Pelegrin
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Natiely Silva Sales
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Hiromi Muramatsu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariângela de Oliveira Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Bruna F M M Porchia
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Laboratory of Tumor Immunology, Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil.,ImunoTera Soluções Terapêuticas Ltda., São Paulo, SP 05508-000, Brazil
| | - Ana Carolina Ramos Moreno
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Luana Raposo M M Aps
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,ImunoTera Soluções Terapêuticas Ltda., São Paulo, SP 05508-000, Brazil
| | - Aléxia Adrianne Venceslau-Carvalho
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - István Tombácz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wesley Luzetti Fotoran
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil
| | | | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T1Z3, Canada
| | - Mariana de Oliveira Diniz
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Norbert Pardi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.,Scientific Platform Pasteur USP, University of São Paulo, São Paulo, SP, 05508-020, Brazil
| |
Collapse
|
6
|
Tian Y, Hu D, Li Y, Yang L. Development of therapeutic vaccines for the treatment of diseases. MOLECULAR BIOMEDICINE 2022; 3:40. [PMID: 36477638 PMCID: PMC9729511 DOI: 10.1186/s43556-022-00098-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vaccines are one of the most effective medical interventions to combat newly emerging and re-emerging diseases. Prophylactic vaccines against rabies, measles, etc., have excellent effectiveness in preventing viral infection and associated diseases. However, the host immune response is unable to inhibit virus replication or eradicate established diseases in most infected people. Therapeutic vaccines, expressing specific endogenous or exogenous antigens, mainly induce or boost cell-mediated immunity via provoking cytotoxic T cells or elicit humoral immunity via activating B cells to produce specific antibodies. The ultimate aim of a therapeutic vaccine is to reshape the host immunity for eradicating a disease and establishing lasting memory. Therefore, therapeutic vaccines have been developed for the treatment of some infectious diseases and chronic noncommunicable diseases. Various technological strategies have been implemented for the development of therapeutic vaccines, including molecular-based vaccines (peptide/protein, DNA and mRNA vaccines), vector-based vaccines (bacterial vector vaccines, viral vector vaccines and yeast-based vaccines) and cell-based vaccines (dendritic cell vaccines and genetically modified cell vaccines) as well as combinatorial approaches. This review mainly summarizes therapeutic vaccine-induced immunity and describes the development and status of multiple types of therapeutic vaccines against infectious diseases, such as those caused by HPV, HBV, HIV, HCV, and SARS-CoV-2, and chronic noncommunicable diseases, including cancer, hypertension, Alzheimer's disease, amyotrophic lateral sclerosis, diabetes, and dyslipidemia, that have been evaluated in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- grid.412605.40000 0004 1798 1351College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, Zigong, Sichuan 643000 The People’s Republic of China ,grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| | - Die Hu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| | - Yuhua Li
- grid.410749.f0000 0004 0577 6238Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Tiantan Xili, Dongcheng District, Beijing, 100050 The People’s Republic of China
| | - Li Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| |
Collapse
|
7
|
Alphaviruses in Immunotherapy and Anticancer Therapy. Biomedicines 2022; 10:biomedicines10092263. [PMID: 36140364 PMCID: PMC9496634 DOI: 10.3390/biomedicines10092263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses have been engineered as expression vectors for vaccine development and gene therapy. Due to the feature of RNA self-replication, alphaviruses can provide exceptional direct cytoplasmic expression of transgenes based on the delivery of recombinant particles, naked or nanoparticle-encapsulated RNA or plasmid-based DNA replicons. Alphavirus vectors have been utilized for the expression of various antigens targeting different types of cancers, and cytotoxic and antitumor genes. The most common alphavirus vectors are based on the Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus, but the oncolytic M1 alphavirus has also been used. Delivery of immunostimulatory cytokine genes has been the basis for immunotherapy demonstrating efficacy in different animal tumor models for brain, breast, cervical, colon, lung, ovarian, pancreatic, prostate and skin cancers. Typically, therapeutic effects including tumor regression, tumor eradication and complete cure as well as protection against tumor challenges have been observed. Alphavirus vectors have also been subjected to clinical evaluations. For example, therapeutic responses in all cervical cancer patients treated with an alphavirus vector expressing the human papilloma virus E6 and E7 envelope proteins have been achieved.
Collapse
|
8
|
Abstract
Self-replicating RNA viral vectors have been engineered for both prophylactic and therapeutic applications. Mainly the areas of infectious diseases and cancer have been targeted. Both positive and negative strand RNA viruses have been utilized including alphaviruses, flaviviruses, measles viruses and rhabdoviruses. The high-level of RNA amplification has provided efficient expression of viral surface proteins and tumor antigens. Immunization studies in animal models have elicit robust neutralizing antibody responses. In the context of infectious diseases, immunization with self-replicating RNA viral vectors has provided protection against challenges with lethal doses of pathogens in animal models. Similarly, immunization with vectors expressing tumor antigens has resulted in tumor regression and eradication and protection against tumor challenges in animal models. The transient nature and non-integration of viral RNA into the host genome are ideal features for vaccine development. Moreover, self-replicating RNA viral vectors show great flexibility as they can be applied as recombinant viral particles, RNA replicons or DNA replicon plasmids. Several clinical trials have been conducted especially in the area of cancer immunotherapy.
Collapse
|
9
|
Abstract
Alphaviruses have been engineered as expression vectors for different strategies of cancer therapy including immunotherapy and cancer vaccine development. Administration of recombinant virus particles, RNA replicons and plasmid DNA-based replicons provide great flexibility for alphavirus applications. Immunization and delivery studies have demonstrated therapeutic efficacy in the form of reduced tumor growth, tumor regression and eradication of established tumors in different animal models for cancers such as brain, breast, colon, cervical, lung, ovarian, pancreas, prostate cancers, and melanoma. Furthermore, vaccinated animals have showed protection against challenges with tumor cells. A limited number of clinical trials in the area of brain, breast, cervical, colon prostate cancers and melanoma vaccines has been conducted. Particularly, immunization of cervical cancer patients elicited immune responses and therapeutic activity in all patients included in a phase I clinical trial. Moreover, stable disease and partial responses were observed in breast cancer patients and prolonged survival was achieved in colon cancer patients.
Collapse
|
10
|
Lundstrom K. Self-Replicating RNA Viruses for Vaccine Development against Infectious Diseases and Cancer. Vaccines (Basel) 2021; 9:1187. [PMID: 34696295 PMCID: PMC8541504 DOI: 10.3390/vaccines9101187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022] Open
Abstract
Alphaviruses, flaviviruses, measles viruses and rhabdoviruses are enveloped single-stranded RNA viruses, which have been engineered for recombinant protein expression and vaccine development. Due to the presence of RNA-dependent RNA polymerase activity, subgenomic RNA can replicate close to 106 copies per cell for translation in the cytoplasm providing extreme transgene expression levels, which is why they are named self-replicating RNA viruses. Expression of surface proteins of pathogens causing infectious disease and tumor antigens provide the basis for vaccine development against infectious diseases and cancer. Self-replicating RNA viral vectors can be administered as replicon RNA at significantly lower doses than conventional mRNA, recombinant particles, or DNA plasmids. Self-replicating RNA viral vectors have been applied for vaccine development against influenza virus, HIV, hepatitis B virus, human papilloma virus, Ebola virus, etc., showing robust immune response and protection in animal models. Recently, paramyxovirus and rhabdovirus vector-based SARS-CoV-2 vaccines as well as RNA vaccines based on self-amplifying alphaviruses have been evaluated in clinical settings. Vaccines against various cancers such as brain, breast, lung, ovarian, prostate cancer and melanoma have also been developed. Clinical trials have shown good safety and target-specific immune responses. Ervebo, the VSV-based vaccine against Ebola virus disease has been approved for human use.
Collapse
|
11
|
Lundstrom K. Immune Responses of Alphavirus Vaccination in Patients with HPV-Induced Cancers. Mol Ther 2021; 29:415-416. [PMID: 33444547 DOI: 10.1016/j.ymthe.2021.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Lundstrom K. Application of Viral Vectors for Vaccine Development with a Special Emphasis on COVID-19. Viruses 2020; 12:E1324. [PMID: 33218001 PMCID: PMC7698750 DOI: 10.3390/v12111324] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Viral vectors can generate high levels of recombinant protein expression providing the basis for modern vaccine development. A large number of different viral vector expression systems have been utilized for targeting viral surface proteins and tumor-associated antigens. Immunization studies in preclinical animal models have evaluated the elicited humoral and cellular responses and the possible protection against challenges with lethal doses of infectious pathogens or tumor cells. Several vaccine candidates for both infectious diseases and various cancers have been subjected to a number of clinical trials. Human immunization trials have confirmed safe application of viral vectors, generation of neutralizing antibodies and protection against challenges with lethal doses. A special emphasis is placed on COVID-19 vaccines based on viral vectors. Likewise, the flexibility and advantages of applying viral particles, RNA replicons and DNA replicon vectors of self-replicating RNA viruses for vaccine development are presented.
Collapse
|
13
|
Komdeur FL, Singh A, van de Wall S, Meulenberg JJM, Boerma A, Hoogeboom BN, Paijens ST, Oyarce C, de Bruyn M, Schuuring E, Regts J, Marra R, Werner N, Sluis J, van der Zee AGJ, Wilschut JC, Allersma DP, van Zanten CJ, Kosterink JGW, Jorritsma-Smit A, Yigit R, Nijman HW, Daemen T. First-in-Human Phase I Clinical Trial of an SFV-Based RNA Replicon Cancer Vaccine against HPV-Induced Cancers. Mol Ther 2020; 29:611-625. [PMID: 33160073 PMCID: PMC7854293 DOI: 10.1016/j.ymthe.2020.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/08/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022] Open
Abstract
A first-in-human phase I trial of Vvax001, an alphavirus-based therapeutic cancer vaccine against human papillomavirus (HPV)-induced cancers was performed assessing immunological activity, safety, and tolerability. Vvax001 consists of replication-incompetent Semliki Forest virus replicon particles encoding HPV16-derived antigens E6 and E7. Twelve participants with a history of cervical intraepithelial neoplasia were included. Four cohorts of three participants were treated per dose level, ranging from 5 × 105 to 2.5 × 108 infectious particles per immunization. The participants received three immunizations with a 3-week interval. For immune monitoring, blood was drawn before immunization and 1 week after the second and third immunization. Immunization with Vvax001 was safe and well tolerated, with only mild injection site reactions, and resulted in both CD4+ and CD8+ T cell responses against E6 and E7 antigens. Even the lowest dose of 5 × 105 infectious particles elicited E6/E7-specific interferon (IFN)-γ responses in all three participants in this cohort. Overall, immunization resulted in positive vaccine-induced immune responses in 12 of 12 participants in one or more assays performed. In conclusion, Vvax001 was safe and induced immune responses in all participants. These data strongly support further clinical evaluation of Vvax001 as a therapeutic vaccine in patients with HPV-related malignancies.
Collapse
Affiliation(s)
- Fenne L Komdeur
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Amrita Singh
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stephanie van de Wall
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Annemarie Boerma
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Baukje Nynke Hoogeboom
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sterre T Paijens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cesar Oyarce
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ed Schuuring
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joke Regts
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ruben Marra
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Naomi Werner
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jessica Sluis
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ate G J van der Zee
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan C Wilschut
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Derk P Allersma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Coba J van Zanten
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Annelies Jorritsma-Smit
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Refika Yigit
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
14
|
Lundstrom K. Self-Amplifying RNA Viruses as RNA Vaccines. Int J Mol Sci 2020; 21:ijms21145130. [PMID: 32698494 PMCID: PMC7404065 DOI: 10.3390/ijms21145130] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/04/2023] Open
Abstract
Single-stranded RNA viruses such as alphaviruses, flaviviruses, measles viruses and rhabdoviruses are characterized by their capacity of highly efficient self-amplification of RNA in host cells, which make them attractive vehicles for vaccine development. Particularly, alphaviruses and flaviviruses can be administered as recombinant particles, layered DNA/RNA plasmid vectors carrying the RNA replicon and even RNA replicon molecules. Self-amplifying RNA viral vectors have been used for high level expression of viral and tumor antigens, which in immunization studies have elicited strong cellular and humoral immune responses in animal models. Vaccination has provided protection against challenges with lethal doses of viral pathogens and tumor cells. Moreover, clinical trials have demonstrated safe application of RNA viral vectors and even promising results in rhabdovirus-based phase III trials on an Ebola virus vaccine. Preclinical and clinical applications of self-amplifying RNA viral vectors have proven efficient for vaccine development and due to the presence of RNA replicons, amplification of RNA in host cells will generate superior immune responses with significantly reduced amounts of RNA delivered. The need for novel and efficient vaccines has become even more evident due to the global COVID-19 pandemic, which has further highlighted the urgency in challenging emerging diseases.
Collapse
|
15
|
Abstract
Introduction: Immunotherapy has been introduced as a modern alternative for the treatment of various cancers, including the stimulation of the immune system by introduction of immunostimulatory molecules. Application of viral and non-viral vectors have provided a substantial contribution to improved delivery and expression of these immunostimulators.Areas covered: Alphavirus vectors, based on Semliki Forest virus, have allowed immunization with self-replicating RNA, recombinant virus particles, and layered DNA/RNA vectors. The attractive features of alphaviruses comprise their broad host range and extreme RNA replication in infected cells resulting in very high recombinant protein expression levels providing enhanced immune responses and an excellent basis for immunotherapy.Expert opinion: Immunization studies in animal tumor models have elicited strong humoral and cellular immune response, have provided prophylactic protection against tumor challenges, and have generated therapeutic efficacy in tumor-bearing animals. Clinical trials have indicated safe use of alphavirus vectors, making them attractive for cancer immunotherapy.
Collapse
|
16
|
Jorritsma-Smit A, van Zanten CJ, Schoemaker J, Meulenberg JJ, Touw DJ, Kosterink JG, Nijman HW, Daemen T, Allersma DP. GMP manufacturing of Vvax001, a therapeutic anti-HPV vaccine based on recombinant viral particles. Eur J Pharm Sci 2020; 143:105096. [DOI: 10.1016/j.ejps.2019.105096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
|
17
|
Smalley Rumfield C, Roller N, Pellom ST, Schlom J, Jochems C. Therapeutic Vaccines for HPV-Associated Malignancies. Immunotargets Ther 2020; 9:167-200. [PMID: 33117742 PMCID: PMC7549137 DOI: 10.2147/itt.s273327] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Human papillomavirus (HPV)-related malignancies are responsible for almost all cases of cervical cancer in women, and over 50% of all cases of head and neck carcinoma. Worldwide, HPV-positive malignancies account for 4.5% of the global cancer burden, or over 600,000 cases per year. HPV infection is a pressing public health issue, as more than 80% of all individuals have been exposed to HPV by age 50, representing an important target for vaccine development to reduce the incidence of cancer and the economic cost of HPV-related health issues. The approval of Gardasil® as a prophylactic vaccine for high-risk HPV 16 and 18 and low-risk HPV6 and 11 for people aged 11-26 in 2006, and of Cervarix® in 2009, revolutionized the field and has since reduced HPV infection in young populations. Unfortunately, prophylactic vaccination does not induce immunity in those with established HPV infections or HPV-induced neoplasms, and there are currently no therapeutic HPV vaccines approved by the US Food and Drug Administration. This comprehensive review will detail the progress made in the development of therapeutic vaccines against high-risk HPV types, and potential combinations with other immunotherapeutic agents for more efficient and rational designs of combination treatments for HPV-associated malignancies.
Collapse
Affiliation(s)
- Claire Smalley Rumfield
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Roller
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Troy Pellom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Jeffrey Schlom Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room 8B09, Bethesda, MD20892, USATel +1 240-858-3463Fax +1 240-541-4558 Email
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Singh A, Koutsoumpli G, van de Wall S, Daemen T. An alphavirus-based therapeutic cancer vaccine: from design to clinical trial. Cancer Immunol Immunother 2019; 68:849-859. [PMID: 30465060 PMCID: PMC11028389 DOI: 10.1007/s00262-018-2276-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/09/2018] [Indexed: 01/25/2023]
Abstract
Cancer immunotherapy has greatly advanced in recent years. Most immunotherapeutic strategies are based on the use of immune checkpoint blockade to unleash antitumor immune responses or on the induction or adoptive transfer of immune effector cells. We aim to develop therapeutic vaccines based on recombinant Semliki Forest virus vectors to induce tumor-specific effector immune cells. In this review, we describe our ongoing work on SFV-based vaccines targeted against human papillomavirus- and hepatitis C virus-related infections and malignancies, focusing on design, delivery, combination strategies, preclinical efficacy and product development for a first-in-man clinical trial with an HPV-specific vaccine.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, HPC EB88, PO Box 30.001, 9700RB, Groningen, The Netherlands
| | - Georgia Koutsoumpli
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, HPC EB88, PO Box 30.001, 9700RB, Groningen, The Netherlands
| | - Stephanie van de Wall
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, HPC EB88, PO Box 30.001, 9700RB, Groningen, The Netherlands
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Toos Daemen
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, HPC EB88, PO Box 30.001, 9700RB, Groningen, The Netherlands.
| |
Collapse
|
19
|
Lundstrom K. Self-Replicating RNA Viruses for RNA Therapeutics. Molecules 2018; 23:molecules23123310. [PMID: 30551668 PMCID: PMC6321401 DOI: 10.3390/molecules23123310] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
Self-replicating single-stranded RNA viruses such as alphaviruses, flaviviruses, measles viruses, and rhabdoviruses provide efficient delivery and high-level expression of therapeutic genes due to their high capacity of RNA replication. This has contributed to novel approaches for therapeutic applications including vaccine development and gene therapy-based immunotherapy. Numerous studies in animal tumor models have demonstrated that self-replicating RNA viral vectors can generate antibody responses against infectious agents and tumor cells. Moreover, protection against challenges with pathogenic Ebola virus was obtained in primates immunized with alphaviruses and flaviviruses. Similarly, vaccinated animals have been demonstrated to withstand challenges with lethal doses of tumor cells. Furthermore, clinical trials have been conducted for several indications with self-amplifying RNA viruses. In this context, alphaviruses have been subjected to phase I clinical trials for a cytomegalovirus vaccine generating neutralizing antibodies in healthy volunteers, and for antigen delivery to dendritic cells providing clinically relevant antibody responses in cancer patients, respectively. Likewise, rhabdovirus particles have been subjected to phase I/II clinical trials showing good safety and immunogenicity against Ebola virus. Rhabdoviruses have generated promising results in phase III trials against Ebola virus. The purpose of this review is to summarize the achievements of using self-replicating RNA viruses for RNA therapy based on preclinical animal studies and clinical trials in humans.
Collapse
|
20
|
Chabeda A, Yanez RJR, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic vaccines for high-risk HPV-associated diseases. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2018; 5:46-58. [PMID: 29277575 PMCID: PMC5887015 DOI: 10.1016/j.pvr.2017.12.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
Abstract
Cancer is the second leading cause of death worldwide, and it is estimated that Human papillomavirus (HPV) related cancers account for 5% of all human cancers. Current HPV vaccines are extremely effective at preventing infection and neoplastic disease; however, they are prophylactic and do not clear established infections. Therapeutic vaccines which trigger cell-mediated immune responses for the treatment of established infections and malignancies are therefore required. The E6 and E7 early genes are ideal targets for vaccine therapy due to their role in disruption of the cell cycle and their constitutive expression in premalignant and malignant tissues. Several strategies have been investigated for the development of therapeutic vaccines, including live-vector, nucleic acid, peptide, protein-based and cell-based vaccines as well as combinatorial approaches, with several vaccine candidates progressing to clinical trials. With the current understanding of the HPV life cycle, molecular mechanisms of infection, carcinogenesis, tumour biology, the tumour microenvironment and immune response mechanisms, an approved HPV therapeutic vaccine seems to be a goal not far from being achieved. In this article, the status of therapeutic HPV vaccines in clinical trials are reviewed, and the potential for plant-based vaccine production platforms described.
Collapse
Affiliation(s)
- Aleyo Chabeda
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Romana J R Yanez
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Renate Lamprecht
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
21
|
Kurena B, Müller E, Christopoulos PF, Johnsen IB, Stankovic B, Øynebråten I, Corthay A, Zajakina A. Generation and Functional In Vitro Analysis of Semliki Forest Virus Vectors Encoding TNF-α and IFN-γ. Front Immunol 2017; 8:1667. [PMID: 29276511 PMCID: PMC5727424 DOI: 10.3389/fimmu.2017.01667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022] Open
Abstract
Cytokine gene delivery by viral vectors is a promising novel strategy for cancer immunotherapy. Semliki Forest virus (SFV) has many advantages as a delivery vector, including the ability to (i) induce p53-independent killing of tumor cells via apoptosis, (ii) elicit a type-I interferon (IFN) response, and (iii) express high levels of the transgene. SFV vectors encoding cytokines such as interleukin (IL)-12 have shown promising therapeutic responses in experimental tumor models. Here, we developed two new recombinant SFV vectors encoding either murine tumor necrosis factor-α (TNF-α) or murine interferon-γ (IFN-γ), two cytokines with documented immunostimulatory and antitumor activity. The SFV vector showed high infection rate and cytotoxicity in mouse and human lung carcinoma cells in vitro. By contrast, mouse and human macrophages were resistant to infection with SFV. The recombinant SFV vectors directly inhibited mouse lung carcinoma cell growth in vitro, while exploiting the cancer cells for production of SFV vector-encoded cytokines. The functionality of SFV vector-derived TNF-α was confirmed through successful induction of cell death in TNF-α-sensitive fibroblasts in a concentration-dependent manner. SFV vector-derived IFN-γ activated macrophages toward a tumoricidal phenotype leading to suppressed Lewis lung carcinoma cell growth in vitro in a concentration-dependent manner. The ability of SFV to provide functional cytokines and infect tumor cells but not macrophages suggests that SFV may be very useful for cancer immunotherapy employing tumor-infiltrating macrophages.
Collapse
Affiliation(s)
- Baiba Kurena
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway.,Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Elisabeth Müller
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Panagiotis F Christopoulos
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ingvild Bjellmo Johnsen
- Department of Laboratory Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Branislava Stankovic
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Anna Zajakina
- Cancer Gene Therapy Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
22
|
Khan S, Oosterhuis K, Wunderlich K, Bunnik EM, Bhaggoe M, Boedhoe S, Karia S, Steenbergen RDM, Bosch L, Serroyen J, Janssen S, Schuitemaker H, Vellinga J, Scheper G, Zahn R, Custers J. Development of a replication-deficient adenoviral vector-based vaccine candidate for the interception of HPV16- and HPV18-induced infections and disease. Int J Cancer 2017; 141:393-404. [PMID: 28263390 DOI: 10.1002/ijc.30679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 01/02/2023]
Abstract
High-risk Human papilloma virus (HPV) types are the causative agents of cervical cancer and several other anogenital malignancies. The viral proteins expressed in the (pre)malignant cells are considered ideal targets for immunological intervention. Many approaches have been evaluated for this purpose, mostly aiming at the induction of HPV16 E7- and/or E6-specific cellular immunogenicity. As clinical success has so far been limited, novel approaches are required. We describe the development and pre-clinical testing of a vaccine candidate consisting of replication-deficient adenovirus type 26 and 35 based vectors for the interception of HPV16- and HPV18-related disease. We developed HPV16- and HPV18-specific antigens consisting of fusion proteins of E2, E6 and E7. The vaccine will be suitable for every disease stage, from incident and persistent infections where E2 is predominantly expressed up to late stages where E6 and E7 expression are upregulated. Importantly E6 and E7 are present as reordered fragments to abrogate the transforming activity of these two proteins. Loss of transforming activity was demonstrated in different in vitro models. Robust T-cell immunogenicity was induced upon immunization of mice with the vaccine candidate. Finally, the developed vaccine vectors showed considerable therapeutic efficacy in the TC-1 mouse model. The absence of transforming activity of the antigens and the favorable immunogenicity profile of the adenovirus based vectors along with the fact that these vectors can be readily produced on a large scale makes this approach attractive for clinical evaluation.
Collapse
Affiliation(s)
- Selina Khan
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Koen Oosterhuis
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | | | - Evelien M Bunnik
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Melissa Bhaggoe
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Satish Boedhoe
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Santusha Karia
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | | | - Leontien Bosch
- Department of Pathology, VU University Medical Center Amsterdam, The Netherlands
| | - Jan Serroyen
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Sarah Janssen
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | | | - Jort Vellinga
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Gert Scheper
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Roland Zahn
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Jerome Custers
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| |
Collapse
|
23
|
Oncolytic Alphaviruses in Cancer Immunotherapy. Vaccines (Basel) 2017; 5:vaccines5020009. [PMID: 28417936 PMCID: PMC5492006 DOI: 10.3390/vaccines5020009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses show specific targeting and killing of tumor cells and therefore provide attractive assets for cancer immunotherapy. In parallel to oncolytic viral vectors based on adenoviruses and herpes simplex viruses, oncolytic RNA viruses and particularly alphaviruses have been evaluated as delivery vehicles. Immunization studies in experimental rodent models for various cancers including glioblastoma, hematologic, hepatocellular, colon, cervix, and lung cancer as well as melanoma have been conducted with naturally occurring oncolytic alphavirus strains such as M1 and Sindbis AR339. Moreover, animals were vaccinated with engineered oncolytic replication-deficient and -competent Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus vectors expressing various antigens. Vaccinations elicited strong antibody responses and resulted in tumor growth inhibition, tumor regression and even complete tumor eradication. Vaccination also led to prolonged survival in several animal models. Furthermore, preclinical evaluation demonstrated both prophylactic and therapeutic efficacy of oncolytic alphavirus administration. Clinical trials in humans have mainly been limited to safety studies so far.
Collapse
|
24
|
Hartimath SV, Draghiciu O, van de Wall S, Manuelli V, Dierckx RAJO, Nijman HW, Daemen T, de Vries EFJ. Noninvasive monitoring of cancer therapy induced activated T cells using [ 18F]FB-IL-2 PET imaging. Oncoimmunology 2016; 6:e1248014. [PMID: 28197364 DOI: 10.1080/2162402x.2016.1248014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/30/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022] Open
Abstract
Cancer immunotherapy urgently calls for methods to monitor immune responses at the site of the cancer. Since activated T lymphocytes may serve as a hallmark for anticancer responses, we targeted these cells using the radiotracer N-(4-[18F]fluorobenzoyl)-interleukin-2 ([18F]FB-IL-2) for positron emission tomography (PET) imaging. Thus, we noninvasively monitored the effects of local tumor irradiation and/or immunization on tumor-infiltrating and systemic activated lymphocytes in tumor-bearing mice. A 10- and 27-fold higher [18F]FB-IL-2 uptake was observed in tumors of mice receiving tumor irradiation alone or in combination with immunization, respectively. This increased uptake was extended to several non-target tissues. Administration of the CXCR4 antagonist AMD3100 reduced tracer uptake by 2.8-fold, indicating a CXCR4-dependent infiltration of activated T lymphocytes upon cancer treatment. In conclusion, [18F]FB-IL-2 PET can serve as a clinical biomarker to monitor treatment-induced infiltration of activated T lymphocytes and, on that basis, may guide cancer immunotherapies.
Collapse
Affiliation(s)
- S V Hartimath
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
| | - O Draghiciu
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, the Netherlands
| | - S van de Wall
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, the Netherlands
| | - V Manuelli
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
| | - R A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
| | - H W Nijman
- Department of Gynecological Oncology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - T Daemen
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, the Netherlands
| | - E F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
25
|
Replicon RNA Viral Vectors as Vaccines. Vaccines (Basel) 2016; 4:vaccines4040039. [PMID: 27827980 PMCID: PMC5192359 DOI: 10.3390/vaccines4040039] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions.
Collapse
|
26
|
Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines (Basel) 2014; 2:422-62. [PMID: 26344626 PMCID: PMC4494257 DOI: 10.3390/vaccines2020422] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
High-risk types of human papillomavirus (HPV) cause over 500,000 cervical, anogenital and oropharyngeal cancer cases per year. The transforming potential of HPVs is mediated by viral oncoproteins. These are essential for the induction and maintenance of the malignant phenotype. Thus, HPV-mediated malignancies pose the unique opportunity in cancer vaccination to target immunologically foreign epitopes. Therapeutic HPV vaccination is therefore an ideal scenario for proof-of-concept studies of cancer immunotherapy. This is reflected by the fact that a multitude of approaches has been utilized in therapeutic HPV vaccination design: protein and peptide vaccination, DNA vaccination, nanoparticle- and cell-based vaccines, and live viral and bacterial vectors. This review provides a comprehensive overview of completed and ongoing clinical trials in therapeutic HPV vaccination (summarized in tables), and also highlights selected promising preclinical studies. Special emphasis is given to adjuvant science and the potential impact of novel developments in vaccinology research, such as combination therapies to overcome tumor immune suppression, the use of novel materials and mouse models, as well as systems vaccinology and immunogenetics approaches.
Collapse
|
27
|
Vici P, Mariani L, Pizzuti L, Sergi D, Di Lauro L, Vizza E, Tomao F, Tomao S, Cavallotti C, Paolini F, Venuti A. Immunologic treatments for precancerous lesions and uterine cervical cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:29. [PMID: 24667138 PMCID: PMC3986944 DOI: 10.1186/1756-9966-33-29] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/18/2014] [Indexed: 01/24/2023]
Abstract
Development of HPV-associated cancers not only depends on efficient negative regulation of cell cycle control that supports the accumulation of genetic damage, but also relies on immune evasion that enable the virus to go undetected for long periods of time. In this way, HPV-related tumors usually present MHC class I down-regulation, impaired antigen-processing ability, avoidance of T-cell mediated killing, increased immunosuppression due to Treg infiltration and secrete immunosuppressive cytokines. Thus, these are the main obstacles that immunotherapy has to face in the treatment of HPV-related pathologies where a number of different strategies have been developed to overcome them including new adjuvants. Although antigen-specific immunotherapy induced by therapeutic HPV vaccines was proved extremely efficacious in pre-clinical models, its progression through clinical trials suffered poor responses in the initial trials. Later attempts seem to have been more promising, particularly against the well-defined precursors of cervical, anal or vulvar cancer, where the local immunosuppressive milieu is less active. This review focuses on the advances made in these fields, highlighting several new technologies (such as mRNA vaccine, plant-derived vaccine). The most promising immunotherapies used in clinical trials are also summarized, along with integrated strategies, particularly promising in controlling tumor metastasis and in eliminating cancer cells altogether. After the early promising clinical results, the development of therapeutic HPV vaccines need to be implemented and applied to the users in order to eradicate HPV-associated malignancies, eradicating existing perception (after the effectiveness of commercial preventive vaccines) that we have already solved the problem.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Aldo Venuti
- HPV Unit, Regina Elena National Cancer Institute, V Elio Chianesi 53, Rome 00144, Italy.
| |
Collapse
|
28
|
From tumor immunosuppression to eradication: targeting homing and activity of immune effector cells to tumors. Clin Dev Immunol 2011; 2011:439053. [PMID: 22190971 PMCID: PMC3235497 DOI: 10.1155/2011/439053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/06/2011] [Indexed: 12/21/2022]
Abstract
Unraveling the mechanisms used by the immune system to fight cancer development is one of the most ambitious undertakings in immunology. Detailed knowledge regarding the mechanisms of induction of tolerance and immunosuppression within the tumor microenvironment will contribute to the development of highly effective tumor eradication strategies. Research within the last few decades has shed more light on the matter. This paper aims to give an overview on the current knowledge of the main tolerance and immunosuppression mechanisms elicited within the tumor microenvironment, with the focus on development of effective immunotherapeutic strategies to improve homing and activity of immune effector cells to tumors.
Collapse
|
29
|
Walczak M, Regts J, van Oosterhout AJM, Boon L, Wilschut J, Nijman HW, Daemen T. Role of regulatory T-cells in immunization strategies involving a recombinant alphavirus vector system. Antivir Ther 2011; 16:207-18. [PMID: 21447870 DOI: 10.3851/imp1751] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Regulatory T-cells (Treg) hamper immune responses elicited by cancer vaccines. Therefore, depletion of Treg is being used to improve the outcome of vaccinations. METHODS We studied whether an alphavirus vector-based immunotherapeutic vaccine changes the number and/or activity of Treg and if Treg depletion improves the efficacy of this vaccine against tumours. The vaccine is based on a Semliki Forest virus (SFV). The recombinant SFV replicon particles encode a fusion protein of E6 and E7 from human papillomavirus (HPV) type 16 (SFVeE6,7). RESULTS We demonstrated that SFVeE6,7 immunization did not change Treg levels and their suppressive activity. Depletion of Treg in mice, using the novel anti-folate receptor 4 antibody, did not enhance the immune response induced by SFVeE6,7 immunization. Both the priming and the proliferation phases of the HPV-specific response elicited with SFVeE6,7 were not affected by the immune-suppressive activity of Treg. Moreover, Treg depletion did not improve the therapeutic antitumour response of SFVeE6,7 in a murine tumour model. CONCLUSIONS The efficacy of the SFVeE6,7 vaccine was not hampered by Treg. Therefore, SFVeE6,7 seems a very promising candidate for the treatment of HPV-induced disease, as it may not require additional immune interventions to modulate Treg activity.
Collapse
Affiliation(s)
- Mateusz Walczak
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Quetglas JI, Fioravanti J, Ardaiz N, Medina-Echeverz J, Baraibar I, Prieto J, Smerdou C, Berraondo P. A Semliki forest virus vector engineered to express IFNα induces efficient elimination of established tumors. Gene Ther 2011; 19:271-8. [PMID: 21734727 DOI: 10.1038/gt.2011.99] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Semliki Forest virus (SFV) represents a promising gene therapy vector for tumor treatment, because it produces high levels of recombinant therapeutic proteins while inducing apoptosis in infected cells. In this study, we constructed a SFV vector expressing murine interferon alpha (IFNα). IFNα displays antitumor activity mainly by enhancing an antitumor immune response, as well as by a direct antiproliferative effect. In spite of the antiviral activity of IFNα, SFV-IFN could be produced in BHK cells at high titers. This vector was able to infect TC-1 cells, a tumor cell line expressing E6 and E7 proteins of human papillomavirus, leading to high production of IFNα both in vitro and in vivo. When injected into subcutaneous TC-1 tumors implanted in mice, SFV-IFN was able to induce an E7-specific cytotoxic T lymphocyte response, and to modify tumor infiltrating immune cells, reducing the percentage of T regulatory cells and activating myeloid cells. As a consequence, SFV-IFN was able to eradicate 58% of established tumors treated 21 days after implantation with long-term tumor-free survival and very low toxicity. SFV-IFN was also able to induce significant antitumor responses in a subcutaneous tumor model of murine colon adenocarcimoma. These data suggest that local production of IFNα by intratumoral injection of recombinant SFV-IFN could represent a potent new strategy to treat tumors in patients.
Collapse
Affiliation(s)
- J I Quetglas
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Walczak M, de Mare A, Riezebos-Brilman A, Regts J, Hoogeboom BN, Visser JT, Fiedler M, Jansen-Dürr P, van der Zee AGJ, Nijman HW, Wilschut J, Daemen T. Heterologous Prime-Boost Immunizations with a Virosomal and an Alphavirus Replicon Vaccine. Mol Pharm 2010; 8:65-77. [DOI: 10.1021/mp1002043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mateusz Walczak
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arjan de Mare
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annelies Riezebos-Brilman
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joke Regts
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Baukje-Nynke Hoogeboom
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen T. Visser
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marc Fiedler
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pidder Jansen-Dürr
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ate G. J. van der Zee
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hans W. Nijman
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Wilschut
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Toos Daemen
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Tumour Virology Group, Tyrolean Cancer Research Institute, Innsbruck, Austria, and Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Alphavirus vectors for cancer therapy. Virus Res 2010; 153:179-96. [PMID: 20692305 DOI: 10.1016/j.virusres.2010.07.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 11/23/2022]
Abstract
Alphaviruses contain a single strand RNA genome that can be easily modified to express heterologous genes at very high levels in a broad variety of cells, including tumor cells. Alphavirus vectors can be used as viral particles containing a packaged vector RNA, or directly as nucleic acids in the form of RNA or DNA. In the latter case alphavirus RNA is cloned within a DNA vector downstream of a eukaryotic promoter. Expression mediated by these vectors is generally transient due to the induction of apoptosis. The high expression levels, induction of apoptosis, and activation of type I IFN response are the key features that have made alphavirus vectors very attractive for cancer treatment and vaccination. Alphavirus vectors have been successfully used as vaccines to induce protective and therapeutic immune responses against many tumor-associated antigens in animal models of mastocytoma, melanoma, mammary, prostate, and virally induced tumors. Alphavirus vectors have also shown a high antitumoral efficacy by expressing antitumoral molecules in tumor cells, which include cytokines, antiangiogenic factors or toxic proteins. In these studies induction of apoptosis in tumor cells contributed to the antitumoral efficacy by the release of tumor antigens that can be uptaken by antigen presenting cells, enhancing immune responses against tumors. The potential use of alphaviruses as oncolytic agents has also been evaluated for avirulent strains of Semliki Forest virus and Sindbis virus. The fact that this latter virus has a natural tropism for tumor cells has led to many studies in which this vector was able to reach metastatic tumors when administered systemically. Other "artificial" strategies to increase the tropism of alphavirus for tumors have also been evaluated and will be discussed.
Collapse
|
33
|
Lambeck AJ, Nijman HW, Hoogeboom BN, Regts J, de Mare A, Wilschut J, Daemen T. Role of T cell competition in the induction of cytotoxic T lymphocyte activity during viral vector-based immunization regimens. Vaccine 2010; 28:4275-82. [DOI: 10.1016/j.vaccine.2010.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/31/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
|
34
|
Bermúdez-Humarán LG, Langella P. Perspectives for the development of human papillomavirus vaccines and immunotherapy. Expert Rev Vaccines 2010; 9:35-44. [PMID: 20021304 DOI: 10.1586/erv.09.145] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infection and is responsible for 90-99% of cervical cancer (CxCa) cases. Although effective screening programs have reduced the incidence of CxCa in developed countries, they are often not well organized. Prophylactic vaccination against HPV seems to be a good strategy for the prevention of CxCa. However, because millions of women are already infected with HPV, therapeutic HPV vaccines need to be developed further to treat these women. This review discusses the actual perspectives on both HPV vaccines and immunotherapy worldwide. In addition, some of the perspectives in France are also briefly discussed.
Collapse
Affiliation(s)
- Luis G Bermúdez-Humarán
- Unité d'Ecologie et de Physiologie du Système Digestif, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France.
| | | |
Collapse
|
35
|
Cid-Arregui A. Therapeutic vaccines against human papillomavirus and cervical cancer. Open Virol J 2009; 3:67-83. [PMID: 19915722 PMCID: PMC2776308 DOI: 10.2174/1874357900903010067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/11/2009] [Accepted: 08/20/2009] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer and its precursor intra-epithelial lesions are linked to infection by a subset of so-called "highrisk" human papillomavirus types, which are estimated to infect nearly four hundred million women worldwide. Two prophylactic vaccines have been commercialized recently targeting HPV16 and 18, the most prevalent viral types found in cervical cancer, which operate through induction of capsid-specific neutralizing antibodies. However, in patients with persistent infection these vaccines have not been found to protect against progression to neoplasia. Attempts are being made to develop therapeutic vaccines targeting nonstructural early viral proteins. Among these, E6 and E7 are the preferred targets, since they are essential for induction and maintenance of the malignant phenotype and are constitutively expressed by the transformed epithelial cells. Here are reviewed the most relevant potential vaccines based on HPV early antigens that have shown efficacy in preclinical models and that are being tested in clinical studies, which should determine their therapeutic capacity for eradicating HPV-induced premalignant and malignant lesions and cure cervical cancer.
Collapse
Affiliation(s)
- Angel Cid-Arregui
- Translational Immunology Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| |
Collapse
|
36
|
Riezebos-Brilman A, Regts J, Chen M, Wilschut J, Daemen T. Augmentation of alphavirus vector-induced human papilloma virus-specific immune and anti-tumour responses by co-expression of interleukin-12. Vaccine 2008; 27:701-7. [PMID: 19041356 DOI: 10.1016/j.vaccine.2008.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 11/05/2008] [Accepted: 11/07/2008] [Indexed: 01/21/2023]
Abstract
To enhance the efficacy of a therapeutic immunisation strategy against human papillomavirus-induced cervical cancer we evaluated the adjuvant effect of interleukin-12 (IL12) expressed by a Semliki Forest virus vector (SFV) in mice. Depending on the dose and schedule, SFV-IL12 stimulated antigen-specific CTL responses elicited upon immunisation with recombinant SFV expressing HPV16-E6E7 (SFVeE6,7). SFVeE6,7-CTL and anti-tumour activity were enhanced by a low dose of SFV-IL12 to the prime immunisation. Using higher dosages these activities were reduced. Addition of SFV-IL12 to the booster immunisation further reduced the efficacy of the SFVeE6,7 immunisation. In transgenic mice, tolerant for HPV16-E6E7, SFV-IL12 also stimulated SFVeE6,7-induced CTL responses. In conclusion, SFV-IL12 can enhance antigen-specific immune responses. Yet, prudence is called for when considering co-administration of SFV-IL12 to a vaccine, as the enhancement of cell-mediated immune responses greatly depends on dosage and schedule.
Collapse
Affiliation(s)
- Annelies Riezebos-Brilman
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Abstract
Alphavirus vectors are high-level, transient expression vectors for therapeutic and prophylactic use. These positive-stranded RNA vectors, derived from Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus, multiply and are expressed in the cytoplasm of most vertebrate cells, including human cells. Part of the genome encoding the structural protein genes, which is amplified during a normal infection, is replaced by a transgene. Three types of vector have been developed: virus-like particles, layered DNA-RNA vectors and replication-competent vectors. Virus-like particles contain replicon RNA that is defective since it contains a cloned gene in place of the structural protein genes, and thus are able to undergo only one cycle of expression. They are produced by transfection of vector RNA, and helper RNAs encoding the structural proteins. Layered DNA-RNA vectors express the Semliki Forest virus replicon from a cDNA copy via a cytomegalovirus promoter. Replication-competent vectors contain a transgene in addition to the structural protein genes. Alphavirus vectors are used for three main applications: vaccine construction, therapy of central nervous system disease, and cancer therapy.
Collapse
|
38
|
de Mare A, Lambeck AJA, Regts J, van Dam GM, Nijman HW, Snippe H, Wilschut J, Daemen T. Viral vector-based prime-boost immunization regimens: a possible involvement of T-cell competition. Gene Ther 2007; 15:393-403. [PMID: 18004406 DOI: 10.1038/sj.gt.3303060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vaccination with recombinant viral vectors may be impeded by preexisting vector-specific immunity or by vector-specific immunity induced during the priming immunization. It is assumed that virus-neutralizing antibodies represent the principal effector mechanism of vector-specific immunity, while killing of infected cells by vector-specific cytotoxic T lymphocytes (CTLs) has also been suggested. Using recombinant Semliki Forest virus (rSFV) expressing E6E7 antigen from human papillomavirus, we demonstrate that secondary immune responses against E6E7 are neither affected by vector-specific antibodies nor by CTL-mediated killing of infected cells. Instead, the presence of the antigen during the prime immunization appeared to be the main determinant for the boosting efficacy. After priming with rSFVeE6,7, a homologous booster stimulated the primed E6E7-specific CTL response and induced long-lasting memory. Passively transferred SFV-neutralizing antibodies did not inhibit E6E7-specific CTL responses, although transgene expression was strongly reduced under these conditions. Conversely, in mice primed with irrelevant rSFV, induction of E6E7-specific CTLs was inhibited presumably due to vector-specific responses induced by the priming immunization. When during the priming with irrelevant rSFV, E7-protein was co-administered, the inhibitory effect of vector-specific immunity was abolished. These results suggest that, apart from vector-specific antibodies or killing of infected cells, T-cell competition may be involved in determining the efficacy of viral vector-based prime-boost immunization regimens.
Collapse
Affiliation(s)
- A de Mare
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
39
|
A comparative study on the immunotherapeutic efficacy of recombinant Semliki Forest virus and adenovirus vector systems in a murine model for cervical cancer. Gene Ther 2007; 14:1695-704. [DOI: 10.1038/sj.gt.3303036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Nishimoto KP, Laust AK, Wang K, Kamrud KI, Hubby B, Smith JF, Nelson EL. Restricted and selective tropism of a Venezuelan equine encephalitis virus-derived replicon vector for human dendritic cells. Viral Immunol 2007; 20:88-104. [PMID: 17425424 DOI: 10.1089/vim.2006.0090] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) consist of heterogeneous phenotypic populations and have diverse immunostimulatory functions dependent on both lineage and functional phenotype, but as exceptionally potent antigen-presenting cells, they are targets for generating effective antigen-specific immune responses. A promising replicon particle vector derived from Venezuelan equine encephalitis virus (VEE) has been reported to transduce murine footpad DCs. However, the receptive DC subset, the degree of restriction for this tropism, and the extent of conservation between rodents and humans have not been well characterized. Using fresh peripheral blood DCs, mononuclear cells, monocyte-derived macrophages, and monocyte-derived DCs, our results demonstrate conservation of VEE replicon particle (VRP) tropism for DCs between humans and rodents. We observed that a subset of immature myeloid DCs is the target population, and that VRP-transduced immature DCs retain intact functional capacity, for example, the ability to resist the cytopathic effects of VRP transduction and the capacity to acquire the mature phenotype. These studies support the demonstration of selective VRP tropism for human DCs and provide further insight into the biology of the VRP vector, its parent virus, and human DCs.
Collapse
Affiliation(s)
- Kevin P Nishimoto
- Molecular Biology and Biochemistry, School of Medicine, School of Biological Sciences, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Rodriguez-Madoz JR, Prieto J, Smerdou C. Semliki forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas. Mol Ther 2006; 12:153-63. [PMID: 15963931 DOI: 10.1016/j.ymthe.2005.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2004] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022] Open
Abstract
To evaluate the use of alphavirus vectors for tumor treatment we have constructed and compared two Semliki Forest virus (SFV) vectors expressing different levels of IL-12. SFV-IL-12 expresses both IL-12 subunits from a single subgenomic promoter, while in SFV-enhIL-12 each IL-12 subunit is expressed from an independent subgenomic promoter fused to the SFV capsid translation enhancer. This latter strategy provided an eightfold increase of IL-12 expression. We chose the poorly immunogenic MC38 colon adenocarcinoma model to evaluate the therapeutic potential of SFV vectors. A single intratumoral injection of 10(8) viral particles of SFV-IL-12 or SFV-enh-IL-12 induced>or=80% complete tumor regressions with long-term tumor-free survival. However, lower doses of SFV-enhIL-12 were more efficient than SFV-IL-12 in inducing antitumoral responses, indicating a positive correlation between the IL-12 expression level and the therapeutic effect. Moreover, repeated intratumoral injections of suboptimal doses of SFV-enhIL-12 increased the antitumoral response. In all cases SFV vectors were more efficient at eliminating tumors than a first-generation adenovirus vector expressing IL-12. In addition, the antitumoral effect of SFV vectors was only moderately affected by preimmunization of animals with high doses of SFV vectors. This antitumoral effect was produced, at least partially, by a potent CTL-mediated immune response.
Collapse
Affiliation(s)
- Juan R Rodriguez-Madoz
- Division of Gene Therapy, School of Medicine, Center for Applied Medical Research, University of Navarra, Avenida Pio XII 55, 31008 Pamplona, Spain
| | | | | |
Collapse
|
42
|
Riezebos-Brilman A, de Mare A, Bungener L, Huckriede A, Wilschut J, Daemen T. Recombinant alphaviruses as vectors for anti-tumour and anti-microbial immunotherapy. J Clin Virol 2006; 35:233-43. [PMID: 16448844 DOI: 10.1016/j.jcv.2005.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/07/2005] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vectors derived from alphaviruses are gaining interest for their high transfection potency and strong immunogenicity. OBJECTIVES After a brief introduction on alphaviruses and their vectors, an overview is given on current preclinical immunotherapy studies using vector systems based on alphaviruses. The efficacy of alphavirus vectors in inducing immune responses will be illustrated by a more detailed description of immunization studies using recombinant Semliki Forest virus for the treatment of human papilloma virus-induced cervical cancer. RESULTS Immunization with recombinant alphavirus results in the induction of humoral and cellular immune responses against microbes, infected cells and cancer cells. Preclinical studies demonstrate that infectious diseases and cancer can be treated prophylactically as well as therapeutically. CONCLUSIONS Alphavirus-based genetic immunization strategies are highly effective in animal model systems, comparing quite favourably with any other approach. Therefore, we hope and expect to see an efficient induction of tumour-or microbial immunity and a positive outcome in future clinical efficacy studies.
Collapse
Affiliation(s)
- Annelies Riezebos-Brilman
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Globally, carcinomas of the anogenital tract, in particular cervical cancer, remain some of the most common cancers in women, cervical cancer represents the second most frequent gynecological malignancy and the third leading cause of cancer-related death in women worldwide. The causal relationship between human papilomavirus (HPV) infection and anogenital cancer has prompted substantial interest in the development of both preventive and therapeutic vaccines against high-risk HPV types. In the past decade, several groups have shown encouraging results using experimental vaccination systems in animal models and these results have led to several current prophylactic and therapeutic vaccine clinical trials in humans. Prophylactic vaccination focuses on the induction of high titer neutralizing antibodies that are potentially protective against incident and persistent HPV infection. Two major phase II clinical trials conducted by pharmaceutical companies have demonstrated that their vaccines have 100% efficacy in preventing persistent viral DNA and its associated cellular abnormalities; however, whether they induce long-lasting protective immunity is yet to be determined. At least one US FDA approved prophylactic vaccine targeting the two most common high-risk HPVs is expected to be on the market within the next 2-3 years. Nevertheless, significant reductions in the frequency and onset of cytologic screening and incidences of HPV-related lesions are not expected to become apparent for decades due to the fact that there will be women who are already infected with HPV, the long latency period between infection and development of high-grade lesions, and lesions associated with other high-risk HPV types not being included in the vaccines. Therapeutic vaccines aim to control HPV-associated malignancies by stimulating cellular immune responses that target established HPV infections via viral proteins. Progress in the field of HPV immunotherapy has remained elusive, with clinical trials being limited to small numbers of patients. Potential treatment of precancerous lesions is unique to HPV-associated infection and cancer because of cytologic monitoring and HPV typing. Unlike more common surgical treatments for cervical lesions, active immunotherapy has the potential to address HPV persistence as the cause of lesion development in addition to leaving the patient with long-term immunity that can be reactivated if and when the patient becomes reinfected.
Collapse
Affiliation(s)
- Diane M Da Silva
- Norris Comprehensive Cancer Center and Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, USA
| | - W Martin Kast
- Norris Comprehensive Cancer Center and Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
44
|
Cheung YK, Cheng SCS, Sin FWY, Xie Y. Plasmid encoding papillomavirus Type 16 (HPV16) DNA constructed with codon optimization improved the immunogenicity against HPV infection. Vaccine 2005; 23:629-38. [PMID: 15542183 DOI: 10.1016/j.vaccine.2004.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 07/05/2004] [Indexed: 10/26/2022]
Abstract
Human papillomavirus Type 16 (HPV16) infections can cause neoplasia, which is thought to be closely associated with the development of cervical cancers. In the study, we attempted to construct a DNA plasmid encoding a HPV16 capsid protein (L1) and a HPV16 oncoprotein (E7), which was capable of preventing HPV16 infection and eliminating HPV16-infected cells. A plasmid, L1E7hpSCA1, encoding the L1 and E7 genes with the codon usage optimized for mammalian cell expression, was constructed. Mutations were introduced into the E7 gene sequence for reducing its oncogenicity. C57BL/6 mice were intramuscularly immunized at tibialis anterior (TA) muscles with the newly constructed L1E7hpSCA1 plasmid. The immune responses induced by the L1E7hpSCA1 plasmid (with codon optimization) and a control L1E7pSCA1 plasmid (without codon optimization) were compared. It is shown that the L1E7hpSCA1 was able to induce much stronger immune responses than the L1E7pSCA1. Sera obtained from immunized animals were found to contain anti-HPV16 antibodies as detected by ELISA and hemagglutination inhibition (HAI) assays. Cytotoxicity and interferon-gamma assays showed that spleenocytes from immunized animals were able to recognize and lyze E7 expressing tumor TC-1 cells. Moreover, the growth of E7 expressing tumor mass was inhibited in vaccinated mice. In vivo tumor protection test indicated that tumor formation was prevented in the experimental animals (67%) after vaccination with L1E7hpSCA1, while for the control group injected with L1E7pSCA1 only and the animal group injected with pSCA1 only, tumor formation was observed in all experimental animals. Our results suggest that the L1E7h gene (with codon optimization) is more effective against HPV16 than the L1E7 gene (without codon optimization). The L1E7hpSCA1 plasmid was able to provide protection against E7 expressing tumor, and it might have the potential to be a vaccine candidate for HPV prevention.
Collapse
Affiliation(s)
- Ying-Kit Cheung
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | |
Collapse
|
45
|
Ni B, Lin Z, Zhou L, Wang L, Jia Z, Zhou W, Diciommo DP, Zhao J, Bremner R, Wu Y. Induction of P815 tumor immunity by DNA-based recombinant Semliki Forest virus or replicon DNA expressing the P1A gene. ACTA ACUST UNITED AC 2005; 28:418-25. [PMID: 15582265 DOI: 10.1016/j.cdp.2004.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
AIM To compare the prophylactic and therapeutic effects of alphaviruses in the same tumor model, we used a DNA-based approach to generate a replicon DNA and recombinant Semliki Forest virus (rSFV) particles expressing P1A, the P815 mastocytoma tumor associated antigen, and compared the immune effect of each vaccine. METHODS Six to eight-week-old female DBA/2 mice were inoculated with P1A plasmid or viral vaccines. Spleen cells were assayed for antigen-specific cytotoxic T cell activity. Tumor growth or survival rate was observed in preventive and therapeutic experiments, respectively. RESULTS We found that the rSFV particles prevented tumor growth when delivered prior to innoculation of mice with P815 cells, and more importantly, improved survival when delivered after the initiation of tumor growth. Naked P1A replicon DNA also functioned as a protective and therapeutic vaccine, although with less potency than rSFV particles. Virus particles also elicited a stronger cellular immune response as measured by target cell lysis. CONCLUSION rSFV particles have stronger specific prophylactic and therapeutic immune effects in mice than replicon DNA-based DNA vaccines, though the latter is more effective than traditional plasmid vectors (e.g. pCI-neo vector).
Collapse
Affiliation(s)
- Bing Ni
- Institute of Immunology PLA, Department of Immunology, Third Military Medical University, Gaotanyan Street 30#, Shapingba District, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ni B, Gao W, Zhu B, Lin Z, Jia Z, Zhou W, Zhao J, Wang L, Wu Y. Induction of specific human primary immune responses to a Semliki Forest virus-based tumor vaccine in a Trimera mouse model. Cancer Immunol Immunother 2005; 54:489-98. [PMID: 15750833 PMCID: PMC11032812 DOI: 10.1007/s00262-004-0591-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2004] [Accepted: 07/01/2004] [Indexed: 10/25/2022]
Abstract
Recombinant Semliki Forest virus (rSFV) enables high-level, transient expression of heterologous proteins in vivo, and is believed to be a superior vector for genetic vaccination, compared with the conventional DNA plasmid. Nonetheless, the efficacy of rSFV-based vaccine in eliciting human immune responses has not been tested. We used a Trimera mouse model, consisting of lethally irradiated BALB/c host reconstituted with nonobese diabetes/severe combined immunodeficiency (NOD/SCID) bone marrow plus human peripheral blood mononuclear cells (PBMCs), to characterize the in vivo immune responses against rSFV-encoded human melanoma antigen MAGE-3. MAGE-3-specific antibody and cytotoxic T lymphocyte (CTL) activity were detected by ELISA and 51Cr-release assay, respectively, and the responses were compared with those induced by a plasmid DNA vaccine encoding the same antigen. The results showed that rSFV vaccine could elicit human MAGE-3-specific antibody and CTL response in the Trimera mice, and the antitumor responses were more potent than those by plasmid DNA vaccination. This is the first report to evaluate human immune responses to an rSFV-based tumor vaccine in the Trimera mouse model. Our data suggest that rSFV vector is better than DNA plasmid in inducing protective immunity, and the Trimera model may serve as a general tool to evaluate the efficacy of tumor vaccines in eliciting human primary immune response in vivo.
Collapse
Affiliation(s)
- Bing Ni
- Institute of Immunology, Third Military Medical University, Chongqing, 400038 China.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Riezebos-Brilman A, Regts J, Freyschmidt EJ, Dontje B, Wilschut J, Daemen T. Induction of human papilloma virus E6/E7-specific cytotoxic T-lymphocyte activity in immune-tolerant, E6/E7-transgenic mice. Gene Ther 2005; 12:1410-4. [PMID: 15843807 DOI: 10.1038/sj.gt.3302536] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite promising preclinical results of various therapeutic anticancer immunization strategies, these approaches may not be effective enough to eradicate tumors in cancer patients. While most animal models are based on fast-growing transplantable tumors, malignancies in, for example, cervical cancer patients in general develop much more slowly, which may lead to immune suppression and/or immune tolerance. As a consequence, the immunomodulating signal of any therapeutic immunization regimen should be sufficiently potent to overcome this immunocompromised condition. In previous studies, we demonstrated that an experimental vaccine against human papillomavirus (HPV)-induced cervical cancer, based on Semliki Forest virus (SFV), induces robust HPV-specific cellular immune responses in mice. Now we studied whether this strategy is potent enough to also prime a cellular immune response in immune-tolerant HPV transgenic mice, in which CTL activity cannot be induced using protein or DNA vaccines. We demonstrate that, depending on the route of immunization, SFV-expressing HPV16 E6 and E7 indeed has the capacity to induce HPV16 E7-specific cytotoxic T cells in HPV-transgenic mice.
Collapse
Affiliation(s)
- A Riezebos-Brilman
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen (UMCG), Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Gehrke R, Heinz FX, Davis NL, Mandl CW. Heterologous gene expression by infectious and replicon vectors derived from tick-borne encephalitis virus and direct comparison of this flavivirus system with an alphavirus replicon. J Gen Virol 2005; 86:1045-1053. [PMID: 15784898 DOI: 10.1099/vir.0.80677-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The flavivirus tick-borne encephaltis virus (TBEV) was established as a vector system for heterologous gene expression. The variable region of the genomic 3′ non-coding region was replaced by an expression cassette consisting of the reporter gene enhanced green fluorescent protein (EGFP) under the translational control of an internal ribosomal entry site element, both in the context of an infectious virus genome and of a replicon lacking the genes of the surface proteins prM/M and E. The expression level and the stability of expression were measured by fluorescence-activated cell-sorting analysis and compared to an established alphavirus replicon vector derived from Venezuelan equine encephaltis virus (VEEV), expressing EGFP under the control of its natural subgenomic promoter. On the first day, the alphavirus replicon exhibited an approximately 180-fold higher expression level than the flavivirus replicon, but this difference decreased to about 20- and 10-fold on days 2 and 3, respectively. Four to six days post-transfection, foreign gene expression by the VEEV replicon vanished almost completely, due to extensive cell killing. In contrast, in the case of the TBEV replicon, the percentage of positive cells and the amount of EGFP expression exhibited only a moderate decline over a time period of almost 4 weeks. The infectious TBEV vector expressed less EGFP than the TBEV replicon at all times. Significant expression from the infectious vector was maintained for four cell-culture passages. The results indicate that the VEEV vector is superior with respect to achieving high expression levels, but the TBEV system may be advantageous for applications that require a moderate, but more enduring, gene expression.
Collapse
Affiliation(s)
- Rainer Gehrke
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Franz X Heinz
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Nancy L Davis
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christian W Mandl
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| |
Collapse
|
49
|
Smyth JWP, Fleeton MN, Sheahan BJ, Atkins GJ. Treatment of rapidly growing K-BALB and CT26 mouse tumours using Semliki Forest virus and its derived vector. Gene Ther 2005; 12:147-59. [PMID: 15372069 DOI: 10.1038/sj.gt.3302390] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To assess the potential of immune stimulation in combination with apoptosis induction by Semliki Forest virus (SFV) and its derived vector for tumour treatment, we have utilized the poorly immunogenic and rapidly growing K-BALB and CT26 murine tumour models. Both cell lines underwent apoptosis and expressed viral antigen when infected with the SFV4 strain of SFV, or recombinant SFV (rSFV) virus-like particles (VLPs) encoding the p62-6k viral structural proteins. VLPs were used to immunize groups of BALB/c and BALB/c nu/nu mice prior to subcutaneous tumour induction and treatment. Direct intratumoral injection of VLPs or SFV4 resulted in an immediate and intense inflammatory reaction in immunized groups that was not observed in naive groups until day 5 of treatment, and was not observed in nu/nu groups. A significantly higher level of tumour growth inhibition was observed in immunocompetent groups than in athymic mice. For K-BALB tumours, SFV4 treated groups showed greater inhibition than that observed in VLP-treated groups, with immunization prior to treatment enhancing the overall antitumour effect and immune response. No significant difference was observed in CT26 tumours between VLP and SFV4-treated groups, but prior immunization considerably enhanced the antitumoural response. It is concluded that use of the inherent apoptosis-inducing capability of SFV or its vector, by perfusion in combination with immune stimulation, may have potential for the treatment of rapidly growing tumours.
Collapse
Affiliation(s)
- J W P Smyth
- Department of Microbiology, Moyne Institute, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
50
|
Eradication of Established Tumors by Vaccination With Recombinant Bordetella pertussis Adenylate Cyclase Carrying the Human Papillomavirus 16 E7 Oncoprotein. Cancer Res 2005. [DOI: 10.1158/0008-5472.641.65.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
High-risk human papillomaviruses (HPV) such as HPV16 are associated with the development of cervical cancer. The HPV16-E6 and HPV16-E7 oncoproteins are expressed throughout the replicative cycle of the virus and are necessary for the onset and maintenance of malignant transformation. Both these tumor-specific antigens are considered as potential targets for specific CTL-mediated immunotherapy. The adenylate cyclase (CyaA) of Bordetella pertussis is able to target dendritic cells through specific interaction with the αMβ2 integrin. It has been previously shown that this bacterial protein could be used to deliver CD4+ and CD8+ T cell epitopes to the MHC class II and class I presentation pathways to trigger specific Th and CTL responses in vivo, providing protection against subsequent viral or tumoral challenge. Here, we constructed recombinant CyaA containing either the full sequence or various subfragments from the HPV16-E7 protein. We show that, when injected to C57BL/6 mice in absence of any adjuvant, these HPV16-recombinant CyaAs are able to induce specific Th1 and CTL responses. Furthermore, when injected into mice grafted with HPV16-E7-expressing tumor cells (TC-1), one of these recombinant proteins was able to trigger complete tumor regression in 100% of the animals tested. This therapeutic efficacy compared favorably to that of strongly adjuvanted peptide and was marginally affected by prior immunity to CyaA protein. This study represents the first in vivo demonstration of the antitumoral therapeutic activity of recombinant CyaA proteins carrying human tumor–associated antigens and paves the way for the testing of this vector in clinical trials.
Collapse
|