1
|
Toral-López J, González-Huerta LM. Novel 10q21.1-q22.1 Duplication in a Boy with Minor Facial Dysmorphism, Mild Intellectual Disability, Autism Spectrum Disorder-Like Phenotype, and Short Stature. Cytogenet Genome Res 2024:1-6. [PMID: 39307126 DOI: 10.1159/000541562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Duplications reported in 10q21-q22 include borderline to moderate intellectual disability, growth retardation, autism, attention deficit hyperactivity disorder, and minor craniofacial dysmorphism. CASE PRESENTATION We present a patient with a novel 14.7-Mb de novo interstitial duplication at 10q21.1-q22.1 delineated by a high-definition (HD) single nucleotide polymorphism (SNP) array. The boy had minor facial dysmorphism, mild intellectual disability, an autism spectrum disorder-like phenotype, and short stature. CONCLUSION This is the first case in which a novel 10q21.1-q22.1 duplication was detected by the HD SNP array, expanding the spectrum of duplications seen in 10q21-q22. This report provides a detailed clinical examination of a patient with a 10q21.1-q22.1 duplication and suggests that brain development and cognitive function may be affected by an increased dosage sensitivity of the involved JMJD1C and EGR2 genes. This case contributes to the understanding of the genotype-phenotype relationship for genetic counseling and provides further evidence for the identification of a novel microduplication syndrome in 10q21-q22.
Collapse
Affiliation(s)
- Jaime Toral-López
- Department of Medical Genetics, Centro Médico ISSEMYM Ecatepec, Ecatepec, Mexico
| | | |
Collapse
|
2
|
Wijekoon N, Gonawala L, Ratnayake P, Liyanage R, Amaratunga D, Hathout Y, Steinbusch HWM, Dalal A, Hoffman EP, de Silva KRD. Title-molecular diagnostics of dystrophinopathies in Sri Lanka towards phenotype predictions: an insight from a South Asian resource limited setting. Eur J Med Res 2024; 29:37. [PMID: 38195599 PMCID: PMC10775540 DOI: 10.1186/s40001-023-01600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The phenotype of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) patients is determined by the type of DMD gene variation, its location, effect on reading frame, and its size. The primary objective of this investigation was to determine the frequency and distribution of DMD gene variants (deletions/duplications) in Sri Lanka through the utilization of a combined approach involving multiplex polymerase chain reaction (mPCR) followed by Multiplex Ligation Dependent Probe Amplification (MLPA) and compare to the international literature. The current consensus is that MLPA is a labor efficient yet expensive technique for identifying deletions and duplications in the DMD gene. METHODOLOGY Genetic analysis was performed in a cohort of 236 clinically suspected pediatric and adult myopathy patients in Sri Lanka, using mPCR and MLPA. A comparative analysis was conducted between our findings and literature data. RESULTS In the entire patient cohort (n = 236), mPCR solely was able to identify deletions in the DMD gene in 131/236 patients (DMD-120, BMD-11). In the same cohort, MLPA confirmed deletions in 149/236 patients [DMD-138, BMD -11]. These findings suggest that mPCR has a detection rate of 95% (131/138) among all patients who received a diagnosis. The distal and proximal deletion hotspots for DMD were exons 45-55 and 6-15. Exon 45-60 identified as a novel in-frame variation hotspot. Exon 45-59 was a hotspot for BMD deletions. Comparisons with the international literature show significant variations observed in deletion and duplication frequencies in DMD gene across different populations. CONCLUSION DMD gene deletions and duplications are concentrated in exons 45-55 and 2-20 respectively, which match global variation hotspots. Disparities in deletion and duplication frequencies were observed when comparing our data to other Asian and Western populations. Identified a 95% deletion detection rate for mPCR, making it a viable initial molecular diagnostic approach for low-resource countries where MLPA could be used to evaluate negative mPCR cases and cases with ambiguous mutation borders. Our findings may have important implications in the early identification of DMD with limited resources in Sri Lanka and to develop tailored molecular diagnostic algorithms that are regional and population specific and easily implemented in resource limited settings.
Collapse
Affiliation(s)
- Nalaka Wijekoon
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | - Lakmal Gonawala
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | | | - Roshan Liyanage
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Harry W M Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - K Ranil D de Silva
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands.
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, 10390, Sri Lanka.
| |
Collapse
|
3
|
Villa N, Redaelli S, Farina S, Conconi D, Sala EM, Crosti F, Mariani S, Colombo CM, Dalprà L, Lavitrano M, Bentivegna A, Roversi G. Genomic Complexity and Complex Chromosomal Rearrangements in Genetic Diagnosis: Two Illustrative Cases on Chromosome 7. Genes (Basel) 2023; 14:1700. [PMID: 37761840 PMCID: PMC10530880 DOI: 10.3390/genes14091700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Complex chromosomal rearrangements are rare events compatible with survival, consisting of an imbalance and/or position effect of one or more genes, that contribute to a range of clinical presentations. The investigation and diagnosis of these cases are often difficult. The interpretation of the pattern of pairing and segregation of these chromosomes during meiosis is important for the assessment of the risk and the type of imbalance in the offspring. Here, we investigated two unrelated pediatric carriers of complex rearrangements of chromosome 7. The first case was a 2-year-old girl with a severe phenotype. Conventional cytogenetics evidenced a duplication of part of the short arm of chromosome 7. By array-CGH analysis, we found a complex rearrangement with three discontinuous trisomy regions (7p22.1p21.3, 7p21.3, and 7p21.3p15.3). The second case was a newborn investigated for hypodevelopment and dimorphisms. The karyotype analysis promptly revealed a structurally altered chromosome 7. The array-CGH analysis identified an even more complex rearrangement consisting of a trisomic region at 7q11.23q22 and a tetrasomic region of 4.5 Mb spanning 7q21.3 to q22.1. The mother's karyotype examination revealed a complex rearrangement of chromosome 7: the 7q11.23q22 region was inserted in the short arm at 7p15.3. Finally, array-CGH analysis showed a trisomic region that corresponds to the tetrasomic region of the son. Our work proved that the integration of several technical solutions is often required to appropriately analyze complex chromosomal rearrangements in order to understand their implications and offer appropriate genetic counseling.
Collapse
Affiliation(s)
- Nicoletta Villa
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
| | - Serena Redaelli
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | - Stefania Farina
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | - Elena Maria Sala
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
| | - Francesca Crosti
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
| | - Silvana Mariani
- Department of Obstetrics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Carla Maria Colombo
- Neonatal Intensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Leda Dalprà
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | | | - Angela Bentivegna
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| | - Gaia Roversi
- UC Medical Genetics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy (G.R.)
- School of Medicine and Surgery, University of Milan-Bicocca, 20900 Monza, Italy
| |
Collapse
|
4
|
A rare familial rearrangement of chromosomes 9 and 15 associated with intellectual disability: a clinical and molecular study. Mol Cytogenet 2021; 14:47. [PMID: 34607577 PMCID: PMC8489072 DOI: 10.1186/s13039-021-00565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022] Open
Abstract
Background There are many reports on rearrangements occurring separately in the regions of chromosomes 9p and 15q affected in the case under study. 15q duplication syndrome is caused by the presence of at least one extra maternally derived copy of the Prader–Willi/Angelman critical region. Trisomy 9p is the fourth most frequent chromosome anomaly with a clinically recognizable syndrome often accompanied by intellectual disability. Here we report a new case of a patient with maternally derived unique complex sSMC resulting in partial trisomy of both chromosomes 9 and 15 associated with intellectual disability. Case presentation We characterise a supernumerary derivative chromosome 15: 47,XY,+der(15)t(9;15)(p21.2;q13.2), likely resulting from 3:1 malsegregation during maternal gametogenesis. Chromosomal analysis showed that a phenotypically normal mother is a carrier of balanced translocation t(9;15)(p21.1;q13.2). Her 7-year-old son showed signs of intellectual disability and a number of physical abnormalities including bilateral cryptorchidism and congenital megaureter. The child’s magnetic resonance imaging showed changes in brain volume and in structural and functional connectivity revealing phenotypic changes caused by the presence of the extra chromosome material, whereas the mother’s brain MRI was normal. Sequence analyses of the microdissected der(15) chromosome detected two breakpoint regions: HSA9:25,928,021-26,157,441 (9p21.2 band) and HSA15:30,552,104-30,765,905 (15q13.2 band). The breakpoint region on chromosome HSA9 is poor in genetic features with several areas of high homology with the breakpoint region on chromosome 15. The breakpoint region on HSA15 is located in the area of a large segmental duplication. Conclusions We discuss the case of these phenotypic and brain MRI features in light of reported signatures for 9p partial trisomy and 15 duplication syndromes and analyze how the genomic characteristics of the found breakpoint regions have contributed to the origin of the derivative chromosome. We recommend MRI for all patients with a developmental delay, especially in cases with identified rearrangements, to accumulate more information on brain phenotypes related to chromosomal syndromes. Supplementary Information The online version contains supplementary material available at 10.1186/s13039-021-00565-y.
Collapse
|
5
|
Mostovoy Y, Yilmaz F, Chow SK, Chu C, Lin C, Geiger EA, Meeks NJL, Chatfield KC, Coughlin CR, Surti U, Kwok PY, Shaikh TH. Genomic regions associated with microdeletion/microduplication syndromes exhibit extreme diversity of structural variation. Genetics 2021; 217:6066166. [PMID: 33724415 DOI: 10.1093/genetics/iyaa038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/18/2020] [Indexed: 11/12/2022] Open
Abstract
Segmental duplications (SDs) are a class of long, repetitive DNA elements whose paralogs share a high level of sequence similarity with each other. SDs mediate chromosomal rearrangements that lead to structural variation in the general population as well as genomic disorders associated with multiple congenital anomalies, including the 7q11.23 (Williams-Beuren Syndrome, WBS), 15q13.3, and 16p12.2 microdeletion syndromes. Population-level characterization of SDs has generally been lacking because most techniques used for analyzing these complex regions are both labor and cost intensive. In this study, we have used a high-throughput technique to genotype complex structural variation with a single molecule, long-range optical mapping approach. We characterized SDs and identified novel structural variants (SVs) at 7q11.23, 15q13.3, and 16p12.2 using optical mapping data from 154 phenotypically normal individuals from 26 populations comprising five super-populations. We detected several novel SVs for each locus, some of which had significantly different prevalence between populations. Additionally, we localized the microdeletion breakpoints to specific paralogous duplicons located within complex SDs in two patients with WBS, one patient with 15q13.3, and one patient with 16p12.2 microdeletion syndromes. The population-level data presented here highlights the extreme diversity of large and complex SVs within SD-containing regions. The approach we outline will greatly facilitate the investigation of the role of inter-SD structural variation as a driver of chromosomal rearrangements and genomic disorders.
Collapse
Affiliation(s)
- Yulia Mostovoy
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Feyza Yilmaz
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA.,Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephen K Chow
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Catherine Chu
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Chin Lin
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Elizabeth A Geiger
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Naomi J L Meeks
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Pediatrics, Section of Cardiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Curtis R Coughlin
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Urvashi Surti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA.,Department of Dermatology, UCSF School of Medicine, San Francisco, CA 94143, USA.,Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Tamim H Shaikh
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Badet T, Fouché S, Hartmann FE, Zala M, Croll D. Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen. Nat Commun 2021; 12:3551. [PMID: 34112792 PMCID: PMC8192914 DOI: 10.1038/s41467-021-23862-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Species harbor extensive structural variation underpinning recent adaptive evolution. However, the causality between genomic features and the induction of new rearrangements is poorly established. Here, we analyze a global set of telomere-to-telomere genome assemblies of a fungal pathogen of wheat to establish a nucleotide-level map of structural variation. We show that the recent emergence of pesticide resistance has been disproportionally driven by rearrangements. We use machine learning to train a model on structural variation events based on 30 chromosomal sequence features. We show that base composition and gene density are the major determinants of structural variation. Retrotransposons explain most inversion, indel and duplication events. We apply our model to Arabidopsis thaliana and show that our approach extends to more complex genomes. Finally, we analyze complete genomes of haploid offspring in a four-generation pedigree. Meiotic crossover locations are enriched for new rearrangements consistent with crossovers being mutational hotspots. The model trained on species-wide structural variation accurately predicts the position of >74% of newly generated variants along the pedigree. The predictive power highlights causality between specific sequence features and the induction of chromosomal rearrangements. Our work demonstrates that training sequence-derived models can accurately identify regions of intrinsic DNA instability in eukaryotic genomes.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Simone Fouché
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Fanny E Hartmann
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Marcello Zala
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
7
|
Koczkodaj D, Muzyka-Kasietczuk J, Chocholska S, Podhorecka M. Prognostic significance of isochromosome 17q in hematologic malignancies. Oncotarget 2021; 12:708-718. [PMID: 33868591 PMCID: PMC8021031 DOI: 10.18632/oncotarget.27914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/19/2021] [Indexed: 11/29/2022] Open
Abstract
Isochromosome 17q [i(17q)] with its two identical long arms is formed by duplication of the q arm and loss of the short p arm. The breakpoint in chromosome 17 that allows the formation of this isochromosome is located at 17p11.2, and the ~240 kb region with its large, palindromic, low-copy repeat sequences are present here. The region is highly unstable and susceptible to a variety of genomic alterations which may be induced by or without toxic agents. One molecular consequence of i(17q) development is the obligatory loss of a single TP53 allele of the tumor suppressor P53 protein located at 17p13.1. Isochromosome 17q is involved in cancer development and progression. It occurs in combination with other chromosomal defects (complex cytogenetics), and rarely as a single mutation. The i(17q) rearrangement has been described as the most common chromosomal aberration in primitive neuroectodermal tumors and medulloblastomas. This isochromosome is also detected in different hematological disorders. In this article, we analyze literature data on the presence of i(17q) in proliferative disorders of the hematopoietic system in the context of its role as a prognostic factor of disease progression. The case reports are added to support the presented data. Currently, there are no indications for the use of specific treatment regimens in the subjects with a presence of the isochromosome 17q. Thus, it is of importance to continue studies on the prognostic role of this abnormality and even single cases should be reported as they may be used for further statistical analyses or meta-analyses.
Collapse
Affiliation(s)
- Dorota Koczkodaj
- Department of Cancer Genetics with the Cytogenetic Laboratory, Medical University of Lublin, Lublin, Poland
| | - Justyna Muzyka-Kasietczuk
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Sylwia Chocholska
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Monika Podhorecka
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
8
|
Chicote JU, López-Sánchez M, Marquès-Bonet T, Callizo J, Pérez-Jurado LA, García-España A. Circular DNA intermediates in the generation of large human segmental duplications. BMC Genomics 2020; 21:593. [PMID: 32847497 PMCID: PMC7450558 DOI: 10.1186/s12864-020-06998-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022] Open
Abstract
Background Duplications of large genomic segments provide genetic diversity in genome evolution. Despite their importance, how these duplications are generated remains uncertain, particularly for distant duplicated genomic segments. Results Here we provide evidence of the participation of circular DNA intermediates in the single generation of some large human segmental duplications. A specific reversion of sequence order from A-B/C-D to B-A/D-C between duplicated segments and the presence of only microhomologies and short indels at the evolutionary breakpoints suggest a circularization of the donor ancestral locus and an accidental replicative interaction with the acceptor locus. Conclusions This novel mechanism of random genomic mutation could explain several distant genomic duplications including some of the ones that took place during recent human evolution.
Collapse
Affiliation(s)
- Javier U Chicote
- Research Unit, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43005, Tarragona, Spain
| | - Marcos López-Sánchez
- Genetics Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003, Barcelona, Spain.,Hospital del Mar Research Institute (IMIM) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08003, Barcelona, Spain
| | - Tomàs Marquès-Bonet
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - José Callizo
- Department of Ophthalmology, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43005, Tarragona, Spain
| | - Luis A Pérez-Jurado
- Genetics Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003, Barcelona, Spain. .,Hospital del Mar Research Institute (IMIM) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08003, Barcelona, Spain. .,SA Clinical Genetics, Women's and Children's Hospital, South Australian Health and Medical Research Institute (SAHMRI) & University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Antonio García-España
- Research Unit, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43005, Tarragona, Spain.
| |
Collapse
|
9
|
Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants. Genome Med 2019; 11:80. [PMID: 31818324 PMCID: PMC6902434 DOI: 10.1186/s13073-019-0676-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/10/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We investigated the features of the genomic rearrangements in a cohort of 50 male individuals with proteolipid protein 1 (PLP1) copy number gain events who were ascertained with Pelizaeus-Merzbacher disease (PMD; MIM: 312080). We then compared our new data to previous structural variant mutagenesis studies involving the Xq22 region of the human genome. The aggregate data from 159 sequenced join-points (discontinuous sequences in the reference genome that are joined during the rearrangement process) were studied. Analysis of these data from 150 individuals enabled the spectrum and relative distribution of the underlying genomic mutational signatures to be delineated. METHODS Genomic rearrangements in PMD individuals with PLP1 copy number gain events were investigated by high-density customized array or clinical chromosomal microarray analysis and breakpoint junction sequence analysis. RESULTS High-density customized array showed that the majority of cases (33/50; ~ 66%) present with single duplications, although complex genomic rearrangements (CGRs) are also frequent (17/50; ~ 34%). Breakpoint mapping to nucleotide resolution revealed further previously unknown structural and sequence complexities, even in single duplications. Meta-analysis of all studied rearrangements that occur at the PLP1 locus showed that single duplications were found in ~ 54% of individuals and that, among all CGR cases, triplication flanked by duplications is the most frequent CGR array CGH pattern observed. Importantly, in ~ 32% of join-points, there is evidence for a mutational signature of microhomeology (highly similar yet imperfect sequence matches). CONCLUSIONS These data reveal a high frequency of CGRs at the PLP1 locus and support the assertion that replication-based mechanisms are prominent contributors to the formation of CGRs at Xq22. We propose that microhomeology can facilitate template switching, by stabilizing strand annealing of the primer using W-C base complementarity, and is a mutational signature for replicative repair.
Collapse
|
10
|
Halo JV, Pendleton AL, Jarosz AS, Gifford RJ, Day ML, Kidd JM. Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids. Retrovirology 2019; 16:6. [PMID: 30845962 PMCID: PMC6407205 DOI: 10.1186/s12977-019-0468-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 01/20/2023] Open
Abstract
Background Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids. Results We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations. Conclusions Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs. Electronic supplementary material The online version of this article (10.1186/s12977-019-0468-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia V Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Amanda L Pendleton
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Abigail S Jarosz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Robert J Gifford
- Centre for Virus Research, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Malika L Day
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
11
|
O’Connor RE, Farré M, Joseph S, Damas J, Kiazim L, Jennings R, Bennett S, Slack EA, Allanson E, Larkin DM, Griffin DK. Chromosome-level assembly reveals extensive rearrangement in saker falcon and budgerigar, but not ostrich, genomes. Genome Biol 2018; 19:171. [PMID: 30355328 PMCID: PMC6201548 DOI: 10.1186/s13059-018-1550-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/24/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The number of de novo genome sequence assemblies is increasing exponentially; however, relatively few contain one scaffold/contig per chromosome. Such assemblies are essential for studies of genotype-to-phenotype association, gross genomic evolution, and speciation. Inter-species differences can arise from chromosomal changes fixed during evolution, and we previously hypothesized that a higher fraction of elements under negative selection contributed to avian-specific phenotypes and avian genome organization stability. The objective of this study is to generate chromosome-level assemblies of three avian species (saker falcon, budgerigar, and ostrich) previously reported as karyotypically rearranged compared to most birds. We also test the hypothesis that the density of conserved non-coding elements is associated with the positions of evolutionary breakpoint regions. RESULTS We used reference-assisted chromosome assembly, PCR, and lab-based molecular approaches, to generate chromosome-level assemblies of the three species. We mapped inter- and intrachromosomal changes from the avian ancestor, finding no interchromosomal rearrangements in the ostrich genome, despite it being previously described as chromosomally rearranged. We found that the average density of conserved non-coding elements in evolutionary breakpoint regions is significantly reduced. Fission evolutionary breakpoint regions have the lowest conserved non-coding element density, and intrachromomosomal evolutionary breakpoint regions have the highest. CONCLUSIONS The tools used here can generate inexpensive, efficient chromosome-level assemblies, with > 80% assigned to chromosomes, which is comparable to genomes assembled using high-density physical or genetic mapping. Moreover, conserved non-coding elements are important factors in defining where rearrangements, especially interchromosomal, are fixed during evolution without deleterious effects.
Collapse
Affiliation(s)
| | - Marta Farré
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Sunitha Joseph
- School of Biosciences, University of Kent, Canterbury, UK
| | - Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Lucas Kiazim
- School of Biosciences, University of Kent, Canterbury, UK
| | | | - Sophie Bennett
- School of Biosciences, University of Kent, Canterbury, UK
| | - Eden A Slack
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Emily Allanson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | | |
Collapse
|
12
|
Delihas N. Formation of a Family of Long Intergenic Noncoding RNA Genes with an Embedded Translocation Breakpoint Motif in Human Chromosomal Low Copy Repeats of 22q11.2-Some Surprises and Questions. Noncoding RNA 2018; 4:ncrna4030016. [PMID: 30036931 PMCID: PMC6162681 DOI: 10.3390/ncrna4030016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
A family of long intergenic noncoding RNA (lincRNA) genes, FAM230 is formed via gene sequence duplication, specifically in human chromosomal low copy repeats (LCR) or segmental duplications. This is the first group of lincRNA genes known to be formed by segmental duplications and is consistent with current views of evolution and the creation of new genes via DNA low copy repeats. It appears to be an efficient way to form multiple lincRNA genes. But as these genes are in a critical chromosomal region with respect to the incidence of abnormal translocations and resulting genetic abnormalities, the 22q11.2 region, and also carry a translocation breakpoint motif, several intriguing questions arise concerning the presence and function of the translocation breakpoint sequence in RNA genes situated in LCR22s.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York, NY 11794-5222, USA.
| |
Collapse
|
13
|
Cheung SW, Bi W. Novel applications of array comparative genomic hybridization in molecular diagnostics. Expert Rev Mol Diagn 2018; 18:531-542. [PMID: 29848116 DOI: 10.1080/14737159.2018.1479253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.
Collapse
Affiliation(s)
- Sau W Cheung
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Weimin Bi
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Baylor Genetics , Houston , TX , USA
| |
Collapse
|
14
|
Pezer Ž, Chung AG, Karn RC, Laukaitis CM. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions. Genome Biol Evol 2018; 9:3858091. [PMID: 28575204 PMCID: PMC5513543 DOI: 10.1093/gbe/evx099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2017] [Indexed: 12/26/2022] Open
Abstract
The Androgen-binding protein (Abp) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus (Mmd) and Mus musculus musculus (Mmm), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd, primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm, Mus musculus castaneus and an outgroup, Mus spretus, although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice.
Collapse
Affiliation(s)
- Željka Pezer
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Ruđer Bošković Institute, Zagreb, Croatia
| | - Amanda G Chung
- Department of Medicine, College of Medicine, University of Arizona
| | - Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona
| | | |
Collapse
|
15
|
Leibowitz ML, Zhang CZ, Pellman D. Chromothripsis: A New Mechanism for Rapid Karyotype Evolution. Annu Rev Genet 2015; 49:183-211. [DOI: 10.1146/annurev-genet-120213-092228] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mitchell L. Leibowitz
- Department of Pediatric Oncology,
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
| | - Cheng-Zhong Zhang
- Department of Pediatric Oncology,
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215;
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142;
| | - David Pellman
- Department of Pediatric Oncology,
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142;
- Howard Hughes Medical Institute, Boston, Massachusetts 02115
| |
Collapse
|
16
|
DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations. PLoS One 2015; 10:e0135189. [PMID: 26284620 PMCID: PMC4540588 DOI: 10.1371/journal.pone.0135189] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/17/2015] [Indexed: 11/19/2022] Open
Abstract
Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5%) were exonic deletions, 64 (11.1%) were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%). Small mutations were identified in 105 cases (18.2%), most being nonsense/frameshift types (75.2%). Mutations in splice sites, however, were relatively frequent (20%). In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD), with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure.
Collapse
|
17
|
Dobigny G, Britton-Davidian J, Robinson TJ. Chromosomal polymorphism in mammals: an evolutionary perspective. Biol Rev Camb Philos Soc 2015; 92:1-21. [PMID: 26234165 DOI: 10.1111/brv.12213] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/28/2022]
Abstract
Although chromosome rearrangements (CRs) are central to studies of genome evolution, our understanding of the evolutionary consequences of the early stages of karyotypic differentiation (i.e. polymorphism), especially the non-meiotic impacts, is surprisingly limited. We review the available data on chromosomal polymorphisms in mammals so as to identify taxa that hold promise for developing a more comprehensive understanding of chromosomal change. In doing so, we address several key questions: (i) to what extent are mammalian karyotypes polymorphic, and what types of rearrangements are principally involved? (ii) Are some mammalian lineages more prone to chromosomal polymorphism than others? More specifically, do (karyotypically) polymorphic mammalian species belong to lineages that are also characterized by past, extensive karyotype repatterning? (iii) How long can chromosomal polymorphisms persist in mammals? We discuss the evolutionary implications of these questions and propose several research avenues that may shed light on the role of chromosome change in the diversification of mammalian populations and species.
Collapse
Affiliation(s)
- Gauthier Dobigny
- Institut de Recherche pour le Développement, Centre de Biologie pour la Gestion des Populations (UMR IRD-INRA-Cirad-Montpellier SupAgro), Campus International de Baillarguet, CS30016, 34988, Montferrier-sur-Lez, France
| | - Janice Britton-Davidian
- Institut des Sciences de l'Evolution, Université de Montpellier, CNRS, IRD, EPHE, Cc065, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Terence J Robinson
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7062, South Africa
| |
Collapse
|
18
|
Shimojima K, Okamoto N, Yamamoto T. Characteristics of 2p15-p16.1 microdeletion syndrome: Review and description of two additional patients. Congenit Anom (Kyoto) 2015; 55:125-32. [PMID: 25900130 DOI: 10.1111/cga.12112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/14/2015] [Indexed: 12/14/2022]
Abstract
Many new microdeletion syndromes have been characterized in the past decade, including 2p15-p16.1 microdeletion syndrome. More than 10 patients with this syndrome have been described. Recently, we encountered two additional patients with 2p15-p16.1 microdeletion syndrome. All patients showed variable degrees of intellectual disability, with the autistic features characteristic of this syndrome. Seven out of 16 patients (44%) showed structural abnormalities in the brain, which is also an important feature of this syndrome. The shortest region of microdeletion overlap among the patients includes two genes, USP34 and XPO1. Although these genes have some functional relevance to cancer, they have not been associated with neurological functions. Diagnosis of additional patients with 2p15-p16.1 microdeletion syndrome and identification of pathogenic mutations in this region will help identify the genes responsible for the neurological features of the syndrome.
Collapse
Affiliation(s)
- Keiko Shimojima
- Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan
| | - Toshiyuki Yamamoto
- Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
19
|
Chang J, Zhao L, Chen C, Peng Y, Xia Y, Tang G, Bai T, Zhang Y, Ma R, Guo R, Mei L, Liang D, Cao Q, Wu L. Pachygyria, seizures, hypotonia, and growth retardation in a patient with an atypical 1.33Mb inherited microduplication at 22q11.23. Gene 2015; 569:46-50. [PMID: 26099517 DOI: 10.1016/j.gene.2015.04.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 12/11/2022]
Abstract
22q11.2 microduplication syndrome was recently described as a new disorder with variable clinical features that ranged from normal to mental retardation and with congenital defects. According to published reports, majority of patients with 22q11.2 duplications inherit these from unaffected parents rather than by de novo mutations, which is different from most microduplication/microdeletion syndromes. In this study, we report a patient that carried a paternally inherited atypical 1.33Mb duplication at 22q11.23. The proband (or proposita) presented with hypotonia, feeding difficulties, intractable epilepsy, hearing disability, and pachygyria. A pachygyria phenotype had not been previously reported to be associated with a 22q11 microduplication syndrome. Cytogenetic and molecular genetic analyses based on standard G-banding, SNP array, and fluorescence in situ hybridization were performed for the proband and her parents. An atypical 1.33Mb duplication at 22q11.23 was detected in both the proband and her father. Thus, our findings verify the pathogenicity and diverse phenotypes of 22q11.2 microduplication and expand its phenotypic spectrum.
Collapse
Affiliation(s)
- Jiazhen Chang
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Lijuan Zhao
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, P.R. China
| | - Chen Chen
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China; Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Ying Peng
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Yan Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Guizhi Tang
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Ting Bai
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Yanghui Zhang
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Ruiyu Ma
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Ruolan Guo
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Libin Mei
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China
| | - Qinying Cao
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, P.R. China.
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China.
| |
Collapse
|
20
|
Dumont BL. Interlocus gene conversion explains at least 2.7% of single nucleotide variants in human segmental duplications. BMC Genomics 2015; 16:456. [PMID: 26077037 PMCID: PMC4467073 DOI: 10.1186/s12864-015-1681-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/01/2015] [Indexed: 01/24/2023] Open
Abstract
Background Interlocus gene conversion (IGC) is a recombination-based mechanism that results in the unidirectional transfer of short stretches of sequence between paralogous loci. Although IGC is a well-established mechanism of human disease, the extent to which this mutagenic process has shaped overall patterns of segregating variation in multi-copy regions of the human genome remains unknown. One expected manifestation of IGC in population genomic data is the presence of one-to-one paralogous SNPs that segregate identical alleles. Results Here, I use SNP genotype calls from the low-coverage phase 3 release of the 1000 Genomes Project to identify 15,790 parallel, shared SNPs in duplicated regions of the human genome. My approach for identifying these sites accounts for the potential redundancy of short read mapping in multi-copy genomic regions, thereby effectively eliminating false positive SNP calls arising from paralogous sequence variation. I demonstrate that independent mutation events to identical nucleotides at paralogous sites are not a significant source of shared polymorphisms in the human genome, consistent with the interpretation that these sites are the outcome of historical IGC events. These putative signals of IGC are enriched in genomic contexts previously associated with non-allelic homologous recombination, including clear signals in gene families that form tandem intra-chromosomal clusters. Conclusions Taken together, my analyses implicate IGC, not point mutation, as the mechanism generating at least 2.7 % of single nucleotide variants in duplicated regions of the human genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1681-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beth L Dumont
- Initiative in Biological Complexity, North Carolina State University, 112 Derieux Place, 3510 Thomas Hall, Campus Box 7614, Raleigh, NC, 27695-7614, USA.
| |
Collapse
|
21
|
Romanov MN, Farré M, Lithgow PE, Fowler KE, Skinner BM, O’Connor R, Fonseka G, Backström N, Matsuda Y, Nishida C, Houde P, Jarvis ED, Ellegren H, Burt DW, Larkin DM, Griffin DK. Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genomics 2014; 15:1060. [PMID: 25496766 PMCID: PMC4362836 DOI: 10.1186/1471-2164-15-1060] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The availability of multiple avian genome sequence assemblies greatly improves our ability to define overall genome organization and reconstruct evolutionary changes. In birds, this has previously been impeded by a near intractable karyotype and relied almost exclusively on comparative molecular cytogenetics of only the largest chromosomes. Here, novel whole genome sequence information from 21 avian genome sequences (most newly assembled) made available on an interactive browser (Evolution Highway) was analyzed. RESULTS Focusing on the six best-assembled genomes allowed us to assemble a putative karyotype of the dinosaur ancestor for each chromosome. Reconstructing evolutionary events that led to each species' genome organization, we determined that the fastest rate of change occurred in the zebra finch and budgerigar, consistent with rapid speciation events in the Passeriformes and Psittaciformes. Intra- and interchromosomal changes were explained most parsimoniously by a series of inversions and translocations respectively, with breakpoint reuse being commonplace. Analyzing chicken and zebra finch, we found little evidence to support the hypothesis of an association of evolutionary breakpoint regions with recombination hotspots but some evidence to support the hypothesis that microchromosomes largely represent conserved blocks of synteny in the majority of the 21 species analyzed. All but one species showed the expected number of microchromosomal rearrangements predicted by the haploid chromosome count. Ostrich, however, appeared to retain an overall karyotype structure of 2n=80 despite undergoing a large number (26) of hitherto un-described interchromosomal changes. CONCLUSIONS Results suggest that mechanisms exist to preserve a static overall avian karyotype/genomic structure, including the microchromosomes, with widespread interchromosomal change occurring rarely (e.g., in ostrich and budgerigar lineages). Of the species analyzed, the chicken lineage appeared to have undergone the fewest changes compared to the dinosaur ancestor.
Collapse
Affiliation(s)
| | - Marta Farré
- />Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU UK
| | - Pamela E Lithgow
- />School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Katie E Fowler
- />School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
- />School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, Kent CT1 1QU UK
| | - Benjamin M Skinner
- />Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
| | - Rebecca O’Connor
- />School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Gothami Fonseka
- />School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Niclas Backström
- />Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Yoichi Matsuda
- />Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| | - Chizuko Nishida
- />Department of Natural History Sciences, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810 Japan
| | - Peter Houde
- />Department of Biology, New Mexico State University, Las Cruces, NM 88003 USA
| | - Erich D Jarvis
- />Department of Neurobiology, Duke University Medical Center, Box 3209, Durham, NC 27710 USA
| | - Hans Ellegren
- />Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - David W Burt
- />Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9PS UK
| | - Denis M Larkin
- />Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU UK
| | - Darren K Griffin
- />School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| |
Collapse
|
22
|
Cafasso D, Chinali G. An ancient satellite DNA has maintained repetitive units of the original structure in most species of the living fossil plant genus Zamia. Genome 2014; 57:125-35. [PMID: 24884688 DOI: 10.1139/gen-2013-0133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ZpS1 satellite DNA is specific to the genus Zamia and presents repetitive units organized as long arrays and also as very short arrays dispersed in the genome. We have characterized the structure of the ZpS1 repeats in 12 species representative of the whole geographic distribution of the genus. In most species, the clone most common sequences (cMCS) were so similar that a general most common sequence (GMCS) of the ZpS1 repetitive unit in the genus could be obtained. The few partial variations from the GMCS found in cMCS of some species correspond to variable positions present in most other species, as indicated by the clone consensus sequences (cCS). Two species have an additional species-specific variety of ZpS1 satellite. The dispersed repeats were found to contain more mutations than repeats from long arrays. Our results indicate that all or most species of Zamia inherited the ZpS1 satellite from a common ancestor in Miocene and have maintained repetitive units of the original structure till present. The features of ZpS1 satellite in the genus Zamia are poorly compatible with the model of concerted evolution, but they are perfectly consistent with a new model of satellite evolution based on experimental evidences indicating that a specific amplification-substitution repair mechanism maintains the homogeneity and stability of the repeats structure in each satellite DNA originally present in a species as long as the species exists.
Collapse
Affiliation(s)
- Donata Cafasso
- a Dipartimento di Biologia, Complesso Universitario Monte S. Angelo, Università degli Studi di Napoli "Federico II", Via Cinthia, I-80126 Napoli, Italy
| | | |
Collapse
|
23
|
Fawcett JA, Innan H. The role of gene conversion in preserving rearrangement hotspots in the human genome. Trends Genet 2013; 29:561-8. [PMID: 23953668 DOI: 10.1016/j.tig.2013.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/20/2013] [Accepted: 07/08/2013] [Indexed: 11/27/2022]
Abstract
Hotspots of non-allelic homologous recombination (NAHR) have a crucial role in creating genetic diversity and are also associated with dozens of genomic disorders. Recent studies suggest that many human NAHR hotspots have been preserved throughout the evolution of primates. NAHR hotspots are likely to remain active as long as the segmental duplications (SDs) promoting NAHR retain sufficient similarity. Here, we propose an evolutionary model of SDs that incorporates the effect of gene conversion and compare it with a null model that assumes SDs evolve independently without gene conversion. The gene conversion model predicts a much longer lifespan of NAHR hotspots compared with the null model. We show that the literature on copy number variants (CNVs) and genomic disorders, and also the results of additional analysis of CNVs, are all more consistent with the gene conversion model.
Collapse
Affiliation(s)
- Jeffrey A Fawcett
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | | |
Collapse
|
24
|
Talseth-Palmer BA, Holliday EG, Evans TJ, McEvoy M, Attia J, Grice DM, Masson AL, Meldrum C, Spigelman A, Scott RJ. Continuing difficulties in interpreting CNV data: lessons from a genome-wide CNV association study of Australian HNPCC/lynch syndrome patients. BMC Med Genomics 2013; 6:10. [PMID: 23531357 PMCID: PMC3626775 DOI: 10.1186/1755-8794-6-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 03/18/2013] [Indexed: 01/13/2023] Open
Abstract
Background Hereditary non-polyposis colorectal cancer (HNPCC)/Lynch syndrome (LS) is a cancer syndrome characterised by early-onset epithelial cancers, especially colorectal cancer (CRC) and endometrial cancer. The aim of the current study was to use SNP-array technology to identify genomic aberrations which could contribute to the increased risk of cancer in HNPCC/LS patients. Methods Individuals diagnosed with HNPCC/LS (100) and healthy controls (384) were genotyped using the Illumina Human610-Quad SNP-arrays. Copy number variation (CNV) calling and association analyses were performed using Nexus software, with significant results validated using QuantiSNP. TaqMan Copy-Number assays were used for verification of CNVs showing significant association with HNPCC/LS identified by both software programs. Results We detected copy number (CN) gains associated with HNPCC/LS status on chromosome 7q11.21 (28% cases and 0% controls, Nexus; p = 3.60E-20 and QuantiSNP; p < 1.00E-16) and 16p11.2 (46% in cases, while a CN loss was observed in 23% of controls, Nexus; p = 4.93E-21 and QuantiSNP; p = 5.00E-06) via in silico analyses. TaqMan Copy-Number assay was used for validation of CNVs showing significant association with HNPCC/LS. In addition, CNV burden (total CNV length, average CNV length and number of observed CNV events) was significantly greater in cases compared to controls. Conclusion A greater CNV burden was identified in HNPCC/LS cases compared to controls supporting the notion of higher genomic instability in these patients. One intergenic locus on chromosome 7q11.21 is possibly associated with HNPCC/LS and deserves further investigation. The results from this study highlight the complexities of fluorescent based CNV analyses. The inefficiency of both CNV detection methods to reproducibly detect observed CNVs demonstrates the need for sequence data to be considered alongside intensity data to avoid false positive results.
Collapse
Affiliation(s)
- Bente A Talseth-Palmer
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Katju V. In with the old, in with the new: the promiscuity of the duplication process engenders diverse pathways for novel gene creation. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:341932. [PMID: 23008799 PMCID: PMC3449122 DOI: 10.1155/2012/341932] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/03/2012] [Indexed: 01/26/2023]
Abstract
The gene duplication process has exhibited far greater promiscuity in the creation of paralogs with novel exon-intron structures than anticipated even by Ohno. In this paper I explore the history of the field, from the neo-Darwinian synthesis through Ohno's formulation of the canonical model for the evolution of gene duplicates and culminating in the present genomic era. I delineate the major tenets of Ohno's model and discuss its failure to encapsulate the full complexity of the duplication process as revealed in the era of genomics. I discuss the diverse classes of paralogs originating from both DNA- and RNA-mediated duplication events and their evolutionary potential for assuming radically altered functions, as well as the degree to which they can function unconstrained from the pressure of gene conversion. Lastly, I explore theoretical population-genetic considerations of how the effective population size (N(e)) of a species may influence the probability of emergence of genes with radically altered functions.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
26
|
Khattab M, Xu F, Li P, Bhandari V. A de novo 3.54 Mb deletion of 17q22-q23.1 associated with hydrocephalus: a case report and review of literature. Am J Med Genet A 2011; 155A:3082-6. [PMID: 22052796 DOI: 10.1002/ajmg.a.34307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/27/2011] [Indexed: 01/27/2023]
Abstract
We describe a female newborn with a de novo 3.54 megabase (Mb) deletion of 17q22-q23.1 (chr17:53,072,536-56,612,662, hg18) including genes from MSI2 to BCAS3 detected by oligonucleotide array comparative genomic hybridization (aCGH). Prenatal ultrasound examination noted oligohydramnios and ventriculomegaly in the fetus. Postnatal examination found hypotonia, macrocephaly, arachnodactyly of fingers and toes, dysmorphic features, bilateral hearing loss and heart defect. Review of reported cases with genomic findings noted one case with proximal deletion involving the NOG gene and a case series with distal recurrent microdeletions involving the TBX2 and TBX4 genes. Our case presented a unique deletion partially overlapped with the above deletions but not including the NOG, TBX2, and TBX4 genes. A genomic map for deletions in this 17q22-q23.1 region was constructed to further define the common deletion intervals for potential haplo-insufficient genes.
Collapse
Affiliation(s)
- Mona Khattab
- Department of Pediatrics, Section of Perinatal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8064, USA
| | | | | | | |
Collapse
|
27
|
Piccione M, Vecchio D, Cavani S, Malacarne M, Pierluigi M, Corsello G. The first case of myoclonic epilepsy in a child with a de novo 22q11.2 microduplication. Am J Med Genet A 2011; 155A:3054-9. [DOI: 10.1002/ajmg.a.34275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 08/01/2011] [Indexed: 12/20/2022]
|
28
|
Carmona-Mora P, Molina J, Encina CA, Walz K. Mouse models of genomic syndromes as tools for understanding the basis of complex traits: an example with the smith-magenis and the potocki-lupski syndromes. Curr Genomics 2011; 10:259-68. [PMID: 19949547 PMCID: PMC2709937 DOI: 10.2174/138920209788488508] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 11/29/2022] Open
Abstract
Each human's genome is distinguished by extra and missing DNA that can be “benign” or powerfully impact everything from development to disease. In the case of genomic disorders DNA rearrangements, such as deletions or duplications, correlate with a clinical specific phenotype. The clinical presentations of genomic disorders were thought to result from altered gene copy number of physically linked dosage sensitive genes. Genomic disorders are frequent diseases (~1 per 1,000 births). Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are genomic disorders, associated with a deletion and a duplication, of 3.7 Mb respectively, within chromosome 17 band p11.2. This region includes 23 genes. Both syndromes have complex and distinctive phenotypes including multiple congenital and neurobehavioral abnormalities. Human chromosome 17p11.2 is syntenic to the 32-34 cM region of murine chromosome 11. The number and order of the genes are highly conserved. In this review, we will exemplify how genomic disorders can be modeled in mice and the advantages that such models can give in the study of genomic disorders in particular and gene copy number variation (CNV) in general. The contributions of the SMS and PTLS animal models in several aspects ranging from more specific ones, as the definition of the clinical aspects of the human clinical spectrum, the identification of dosage sensitive genes related to the human syndromes, to the more general contributions as the definition of genetic locus impacting obesity and behavior and the elucidation of general mechanisms related to the pathogenesis of gene CNV are discussed.
Collapse
|
29
|
Kropatsch R, Petrasch-Parwez E, Seelow D, Schlichting A, Gerding WM, Akkad DA, Epplen JT, Dekomien G. Generalized progressive retinal atrophy in the Irish Glen of Imaal Terrier is associated with a deletion in the ADAM9 gene. Mol Cell Probes 2010; 24:357-63. [DOI: 10.1016/j.mcp.2010.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 07/26/2010] [Accepted: 07/26/2010] [Indexed: 01/05/2023]
|
30
|
Yamada M, Arai T, Oishi T, Hatano N, Kobayashi I, Kubota M, Suzuki N, Yoda M, Kawamura N, Ariga T. Determination of the deletion breakpoints in two patients with contiguous gene syndrome encompassing CYBB gene. Eur J Med Genet 2010; 53:383-8. [DOI: 10.1016/j.ejmg.2010.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 08/23/2010] [Indexed: 11/15/2022]
|
31
|
Abstract
In this review, we detail the history, molecular diagnosis, epidemiology, and clinical features of the MECP2 duplication syndrome, including considerations for the care of patients with this X-linked neurodevelopmental disorder. MECP2 duplication syndrome is 100% penetrant in affected males and is associated with infantile hypotonia, severe to profound mental retardation, autism or autistic features, poor speech development, recurrent infections, epilepsy, progressive spasticity, and, in some cases, developmental regression. Most of the reported cases are inherited, however, de novo cases have been documented. While carrier females have been reported to be unaffected, more recent research demonstrates that despite normal intelligence, female carriers display a range of neuropsychiatric phenotypes that pre-date the birth of an affected son. Given what we know of the syndrome to date, we propose that genetic testing is warranted in cases of males with infantile hypotonia and in cases of boys with mental retardation and autistic features with or without recurrent infections, progressive spasticity, epilepsy, or developmental regression. We discuss recommendations for clinical management and surveillance as well as the need for further clinical, genotype-phenotype, and molecular studies to assist the patients and their families who are affected by this syndrome.
Collapse
Affiliation(s)
- Melissa B Ramocki
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA.
| | | | | |
Collapse
|
32
|
Roehl AC, Cooper DN, Kluwe L, Helbrich A, Wimmer K, Högel J, Mautner VF, Kehrer-Sawatzki H. Extended runs of homozygosity at 17q11.2: an association with type-2NF1deletions? Hum Mutat 2010; 31:325-34. [DOI: 10.1002/humu.21191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Evolution in health and medicine Sackler colloquium: Genomic disorders: a window into human gene and genome evolution. Proc Natl Acad Sci U S A 2010; 107 Suppl 1:1765-71. [PMID: 20080665 DOI: 10.1073/pnas.0906222107] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene duplications alter the genetic constitution of organisms and can be a driving force of molecular evolution in humans and the great apes. In this context, the study of genomic disorders has uncovered the essential role played by the genomic architecture, especially low copy repeats (LCRs) or segmental duplications (SDs). In fact, regardless of the mechanism, LCRs can mediate or stimulate rearrangements, inciting genomic instability and generating dynamic and unstable regions prone to rapid molecular evolution. In humans, copy-number variation (CNV) has been implicated in common traits such as neuropathy, hypertension, color blindness, infertility, and behavioral traits including autism and schizophrenia, as well as disease susceptibility to HIV, lupus nephritis, and psoriasis among many other clinical phenotypes. The same mechanisms implicated in the origin of genomic disorders may also play a role in the emergence of segmental duplications and the evolution of new genes by means of genomic and gene duplication and triplication, exon shuffling, exon accretion, and fusion/fission events.
Collapse
|
34
|
Abstract
Genome rearrangements are often associated with genome instability observed in cancer and other pathological disorders. Different types of repeat elements are common in genomes and are prone to instability. S-phase checkpoints, recombination, and telomere maintenance pathways have been implicated in suppressing chromosome rearrangements, but little is known about the molecular mechanisms and the chromosome intermediates generating such genome-wide instability. In the December 15, 2009, issue of Genes & Development, two studies by Paek and colleagues (2861-2875) and Mizuno and colleagues (pp. 2876-2886), demonstrate that nearby inverted repeats in budding and fission yeasts recombine spontaneously and frequently to form dicentric and acentric chromosomes. The recombination mechanism underlying this phenomenon does not appear to require double-strand break formation, and is likely caused by a replication mechanism involving template switching.
Collapse
|
35
|
Dierssen M, Herault Y, Estivill X. Aneuploidy: from a physiological mechanism of variance to Down syndrome. Physiol Rev 2009; 89:887-920. [PMID: 19584316 DOI: 10.1152/physrev.00032.2007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Quantitative differences in gene expression emerge as a significant source of variation in natural populations, representing an important substrate for evolution and accounting for a considerable fraction of phenotypic diversity. However, perturbation of gene expression is also the main factor in determining the molecular pathogenesis of numerous aneuploid disorders. In this review, we focus on Down syndrome (DS) as the prototype of "genomic disorder" induced by copy number change. The understanding of the pathogenicity of the extra genomic material in trisomy 21 has accelerated in the last years due to the recent advances in genome sequencing, comparative genome analysis, functional genome exploration, and the use of model organisms. We present recent data on the role of genome-altering processes in the generation of diversity in DS neural phenotypes focusing on the impact of trisomy on brain structure and mental retardation and on biological pathways and cell types in target brain regions (including prefrontal cortex, hippocampus, cerebellum, and basal ganglia). We also review the potential that genetically engineered mouse models of DS bring into the understanding of the molecular biology of human learning disorders.
Collapse
Affiliation(s)
- Mara Dierssen
- Genes and Disease Program, Genomic Regulation Center-CRG, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr Aiguader 88, PRBB building E, Barcelona 08003, Catalonia, Spain.
| | | | | |
Collapse
|
36
|
Abstract
It is now becoming generally accepted that a significant amount of human genetic variation is due to structural changes of the genome rather than to base-pair changes in the DNA. As for base-pair changes, knowledge of gene and genome function has been informed by structural alterations that convey clinical phenotypes. Genomic disorders are a class of human conditions that result from structural changes of the human genome that convey traits or susceptibility to traits. The path to the delineation of genomic disorders is intertwined with the evolving technologies that have enabled the resolution of human genome analyses to continue increasing. Similarly, the ability to perform high-resolution human genome analysis has fueled the current and future clinical implementation of such discoveries in the evolving field of genome medicine.
Collapse
Affiliation(s)
- James R Lupski
- Departments of Molecular and Human Genetics, and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Ogilvie CM, Ahn JW, Mann K, Roberts RG, Flinter F. A novel deletion in proximal 22q associated with cardiac septal defects and microcephaly: a case report. Mol Cytogenet 2009; 2:9. [PMID: 19239688 PMCID: PMC2669095 DOI: 10.1186/1755-8166-2-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/24/2009] [Indexed: 01/11/2023] Open
Abstract
Background Proximal 22q is rich in low copy repeats (LCRs) which mediate non-allelic homologous recombination and give rise to deletions and duplications of varying size depending on which LCRs are involved. Methods A child with multiple septal defects and other congenital anomalies was investigated for genome imbalance using multiplex ligation-dependent probe amplification (MLPA) for subtelomeres and microdeletion loci, followed by array comparative genomic hybridization (CGH) using oligonucleotide arrays with 44,000 probes across the genome. Results MLPA identified a single probe deletion in the SNAP29 gene within band 22q11.21. Follow-up array CGH testing revealed a ~1.4-Mb deletion from 19,405,375 bp to 20,797,502 bp, encompassing 28 genes. Conclusion This deletion is likely to be causally associated with the proband's congenital anomalies. Previous publications describing deletions in proximal 22q have reported deletions between LCRs 1 to 4, associated with 22q11 deletion syndrome; in addition, deletions between LCRs 4 and 6 have been described associated with "distal 22q11 deletion syndrome". To our knowledge, this is the first deletion which spans LCR4 and is not apparently mediated by LCRs. Comparison of the phenotypes found in conjunction with previously reported deletions, together with the function and expression patterns of genes in the deleted region reported here, suggests that haploinsufficiency for the Crk-like (CRKL) gene may be responsible for the reported cardiac abnormalities.
Collapse
|
38
|
Trisomy 22pter-q12.3 presenting with hepatic dysfunction variability of cat-eye syndrome. Clin Dysmorphol 2009; 18:13-17. [DOI: 10.1097/mcd.0b013e328317c884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Bhatt S, Moradkhani K, Mrasek K, Puechberty J, Manvelyan M, Hunstig F, Lefort G, Weise A, Lespinasse J, Sarda P, Liehr T, Hamamah S, Pellestor F. Breakpoint mapping and complete analysis of meiotic segregation patterns in three men heterozygous for paracentric inversions. Eur J Hum Genet 2009; 17:44-50. [PMID: 18685557 PMCID: PMC2985954 DOI: 10.1038/ejhg.2008.144] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 06/23/2008] [Accepted: 07/02/2008] [Indexed: 01/30/2023] Open
Abstract
Paracentric inversions (PAIs) are structural chromosomal rearrangements generally considered to be harmless. To date, only a few studies have been performed concerning the meiotic segregation of these rearrangements, using either the human-hamster fertilization system or fluorescence in situ hybridization (FISH) with centromeric or telomeric DNA probes. To improve the assessment of imbalances in PAI, we present a new strategy based on FISH assay using multiple bacterial artificial chromosome probes, which allow a precise localization of chromosome break points and the identification of all meiotic products in human sperm. Sperm samples of three cases with PAI were investigated: an inv(5)(q13.2q33.1), an inv(9)(q21.2q34.13) and an inv(14)(q23.2q32.13). The frequencies of spermatozoa with inverted chromosomes were 44.7% in inv(5), 42.7% in inv(9) and 46.7% in inv(14). The global incidences of unbalanced complements were 9.7, 12.6 and 3.7% in inv(5), inv(9) and inv(14), respectively. This report is the first study providing a detailed description of meiotic segregation patterns in human sperm by using a sperm FISH approach. This study demonstrates that the detailed analysis of segregation in PAI may provide important data for both genetic analysis and counseling of inversion carriers.
Collapse
Affiliation(s)
- Samarth Bhatt
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, Montpellier, France
- INSERM U847, Montpellier, France
| | - Kamran Moradkhani
- CHU Montpellier, Service de Génétique Médicale, Hôpital Arnaud de Villeuneuve, Montpellier, France
| | - Kristin Mrasek
- Institute of Human Genetics and Anthropology, Jena, Germany
| | - Jacques Puechberty
- CHU Montpellier, Service de Génétique Médicale, Hôpital Arnaud de Villeuneuve, Montpellier, France
| | - Marina Manvelyan
- Institute of Human Genetics and Anthropology, Jena, Germany
- Department of Genetics and Laboratory of Cytogenetics, State University, Yerevan, Armenia
| | | | - Genevieve Lefort
- CHU Montpellier, Service de Génétique Médicale, Hôpital Arnaud de Villeuneuve, Montpellier, France
| | - Anja Weise
- Institute of Human Genetics and Anthropology, Jena, Germany
| | | | - Pierre Sarda
- CHU Montpellier, Service de Génétique Médicale, Hôpital Arnaud de Villeuneuve, Montpellier, France
| | - Thomas Liehr
- CHU Montpellier, Service de Génétique Médicale, Hôpital Arnaud de Villeuneuve, Montpellier, France
| | - Samir Hamamah
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, Montpellier, France
- INSERM U847, Montpellier, France
- Université Montpellier I, UFR de Médecine, Montpellier, France
- CHU Montpellier, Unité Biologie Clinique d'AMP/DPI, Hôpital Arnaud de Villeuneuve, Montpellier, France
| | - Franck Pellestor
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, Montpellier, France
- INSERM U847, Montpellier, France
- Université Montpellier I, UFR de Médecine, Montpellier, France
- CHU Montpellier, Unité Biologie Clinique d'AMP/DPI, Hôpital Arnaud de Villeuneuve, Montpellier, France
| |
Collapse
|
40
|
Woldringh G, Janssen I, Hehir-Kwa J, van den Elzen C, Kremer J, de Boer P, Schoenmakers E. Constitutional DNA copy number changes in ICSI children. Hum Reprod 2008; 24:233-40. [DOI: 10.1093/humrep/den323] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Fan C, Zhang Y, Yu Y, Rounsley S, Long M, Wing RA. The subtelomere of Oryza sativa chromosome 3 short arm as a hot bed of new gene origination in rice. MOLECULAR PLANT 2008; 1:839-50. [PMID: 19825586 PMCID: PMC2902912 DOI: 10.1093/mp/ssn050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 07/15/2008] [Indexed: 05/22/2023]
Abstract
Despite general observations of non-random genomic distribution of new genes, it is unclear whether or not new genes preferentially occur in certain genomic regions driven by related molecular mechanisms. Using 1.5 Mb of genomic sequences from short arms of chromosome 3 of Oryza glaberrima and O. punctata, we conducted a comparative genomic analysis with the reference O. sativa ssp. japonica genome. We identified a 60-kb segment located in the middle of the subtelomeric region of chromosome 3, which is unique to the species O. sativa. The region contained gene duplicates that occurred in Asian cultivated rice species that diverged from the ancestor of Asian and African cultivated rice one million years ago (MYA). For the 12 genes and one complete retrotransposon identified in this segment in O. sativa ssp. japonica, we searched for their parental genes. The high similarity between duplicated paralogs further supports the recent origination of these genes. We found that this segment was recently generated through multiple independent gene recombination and transposon insertion events. Among the 12 genes, we found that five had chimeric gene structures derived from multiple parental genes. Nine out of the 12 new genes seem to be functional, as suggested by Ka/Ks analysis and the presence of cDNA and/or MPSS data. Furthermore, for the eight transcribed genes, at least two genes could be classified as defense or stress response-related genes. Given these findings, and the fact that subtelomeres are associated with high rates of recombination and transcription, it is likely that subtelomeres may facilitate gene recombination and transposon insertions and serve as hot spots for new gene origination in rice genomes.
Collapse
Affiliation(s)
- Chuanzhu Fan
- Arizona Genomics Institute, Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Yong Zhang
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Yeisoo Yu
- Arizona Genomics Institute, Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Steve Rounsley
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ 85721, USA
| | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- To whom correspondence should be addressed. E-mail , fax 773-702-9740, tel. 773-702-0557. E-mail , fax 520-621-1259, tel. 520-626-9595
| | - Rod A. Wing
- Arizona Genomics Institute, Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
- To whom correspondence should be addressed. E-mail , fax 773-702-9740, tel. 773-702-0557. E-mail , fax 520-621-1259, tel. 520-626-9595
| |
Collapse
|
42
|
Zhou Q, Zhang G, Zhang Y, Xu S, Zhao R, Zhan Z, Li X, Ding Y, Yang S, Wang W. On the origin of new genes in Drosophila. Genome Res 2008; 18:1446-55. [PMID: 18550802 DOI: 10.1101/gr.076588.108] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several mechanisms have been proposed to account for the origination of new genes. Despite extensive case studies, the general principles governing this fundamental process are still unclear at the whole-genome level. Here, we unveil genome-wide patterns for the mutational mechanisms leading to new genes and their subsequent lineage-specific evolution at different time nodes in the Drosophila melanogaster species subgroup. We find that (1) tandem gene duplication has generated approximately 80% of the nascent duplicates that are limited to single species (D. melanogaster or Drosophila yakuba); (2) the most abundant new genes shared by multiple species (44.1%) are dispersed duplicates, and are more likely to be retained and be functional; (3) de novo gene origination from noncoding sequences plays an unexpectedly important role during the origin of new genes, and is responsible for 11.9% of the new genes; (4) retroposition is also an important mechanism, and had generated approximately 10% of the new genes; (5) approximately 30% of the new genes in the D. melanogaster species complex recruited various genomic sequences and formed chimeric gene structures, suggesting structure innovation as an important way to help fixation of new genes; and (6) the rate of the origin of new functional genes is estimated to be five to 11 genes per million years in the D. melanogaster subgroup. Finally, we survey gene frequencies among 19 globally derived strains for D. melanogaster-specific new genes and reveal that 44.4% of them show copy number polymorphisms within a population. In conclusion, we provide a panoramic picture for the origin of new genes in Drosophila species.
Collapse
Affiliation(s)
- Qi Zhou
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hansen MA, Nielsen JE, Retelska D, Larsen N, Leffers H. A shared promoter region suggests a common ancestor for the human VCX/Y, SPANX, and CSAG gene families and the murine CYPT family. Mol Reprod Dev 2008; 75:219-29. [PMID: 17342728 DOI: 10.1002/mrd.20651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many testis-specific genes from the sex chromosomes are subject to rapid evolution, which can make it difficult to identify murine genes in the human genome. The murine CYPT gene family includes 15 members, but orthologs were undetectable in the human genome. However, using refined homology search, sequences corresponding to the shared promoter region of the CYPT family were identified at 39 loci. Most loci were located immediately upstream of genes belonging to the VCX/Y, SPANX, or CSAG gene families. Sequence comparison of the loci revealed a conserved CYPT promoter-like (CPL) element featuring TATA and CCAAT boxes. The expression of members of the three families harboring the CPL resembled the murine expression of the CYPT family, with weak expression in late pachytene spermatocytes and predominant expression in spermatids, but some genes were also weakly expressed in somatic cells and in other germ cell types. The genomic regions harboring the gene families were rich in direct and inverted segmental duplications (SD), which may facilitate gene conversion and rapid evolution. The conserved CPL and the common expression profiles suggest that the human VCX/Y, SPANX, and CSAG2 gene families together with the murine SPANX gene and the CYPT family may share a common ancestor. Finally, we present evidence that VCX/Y and SPANX may be paralogs with a similar protein structure consisting of C terminal acidic repeats of variable lengths.
Collapse
Affiliation(s)
- Martin A Hansen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej, Denmark.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The extent of copy-number variation (CNV) in the human genome has been appreciated only recently. Nevertheless, for almost four decades, gene duplication has been a prevailing hypothesis for evolutionary change. Recently, gene CNV spanning 60 million years of human and primate evolution has been determined enabling lineage-specific gene CNV to be identified. Primate lineage-specific gene CNV studies reveal that almost one third of all human genes exhibit a copy-number change in one or more primate species. Intriguingly, human lineage-specific gene amplification can be correlated to the emergence of human-specific traits such as cognition and endurance running.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Makoff AJ, Flomen RH. Detailed analysis of 15q11-q14 sequence corrects errors and gaps in the public access sequence to fully reveal large segmental duplications at breakpoints for Prader-Willi, Angelman, and inv dup(15) syndromes. Genome Biol 2008; 8:R114. [PMID: 17573966 PMCID: PMC2394762 DOI: 10.1186/gb-2007-8-6-r114] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 04/23/2007] [Accepted: 06/15/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromosome 15 contains many segmental duplications, including some at 15q11-q13 that appear to be responsible for the deletions that cause Prader-Willi and Angelman syndromes and for other genomic disorders. The current version of the human genome sequence is incomplete, with seven gaps in the proximal region of 15q, some of which are flanked by duplicated sequence. We have investigated this region by conducting a detailed examination of the sequenced genomic clones in the public database, focusing on clones from the RP11 library that originates from one individual. RESULTS Our analysis has revealed assembly errors, including contig NT_078094 being in the wrong orientation, and has enabled most of the gaps between contigs to be closed. We have constructed a map in which segmental duplications are no longer interrupted by gaps and which together reveals a complex region. There are two pairs of large direct repeats that are located in regions consistent with the two classes of deletions associated with Prader-Willi and Angelman syndromes. There are also large inverted repeats that account for the formation of the observed supernumerary marker chromosomes containing two copies of the proximal end of 15q and associated with autism spectrum disorders when involving duplications of maternal origin (inv dup[15] syndrome). CONCLUSION We have produced a segmental map of 15q11-q14 that reveals several large direct and inverted repeats that are incompletely and inaccurately represented on the current human genome sequence. Some of these repeats are clearly responsible for deletions and duplications in known genomic disorders, whereas some may increase susceptibility to other disorders.
Collapse
Affiliation(s)
- Andrew J Makoff
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Denmark Hill, London SE5 8AF, UK
| | - Rachel H Flomen
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Denmark Hill, London SE5 8AF, UK
| |
Collapse
|
46
|
Koolen DA, Sistermans EA, Nilessen W, Knight SJL, Regan R, Liu YT, Kooy RF, Rooms L, Romano C, Fichera M, Schinzel A, Baumer A, Anderlid BM, Schoumans J, van Kessel AG, Nordenskjold M, de Vries BBA. Identification of non-recurrent submicroscopic genome imbalances: the advantage of genome-wide microarrays over targeted approaches. Eur J Hum Genet 2008; 16:395-400. [PMID: 18159213 DOI: 10.1038/sj.ejhg.5201975] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genome-wide analysis of DNA copy-number changes using microarray-based technologies has enabled the detection of de novo cryptic chromosome imbalances in approximately 10% of individuals with mental retardation. So far, the majority of these submicroscopic microdeletions/duplications appear to be unique, hampering clinical interpretation and genetic counselling. We hypothesised that the genomic regions involved in these de novo submicroscopic aberrations would be candidates for recurrent copy-number changes in individuals with mental retardation. To test this hypothesis, we used multiplex ligation-dependent probe amplification (MLPA) to screen for copy number changes at eight genomic candidate regions in a European cohort of 710 individuals with idiopathic mental retardation. By doing so, we failed to detect additional submicroscopic rearrangements, indicating that the anomalies tested are non-recurrent in this cohort of patients. The break points flanking the candidate regions did not contain low copy repeats and/or sequence similarities, thus providing an explanation for its non-recurrent nature. On the basis of these data, we propose that the use of genome-wide microarrays is indicated when testing for copy-number changes in individuals with idiopathic mental retardation.
Collapse
Affiliation(s)
- David A Koolen
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Merritt J, Lindor N. Further clinical description of duplication of Williams–Beuren region presenting with congenital glaucoma and brachycephaly. Am J Med Genet A 2008; 146A:1055-8. [DOI: 10.1002/ajmg.a.32235] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Yang S, Arguello JR, Li X, Ding Y, Zhou Q, Chen Y, Zhang Y, Zhao R, Brunet F, Peng L, Long M, Wang W. Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet 2007; 4:e3. [PMID: 18208328 PMCID: PMC2211543 DOI: 10.1371/journal.pgen.0040003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 11/27/2007] [Indexed: 01/05/2023] Open
Abstract
Previous studies of repetitive elements (REs) have implicated a mechanistic role in generating new chimerical genes. Such examples are consistent with the classic model for exon shuffling, which relies on non-homologous recombination. However, recent data for chromosomal aberrations in model organisms suggest that ectopic homology-dependent recombination may also be important. Lack of a dataset comprising experimentally verified young duplicates has hampered an effective examination of these models as well as an investigation of sequence features that mediate the rearrangements. Here we use ∼7,000 cDNA probes (∼112,000 primary images) to screen eight species within the Drosophila melanogaster subgroup and identify 17 duplicates that were generated through ectopic recombination within the last 12 mys. Most of these are functional and have evolved divergent expression patterns and novel chimeric structures. Examination of their flanking sequences revealed an excess of repetitive sequences, with the majority belonging to the transposable element DNAREP1 family, associated with the new genes. Our dataset strongly suggests an important role for REs in the generation of chimeric genes within these species. In numerous organisms, many new genes have been found to originate through dispersed gene duplication and exon/domain shuffling. What recombination mechanisms were involved in the duplication and the shuffling processes? Lack of the intermediate products of recombination that share adequate sequence identity between homologous sequences, or the parental sequences from which the new genes were derived, often makes answering these questions difficult. We identified a number of young genes that originated in recently diverged branches in the evolutionary tree of the eight Drosophila melanogaster subgroup species, by using fluorescence in situ hybridization with polytene chromosomes. We analyzed the genomic regions surrounding 17 new dispersed duplicate genes and observed that most of these genes are flanked by repetitive elements (REs), including a large and diverged transposable element family, DNAREP1. Several copies of these REs are kept in both new and parental gene regions, and their degeneration is correlated with the increasing ages of the identified new genes. These data suggest that REs mediate the recombination responsible for the new gene origination.
Collapse
Affiliation(s)
- Shuang Yang
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of Chinese Academy Sciences, Beijing, China
| | - J. Roman Arguello
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Xin Li
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of Chinese Academy Sciences, Beijing, China
| | - Yun Ding
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of Chinese Academy Sciences, Beijing, China
| | - Qi Zhou
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of Chinese Academy Sciences, Beijing, China
| | - Ying Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Yue Zhang
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ruoping Zhao
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Frédéric Brunet
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Lixin Peng
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Manyuan Long
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail: (ML); (WW)
| | - Wen Wang
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- * To whom correspondence should be addressed. E-mail: (ML); (WW)
| |
Collapse
|
49
|
Coulibaly MB, Lobo NF, Fitzpatrick MC, Kern M, Grushko O, Thaner DV, Traoré SF, Collins FH, Besansky NJ. Segmental duplication implicated in the genesis of inversion 2Rj of Anopheles gambiae. PLoS One 2007; 2:e849. [PMID: 17786220 PMCID: PMC1952172 DOI: 10.1371/journal.pone.0000849] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 08/15/2007] [Indexed: 01/26/2023] Open
Abstract
The malaria vector Anopheles gambiae maintains high levels of inversion polymorphism that facilitate its exploitation of diverse ecological settings across tropical Africa. Molecular characterization of inversion breakpoints is a first step toward understanding the processes that generate and maintain inversions. Here we focused on inversion 2Rj because of its association with the assortatively mating Bamako chromosomal form of An. gambiae, whose distinctive breeding sites are rock pools beside the Niger River in Mali and Guinea. Sequence and computational analysis of 2Rj revealed the same 14.6 kb insertion between both breakpoints, which occurred near but not within predicted genes. Each insertion consists of 5.3 kb terminal inverted repeat arms separated by a 4 kb spacer. The insertions lack coding capacity, and are comprised of degraded remnants of repetitive sequences including class I and II transposable elements. Because of their large size and patchwork composition, and as no other instances of these insertions were identified in the An. gambiae genome, they do not appear to be transposable elements. The 14.6 kb modules inserted at both 2Rj breakpoint junctions represent low copy repeats (LCRs, also called segmental duplications) that are strongly implicated in the recent (∼0.4Ne generations) origin of 2Rj. The LCRs contribute to further genome instability, as demonstrated by an imprecise excision event at the proximal breakpoint of 2Rj in field isolates.
Collapse
Affiliation(s)
- Mamadou B. Coulibaly
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Neil F. Lobo
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Meagan C. Fitzpatrick
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Marcia Kern
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Olga Grushko
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Daniel V. Thaner
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sékou F. Traoré
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Frank H. Collins
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Nora J. Besansky
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Fiston-Lavier AS, Anxolabehere D, Quesneville H. A model of segmental duplication formation in Drosophila melanogaster. Genome Res 2007; 17:1458-70. [PMID: 17726166 PMCID: PMC1987339 DOI: 10.1101/gr.6208307] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Segmental duplications (SDs) are low-copy repeats of DNA segments that have long been recognized to be involved in genome organization and evolution. But, to date, the mechanism of their formation remains obscure. We propose a model for SD formation that we name "duplication-dependent strand annealing" (DDSA). This model is a variant of the synthesis-dependent strand annealing (SDSA) model--a double-strand break (DSB) homologous repair model. DSB repair in Drosophila melanogaster genome usually occurs primarily through homologous repair, more preferentially through the SDSA model. The DDSA model predicts that after a DSB, the search for an ectopic homologous region--here a repeat--initiates the repair. As expected by the model, the analysis of SDs detected by a computational analysis of the D. melanogaster genome indicates a high enrichment in transposable elements at SD ends. It shows moreover a preferential location of SDs in heterochromatic regions. The model has the advantage of also predicting specific traces left during synthesis. The observed traces support the DDSA model as one model of formation of SDs in D. melanogaster genome. The analysis of these DDSA signatures suggests moreover a sequestration of the dissociated strand in the repair complex.
Collapse
Affiliation(s)
- Anna-Sophie Fiston-Lavier
- Laboratoire Bioinformatique et Génomique, Institut Jacques Monod, 75005 Paris, France
- Corresponding author.E-mail ; fax 33-1-4427-3660
| | - Dominique Anxolabehere
- Laboratoire Dynamique du Génome et Evolution, Institut Jacques Monod, 75005 Paris, France
| | - Hadi Quesneville
- Laboratoire Bioinformatique et Génomique, Institut Jacques Monod, 75005 Paris, France
| |
Collapse
|