1
|
Kaku Y, Isono Y, Tanaka H, Kobayashi T, Kanemori Y, Kashiwabara SI. Intronless Pabpc6 encodes a testis-specific, cytoplasmic poly(A)-binding protein but is dispensable for spermatogenesis in the mouse†. Biol Reprod 2024; 110:834-847. [PMID: 38281153 DOI: 10.1093/biolre/ioae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/25/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024] Open
Abstract
Besides ubiquitous poly(A)-binding protein, cytoplasmic 1 (PABPC1), testis-specific PABPC2/PABPt (in humans, referred to as PABPC3), and female and male germline-specific PABPC1L/ePAB, have been reported in the mouse testis. Recent in silico analysis additionally identified testis-specific Pabpc6 in the mouse. In this study, we characterized PABPC6 and its mutant mice. PABPC6 was initially detectable in the cytoplasm of pachytene spermatocytes, increased in abundance in round spermatids, and decreased in elongating spermatids. PABPC6 was capable of binding to poly(A) tails of various mRNAs and interacting with translation-associated factors, including EIF4G, PAIP1, and PAIP2. Noteworthy was that PABPC6, unlike PABPC1, was barely associated with translationally active polysomes and enriched in chromatoid bodies of round spermatids. Despite these unique characteristics, neither synthesis of testicular proteins nor spermatogenesis was affected in the mutant mice lacking PABPC6, suggesting that PABPC6 is functionally redundant with other co-existing PABPC proteins during spermatogenesis.
Collapse
Affiliation(s)
- Yuko Kaku
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuka Isono
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideto Tanaka
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomohiro Kobayashi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Kanemori
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shin-Ichi Kashiwabara
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Gao J, Qin Y, Schimenti JC. Gene regulation during meiosis. Trends Genet 2024; 40:326-336. [PMID: 38177041 PMCID: PMC11003842 DOI: 10.1016/j.tig.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Meiosis is essential for gamete production in all sexually reproducing organisms. It entails two successive cell divisions without DNA replication, producing haploid cells from diploid ones. This process involves complex morphological and molecular differentiation that varies across species and between sexes. Specialized genomic events like meiotic recombination and chromosome segregation are tightly regulated, including preparation for post-meiotic development. Research in model organisms, notably yeast, has shed light on the genetic and molecular aspects of meiosis and its regulation. Although mammalian meiosis research faces challenges, particularly in replicating gametogenesis in vitro, advances in genetic and genomic technologies are providing mechanistic insights. Here we review the genetics and molecular biology of meiotic gene expression control, focusing on mammals.
Collapse
Affiliation(s)
- Jingyi Gao
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Yiwen Qin
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Romeo-Cardeillac C, Trovero MF, Radío S, Smircich P, Rodríguez-Casuriaga R, Geisinger A, Sotelo-Silveira J. Uncovering a multitude of stage-specific splice variants and putative protein isoforms generated along mouse spermatogenesis. BMC Genomics 2024; 25:295. [PMID: 38509455 PMCID: PMC10953240 DOI: 10.1186/s12864-024-10170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Mammalian testis is a highly complex and heterogeneous tissue. This complexity, which mostly derives from spermatogenic cells, is reflected at the transcriptional level, with the largest number of tissue-specific genes and long noncoding RNAs (lncRNAs) compared to other tissues, and one of the highest rates of alternative splicing. Although it is known that adequate alternative-splicing patterns and stage-specific isoforms are critical for successful spermatogenesis, so far only a very limited number of reports have addressed a detailed study of alternative splicing and isoforms along the different spermatogenic stages. RESULTS In the present work, using highly purified stage-specific testicular cell populations, we detected 33,002 transcripts expressed throughout mouse spermatogenesis not annotated so far. These include both splice variants of already annotated genes, and of hitherto unannotated genes. Using conservative criteria, we uncovered 13,471 spermatogenic lncRNAs, which reflects the still incomplete annotation of lncRNAs. A distinctive feature of lncRNAs was their lower number of splice variants compared to protein-coding ones, adding to the conclusion that lncRNAs are, in general, less complex than mRNAs. Besides, we identified 2,794 unannotated transcripts with high coding potential (including some arising from yet unannotated genes), many of which encode unnoticed putative testis-specific proteins. Some of the most interesting coding splice variants were chosen, and validated through RT-PCR. Remarkably, the largest number of stage-specific unannotated transcripts are expressed during early meiotic prophase stages, whose study has been scarcely addressed in former transcriptomic analyses. CONCLUSIONS We detected a high number of yet unannotated genes and alternatively spliced transcripts along mouse spermatogenesis, hence showing that the transcriptomic diversity of the testis is considerably higher than previously reported. This is especially prominent for specific, underrepresented stages such as those of early meiotic prophase, and its unveiling may constitute a step towards the understanding of their key events.
Collapse
Affiliation(s)
- Carlos Romeo-Cardeillac
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - María Fernanda Trovero
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Santiago Radío
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Pablo Smircich
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
| | - Adriana Geisinger
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay.
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11,400, Montevideo, Uruguay.
| | - José Sotelo-Silveira
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay.
- Department of Cell and Molecular Biology, Facultad de Ciencias, UdelaR, 11,400, Montevideo, Uruguay.
| |
Collapse
|
4
|
Pugacheva EM, Bhatt DN, Rivero-Hinojosa S, Tajmul M, Fedida L, Price E, Ji Y, Loukinov D, Strunnikov AV, Ren B, Lobanenkov VV. BORIS/CTCFL epigenetically reprograms clustered CTCF binding sites into alternative transcriptional start sites. Genome Biol 2024; 25:40. [PMID: 38297316 PMCID: PMC10832218 DOI: 10.1186/s13059-024-03175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters. RESULTS Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements. CONCLUSIONS Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.
Collapse
Affiliation(s)
- Elena M Pugacheva
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Dharmendra Nath Bhatt
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel Rivero-Hinojosa
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Md Tajmul
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liron Fedida
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emma Price
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yon Ji
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dmitri Loukinov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, China
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, Center for Epigenomics, Moores Cancer Center and Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA, 92093-0653, USA
| | - Victor V Lobanenkov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Trost N, Mbengue N, Kaessmann H. The molecular evolution of mammalian spermatogenesis. Cells Dev 2023; 175:203865. [PMID: 37336426 PMCID: PMC10363733 DOI: 10.1016/j.cdev.2023.203865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The testis is a key male reproductive organ that produces gametes through the process of spermatogenesis. Testis morphologies, sperm phenotypes, and the process of spermatogenesis evolve rapidly in mammals, presumably due to the evolutionary pressure on males to give rise to their own offspring. Here, we review studies illuminating the molecular evolution of the testis, in particular large-scale transcriptomic studies, which were based on bulk tissue samples and, more recently, individual cells. Together with various genomic and epigenomic data, these studies have unveiled the cellular source, molecular mechanisms, and evolutionary forces that underlie the rapid phenotypic evolution of the testis. They also revealed shared (ancestral) and species-specific spermatogenic gene expression programs. The insights and available data that have accumulated also provide a valuable resource for the investigation and treatment of male fertility disorders - a dramatically increasing problem in modern industrial societies.
Collapse
Affiliation(s)
- Nils Trost
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Noe Mbengue
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
6
|
Maniates KA, Singson A. Where are all the egg genes? Front Cell Dev Biol 2023; 11:1107312. [PMID: 36819103 PMCID: PMC9936096 DOI: 10.3389/fcell.2023.1107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Complementary forward and reverse genetic approaches in several model systems have resulted in a recent burst of fertilization gene discovery. The number of genetically validated gamete surface molecules have more than doubled in the last few years. All the genetically validated sperm fertilization genes encode transmembrane or secreted molecules. Curiously, the discovery of genes that encode oocyte molecules have fallen behind that of sperm genes. This review discusses potential experimental biases and inherent biological reasons that could slow egg fertilization gene discovery. Finally, we shed light on current strategies to identify genes that may result in further identification of egg fertilization genes.
Collapse
Affiliation(s)
- Katherine A. Maniates
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | | |
Collapse
|
7
|
Rabbani M, Zheng X, Manske GL, Vargo A, Shami AN, Li JZ, Hammoud SS. Decoding the Spermatogenesis Program: New Insights from Transcriptomic Analyses. Annu Rev Genet 2022; 56:339-368. [PMID: 36070560 PMCID: PMC10722372 DOI: 10.1146/annurev-genet-080320-040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spermatogenesis is a complex differentiation process coordinated spatiotemporally across and along seminiferous tubules. Cellular heterogeneity has made it challenging to obtain stage-specific molecular profiles of germ and somatic cells using bulk transcriptomic analyses. This has limited our ability to understand regulation of spermatogenesis and to integrate knowledge from model organisms to humans. The recent advancement of single-cell RNA-sequencing (scRNA-seq) technologies provides insights into the cell type diversity and molecular signatures in the testis. Fine-grained cell atlases of the testis contain both known and novel cell types and define the functional states along the germ cell developmental trajectory in many species. These atlases provide a reference system for integrated interspecies comparisons to discover mechanistic parallels and to enable future studies. Despite recent advances, we currently lack high-resolution data to probe germ cell-somatic cell interactions in the tissue environment, but the use of highly multiplexed spatial analysis technologies has begun to resolve this problem. Taken together, recent single-cell studies provide an improvedunderstanding of gametogenesis to examine underlying causes of infertility and enable the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Xianing Zheng
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Gabe L Manske
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Vargo
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Adrienne N Shami
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Sarkar S, Yadav S, Mehta P, Gupta G, Rajender S. Histone Methylation Regulates Gene Expression in the Round Spermatids to Set the RNA Payloads of Sperm. Reprod Sci 2022; 29:857-882. [PMID: 35015293 DOI: 10.1007/s43032-021-00837-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/19/2021] [Indexed: 12/30/2022]
Abstract
Gene expression during spermatogenesis undergoes significant changes due to a demanding sequence of mitosis, meiosis, and differentiation. We investigated the contribution of H3 histone modifications to gene regulation in the round spermatids. Round spermatids were purified from rat testes using centrifugal elutriation and Percoll density-gradient centrifugation. After enzymatic chromatin shearing, immuno-precipitation using antibodies against histone marks H3k4me3 and H3K9me3 was undertaken. The immunoprecipitated DNA fragments were subjected to massive parallel sequencing. Gene expression in round spermatids and sperm was analyzed by transcriptome sequencing using next-generation sequencing methods. ChIP-seq analysis showed significant peak enrichment in H3K4me3 marks in active chromatin regions and H3K9me3 peak enrichment in repressive regions. We found 53 genes which showed overlapping peak enrichment in both H3K4me3 and H3K9me3 marks. Some of the top H3K4me3-enriched genes were involved in sperm tail formation (Odf1, Odf3, Odf4, Oaz3, Ccdc42, Ccdc63, and Ccdc181), chromatin condensation (Dync1h1, Dynll1, and Kdm3a), and sperm functions such as acrosome reaction (Acrbp and Fabp9), energy generation (Gapdhs), and signaling for motility (Tssk1b, Tssk2, and Tssk4). Transcriptome sequencing in round spermatids found 64% transcripts of the H3K4me3-enriched genes at high levels and of about 25% of H3K9me3-enriched genes at very low levels. Transcriptome sequencing in sperm found that more than 99% of the ChIP-seq corresponding transcripts were also present in sperm. H3K4me3 enrichment in the round spermatids correlates significantly with gene expression and H3K9me3 correlates with gene silencing that contribute to sperm differentiation and setting the RNA payloads of sperm.
Collapse
Affiliation(s)
- Saumya Sarkar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Santosh Yadav
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gopal Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Singh Rajender
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
9
|
Lindemann CB. The flagellar germ-line hypothesis: How flagellate and ciliate gametes significantly shaped the evolution of organismal complexity. Bioessays 2021; 44:e2100143. [PMID: 34967029 DOI: 10.1002/bies.202100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022]
Abstract
This essay presents a hypothesis which contends that the development of organismic complexity in the eukaryotes depended extensively on propagation via flagellated and ciliated gametes. Organisms utilizing flagellate and ciliate gametes to propagate their germ line have contributed most of the organismic complexity found in the higher animals. The genes of the flagellum and the flagellar assembly system (intraflagellar transport) have played a disproportionately important role in the construction of complex tissues and organs. The hypothesis also proposes that competition between large numbers of haploid flagellated male gametes rigorously conserved the functionality of a key set of flagellar genes for more than 700 million years. This in turn has insured that a large set (>600) of highly functional cytoskeletal and signal pathway genes is always present in the lineage of organisms with flagellated or ciliated gametes to act as a dependable resource, or "toolkit," for organ elaboration.
Collapse
|
10
|
Su Q, He H, Zhou Q. On the Origin and Evolution of Drosophila New Genes during Spermatogenesis. Genes (Basel) 2021; 12:1796. [PMID: 34828402 PMCID: PMC8621406 DOI: 10.3390/genes12111796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
The origin of functional new genes is a basic biological process that has significant contribution to organismal diversity. Previous studies in both Drosophila and mammals showed that new genes tend to be expressed in testes and avoid the X chromosome, presumably because of meiotic sex chromosome inactivation (MSCI). Here, we analyze the published single-cell transcriptome data of Drosophila adult testis and find an enrichment of male germline mitotic genes, but an underrepresentation of meiotic genes on the X chromosome. This can be attributed to an excess of autosomal meiotic genes that were derived from their X-linked mitotic progenitors, which provides direct cell-level evidence for MSCI in Drosophila. We reveal that new genes, particularly those produced by retrotransposition, tend to exhibit an expression shift toward late spermatogenesis compared with their parental copies, probably due to the more intensive sperm competition or sexual conflict. Our results dissect the complex factors including age, the origination mechanisms and the chromosomal locations that influence the new gene origination and evolution in testes, and identify new gene cases that show divergent cell-level expression patterns from their progenitors for future functional studies.
Collapse
Affiliation(s)
- Qianwei Su
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (Q.S.); (H.H.)
| | - Huangyi He
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (Q.S.); (H.H.)
| | - Qi Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; (Q.S.); (H.H.)
- Department of Neuroscience and Developmental Biology, University of Vienna, 1030 Vienna, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| |
Collapse
|
11
|
Geisinger A, Rodríguez-Casuriaga R, Benavente R. Transcriptomics of Meiosis in the Male Mouse. Front Cell Dev Biol 2021; 9:626020. [PMID: 33748111 PMCID: PMC7973102 DOI: 10.3389/fcell.2021.626020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Molecular studies of meiosis in mammals have been long relegated due to some intrinsic obstacles, namely the impossibility to reproduce the process in vitro, and the difficulty to obtain highly pure isolated cells of the different meiotic stages. In the recent years, some technical advances, from the improvement of flow cytometry sorting protocols to single-cell RNAseq, are enabling to profile the transcriptome and its fluctuations along the meiotic process. In this mini-review we will outline the diverse methodological approaches that have been employed, and some of the main findings that have started to arise from these studies. As for practical reasons most studies have been carried out in males, and mostly using mouse as a model, our focus will be on murine male meiosis, although also including specific comments about humans. Particularly, we will center on the controversy about gene expression during early meiotic prophase; the widespread existing gap between transcription and translation in meiotic cells; the expression patterns and potential roles of meiotic long non-coding RNAs; and the visualization of meiotic sex chromosome inactivation from the RNAseq perspective.
Collapse
Affiliation(s)
- Adriana Geisinger
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Oyama K, Baba T, Kashiwabara SI. Functional characterization of testis-brain RNA-binding protein, TB-RBP/Translin, in translational regulation. J Reprod Dev 2021; 67:35-42. [PMID: 33268667 PMCID: PMC7902210 DOI: 10.1262/jrd.2020-120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Testis-brain RNA-binding protein (TB-RBP/Translin) is known to contribute to the translational repression of a subset of haploid cell-specific mRNAs, including protamine 2 (Prm2) mRNA. Mutant mice lacking TB-RBP display abnormal spermatogenesis, despite normal male fertility. In this study, we carried out functional analysis of TB-RBP in mammalian cultured cells to understand the mechanism of translational repression by this RNA-binding protein. Although the amino acid sequence contained a eukaryotic translation initiation factor 4E (EIF4E)-recognition motif, TB-RBP failed to interact with EIF4E. In cultured cells, TB-RBP was unable to reduce the activity of luciferase encoded by a reporter mRNA carrying the 3'-untranslated region of Prm2. However, λΝ-BoxB tethering assay revealed that the complex of TB-RBP with its binding partner, Translin-associated factor X (TRAX), exhibits the ability to reduce the luciferase reporter activity by degrading the mRNA. These results suggest that TB-RBP may play a regulatory role in determining the sequence specificity of TRAX-catalyzed mRNA degradation.
Collapse
Affiliation(s)
- Kanako Oyama
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8577, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Tadashi Baba
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8577, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| | - Shin-Ichi Kashiwabara
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8577, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
13
|
Zeng H, Chen X, Li H, Zhang J, Wei Z, Wang Y. Interpopulation differences of retroduplication variations (RDVs) in rice retrogenes and their phenotypic correlations. Comput Struct Biotechnol J 2021; 19:600-611. [PMID: 33510865 PMCID: PMC7811064 DOI: 10.1016/j.csbj.2020.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022] Open
Abstract
Retroduplication variation (RDV), a type of retrocopy polymorphism, is considered to have essential biological significance, but its effect on gene function and species phenotype is still poorly understood. To this end, we analyzed the retrocopies and RDVs in 3,010 rice genomes. We calculated the RDV frequencies in the genome of each rice population; detected the mutated, ancestral and expressed retrogenes in rice genomes; and analyzed their RDV influence on rice phenotypic traits. Collectively, 73 RDVs were identified, and 14 RDVs in ancestral retrogenes can significantly affect rice phenotypes. Our research reveals that RDV plays an important role in rice migration, domestication and evolution. We think that RDV is a good molecular breeding marker candidate. To our knowledge, this is the first study on the relationship between retrogene function, expression, RDV and species phenotype.
Collapse
Affiliation(s)
- Haiyue Zeng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Shennong Class, Southwest University, Chongqing 400715, China
| | - Xingyu Chen
- Shennong Class, Southwest University, Chongqing 400715, China
| | - Hongbo Li
- College of Electronic and Information Engineering, Southwest University, Chongqing 400715
| | - Jun Zhang
- College of Computer & Information Science, Southwest University, Chongqing 400715, China
| | - Zhaoyuan Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yi Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Kurhanewicz NA, Dinwiddie D, Bush ZD, Libuda DE. Elevated Temperatures Cause Transposon-Associated DNA Damage in C. elegans Spermatocytes. Curr Biol 2020; 30:5007-5017.e4. [DOI: 10.1016/j.cub.2020.09.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
|
15
|
Abstract
Gene expression programs define shared and species-specific phenotypes, but their evolution remains largely uncharacterized beyond the transcriptome layer1. Here we report an analysis of the co-evolution of translatomes and transcriptomes using ribosome-profling and matched RNA-sequencing data for three organs (brain, liver and testis) in fve mammals (human, macaque, mouse, opossum and platypus) and a bird (chicken). Our within-species analyses reveal that translational regulation is widespread in the diferent organs, in particular across the spermatogenic cell types of the testis. The between-species divergence in gene expression is around 20% lower at the translatome layer than at the transcriptome layer owing to extensive buffering between the expression layers, which especially preserved old, essential and housekeeping genes. Translational upregulation specifcally counterbalanced global dosage reductions during the evolution of sex chromosomes and the efects of meiotic sex-chromosome inactivation during spermatogenesis. Despite the overall prevalence of bufering, some genes evolved faster at the translatome layer—potentially indicating adaptive changes in expression; testis tissue shows the highest fraction of such genes. Further analyses incorporating mass spectrometry proteomics data establish that the co-evolution of transcriptomes and translatomes is refected at the proteome layer. Together, our work uncovers co-evolutionary patterns and associated selective forces across the expression layers, and provides a resource for understanding their interplay in mammalian organs.
Collapse
|
16
|
Liu H, Zhang J. Higher Germline Mutagenesis of Genes with Stronger Testis Expressions Refutes the Transcriptional Scanning Hypothesis. Mol Biol Evol 2020; 37:3225-3231. [PMID: 32638015 DOI: 10.1093/molbev/msaa168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Why are more genes expressed in the testis than in any other organ in mammals? The recently proposed transcriptional scanning hypothesis posits that transcription alleviates mutagenesis through transcription-coupled repair so has been selected in the testis to modulate the germline mutation rate in a gene-specific manner. Here, we show that this hypothesis is theoretically untenable because the selection would be too weak to have an effect in mammals. Furthermore, the analysis purported to support the hypothesis did not control known confounding factors and inappropriately excluded genes with no observed de novo mutations. After remedying these problems, we find the human germline mutation rate of a gene to rise with its testis expression level. This trend also exists for inferred coding strand-originated mutations, suggesting that it arises from transcription-associated mutagenesis. Furthermore, the testis expression level of a gene robustly correlates with its overall expression in other organs, nullifying the need to explain the testis silencing of a minority of genes by adaptive germline mutagenesis. Taken together, our results demonstrate that human testis transcription increases the germline mutation rate, rejecting the transcriptional scanning hypothesis of extensive gene expressions in the mammalian testis.
Collapse
Affiliation(s)
- Haoxuan Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
17
|
Gamble J, Chick J, Seltzer K, Graber JH, Gygi S, Braun RE, Snyder EM. An expanded mouse testis transcriptome and mass spectrometry defines novel proteins. Reproduction 2020; 159:15-26. [PMID: 31677600 DOI: 10.1530/rep-19-0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
The testis transcriptome is exceptionally complex. Despite its complexity, previous testis transcriptome analyses relied on a reductive method for transcript identification, thus underestimating transcriptome complexity. We describe here a more complete testis transcriptome generated by combining Tuxedo, a reductive method, and spliced-RUM, a combinatorial transcript-building approach. Forty-two percent of the expanded testis transcriptome is composed of unannotated RNAs with novel isoforms of known genes and novel genes constituting 78 and 9.8% of the newly discovered transcripts, respectively. Across tissues, novel transcripts were predominantly expressed in the testis with the exception of novel isoforms which were also highly expressed in the adult ovary. Within the testis, novel isoform expression was distributed equally across all cell types while novel genes were predominantly expressed in meiotic and post-meiotic germ cells. The majority of novel isoforms retained their protein-coding potential while most novel genes had low protein-coding potential. However, a subset of novel genes had protein-coding potentials equivalent to known protein-coding genes. Shotgun mass spectrometry of round spermatid total protein identified unique peptides from four novel genes along with seven annotated non-coding RNAs. These analyses demonstrate the testis expresses a wide range of novel transcripts that give rise to novel proteins.
Collapse
Affiliation(s)
- Jaya Gamble
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Joel Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kelly Seltzer
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | | | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Elizabeth M Snyder
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
18
|
Rolland AD, Evrard B, Darde TA, Le Béguec C, Le Bras Y, Bensalah K, Lavoué S, Jost B, Primig M, Dejucq-Rainsford N, Chalmel F, Jégou B. RNA profiling of human testicular cells identifies syntenic lncRNAs associated with spermatogenesis. Hum Reprod 2020; 34:1278-1290. [PMID: 31247106 DOI: 10.1093/humrep/dez063] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Is the noncoding transcriptional landscape during spermatogenesis conserved between human and rodents? SUMMARY ANSWER We identified a core group of 113 long noncoding RNAs (lncRNAs) and 20 novel genes dynamically and syntenically transcribed during spermatogenesis. WHAT IS KNOWN ALREADY Spermatogenesis is a complex differentiation process driven by a tightly regulated and highly specific gene expression program. Recently, several studies in various species have established that a large proportion of known lncRNAs are preferentially expressed during meiosis and spermiogenesis in a testis-specific manner. STUDY DESIGN, SIZE, DURATION To further investigate lncRNA expression in human spermatogenesis, we carried out a cross-species RNA profiling study using isolated testicular cells. PARTICIPANTS/MATERIALS, SETTING, METHODS Human testes were obtained from post-mortem donors (N = 8, 51 years old on average) or from prostate cancer patients with no hormonal treatment (N = 9, 80 years old on average) and only patients with full spermatogenesis were used to prepare enriched populations of spermatocytes, spermatids, Leydig cells, peritubular cells and Sertoli cells. To minimize potential biases linked to inter-patient variations, RNAs from two or three donors were pooled prior to RNA-sequencing (paired-end, strand-specific). Resulting reads were mapped to the human genome, allowing for assembly and quantification of corresponding transcripts. MAIN RESULTS AND THE ROLE OF CHANCE Our RNA-sequencing analysis of pools of isolated human testicular cells enabled us to reconstruct over 25 000 transcripts. Among them we identified thousands of lncRNAs, as well as many previously unidentified genes (novel unannotated transcripts) that share many properties of lncRNAs. Of note is that although noncoding genes showed much lower synteny than protein-coding ones, a significant fraction of syntenic lncRNAs displayed conserved expression during spermatogenesis. LARGE SCALE DATA Raw data files (fastq) and a searchable table (.xlss) containing information on genomic features and expression data for all refined transcripts have been submitted to the NCBI Gene Expression Omnibus under accession number GSE74896. LIMITATIONS, REASONS FOR CAUTION Isolation procedures may alter the physiological state of testicular cells, especially for somatic cells, leading to substantial changes at the transcriptome level. We therefore cross-validated our findings with three previously published transcriptomic analyses of human spermatogenesis. Despite the use of stringent filtration criteria, i.e. expression cut-off of at least three fragments per kilobase of exon model per million reads mapped, fold-change of at least three and false discovery rate adjusted P-values of less than <1%, the possibility of assembly artifacts and false-positive transcripts cannot be fully ruled out. WIDER IMPLICATIONS OF THE FINDINGS For the first time, this study has led to the identification of a large number of conserved germline-associated lncRNAs that are potentially important for spermatogenesis and sexual reproduction. In addition to further substantiating the basis of the human testicular physiology, our study provides new candidate genes for male infertility of genetic origin. This is likely to be relevant for identifying interesting diagnostic and prognostic biomarkers and also potential novel therapeutic targets for male contraception. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by l'Institut national de la santé et de la recherche médicale (Inserm); l'Université de Rennes 1; l'Ecole des hautes études en santé publique (EHESP); INERIS-STORM to B.J. [N 10028NN]; Rennes Métropole 'Défis scientifiques émergents' to F.C (2011) and A.D.R (2013). The authors have no competing financial interests.
Collapse
Affiliation(s)
- A D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - B Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - T A Darde
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France.,Univ Rennes, Inria, CNRS, IRISA, Rennes, France
| | - C Le Béguec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - Y Le Bras
- Univ Rennes, Inria, CNRS, IRISA, Rennes, France
| | - K Bensalah
- Urology Department, University of Rennes, Rennes, France
| | - S Lavoué
- Unité de Coordination Hospitalière des Prélèvements d'organes et de Tissus, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - B Jost
- Plateforme GenomEast-Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - M Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - N Dejucq-Rainsford
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - F Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| | - B Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S1085, Rennes, France
| |
Collapse
|
19
|
Xia B, Yan Y, Baron M, Wagner F, Barkley D, Chiodin M, Kim SY, Keefe DL, Alukal JP, Boeke JD, Yanai I. Widespread Transcriptional Scanning in the Testis Modulates Gene Evolution Rates. Cell 2020; 180:248-262.e21. [PMID: 31978344 DOI: 10.1016/j.cell.2019.12.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/04/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
The testis expresses the largest number of genes of any mammalian organ, a finding that has long puzzled molecular biologists. Our single-cell transcriptomic data of human and mouse spermatogenesis provide evidence that this widespread transcription maintains DNA sequence integrity in the male germline by correcting DNA damage through a mechanism we term transcriptional scanning. We find that genes expressed during spermatogenesis display lower mutation rates on the transcribed strand and have low diversity in the population. Moreover, this effect is fine-tuned by the level of gene expression during spermatogenesis. The unexpressed genes, which in our model do not benefit from transcriptional scanning, diverge faster over evolutionary timescales and are enriched for sensory and immune-defense functions. Collectively, we propose that transcriptional scanning shapes germline mutation signatures and modulates mutation rates in a gene-specific manner, maintaining DNA sequence integrity for the bulk of genes but allowing for faster evolution in a specific subset.
Collapse
Affiliation(s)
- Bo Xia
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA; Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Yun Yan
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Maayan Baron
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Florian Wagner
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Dalia Barkley
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Marta Chiodin
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Sang Y Kim
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - David L Keefe
- Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY 10016, USA
| | - Joseph P Alukal
- Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Itai Yanai
- Institute for Computational Medicine, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
20
|
The transcriptome of the newt Cynops orientalis provides new insights into evolution and function of sexual gene networks in sarcopterygians. Sci Rep 2020; 10:5445. [PMID: 32214214 PMCID: PMC7096497 DOI: 10.1038/s41598-020-62408-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/04/2020] [Indexed: 01/08/2023] Open
Abstract
Amphibians evolved in the Devonian period about 400 Mya and represent a transition step in tetrapod evolution. Among amphibians, high-throughput sequencing data are very limited for Caudata, due to their largest genome sizes among terrestrial vertebrates. In this paper we present the transcriptome from the fire bellied newt Cynops orientalis. Data here presented display a high level of completeness, comparable to the fully sequenced genomes available from other amphibians. Moreover, this work focused on genes involved in gametogenesis and sexual development. Surprisingly, the gsdf gene was identified for the first time in a tetrapod species, so far known only from bony fish and basal sarcopterygians. Our analysis failed to isolate fgf24 and foxl3, supporting the possible loss of both genes in the common ancestor of Rhipidistians. In Cynops, the expression analysis of genes described to be sex-related in vertebrates singled out an expected functional role for some genes, while others displayed an unforeseen behavior, confirming the high variability of the sex-related pathway in vertebrates.
Collapse
|
21
|
Trovero MF, Rodríguez-Casuriaga R, Romeo C, Santiñaque FF, François M, Folle GA, Benavente R, Sotelo-Silveira JR, Geisinger A. Revealing stage-specific expression patterns of long noncoding RNAs along mouse spermatogenesis. RNA Biol 2020; 17:350-365. [PMID: 31869276 PMCID: PMC6999611 DOI: 10.1080/15476286.2019.1700332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/26/2022] Open
Abstract
The discovery of a large number of long noncoding RNAs (lncRNAs), and the finding that they may play key roles in different biological processes, have started to provide a new perspective in the understanding of gene regulation. It has been shown that the testes express the highest amount of lncRNAs among different vertebrate tissues. However, although some studies have addressed the characterization of lncRNAs along spermatogenesis, an exhaustive analysis of the differential expression of lncRNAs at its different stages is still lacking. Here, we present the results for lncRNA transcriptome profiling along mouse spermatogenesis, employing highly pure flow sorted spermatogenic stage-specific cell populations, strand-specific RNAseq, and a combination of up-to-date bioinformatic pipelines for analysis. We found that the vast majority of testicular lncRNA genes are expressed at post-meiotic stages (i.e. spermiogenesis), which are characterized by extensive post-transcriptional regulation. LncRNAs at different spermatogenic stages shared common traits in terms of transcript length, exon number, and biotypes. Most lncRNAs were lincRNAs, followed by a high representation of antisense (AS) lncRNAs. Co-expression analyses showed a high correlation along the different spermatogenic stage transitions between the expression patterns of AS lncRNAs and their overlapping protein-coding genes, raising possible clues about lncRNA-related regulatory mechanisms. Interestingly, we observed the co-localization of an AS lncRNA and its host sense mRNA in the chromatoid body, a round spermatids-specific organelle that has been proposed as a reservoir of RNA-related regulatory machinery. An additional, intriguing observation is the almost complete lack of detectable expression for Y-linked testicular lncRNAs, despite that a high number of lncRNA genes are annotated for this chromosome.
Collapse
Affiliation(s)
- María F. Trovero
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Carlos Romeo
- Department of Genomics, IIBCE, Montevideo, Uruguay
| | | | - Mateo François
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Gustavo A. Folle
- Flow Cytometry and Cell Sorting Core, IIBCE, Montevideo, Uruguay
- Department of Genetics, IIBCE, Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - José R. Sotelo-Silveira
- Department of Genomics, IIBCE, Montevideo, Uruguay
- Department of Cell and Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Adriana Geisinger
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
22
|
Guerrero-Bosagna C. From epigenotype to new genotypes: Relevance of epigenetic mechanisms in the emergence of genomic evolutionary novelty. Semin Cell Dev Biol 2020; 97:86-92. [DOI: 10.1016/j.semcdb.2019.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/24/2022]
|
23
|
Waiho K, Fazhan H, Zhang Y, Li S, Zhang Y, Zheng H, Ikhwanuddin M, Ma H. Comparative profiling of ovarian and testicular piRNAs in the mud crab Scylla paramamosain. Genomics 2020; 112:323-331. [DOI: 10.1016/j.ygeno.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
|
24
|
Zayny A, Almokhtar M, Wikvall K, Ljunggren Ö, Ubhayasekera K, Bergquist J, Kibar P, Norlin M. Effects of glucocorticoids on vitamin D 3-metabolizing 24-hydroxylase (CYP24A1) in Saos-2 cells and primary human osteoblasts. Mol Cell Endocrinol 2019; 496:110525. [PMID: 31352041 DOI: 10.1016/j.mce.2019.110525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/19/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022]
Abstract
Vitamin D is essential for bone function and deficiency in active vitamin D hormone can lead to bone disorders. Long-term treatment with glucocorticoids results in osteoporosis and increased risk of fractures. Much remains unclear regarding the effects of these compounds in bone cells. In the current study, human osteosarcoma Saos-2 cells and primary human osteoblasts were found to express mRNA for the vitamin D receptor as well as activating and deactivating enzymes in vitamin D3 metabolism. These bone cells exhibited CYP24A1-mediated 24-hydroxylation which is essential for deactivation of the active vitamin form. However, bioactivating vitamin D3 hydroxylase activities could not be detected in either of these cells. Several glucocorticoids, including prednisolone, down regulated CYP24A1 mRNA and CYP24A1-mediated 24-hydroxylase activity in both Saos-2 and primary human osteoblasts. Also, prednisolone significantly suppressed a human CYP24A1 promoter-luciferase reporter gene in Saos-2 cells co-transfected with the glucocorticoid receptor. Thus, the results of the present study show suppression by glucocorticoids on CYP24A1 mRNA, CYP24A1-mediated metabolism and CYP24A1 promoter activity in human osteoblast-like cells. As part of this study we examined if glucocorticoids are formed locally in Saos-2 cells. The experiments indicate formation of 11-deoxycortisol, a steroid with glucocorticoid activity, which can bind the glucocorticoid receptor. Our data showing suppression by glucocorticoids on CYP24A1 expression in human osteoblasts suggest a previously unknown mechanism for effects of glucocorticoids in human bone, where these compounds may interfere with regulation of active vitamin D levels.
Collapse
Affiliation(s)
- Ahmad Zayny
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mokhtar Almokhtar
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Kjell Wikvall
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Östen Ljunggren
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kumari Ubhayasekera
- Department of Chemistry - Biomedical Center, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - Biomedical Center, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Pinar Kibar
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
25
|
Xu HB, Li YX, Li Y, Otecko NO, Zhang YP, Mao B, Wu DD. Origin of new genes after zygotic genome activation in vertebrate. J Mol Cell Biol 2019; 10:139-146. [PMID: 29281098 DOI: 10.1093/jmcb/mjx057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
New genes are drivers of evolutionary innovation and phenotypic evolution. Expression of new genes in early development raises the possibility that new genes could originate and be recruited for functions in embryonic development, but this remains undocumented. Here, based on temporal gene expression at different developmental stages in Xenopus tropicalis, we found that young protein-coding genes were significantly enriched for expression in developmental stages occurring after the midblastula transition (MBT), and displayed a decreasing trend in abundance in the subsequent stages after MBT. To complement the finding, we demonstrate essential functional attributes of a young orphan gene, named as Fog2, in morphological development. Our data indicate that new genes could originate after MBT and be recruited for functions in embryonic development, and thus provide insights for better understanding of the origin, evolution, and function of new genes.
Collapse
Affiliation(s)
- Hai-Bo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,College of Life Science, Anhui University, Hefei, China
| | - Yong-Xin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
26
|
Xie C, Bekpen C, Künzel S, Keshavarz M, Krebs-Wheaton R, Skrabar N, Ullrich KK, Tautz D. A de novo evolved gene in the house mouse regulates female pregnancy cycles. eLife 2019; 8:44392. [PMID: 31436535 PMCID: PMC6760900 DOI: 10.7554/elife.44392] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
The de novo emergence of new genes has been well documented through genomic analyses. However, a functional analysis, especially of very young protein-coding genes, is still largely lacking. Here, we identify a set of house mouse-specific protein-coding genes and assess their translation by ribosome profiling and mass spectrometry data. We functionally analyze one of them, Gm13030, which is specifically expressed in females in the oviduct. The interruption of the reading frame affects the transcriptional network in the oviducts at a specific stage of the estrous cycle. This includes the upregulation of Dcpp genes, which are known to stimulate the growth of preimplantation embryos. As a consequence, knockout females have their second litters after shorter times and have a higher infanticide rate. Given that Gm13030 shows no signs of positive selection, our findings support the hypothesis that a de novo evolved gene can directly adopt a function without much sequence adaptation. Different species have specific genes that set them apart from other species. Yet exactly how these species-specific genes originate is not fully known. The traditional view is that existing old genes are duplicated to make a ‘spare’ copy, which can change through mutations into a new gene with a new role gradually over time. Despite there being lots of evidence supporting this theory, not all new genes found in recent years can be traced back to older genes. This led to an alternative view – that recently evolved genes can also appear ‘de novo’, and come from regions of random DNA sequences that did not previously code for a protein. So far, the possibility of genes forming de novo during evolution has largely been supported by comparing and analyzing the genomes of related species. However, very little is known about the biological role these de novo genes play. Now, Xie et al. have generated a list of recently evolved de novo mouse genes, and carried out a detailed analysis of one de novo gene expressed in females at the time when embryos implant into the uterus wall. To study the role of this gene, Xie et al. created a strain of knock-out mice that have a defunct version of the protein coded by the gene. Loss of this protein caused female mice to have their second litter after a shorter period of time and increased the likelihood that female mice would terminate their newborn pups. This suggests that this newly discovered de novo gene is involved in regulating the female reproductive cycles of mice. Further analysis showed that this de novo gene counteracts the action of an older gene that promotes the implantation of embryos. This gene has therefore likely evolved due to the benefit it offers mothers, as it protects them from experiencing the increased physiological stress caused by a premature second pregnancy. These findings support the idea that genes which have evolved de novo can have an essential biological purpose despite coming from random DNA sequences. This establishes that de novo evolution of genes is the second major mechanism of how new genes with significant biological roles can form in the genome.
Collapse
Affiliation(s)
- Chen Xie
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Cemalettin Bekpen
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Maryam Keshavarz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Rebecca Krebs-Wheaton
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Neva Skrabar
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Kristian Karsten Ullrich
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
27
|
Abstract
In this Outlook, Nyberg and Carthew discuss a study by Kondo et al. in this issue, which uses extensive transcriptomic resources and current CRISPR/Cas9 technology to re-examine the functional impact of newly evolved genes in Drosophila and find evidence of their biological impact on male reproduction. The study of newly evolved genes has long fascinated biologists, but large-scale studies of their expression dynamics and molecular function have provided conflicting interpretations of their biological impact. In this issue of Genes & Development, Kondo and colleagues (pp. 1841–1846) use extensive transcriptomic resources and current CRISPR/Cas9 technology to re-examine the functional impact of newly evolved genes in Drosophila and find evidence of their biological impact on male reproduction.
Collapse
Affiliation(s)
- Kevin G Nyberg
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
28
|
Affiliation(s)
- Stephen Branden Van Oss
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
29
|
Bekpen C, Xie C, Tautz D. Dealing with the adaptive immune system during de novo evolution of genes from intergenic sequences. BMC Evol Biol 2018; 18:121. [PMID: 30075701 PMCID: PMC6091031 DOI: 10.1186/s12862-018-1232-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022] Open
Abstract
Background The adaptive immune system of vertebrates has an extraordinary potential to sense and neutralize foreign antigens entering the body. De novo evolution of genes implies that the genome itself expresses novel antigens from intergenic sequences which could cause a problem with this immune system. Peptides from these novel proteins could be presented by the major histocompatibility complex (MHC) receptors to the cell surface and would be recognized as foreign. The respective cells would then be attacked and destroyed, or would cause inflammatory responses. Hence, de novo expressed peptides have to be introduced to the immune system as being self-peptides to avoid such autoimmune reactions. The regulation of the distinction between self and non-self starts during embryonic development, but continues late into adulthood. It is mostly mediated by specialized cells in the thymus, but can also be conveyed in peripheral tissues, such as the lymph nodes and the spleen. The self-antigens need to be exposed to the reactive T-cells, which requires the expression of the genes in the respective tissues. Since the initial activation of a promotor for new intergenic transcription of a de novo gene could occur in any tissue, we should expect that the evolutionary establishment of a de novo gene in animals with an adaptive immune system should also involve expression in at least one of the tissues that confer self-recognition. Results We have studied this question by analyzing the transcriptomes of multiple tissues from young mice in three closely related natural populations of the house mouse (M. m. domesticus). We find that new intergenic transcription occurs indeed mostly in only a single tissue. When a second tissue becomes involved, thymus and spleen are significantly overrepresented. Conclusions We conclude that the inclusion of de novo transcripts in the processes for the induction of self-tolerance is indeed an important step in the evolution of functional de novo genes in vertebrates. Electronic supplementary material The online version of this article (10.1186/s12862-018-1232-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cemalettin Bekpen
- Max-Planck Institute for Evolutionary Biology, August-Thienemannstr. 2, 24306, Plön, Germany
| | - Chen Xie
- Max-Planck Institute for Evolutionary Biology, August-Thienemannstr. 2, 24306, Plön, Germany
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, August-Thienemannstr. 2, 24306, Plön, Germany.
| |
Collapse
|
30
|
Maeda RK, Sitnik JL, Frei Y, Prince E, Gligorov D, Wolfner MF, Karch F. The lncRNA male-specific abdominal plays a critical role in Drosophila accessory gland development and male fertility. PLoS Genet 2018; 14:e1007519. [PMID: 30011265 PMCID: PMC6067764 DOI: 10.1371/journal.pgen.1007519] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 07/31/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Although thousands of long non-coding RNAs (lncRNA) have been identified in the genomes of higher eukaryotes, the precise function of most of them is still unclear. Here, we show that a >65 kb, male-specific, lncRNA, called male-specific abdominal (msa) is required for the development of the secondary cells of the Drosophila male accessory gland (AG). msa is transcribed from within the Drosophila bithorax complex and shares much of its sequence with another lncRNA, the iab-8 lncRNA, which is involved in the development of the central nervous system (CNS). Both lncRNAs perform much of their functions via a shared miRNA embedded within their sequences. Loss of msa, or of the miRNA it contains, causes defects in secondary cell morphology and reduces male fertility. Although both lncRNAs express the same miRNA, the phenotype in the secondary cells and the CNS seem to reflect misregulation of different targets in the two tissues. In many animals, the male seminal fluid induces physiology changes in the mated female that increase a male’s reproductive success. These changes are often referred to as the post-mating response (PMR). In Drosophila, the seminal fluid proteins responsible for generating the PMR are made in a specialized gland, analogous to the mammalian seminal vesicle and prostate, called the accessory gland (AG). In this work, we show that a male-specific, long, non-coding RNA (lncRNA), called msa, plays a critical role in the development and function of this gland, primarily through a microRNA (miRNA) encoded within its sequence. This same miRNA had previously been shown to be expressed in the central nervous system (CNS) via an alternative promoter, where its ability to repress homeotic genes is required for both male and female fertility. Here, we present evidence that the targets of this miRNA in the AG are likely different from those found in the CNS. Thus, the same miRNA seems to have been selected to affect Drosophila fertility through two different mechanisms. Although many non-coding RNAs have now been identified, very few can be shown to have function. Our work highlights a lncRNA that has multiple biological functions, affecting cellular morphology and fertility.
Collapse
Affiliation(s)
- Robert K. Maeda
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- * E-mail: (RKM); (FK)
| | - Jessica L. Sitnik
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Yohan Frei
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Elodie Prince
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Dragan Gligorov
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - François Karch
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- * E-mail: (RKM); (FK)
| |
Collapse
|
31
|
1700108J01Rik and 1700101O22Rik are mouse testis-specific long non-coding RNAs. Histochem Cell Biol 2018; 149:517-527. [PMID: 29411102 DOI: 10.1007/s00418-018-1642-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 01/29/2023]
Abstract
Long non-coding RNAs (lncRNAs; > 200 nucleotides in length) have attracted attention as fine-tuners of gene expression. However, little is known about the cell- and stage-specific expression pattern and function of lncRNAs in spermatogenesis. The purpose of this study was to identify mouse testis-associated lncRNAs using a combination of computational and experimental approaches. We first used the FANTOM5 database to survey lncRNA expression in the mouse testis and performed reverse transcription quantitative polymerase chain reaction (real-time PCR) and in situ hybridization (ISH) analyses. In silico analysis showed that most of the highly expressed lncRNAs in the adult mouse testis were testis-specific lncRNAs and were expressed at and following the initiation of spermatogenesis. We selected the antisense lncRNA 1700108J01Rik and long intergenic non-coding RNA 1700101O22Rik from the most highly expressed lncRNAs in the adult testis for further analysis. Real-time PCR analysis confirmed that 1700108J01Rik and 1700101O22Rik were specifically expressed in the testis. ISH analysis revealed that the two mouse-testis-specific lncRNAs were expressed exclusively in testicular germ cells in meiotic prophase and the round spermatid stage, which coincide with the period of transcriptional reactivation during spermatogenesis. The cytoplasmic distribution of these lncRNAs revealed by ISH suggests their involvement in post-transcriptional gene regulation rather than in epigenetic or transcriptional regulation. Our data provide new insight into testis-associated lncRNAs that will be useful in expression and functional studies of spermatogenesis.
Collapse
|
32
|
Kashiwabara SI, Tsuruta S, Yamaoka Y, Oyama K, Iwazaki C, Baba T. PAPOLB/TPAP regulates spermiogenesis independently of chromatoid body-associated factors. J Reprod Dev 2017; 64:25-31. [PMID: 29109362 PMCID: PMC5830355 DOI: 10.1262/jrd.2017-106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutant mice lacking a testis-specific cytoplasmic poly(A) polymerase, PAPOLB/TPAP, exhibit spermiogenesis arrest and male infertility. However, the mechanism by which PAPOLB regulates spermiogenesis remains unclear. In
this study, we examined the relationships between PAPOLB and other spermiogenesis regulators present in the chromatoid body (CB). The loss of PAPOLB had no impact either on the abundance of CB components such as PIWIL1,
TDRD6, YBX2, and piRNAs, or on retrotransposon expression. In addition, localization of CB proteins and CB architecture were both normal in PAPOLB-null mice. No interactions were observed between PAPOLB and PIWIL1 or
YBX2. While PIWIL1 and YBX2 were associated with translationally inactive messenger ribonucleoproteins and translating polyribosomes, PAPOLB was present almost exclusively in the mRNA-free fractions of sucrose gradients.
These results suggest that PAPOLB may regulate spermiogenesis through a pathway distinct from that mediated by CB-associated factors.
Collapse
Affiliation(s)
- Shin-Ichi Kashiwabara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8572, Japan.,Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| | - Satsuki Tsuruta
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Yutaro Yamaoka
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kanako Oyama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Chieko Iwazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Tadashi Baba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8572, Japan.,Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
33
|
The New RNA World: Growing Evidence for Long Noncoding RNA Functionality. Trends Genet 2017; 33:665-676. [DOI: 10.1016/j.tig.2017.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
|
34
|
Kashiwabara SI, Tsuruta S, Okada K, Yamaoka Y, Baba T. Adenylation by testis-specific cytoplasmic poly(A) polymerase, PAPOLB/TPAP, is essential for spermatogenesis. J Reprod Dev 2016; 62:607-614. [PMID: 27647534 PMCID: PMC5177979 DOI: 10.1262/jrd.2016-116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The testis-specific cytoplasmic poly(A) polymerase PAPOLB/TPAP is essential for spermatogenesis. Although this enzyme is responsible for poly(A) tail
extension of a subset of mRNAs in round spermatids, the stability and translational efficiency of these mRNAs are unaffected by the absence of PAPOLB. To
clarify the functional importance of this enzyme’s adenylation activity, we produced PAPOLB-null mice expressing a polyadenylation-defective PAPOLB mutant
(PAPOLBD114A), in which the catalytic Asp at residue 114 was mutated to Ala. Introducing PAPOLBD114A failed to rescue PAPOLB-null
phenotypes, such as reduced expression of haploid-specific mRNAs, spermiogenesis arrest, and male infertility. These results suggest that PAPOLB regulates
spermatogenesis through its adenylation activity.
Collapse
Affiliation(s)
- Shin-Ichi Kashiwabara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
35
|
Regulatory complexity revealed by integrated cytological and RNA-seq analyses of meiotic substages in mouse spermatocytes. BMC Genomics 2016; 17:628. [PMID: 27519264 PMCID: PMC4983049 DOI: 10.1186/s12864-016-2865-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/28/2016] [Indexed: 01/24/2023] Open
Abstract
Background The continuous and non-synchronous nature of postnatal male germ-cell development has impeded stage-specific resolution of molecular events of mammalian meiotic prophase in the testis. Here the juvenile onset of spermatogenesis in mice is analyzed by combining cytological and transcriptomic data in a novel computational analysis that allows decomposition of the transcriptional programs of spermatogonia and meiotic prophase substages. Results Germ cells from testes of individual mice were obtained at two-day intervals from 8 to 18 days post-partum (dpp), prepared as surface-spread chromatin and immunolabeled for meiotic stage-specific protein markers (STRA8, SYCP3, phosphorylated H2AFX, and HISTH1T). Eight stages were discriminated cytologically by combinatorial antibody labeling, and RNA-seq was performed on the same samples. Independent principal component analyses of cytological and transcriptomic data yielded similar patterns for both data types, providing strong evidence for substage-specific gene expression signatures. A novel permutation-based maximum covariance analysis (PMCA) was developed to map co-expressed transcripts to one or more of the eight meiotic prophase substages, thereby linking distinct molecular programs to cytologically defined cell states. Expression of meiosis-specific genes is not substage-limited, suggesting regulation of substage transitions at other levels. Conclusions This integrated analysis provides a general method for resolving complex cell populations. Here it revealed not only features of meiotic substage-specific gene expression, but also a network of substage-specific transcription factors and relationships to potential target genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2865-1) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Li Y, Li J, Fang C, Shi L, Tan J, Xiong Y, Bin Fan, Li C. Genome-wide differential expression of genes and small RNAs in testis of two different porcine breeds and at two different ages. Sci Rep 2016; 6:26852. [PMID: 27229484 PMCID: PMC4882596 DOI: 10.1038/srep26852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023] Open
Abstract
Some documented evidences proved small RNAs (sRNA) and targeted genes are involved in mammalian testicular development and spermatogenesis. However, the detailed molecular regulation mechanisms of them remain largely unknown so far. In this study, we obtained a total of 10,716 mRNAs, 67 miRNAs and 16,953 piRNAs which were differentially expressed between LC and LW pig breeds or between the two sexual maturity stages. Of which, we identified 16 miRNAs and 28 targeted genes possibly related to spermatogenesis; 14 miRNA and 18 targeted genes probably associated with cell adhesion related testis development. We also annotated 579 piRNAs which could potentially regulate cell death, nucleosome organization and other basic biology process, which implied that those piRNAs might be involved in sexual maturation difference. The integrated network analysis results suggested that some differentially expressed genes were involved in spermatogenesis through the ECM-receptor interaction, focal adhesion, Wnt and PI3K-Akt signaling pathways, some particular miRNAs have the negative regulation roles and some special piRNAs have the positive and negative regulation roles in testicular development. Our data provide novel insights into the molecular expression and regulation similarities and diversities of spermatogenesis and testicular development in different pig breeds at different stages of sexual maturity.
Collapse
Affiliation(s)
- Yao Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jialian Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Guangxi Yangxiang Pig Gene Technology limited Company, Guigang, 537120, People's Republic of China
| | - Chengchi Fang
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liang Shi
- Guangxi Yangxiang Incorporated Company, Guigang, 537100, People's Republic of China
| | - Jiajian Tan
- Guangxi Yangxiang Incorporated Company, Guigang, 537100, People's Republic of China
| | - Yuanzhu Xiong
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bin Fan
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Guangxi Yangxiang Pig Gene Technology limited Company, Guigang, 537120, People's Republic of China
| | - Changchun Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
37
|
da Cruz I, Rodríguez-Casuriaga R, Santiñaque FF, Farías J, Curti G, Capoano CA, Folle GA, Benavente R, Sotelo-Silveira JR, Geisinger A. Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage. BMC Genomics 2016; 17:294. [PMID: 27094866 PMCID: PMC4837615 DOI: 10.1186/s12864-016-2618-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 04/13/2016] [Indexed: 12/03/2022] Open
Abstract
Background Spermatogenesis is a complex differentiation process that involves the successive and simultaneous execution of three different gene expression programs: mitotic proliferation of spermatogonia, meiosis, and spermiogenesis. Testicular cell heterogeneity has hindered its molecular analyses. Moreover, the characterization of short, poorly represented cell stages such as initial meiotic prophase ones (leptotene and zygotene) has remained elusive, despite their crucial importance for understanding the fundamentals of meiosis. Results We have developed a flow cytometry-based approach for obtaining highly pure stage-specific spermatogenic cell populations, including early meiotic prophase. Here we combined this methodology with next generation sequencing, which enabled the analysis of meiotic and postmeiotic gene expression signatures in mouse with unprecedented reliability. Interestingly, we found that a considerable number of genes involved in early as well as late meiotic processes are already on at early meiotic prophase, with a high proportion of them being expressed only for the short time lapse of lepto-zygotene stages. Besides, we observed a massive change in gene expression patterns during medium meiotic prophase (pachytene) when mostly genes related to spermiogenesis and sperm function are already turned on. This indicates that the transcriptional switch from meiosis to post-meiosis takes place very early, during meiotic prophase, thus disclosing a higher incidence of post-transcriptional regulation in spermatogenesis than previously reported. Moreover, we found that a good proportion of the differential gene expression in spermiogenesis corresponds to up-regulation of genes whose expression starts earlier, at pachytene stage; this includes transition protein-and protamine-coding genes, which have long been claimed to switch on during spermiogenesis. In addition, our results afford new insights concerning X chromosome meiotic inactivation and reactivation. Conclusions This work provides for the first time an overview of the time course for the massive onset and turning off of the meiotic and spermiogenic genetic programs. Importantly, our data represent a highly reliable information set about gene expression in pure testicular cell populations including early meiotic prophase, for further data mining towards the elucidation of the molecular bases of male reproduction in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2618-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene da Cruz
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay.,Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay
| | | | - Joaquina Farías
- Department of Proteins and Nucleic Acids, IIBCE, Montevideo, Uruguay
| | - Gianni Curti
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay
| | - Carlos A Capoano
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay
| | - Gustavo A Folle
- Flow Cytometry and Cell Sorting Core, IIBCE, Montevideo, Uruguay.,Department of Genetics, IIBCE, Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - José Roberto Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay. .,Department of Cell and Molecular Biology, Facultad de Ciencias, Universidad de la República (UDELAR), 11,400, Montevideo, Uruguay.
| | - Adriana Geisinger
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11,600, Montevideo, Uruguay. .,Biochemistry-Molecular Biology, Facultad de Ciencias, UDELAR, Montevideo, Uruguay.
| |
Collapse
|
38
|
Kashiwabara SI, Tsuruta S, Okada K, Saegusa A, Miyagaki Y, Baba T. Functional compensation for the loss of testis-specific poly(A)-binding protein, PABPC2, during mouse spermatogenesis. J Reprod Dev 2016; 62:305-10. [PMID: 26971890 PMCID: PMC4919295 DOI: 10.1262/jrd.2016-023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mouse testes contain several isoforms of cytoplasmic poly(A)-binding proteins (PABPCs), including ubiquitous
PABPC1 and testis-specific PABPC2/PABPt. PABPC2 is characterized by its absence from translationally active
polyribosomes and elongating spermatids. To elucidate the function of PABPC2 in spermatogenesis, we produced
mutant mice lacking PABPC2. The PABPC2-null mice showed normal fertility. The processes of spermatogenesis and
sperm migration in the testes and epididymides, respectively, were normal in the mutant mice. When the
involvement of PABPC2 in translational regulation of haploid-specific mRNAs was examined, these mRNAs were
correctly transcribed in round spermatids and translated in elongating spermatids. Moreover, immunoblot
analysis revealed low abundance of PABPC2 relative to PABPC1 in spermatogenic cells. These results suggest
that PABPC2 may be either functionally redundant with other PABPCs (including PABPC1) or largely dispensable
for translational regulation during spermiogenesis.
Collapse
Affiliation(s)
- Shin-Ichi Kashiwabara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Kleene KC. Position-dependent interactions of Y-box protein 2 (YBX2) with mRNA enable mRNA storage in round spermatids by repressing mRNA translation and blocking translation-dependent mRNA decay. Mol Reprod Dev 2016; 83:190-207. [PMID: 26773323 DOI: 10.1002/mrd.22616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
Abstract
Many mRNAs encoding proteins needed for the construction of the specialized organelles of spermatozoa are stored as translationally repressed, free messenger ribonucleoproteins in round spermatids, to be actively translated in elongating and elongated spermatids. The factors that repress translation in round spermatids, however, have been elusive. Two lines of evidence implicate the highly abundant and well-known translational repressor, Y-box protein 2 (YBX2), as a critical factor: First, protamine 1 (Prm1) and sperm-mitochondria cysteine-rich protein (Smcp) mRNAs are prematurely recruited onto polysomes in Ybx2-knockout mouse round spermatids. Second, mutations in 3' untranslated region (3'UTR) cis-elements that abrogate YBX2 binding activate translation of Prm1 and Smcp mRNAs in round spermatids of transgenic mice. The abundance of YBX2 and its affinity for variable sequences, however, raise questions of how YBX2 targets specific mRNAs for repression. Mutations to the Prm1 and Smcp mRNAs in transgenic mice reveal that strong repression in round spermatids requires YBX2 binding sites located near the 3' ends of their 3'UTRs as locating the same sites in upstream positions produce negligible repression. This location-dependence implies that the assembly of repressive complexes is nucleated by adjacent cis-elements that enable cooperative interactions of YBX2 with co-factors. The available data suggest that, in vertebrates, YBX2 has the important role of coordinating the storage of translationally repressed mRNAs in round spermatids by inhibiting translational activity and the degradation of transcripts via translation-dependent deadenylation. These insights should facilitiate future experiments designed to unravel how YBX2 targets mRNAs for repression in round spermatids and how mutations in the YBX2 gene cause infertility in humans. Mol. Reprod. Dev. 83: 190-207, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kenneth C Kleene
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| |
Collapse
|
40
|
Licatalosi DD. Roles of RNA-binding Proteins and Post-transcriptional Regulation in Driving Male Germ Cell Development in the Mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:123-51. [PMID: 27256385 DOI: 10.1007/978-3-319-29073-7_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue development and homeostasis are dependent on highly regulated gene expression programs in which cell-specific combinations of regulatory factors determine which genes are expressed and the post-transcriptional fate of the resulting RNA transcripts. Post-transcriptional regulation of gene expression by RNA-binding proteins has critical roles in tissue development-allowing individual genes to generate multiple RNA and protein products, and the timing, location, and abundance of protein synthesis to be finely controlled. Extensive post-transcriptional regulation occurs during mammalian gametogenesis, including high levels of alternative mRNA expression, stage-specific expression of mRNA variants, broad translational repression, and stage-specific activation of mRNA translation. In this chapter, an overview of the roles of RNA-binding proteins and the importance of post-transcriptional regulation in male germ cell development in the mouse is presented.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
41
|
Exploiting RNA-sequencing data from the porcine testes to identify the key genes involved in spermatogenesis in Large White pigs. Gene 2015; 573:303-9. [DOI: 10.1016/j.gene.2015.07.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 11/19/2022]
|
42
|
Inter-population Differences in Retrogene Loss and Expression in Humans. PLoS Genet 2015; 11:e1005579. [PMID: 26474060 PMCID: PMC4608704 DOI: 10.1371/journal.pgen.1005579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Gene retroposition leads to considerable genetic variation between individuals. Recent studies revealed the presence of at least 208 retroduplication variations (RDVs), a class of polymorphisms, in which a retrocopy is present or absent from individual genomes. Most of these RDVs resulted from recent retroduplications. In this study, we used the results of Phase 1 from the 1000 Genomes Project to investigate the variation in loss of ancestral (i.e. shared with other primates) retrocopies among different human populations. In addition, we examined retrocopy expression levels using RNA-Seq data derived from the Ilumina BodyMap project, as well as data from lymphoblastoid cell lines provided by the Geuvadis Consortium. We also developed a new approach to detect novel retrocopies absent from the reference human genome. We experimentally confirmed the existence of the detected retrocopies and determined their presence or absence in the human genomes of 17 different populations. Altogether, we were able to detect 193 RDVs; the majority resulted from retrocopy deletion. Most of these RDVs had not been previously reported. We experimentally confirmed the expression of 11 ancestral retrogenes that underwent deletion in certain individuals. The frequency of their deletion, with the exception of one retrogene, is very low. The expression, conservation and low rate of deletion of the remaining 10 retrocopies may suggest some functionality. Aside from the presence or absence of expressed retrocopies, we also searched for differences in retrocopy expression levels between populations, finding 9 retrogenes that undergo statistically significant differential expression.
Collapse
|
43
|
Arbore R, Sekii K, Beisel C, Ladurner P, Berezikov E, Schärer L. Positional RNA-Seq identifies candidate genes for phenotypic engineering of sexual traits. Front Zool 2015; 12:14. [PMID: 26146508 PMCID: PMC4490696 DOI: 10.1186/s12983-015-0106-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION RNA interference (RNAi) of trait-specific genes permits the manipulation of specific phenotypic traits ("phenotypic engineering") and thus represents a powerful tool to test trait function in evolutionary studies. The identification of suitable candidate genes, however, often relies on existing functional gene annotation, which is usually limited in emerging model organisms, especially when they are only distantly related to traditional genetic model organisms. A case in point is the free-living flatworm Macrostomum lignano (Lophotrochozoa: Platyhelminthes: Rhabditophora), an increasingly powerful model organism for evolutionary studies of sex in simultaneous hermaphrodites. To overcome the limitation of sparse functional annotation, we have performed a positional RNA-Seq analysis on different body fragments in order to identify organ-specific candidate transcripts. We then performed gene expression (in situ hybridization) and gene function (RNAi) analyses on 23 candidate transcripts, both to evaluate the predictive potential of this approach and to obtain preliminary functional characterizations of these candidate genes. RESULTS We identified over 4000 transcripts that could be expected to show specific expression in different reproductive organs (including testis, ovary and the male and female genital systems). The predictive potential of the method could then be verified by confirming organ-specific expression for several candidate transcripts, some of which yielded interesting trait-specific knock-down phenotypes that can now be followed up in future phenotypic engineering studies. CONCLUSIONS Our positional RNA-Seq analysis represents a highly useful resource for the identification of candidate transcripts for functional and phenotypic engineering studies in M. lignano, and it has already been used successfully in several studies. Moreover, this approach can overcome some inherent limitations of homology-based candidate selection and thus should be applicable to a broad range of emerging model organisms.
Collapse
Affiliation(s)
- Roberto Arbore
- />Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Kiyono Sekii
- />Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | | | - Peter Ladurner
- />Institute of Zoology and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Eugene Berezikov
- />ERIBA, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lukas Schärer
- />Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| |
Collapse
|
44
|
Goldman A, Rodríguez-Casuriaga R, González-López E, Capoano CA, Santiñaque FF, Geisinger A. MTCH2 is differentially expressed in rat testis and mainly related to apoptosis of spermatocytes. Cell Tissue Res 2015; 361:869-83. [DOI: 10.1007/s00441-015-2163-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/26/2015] [Indexed: 11/30/2022]
|
45
|
An LH, Zheng BH, Liu RZ, Fan Q, Wang QK, Luo YF. Transcriptomic response to estrogen exposure in the male Zhikong scallop, Chlamys farreri. MARINE POLLUTION BULLETIN 2014; 89:59-66. [PMID: 25455372 DOI: 10.1016/j.marpolbul.2014.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
The transcriptomes of Zhikong scallop exposed to 17β-estradiol were determined using the Roche/454. A total of 51,997 unigenes, representing 45,030 contigs and 6967 singlets were obtained. And 14,028, 19,798 and 14,981 of these unigenes were annotated from the non-redundant nucleic acid database, non-redundant protein database and Swiss protein database, respectively. A total of 10,699 unigenes were further annotated to biological processes (9080), molecular functions (8692) and cellular components (7829) using the GO, and 8945 unigenes were mapped to biological pathways including the metabolism (2862) and genetic information processing (2263). Most importantly, 16,692 unigenes and 18,686 unigenes in testis, and 10,492 unigenes and 13,186 unigenes in digestive gland were up-regulated significantly after exposure to 50 and 500 ng E2/L; while 10,212 unigenes and 9409 unigenes in testis and 10,629 unigenes and 9463 unigenes in digestive gland were down-regulated. These valuable information provides insights into the mechanisms in invertebrate exposure to EDCs.
Collapse
Affiliation(s)
- Li-Hui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bing-Hui Zheng
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rui-Zhi Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiang Fan
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Tianjin Agricultural College, Tianjin 300384, China
| | | | - Ying-Feng Luo
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
46
|
Wu DD, Wang X, Li Y, Zeng L, Irwin DM, Zhang YP. "Out of pollen" hypothesis for origin of new genes in flowering plants: study from Arabidopsis thaliana. Genome Biol Evol 2014; 6:2822-9. [PMID: 25237051 PMCID: PMC4224333 DOI: 10.1093/gbe/evu206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
New genes, which provide material for evolutionary innovation, have been extensively studied for many years in animals where it is observed that they commonly show an expression bias for the testis. Thus, the testis is a major source for the generation of new genes in animals. The source tissue for new genes in plants is unclear. Here, we find that new genes in plants show a bias in expression to mature pollen, and are also enriched in a gene coexpression module that correlates with mature pollen in Arabidopsis thaliana. Transposable elements are significantly enriched in the new genes, and the high activity of transposable elements in the vegetative nucleus, compared with the germ cells, suggests that new genes are most easily generated in the vegetative nucleus in the mature pollen. We propose an "out of pollen" hypothesis for the origin of new genes in flowering plants.
Collapse
Affiliation(s)
- Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin Wang
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| | - Yan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - David M Irwin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
47
|
Zhou A, Pawlowski WP. Regulation of meiotic gene expression in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:413. [PMID: 25202317 PMCID: PMC4142721 DOI: 10.3389/fpls.2014.00413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/04/2014] [Indexed: 05/06/2023]
Abstract
With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been assembled. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa), wheat (Triticum aestivum), petunia (Petunia hybrida), sunflower (Helianthus annuus), and maize (Zea mays). Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs that might be involved in the regulation of meiotic transcription patterns.
Collapse
Affiliation(s)
| | - Wojciech P. Pawlowski
- *Correspondence: Wojciech P. Pawlowski, School of Integrative Plant Sciences, Cornell University, 401 Bradfield Hall, Ithaca, NY 14853, USA e-mail:
| |
Collapse
|
48
|
Reinhardt JA, Jones CD. Two rapidly evolving genes contribute to male fitness in Drosophila. J Mol Evol 2013; 77:246-59. [PMID: 24221639 DOI: 10.1007/s00239-013-9594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 11/01/2013] [Indexed: 12/21/2022]
Abstract
Purifying selection often results in conservation of gene sequence and function. The most functionally conserved genes are also thought to be among the most biologically essential. These observations have led to the use of sequence conservation as a proxy for functional conservation. Here we describe two genes that are exceptions to this pattern. We show that lack of sequence conservation among orthologs of CG15460 and CG15323-herein named jean-baptiste (jb) and karr, respectively-does not necessarily predict lack of functional conservation. These two Drosophila melanogaster genes are among the most rapidly evolving protein-coding genes in this species, being nearly as diverged from their D. yakuba orthologs as random sequences are. jb and karr are both expressed at an elevated level in larval males and adult testes, but they are not accessory gland proteins and their loss does not affect male fertility. Instead, knockdown of these genes in D. melanogaster via RNA interference caused male-biased viability defects. These viability effects occur prior to the third instar for jb and during late pupation for karr. We show that putative orthologs to jb and karr are also expressed strongly in the testes of other Drosophila species and have similar gene structure across species despite low levels of sequence conservation. While standard molecular evolution tests could not reject neutrality, other data hint at a role for natural selection. Together these data provide a clear case where a lack of sequence conservation does not imply a lack of conservation of expression or function.
Collapse
Affiliation(s)
- Josephine A Reinhardt
- Department of Biology, The University of North Carolina at Chapel Hill, CB# 3280, Coker Hall, Chapel Hill, NC, 27599-3280, USA,
| | | |
Collapse
|
49
|
Reinhardt JA, Wanjiru BM, Brant AT, Saelao P, Begun DJ, Jones CD. De novo ORFs in Drosophila are important to organismal fitness and evolved rapidly from previously non-coding sequences. PLoS Genet 2013; 9:e1003860. [PMID: 24146629 PMCID: PMC3798262 DOI: 10.1371/journal.pgen.1003860] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
How non-coding DNA gives rise to new protein-coding genes (de novo genes) is not well understood. Recent work has revealed the origins and functions of a few de novo genes, but common principles governing the evolution or biological roles of these genes are unknown. To better define these principles, we performed a parallel analysis of the evolution and function of six putatively protein-coding de novo genes described in Drosophila melanogaster. Reconstruction of the transcriptional history of de novo genes shows that two de novo genes emerged from novel long non-coding RNAs that arose at least 5 MY prior to evolution of an open reading frame. In contrast, four other de novo genes evolved a translated open reading frame and transcription within the same evolutionary interval suggesting that nascent open reading frames (proto-ORFs), while not required, can contribute to the emergence of a new de novo gene. However, none of the genes arose from proto-ORFs that existed long before expression evolved. Sequence and structural evolution of de novo genes was rapid compared to nearby genes and the structural complexity of de novo genes steadily increases over evolutionary time. Despite the fact that these genes are transcribed at a higher level in males than females, and are most strongly expressed in testes, RNAi experiments show that most of these genes are essential in both sexes during metamorphosis. This lethality suggests that protein coding de novo genes in Drosophila quickly become functionally important. De novo genes are protein-coding genes with no clear homology to previously existing protein-coding genes. Since their discovery in Drosophila and other species including humans, their existence has been controversial, with some doubt as to how they would arise, whether they produce proteins, and whether they could possibly perform any useful function. Here, we show that RNAi of several Drosophila de novo genes causes lethality – in fact, a higher proportion of de novo genes cause lethality than was found in a similar screen of other young and novel genes. Further, we find that de novo genes do produce proteins in the majority of cases and that in some cases, they were transcribed prior to the emergence of an open reading frame. Our data suggests that Drosophila de novo genes are an unexpected avenue for non-coding DNA sequences to contribute evolutionary and functional novelty.
Collapse
Affiliation(s)
- Josephine A. Reinhardt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of Maryland at College Park, College Park, Maryland, United States of America
- * E-mail:
| | - Betty M. Wanjiru
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alicia T. Brant
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Perot Saelao
- Center for Population Biology, University of California, Davis, Davis, California, United States of America
| | - David J. Begun
- Center for Population Biology, University of California, Davis, Davis, California, United States of America
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
50
|
Llera-Herrera R, García-Gasca A, Abreu-Goodger C, Huvet A, Ibarra AM. Identification of male gametogenesis expressed genes from the scallop Nodipecten subnodosus by suppressive subtraction hybridization and pyrosequencing. PLoS One 2013; 8:e73176. [PMID: 24066034 PMCID: PMC3774672 DOI: 10.1371/journal.pone.0073176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/17/2013] [Indexed: 01/01/2023] Open
Abstract
Despite the great advances in sequencing technologies, genomic and transcriptomic information for marine non-model species with ecological, evolutionary, and economical interest is still scarce. In this work we aimed to identify genes expressed during spermatogenesis in the functional hermaphrodite scallop Nodipecten subnodosus (Mollusca: Bivalvia: Pectinidae), with the purpose of obtaining a panel of genes that would allow for the study of differentially transcribed genes between diploid and triploid scallops in the context of meiotic arrest and reproductive sterility. Because our aim was to isolate genes involved in meiosis and other testis maturation-related processes, we generated suppressive subtractive hybridization libraries of testis vs. inactive gonad. We obtained 352 and 177 ESTs by clone sequencing, and using pyrosequencing (454-Roche) we maximized the identified ESTs to 34,276 reads. A total of 1,153 genes from the testis library had a blastx hit and GO annotation, including genes specific for meiosis, spermatogenesis, sex-differentiation, and transposable elements. Some of the identified meiosis genes function in chromosome pairing (scp2, scp3), recombination and DNA repair (dmc1, rad51, ccnb1ip1/hei10), and meiotic checkpoints (rad1, hormad1, dtl/cdt2). Gene expression analyses in different gametogenic stages in both sexual regions of the gonad of meiosis genes confirmed that the expression was specific or increased towards the maturing testis. Spermatogenesis genes included known testis-specific ones (kelch-10, shippo1, adad1), with some of these known to be associated to sterility. Sex differentiation genes included one of the most conserved genes at the bottom of the sex-determination cascade (dmrt1). Transcript from transposable elements, reverse transcriptase, and transposases in this library evidenced that transposition is an active process during spermatogenesis in N. subnodosus. In relation to the inactive library, we identified 833 transcripts with functional annotation related to activation of the transcription and translation machinery, as well as to germline control and maintenance.
Collapse
Affiliation(s)
- Raúl Llera-Herrera
- Aquaculture Genetics and Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, Mexico
| | | | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Arnaud Huvet
- Laboratoire des Sciences de l'Environnement Marin, Institut Français de Recherche pour l'Exploitation de la Mer, (IFREMER), Centre de Bretagne, Plouzané, France
| | - Ana M. Ibarra
- Aquaculture Genetics and Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, Mexico
- * E-mail:
| |
Collapse
|