1
|
Yong J, Lu S, Lu C, Huang R. The Development History, Structural Composition, and Functions of Influenza Viruses and the Progress of Influenza Virus Inhibitors in Clinics and Clinical Trials. Mini Rev Med Chem 2025; 25:196-207. [PMID: 39113298 DOI: 10.2174/0113895575316416240724043949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 02/25/2025]
Abstract
Flu is an acute respiratory disease caused by influenza viruses. The influenza viruses are classified as Alphainfluenzavirus (influenza A virus, IAV), Betainfluenzavirus (influenza B virus, IBV), Gammainfluenzavirus (influenza C virus, ICV), and Deltainfluenzavirus (influenza D virus, IDV) according to the antigenicity of nucleoproteins (NPs) and matrix (M) proteins in vivo. It is estimated that the seasonal influenza epidemics will cause about 3-5 million cases of serious illness and 290,000-650,000 deaths in the world every year, while influenza A virus is the leading cause of infection and death. Neuraminidase (NA) is one of the most critical targets for the development of anti-influenza virus drugs, and the main drugs clinically applied for the treatment of flu are neuraminidase inhibitors. However, various mutant strains have developed resistance to these inhibitors (For example, the substrains of H274Y in H1N1, H5N1, and E119V in H3N2 have developed resistance to Oseltamivir). Influenza viruses mutate frequently, and new substrains emerge constantly, and the pandemics caused by the new substrains will break out at any time. Therefore, it is urgent to develop new and wide-spectrum influenza virus inhibitors for overcoming the emerging influenza pandemic. Here, we focus on describing the progress of influenza virus inhibitors in clinics and clinical trials to provide a comprehensive reference for the researchers.
Collapse
Affiliation(s)
- Jianping Yong
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- Department of Natural Products Chemistry, Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Shaoji Lu
- Xiamen Tasman Bio-Tech Co., Ltd., Xiamen, Fujian, China
| | - Canzhong Lu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
- Department of Natural Products Chemistry, Xiamen Institute of Rare-earth Materials, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Ruiwen Huang
- Xiamen Tasman Bio-Tech Co., Ltd., Xiamen, Fujian, China
| |
Collapse
|
2
|
Shekunov EV, Efimova SS, Kever LV, Ishmanov TF, Ostroumova OS. Lipid Selectivity of Membrane Action of the Fragments of Fusion Peptides of Marburg and Ebola Viruses. Int J Mol Sci 2024; 25:9901. [PMID: 39337389 PMCID: PMC11432738 DOI: 10.3390/ijms25189901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The life cycle of Ebola and Marburg viruses includes a step of the virion envelope fusion with the cell membrane. Here, we analyzed whether the fusion of liposome membranes under the action of fragments of fusion peptides of Ebola and Marburg viruses depends on the composition of lipid vesicles. A fluorescence assay and electron microscopy were used to quantify the fusogenic activity of the virus fusion peptides and to identify the lipid determinants affecting membrane merging. Differential scanning calorimetry of lipid phase transitions revealed alterations in the physical properties of the lipid matrix produced by virus fusion peptides. Additionally, we found that plant polyphenols, quercetin, and myricetin inhibited vesicle fusion induced by the Marburg virus fusion peptide.
Collapse
Affiliation(s)
- Egor V Shekunov
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Svetlana S Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Lyudmila V Kever
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Tagir F Ishmanov
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Olga S Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| |
Collapse
|
3
|
Abstract
Alphaviruses are enveloped viruses transmitted by arthropod vectors to vertebrate hosts. The surface of the virion contains 80 glycoprotein spikes embedded in the membrane, and these spikes mediate attachment to the host cell and initiate viral fusion. Each spike consists of a trimer of E2-E1 heterodimers. These heterodimers interact at the following two interfaces: (i) the intradimer interactions between E2 and E1 of the same heterodimer and (ii) the interdimer interactions between E2 of one heterodimer and E1 of the adjacent heterodimer (E1'). We hypothesized that the interdimer interactions are essential for trimerization of the E2-E1 heterodimers into a functional spike. In this work, we made a mutant virus (chikungunya piggyback [CPB]) where we replaced six interdimeric residues in the E2 protein of Sindbis virus (wild-type [WT] SINV) with those from the E2 protein from chikungunya virus and studied its effect in both mammalian and mosquito cell lines. CPB produced fewer infectious particles in mammalian cells than in mosquito cells, relative to WT SINV. When CPB virus was purified from mammalian cells, particles showed reduced amounts of glycoproteins relative to the capsid protein and contained defects in particle morphology compared with virus derived from mosquito cells. Using cryo-electron microscopy (cryo-EM), we determined that the spikes of CPB had a different conformation than WT SINV. Last, we identified two revertants, E2-H333N and E1-S247L, that restored particle growth and assembly to different degrees. We conclude the interdimer interface is critical for spike trimerization and is a novel target for potential antiviral drug design. IMPORTANCE Alphaviruses, which can cause disease when spread to humans by mosquitoes, have been classified as emerging pathogens, with infections occurring worldwide. The spikes on the surface of the alphavirus particle are absolutely required for the virus to enter a new host cell and initiate an infection. Using a structure-guided approach, we made a mutant virus that alters spike assembly in mammalian cells but not mosquito cells. This finding is important because it identifies a region in the spike that could be a target for antiviral drug design.
Collapse
|
4
|
Batishchev OV. Physico-Chemical Mechanisms of the Functioning of Membrane-Active Proteins of Enveloped Viruses. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2022; 16:247-260. [PMCID: PMC9734521 DOI: 10.1134/s1990747822050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Over the past few years, the attention of the whole world has been riveted to the emergence of new dangerous strains of viruses, among which a special place is occupied by coronaviruses that have overcome the interspecies barrier in the past 20 years: SARS viruses (SARS), Middle East respiratory syndrome (MERS), as well as a new coronavirus infection (SARS-CoV-2), which caused the largest pandemic since the Spanish flu in 1918. Coronaviruses are members of a class of enveloped viruses that have a lipoprotein envelope. This class also includes such serious pathogens as human immunodeficiency virus (HIV), hepatitis, Ebola virus, influenza, etc. Despite significant differences in the clinical picture of the course of disease caused by enveloped viruses, they themselves have a number of characteristic features, which determine their commonality. Regardless of the way of penetration into the cell—by endocytosis or direct fusion with the cell membrane—enveloped viruses are characterized by the following stages of interaction with the target cell: binding to receptors on the cell surface, interaction of the surface glycoproteins of the virus with the membrane structures of the infected cell, fusion of the lipid envelope of the virion with plasma or endosomal membrane, destruction of the protein capsid and its dissociation from the viral nucleoprotein. Subsequently, within the infected cell, the newly synthesized viral proteins must self-assemble on various membrane structures to form a progeny virion. Thus, both the initial stages of viral infection and the assembly and release of new viral particles are associated with the activity of viral proteins in relation to the cell membrane and its organelles. This review is devoted to the analysis of physicochemical mechanisms of functioning of the main structural proteins of a number of enveloped viruses in order to identify possible strategies for the membrane activity of such proteins at various stages of viral infection of the cell.
Collapse
Affiliation(s)
- O. V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
5
|
Genetic and Antigenic Characterization of Avian Avulavirus Type 6 (AAvV-6) Circulating in Canadian Wild Birds (2005-2017). Viruses 2021; 13:v13040543. [PMID: 33805157 PMCID: PMC8064105 DOI: 10.3390/v13040543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
We describe for the first time the genetic and antigenic characterization of 18 avian avulavirus type-6 viruses (AAvV-6) that were isolated from wild waterfowl in the Americas over the span of 12 years. Only one of the AAvV-6 viruses isolated failed to hemagglutinate chicken red blood cells. We were able to obtain full genome sequences of 16 and 2 fusion gene sequences from the remaining 2 isolates. This is more than double the number of full genome sequences available at the NCBI database. These AAvV-6 viruses phylogenetically grouped into the 2 existing AAvV-6 genotype subgroups indicating the existence of an intercontinental epidemiological link with other AAvV-6 viruses isolated from migratory waterfowl from different Eurasian countries. Antigenic maps made using HI assay data for these isolates showed that the two genetic groups were also antigenically distinct. An isolate representing each genotype was inoculated in specific pathogen free (SPF) chickens, however, no clinical symptoms were observed. A duplex fusion gene based real-time assay for the detection and genotyping of AAvV-6 to genotype 1 and 2 was developed. Using the developed assay, the viral shedding pattern in the infected chickens was examined. The chickens infected with both genotypes were able to shed the virus orally for about a week, however, no significant cloacal shedding was detected in chickens of both groups. Chickens in both groups developed detectable levels of anti-hemagglutinin antibodies 7 days after infection.
Collapse
|
6
|
Abstract
My coworkers and I have used animal viruses and their interaction with host cells to investigate cellular processes difficult to study by other means. This approach has allowed us to branch out in many directions, including membrane protein characterization, endocytosis, secretion, protein folding, quality control, and glycobiology. At the same time, our aim has been to employ cell biological approaches to expand the fundamental understanding of animal viruses and their pathogenic lifestyles. We have studied mechanisms of host cell entry and the uncoating of incoming viruses as well as the synthesis, folding, maturation, and intracellular movement of viral proteins and molecular assemblies. I have had the privilege to work in institutions in four different countries. The early years in Finland (the University of Helsinki) were followed by 6 years in Germany (European Molecular Biology Laboratory), 16 years in the United States (Yale School of Medicine), and 16 years in Switzerland (ETH Zurich).
Collapse
Affiliation(s)
- Ari Helenius
- Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland;
| |
Collapse
|
7
|
Nuñez IA, Ross TM. A review of H5Nx avian influenza viruses. Ther Adv Vaccines Immunother 2019; 7:2515135518821625. [PMID: 30834359 PMCID: PMC6391539 DOI: 10.1177/2515135518821625] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs), originating from the A/goose/Guangdong/1/1996 H5 subtype, naturally circulate in wild-bird populations, particularly waterfowl, and often spill over to infect domestic poultry. Occasionally, humans are infected with HPAVI H5N1 resulting in high mortality, but no sustained human-to-human transmission. In this review, the replication cycle, pathogenicity, evolution, spread, and transmission of HPAIVs of H5Nx subtypes, along with the host immune responses to Highly Pathogenic Avian Influenza Virus (HPAIV) infection and potential vaccination, are discussed. In addition, the potential mechanisms for Highly Pathogenic Avian Influenza Virus (HPAIV) H5 Reassorted Viruses H5N1, H5N2, H5N6, H5N8 (H5Nx) viruses to transmit, infect, and adapt to the human host are reviewed.
Collapse
Affiliation(s)
- Ivette A. Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, 501 D.W. Brooks Drive, CVI Room 1504, Athens, GA 30602, USA
| |
Collapse
|
8
|
Helenius A. Virus Entry: Looking Back and Moving Forward. J Mol Biol 2018; 430:1853-1862. [PMID: 29709571 PMCID: PMC7094621 DOI: 10.1016/j.jmb.2018.03.034] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/29/2022]
Abstract
Research over a period of more than half a century has provided a reasonably accurate picture of mechanisms involved in animal virus entry into their host cells. Successive steps in entry include binding to receptors, endocytosis, passage through one or more membranes, targeting to specific sites within the cell, and uncoating of the genome. For some viruses, the molecular interactions are known in great detail. However, as more viruses are analyzed, and as the focus shifts from tissue culture to in vivo experiments, it is evident that viruses display considerable redundancy and flexibility in receptor usage, endocytic mechanism, location of penetration, and uncoating mechanism. For many viruses, the picture is still elusive because the interactions that they engage in rely on sophisticated adaptation to complex cellular functions and defense mechanisms. Studies using a broad combination of technologies have provided detailed information on the entry and uncoating of many animal viruses. Not only the identity of cell surface receptors but their distribution in plasma membrane and in microdomains defines cell tropism and infection efficiency. The majority of viruses enter by endocytic mechanisms and penetrate into the cytosol intracellularly from a variety of different organelles. The picture is often elusive because many viruses display redundancy in receptor choice and entry strategy.
Collapse
Affiliation(s)
- Ari Helenius
- ETH Zurich, Institute of Biochemistry, Otto-Stern-Weg 3, Zurich 8093, Switzerland.
| |
Collapse
|
9
|
Leucomycin A3, a 16-membered macrolide antibiotic, inhibits influenza A virus infection and disease progression. J Antibiot (Tokyo) 2014; 67:213-22. [PMID: 24496145 DOI: 10.1038/ja.2013.132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/16/2013] [Accepted: 11/10/2013] [Indexed: 11/09/2022]
Abstract
Severe respiratory disease arising from influenza virus infection has a high fatality rate. Neutrophil myeloperoxidase (MPO) has been implicated in the pathogenesis of severe influenza-induced pneumonia because extracellularly released MPO mediates the production of hypochlorous acid, a potent tissue injury factor. To search for candidate anti-influenza compounds, we screened leucomycin A3 (LM-A3), spiramycin (SPM), an erythromycin derivative (EM900, in which anti-bacterial activity has been eliminated), and clarithromycin (CAM), by analyzing their ability to inhibit MPO release in neutrophils from mice and humans. When each candidate was injected into mice infected with a lethal dose of A/H1N1 influenza virus (PR-8), LM-A3 produced the highest survival rate (80.9%). We found that LM-A3 induced beneficial effects on lung pathology and viral proliferation involved in the regulatory activity of MPO release, pro-inflammatory cytokines and interferon-α production in the lung. SPM and EM900 also induced positive survival effects in the infected mice, whereas CAM did not. We further found that these compounds inhibit virus proliferation in human pneumonia epithelial A549 cells in vitro. LM-A3 showed effective action against influenza A virus infection with high anti-viral activity in human host cells, indicating the possibility that LM-A3 is a prospective lead compound for the development of a drug for human influenza. The positive survival effect induced by EM900 suggests that pharmacological architectures between anti-bacterial and anti-influenza virus activities can be dissociated in macrolide derivatives. These observations provide valuable evidence for the potential development of novel macrolide derivatives that have strong anti-viral but no anti-bacterial activity.
Collapse
|
10
|
Sakai M, Kankanamge PJ, Shoji J, Kawata S, Tochikura TS, Kawai A. Studies on the Conditions Required for Structural and Functional Maturation of Rabies Virus Glycoprotein (G) in G cDNA-Transfected Cells. Microbiol Immunol 2013; 48:853-64. [PMID: 15557743 DOI: 10.1111/j.1348-0421.2004.tb03617.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When the rabies virus G cDNA was expressed with the help of T7 RNA polymerase provided by a recombinant vaccinia virus (RVV-T7), functional G proteins were produced in terms of their ability to induce low pH-dependent syncytium formation and the formation of conformational epitopes, including the acid-sensitive epitope recognized by mAb #1-30-44. Such an ability and the 1-30-44 epitope formation, however, were not associated with the G gene products when G cDNA was expressed without the help of RVV-T7 using a tetracycline-regulated expression vector (pTet-G), although they were normally transported to the surface of established G protein-producing BHK-21 (G-BHK) cells. But, when the G-BHK cells were treated with 2.5 m M sodium butyrate (NaB) after the removal of tetracycline, we could observe not only a much increased frequency of G protein-producing cells, but also the greatly enhanced maturation of the protein. Another short acylate, sodium propionate (NaP), similarly induced increased G protein synthesis at a concentration of 2.5 m M as NaB; however, such proteins were mostly not endowed with the fusion activity nor the 1-30-44 epitope, while NaP at a higher concentration as 5.0 m M did induce similarly the increased production and enhanced maturation of G protein, including the 1-30-44 epitope formation. From these results, we conclude that functional maturation of G protein to acquire fusogenic activity is correlated with 1-30-44 epitope formation, and 2.5 m M NaB not only stimulates G protein production, but also provides such cellular conditions as are required for the structural and functional maturation of the protein.
Collapse
Affiliation(s)
- Mai Sakai
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Fusion of mApple and Venus fluorescent proteins to the Sindbis virus E2 protein leads to different cell-binding properties. Virus Res 2013; 177:138-46. [PMID: 23916968 DOI: 10.1016/j.virusres.2013.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 11/23/2022]
Abstract
Fluorescent proteins (FPs) are widely used in real-time single virus particle studies to visualize, track and quantify the spatial and temporal parameters of viral pathways. However, potential functional differences between the wild type and the FP-tagged virus may specifically affect particular stages in the virus life-cycle. In this work, we genetically modified the E2 spike protein of Sindbis virus (SINV) with two FPs. We inserted mApple, a red FP, or Venus, a yellow FP, at the N-terminus of the E2 protein of SINV to make SINV-Apple and SINV-Venus. Our results indicate that SINV-Apple and SINV-Venus have similar levels of infectivity and are morphologically similar to SINV-wild-type by negative stain transmission electron microscopy. Both mutants are highly fluorescent and have excellent single-particle tracking properties. However, despite these similarities, when measuring cell entry at the single-particle level, we found that SINV-Apple and SINV-Venus are different in their interaction with the cell surface and FPs are not always interchangeable. We went on to determine that the FP changes the net surface charge on the virus particles, the folding of the spike proteins, and the conformation of the spikes on the virus particle surface, ultimately leading to different cell-binding properties between SINV-Apple and SINV-Venus. Our results are consistent with recent findings that FPs may alter the biological and cellular localization properties of bacterial proteins to which they are fused.
Collapse
|
12
|
Martinez-Fong D, Bannon MJ, Trudeau LE, Gonzalez-Barrios JA, Arango-Rodriguez ML, Hernandez-Chan NG, Reyes-Corona D, Armendáriz-Borunda J, Navarro-Quiroga I. NTS-Polyplex: a potential nanocarrier for neurotrophic therapy of Parkinson's disease. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1052-69. [PMID: 22406187 DOI: 10.1016/j.nano.2012.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/14/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Nanomedicine has focused on targeted neurotrophic gene delivery to the brain as a strategy to stop and reverse neurodegeneration in Parkinson's disease. Because of improved transfection ability, synthetic nanocarriers have become candidates for neurotrophic therapy. Neurotensin (NTS)-polyplex is a "Trojan horse" synthetic nanocarrier system that enters dopaminergic neurons through NTS receptor internalization to deliver a genetic cargo. The success of preclinical studies with different neurotrophic genes supports the possibility of using NTS-polyplex in nanomedicine. In this review, we describe the mechanism of NTS-polyplex transfection. We discuss the concept that an effective neurotrophic therapy requires a simultaneous effect on the axon terminals and soma of the remaining dopaminergic neurons. We also discuss the future of this strategy for the treatment of Parkinson's disease. FROM THE CLINICAL EDITOR This review paper focuses on nanomedicine-based treatment of Parkinson's disease, a neurodegenerative condition with existing symptomatic but no curative treatment. Neurotensin-polyplex is a synthetic nanocarrier system that enables delivery of genetic cargo to dopaminergic neurons via NTS receptor internalization.
Collapse
|
13
|
Grimpe B. Deoxyribozymes and bioinformatics: complementary tools to investigate axon regeneration. Cell Tissue Res 2011; 349:181-200. [PMID: 22190188 PMCID: PMC7087747 DOI: 10.1007/s00441-011-1291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/17/2011] [Indexed: 11/28/2022]
Abstract
For over 100 years, scientists have tried to understand the mechanisms that lead to the axonal growth seen during development or the lack thereof during regeneration failure after spinal cord injury (SCI). Deoxyribozyme technology as a potential therapeutic to treat SCIs or other insults to the brain, combined with a bioinformatics approach to comprehend the complex protein-protein interactions that occur after such trauma, is the focus of this review. The reader will be provided with information on the selection process of deoxyribozymes and their catalytic sequences, on the mechanism of target digestion, on modifications, on cellular uptake and on therapeutic applications and deoxyribozymes are compared with ribozymes, siRNAs and antisense technology. This gives the reader the necessary knowledge to decide which technology is adequate for the problem at hand and to design a relevant agent. Bioinformatics helps to identify not only key players in the complex processes that occur after SCI but also novel or less-well investigated molecules against which new knockdown agents can be generated. These two tools used synergistically should facilitate the pursuit of a treatment for insults to the central nervous system.
Collapse
Affiliation(s)
- Barbara Grimpe
- Applied Neurobiology, Department of Neurology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
Cameron RS, Arvan P, Castle JD. Secretory Membranes and the Exocrine Storage Compartment. Compr Physiol 2011. [DOI: 10.1002/cphy.cp060307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
|
16
|
Yamaya M, Nishimura H, Shinya K, Hatachi Y, Sasaki T, Yasuda H, Yoshida M, Asada M, Fujino N, Suzuki T, Deng X, Kubo H, Nagatomi R. Inhibitory effects of carbocisteine on type A seasonal influenza virus infection in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2010; 299:L160-8. [PMID: 20543005 DOI: 10.1152/ajplung.00376.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type A human seasonal influenza (FluA) virus infection causes exacerbations of bronchial asthma and chronic obstructive pulmonary disease (COPD). l-carbocisteine, a mucolytic agent, reduces the frequency of common colds and exacerbations in COPD. However, the inhibitory effects of l-carbocisteine on FluA virus infection are uncertain. We studied the effects of l-carbocisteine on FluA virus infection in airway epithelial cells. Human tracheal epithelial cells were pretreated with l-carbocisteine and infected with FluA virus (H(3)N(2)). Viral titers in supernatant fluids, RNA of FluA virus in the cells, and concentrations of proinflammatory cytokines in supernatant fluids, including IL-6, increased with time after infection. l-carbocisteine reduced viral titers in supernatant fluids, RNA of FluA virus in the cells, the susceptibility to FluA virus infection, and concentrations of cytokines induced by virus infection. The epithelial cells expressed sialic acid with an alpha2,6-linkage (SAalpha2,6Gal), a receptor for human influenza virus on the cells, and l-carbocisteine reduced the expression of SAalpha2,6Gal. l-carbocisteine reduced the number of acidic endosomes from which FluA viral RNA enters into the cytoplasm and reduced the fluorescence intensity from acidic endosomes. Furthermore, l-carbocisteine reduced NF-kappaB proteins including p50 and p65 in the nuclear extracts of the cells. These findings suggest that l-carbocisteine may inhibit FluA virus infection, partly through the reduced expression of the receptor for human influenza virus in the human airway epithelial cells via the inhibition of NF-kappaB and through increasing pH in endosomes. l-carbocisteine may reduce airway inflammation in influenza virus infection.
Collapse
Affiliation(s)
- Mutsuo Yamaya
- Dept. of Advanced Preventive Medicine for Infectious Disease, Tohoku Univ. School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yamaya M, Shinya K, Hatachi Y, Kubo H, Asada M, Yasuda H, Nishimura H, Nagatomi R. Clarithromycin inhibits type a seasonal influenza virus infection in human airway epithelial cells. J Pharmacol Exp Ther 2010; 333:81-90. [PMID: 20040578 DOI: 10.1124/jpet.109.162149] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Human influenza viruses attach to sialic acid with an alpha2,6linkage (SAalpha2,6Gal) on the airway epithelial cells, and the entry of the viruses into the cells and uncoating of the viruses require low pH of endosomes. Bafilomycin A(1), a macrolide antibiotic and a specific inhibitor of vacuolar H(+)-ATPase, inhibits growth of type A and type B human influenza viruses in Madin-Darby canine kidney cells. However, the inhibitory effects of clinically used macrolide antibiotics on influenza virus infection in human airways have not been studied. To examine the effects of clarithromycin on seasonal human influenza virus infection, cultured human tracheal epithelial cells were infected with type A influenza virus (H3N2). Influenza virus infection increased viral titers and the content of cytokines, including interleukin (IL)-1beta and IL-6, in supernatant fluids, and viral RNA in the cells. Clarithromycin reduced viral titers and the content of cytokines in supernatant fluids, viral RNA in the cells, and the susceptibility to virus infection. Clarithromycin reduced the expression of SAalpha2,6Gal, a receptor for human influenza virus, on the mucosal surface of human tracheae, and the number and fluorescence intensity of acidic endosomes in the cells from which viral ribonucleoproteins enter into the cytoplasm. Furthermore, clarithromycin reduced nuclear factor-kappaB (NF-kappaB) proteins, including p50 and p65, in the nuclear extracts. These results suggest that clarithromycin may inhibit seasonal human influenza virus infection by reducing SAalpha2,6Gal partly through the inhibition of NF-kappaB, and increasing pH in endosomes in airway epithelial cells. Clarithromycin may modulate airway inflammation in influenza virus infection.
Collapse
Affiliation(s)
- Mutsuo Yamaya
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku 980-8575, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dee KU, Shuler ML. A mathematical model of the trafficking of acid-dependent enveloped viruses: application to the binding, uptake, and nuclear accumulation of baculovirus. Biotechnol Bioeng 2009; 54:468-90. [PMID: 18634139 DOI: 10.1002/(sici)1097-0290(19970605)54:5<468::aid-bit7>3.0.co;2-c] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A quantitative understanding of virus trafficking would be useful in treating viral-mediated diseases, developing protocols for viral gene therapy, designing infection regimens for viral expression systems, and optimizing vaccine and recombinant protein production. Here, we present a mathematical model of the attachment, internalization, endosomal fusion, lysosomal routing, and nuclear accumulation of baculovirus in SF21 insect cells. The model accounts for multivalent bond formation of the virus with cell surface receptors. The model mimics accurately the experimental trafficking dynamics of the virus at both low and high virion to cell ratios, and estimates a receptor number of 11,000 per cell. A significant amount of virus was degraded intracellularly. Independent of the virion to cell ratio, half of the internalized virus was degraded with the rest accumulating in the nucleus. The formalism used in the model may be generally useful for other acid-dependent enveloped viruses. A subset of the model has been used previously to describe the trafficking of Semliki Forest virus, an acid-dependent enveloped RNA virus.Two pathways have previously been implicated for the in vitro entry of the budded form of the baculovirus: adsorptive endocytosis and plasma membrane fusion. Experimental evidence is presented which strongly suggests that the physical number of viruses entering by plasma membrane fusion is not significant relative to receptor-mediated endocytosis.
Collapse
Affiliation(s)
- K U Dee
- School of Chemical Engineering, Cornell University, 340 Olin Hall, Ithaca, New York 14853-5201, USA
| | | |
Collapse
|
19
|
Neundorf I, Rennert R, Hoyer J, Schramm F, Löbner K, Kitanovic I, Wölfl S. Fusion of a Short HA2-Derived Peptide Sequence to Cell-Penetrating Peptides Improves Cytosolic Uptake, but Enhances Cytotoxic Activity. Pharmaceuticals (Basel) 2009; 2:49-65. [PMID: 27713223 PMCID: PMC3978507 DOI: 10.3390/ph2020049] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 12/21/2022] Open
Abstract
Cell-penetrating peptides (CPP) have become a widely used tool for efficient cargo delivery into cells. However, one limiting fact is their uptake by endocytosis causing the enclosure of the CPP-cargo construct within endosomes. One often used method to enhance the outflow into the cytosol is the fusion of endosome-disruptive peptide or protein sequences to CPP. But, until now, no studies exist investigating the effects of the fusion peptide to the cellular distribution, structural arrangements and cytotoxic behaviour of the CPP. In this study, we attached a short modified sequence of hemagglutinin subunit HA2 to different CPP and analysed the biologic activity of the new designed peptides. Interestingly, we observed an increased cytosolic distribution but also highly toxic activities in the micromolar range against several cell lines. Structural analysis revealed that attachment of the fusion peptide had profound implications on the whole conformation of the peptide, which might be responsible for membrane interaction and endosome disruption.
Collapse
Affiliation(s)
- Ines Neundorf
- Institut für Biochemie; Fakultät für Biowissenschaften, Pharmazie und Psychologie; Universität Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany.
| | - Robert Rennert
- Institut für Biochemie; Fakultät für Biowissenschaften, Pharmazie und Psychologie; Universität Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Jan Hoyer
- Institut für Biochemie; Fakultät für Biowissenschaften, Pharmazie und Psychologie; Universität Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Franziska Schramm
- Institut für Biochemie; Fakultät für Biowissenschaften, Pharmazie und Psychologie; Universität Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Kristin Löbner
- Institut für Biochemie; Fakultät für Biowissenschaften, Pharmazie und Psychologie; Universität Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Igor Kitanovic
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimerfeld 364, D-69120 Heidelberg, Germany
| | - Stefan Wölfl
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimerfeld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
20
|
D'Souza C, Kanyalkar M, Joshi M, Coutinho E, Srivastava S. Search for novel neuraminidase inhibitors: Design, synthesis and interaction of oseltamivir derivatives with model membrane using docking, NMR and DSC methods. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1740-51. [DOI: 10.1016/j.bbamem.2009.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 04/02/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
|
21
|
Hernandez R, Paredes A. Sindbis virus as a model for studies of conformational changes in a metastable virus and the role of conformational changes in in vitro antibody neutralisation. Rev Med Virol 2009; 19:257-72. [DOI: 10.1002/rmv.619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Nagai K, Ishida T, Hashimoto T, Harada Y, Ueno S, Ueda Y, Kubo H, Iwao Y. The Sperm-surface glycoprotein, SGP, is necessary for fertilization in the frog, Xenopus laevis. Dev Growth Differ 2009; 51:499-510. [PMID: 19469788 DOI: 10.1111/j.1440-169x.2009.01112.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To identify a molecule involved in sperm-egg plasma membrane binding at fertilization, a monoclonal antibody against a sperm-surface glycoprotein (SGP) was obtained by immunizing mice with a sperm membrane fraction of the frog, Xenopus laevis, followed by screening of the culture supernatants based on their inhibitory activity against fertilization. The fertilization of both jellied and denuded eggs was effectively inhibited by pretreatment of sperm with intact anti-SGP antibody as well as its Fab fragment, indicating that the antibody recognizes a molecule on the sperm's surface that is necessary for fertilization. On Western blots, the anti-SGP antibody recognized large molecules, with molecular masses of 65-150 kDa and minor smaller molecules with masses of 20-28 kDa in the sperm membrane vesicles. SGP was distributed over nearly the entire surface of the sperm, probably as an integral membrane protein in close association with microfilaments. More membrane vesicles containing SGP bound to the surface were found in the animal hemisphere compared with the vegetal hemisphere in unfertilized eggs, but the vesicle-binding was not observed in fertilized eggs. These results indicate that SGP mediates sperm-egg membrane binding and is responsible for the establishment of fertilization in Xenopus.
Collapse
Affiliation(s)
- Keita Nagai
- Laboratory of Molecular Developmental Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
D'Souza C, Kanyalkar M, Joshi M, Coutinho E, Srivastava S. Probing molecular level interaction of oseltamivir with H5N1-NA and model membranes by molecular docking, multinuclear NMR and DSC methods. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:484-94. [PMID: 19100712 DOI: 10.1016/j.bbamem.2008.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 11/30/2022]
Abstract
Structure-based drug design has led to the introduction of three drugs--oseltamivir (GS-4104), zanamivir (GG-167) and peramivir (RWJ-270201) which target the enzyme neuraminidase, for treatment of influenza infections. Using comparative docking studies we propose that more potent molecules against neuraminidase can be obtained by appending extra positively charged substituents at the C5 position of the oseltamivir skeleton. This provides an additional interaction with the enzyme and may overcome the problem of resistance encountered with these drugs. To get an insight into the transport and absorption of oseltamivir--the ethyl ester prodrug (GS-4104) as well as its mechanism of action, we have carried out 1H, 13C, 31P NMR, DSC and TEM studies on GS-4104 with model membranes prepared from DMPC/DPPC/POPC. These studies reveal that interactions between GS-4104 and the membrane are both electrostatic (involving H-bonding) and hydrophobic (involving the hydrophobic chain and cyclohexene ring of GS-4104) in nature. The prodrug is seen to increase the fluidity as well as stabilize the bilayer phase of the membrane. This property may be responsible for preventing viral entry into the cells by preventing fusion of the virus outer coat with the cell membrane.
Collapse
Affiliation(s)
- Charlotte D'Souza
- Prin K M Kundnani College of Pharmacy, Cuffe Parade, Mumbai-400005, India
| | | | | | | | | |
Collapse
|
24
|
Role of electrostatics on membrane binding, aggregation and destabilization induced by NAD(P)H dehydrogenases. Implication in membrane fusion. Biophys Chem 2008; 137:126-32. [DOI: 10.1016/j.bpc.2008.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 08/08/2008] [Accepted: 08/08/2008] [Indexed: 11/17/2022]
|
25
|
|
26
|
Couvreu P, Fattal E, Malvy C, Dubernet C. pH-Sensitive Liposomes: An Intelligent System for the Delivery of Antisense Oligonucleotides. J Liposome Res 2008. [DOI: 10.3109/08982109709035478] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Chen T, Choi LS, Einstein S, Klippenstein MA, Scherrer P, Cuhis PR. Proton-Induced Permeability and Fusion of Large Unilamellar Vesicles by Covalently Conjugated Poly(2-Ethylacrylic Acid). J Liposome Res 2008. [DOI: 10.3109/08982109909018658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Ohnishi SI. Chapter 9 Fusion of Viral Envelopes with Cellular Membranes. CURRENT TOPICS IN MEMBRANES AND TRANSPORT 2008; 32:257-296. [PMID: 32287479 PMCID: PMC7146812 DOI: 10.1016/s0070-2161(08)60137-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
This chapter reviews some characteristic features of membrane fusion activity for each virus and discusses the mechanisms of membrane fusion, especially low pH-induced membrane fusion. It concentrates on the interaction of the hydrophobic segment with the target cell membrane lipid bilayer and suggests the entrance of the segment into the lipid bilayer hydrophobic core as a key step in fusion. The envelope is a lipid bilayer membrane with the virus specific glycoproteins spanning it. The bilayer originates from the host cell membrane and has a lipid composition and transbilayer distribution quite similar to the host's. The viral glycoproteins have the functions of binding to the target cell surface and fusion with the cell membranes. The two functions are carried by a single glycoprotein in influenza virus (HA), vesicular stomatitis virus (VSV) G glycoprotein, and Semliki Forest virus SFV E glycoprotein. In Sendai virus (HVJ), the functions are carried by separate glycoproteins, hemagglutinin-neuraminidase (HN) for binding and fusion glycoprotein (F) for fusion. When viruses encounter target cells, they first bind to the cell surface through an interaction of the viral glycoprotein with receptors.
Collapse
Affiliation(s)
- Shun-Ichi Ohnishi
- Department of Biophysics Facurlty of Science Kyoto University Sakyo-ku. Kyoto 606, Japan
| |
Collapse
|
29
|
Rodriguez-Boulan E, Misek DE, Salas DVD, Salas PJI, Bard E. Chapter 6 Protein Sorting in the Secretory Pathway. CURRENT TOPICS IN MEMBRANES AND TRANSPORT 2008; 24:251-294. [PMID: 32287478 PMCID: PMC7146842 DOI: 10.1016/s0070-2161(08)60328-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This chapter focuses on protein sorting in the secretory pathway. From primary and secondary biosynthetic sites in the cytosol and mitochondrial matrix, respectively, proteins and lipids are distributed to more than 30 final destinations in membranes or membrane-bound spaces, where they carry out their programmed function. Molecular sorting is defined, in its most general sense, as the sum of the mechanisms that determine the distribution of a given molecule from its site of synthesis to its site of function in the cell. The final site of residence of a protein in a eukaryotic cell is determined by a combination of various factors, acting in concert: (1) site of synthesis, (2) sorting signals or zip codes, (3) signal recognition or decoding mechanisms, (4) cotranslational or posttranslational mechanisms for translocation across membranes, (5) specific fusion-fission interactions between intracellular vesicular compartments, and (6) restrictions to the lateral mobility in the plane of the bilayer. Improvements in cell fractionation, protein separation, and immune precipitation procedures in the past decade have made them possible. Very little is known about the mechanisms that mediate the localization and concentration of specific proteins and lipids within organelles. Various experimental model systems have become available for their study. The advent of recombinant DNA technology has shortened the time needed for obtaining the primary structure of proteins to a few months.
Collapse
Affiliation(s)
| | - David E Misek
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Dora Vega De Salas
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York
| | - Pedro J I Salas
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York
| | - Enzo Bard
- Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
30
|
Affiliation(s)
- James A McNew
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, Texas 77251-1892, USA.
| |
Collapse
|
31
|
|
32
|
Abstract
Amine secretion from electropermeabilized bovine chromaffin cells and human platelets requires Ca2+ and MgATP. There appears to be little correlation between the pH or potential of the interior of the amine storage granules of the chromaffin cells and the Ca2+ sensitivity or extent of secretion. The Ca2+ sensitivities of secretion for both preparations are increased by activators of protein kinase C. In the platelet, thrombin also increases the Ca2+ sensitivity. The thrombin-induced response is further enhanced by micromolar levels of GTP. The non-hydrolysable analogue GTP gamma S also potentiates the Ca2+-dependent secretory response, but this effect is additive to that seen by thrombin rather than synergistic, as is the case with GTP. GTP gamma S inhibits catecholamine secretion from bovine chromaffin cells. In both preparations the effects of GTP gamma S are inhibited by 10 microM GTP, even though GTP concentrations up to 1 mM are without effect when added alone. These results are consistent with there being two sites of action for the guanine nucleotides, one at the level of the agonist receptor and activated by GTP or one of its breakdown products, and the other one activated by GTP gamma S--possibly at the level of protein kinase C itself.
Collapse
|
33
|
Ilyushina NA, Govorkova EA, Russell CJ, Hoffmann E, Webster RG. Contribution of H7 haemagglutinin to amantadine resistance and infectivity of influenza virus. J Gen Virol 2007; 88:1266-1274. [PMID: 17374771 DOI: 10.1099/vir.0.82256-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the present study we determined the antiviral effect of amantadine against influenza A/Netherlands/219/03 (H7N7) virus in cell culture and in a mouse model. Amantadine at concentrations <100 μM failed to inhibit virus replication in Madin–Darby canine kidney (MDCK) cells. When orally administered to mice for 5 days, amantadine at 15 mg kg−1 day−1 did not protect animals against lethal challenge with H7N7 infection, and virus titres in mouse organs were not reduced. However, sequence analysis of the M2 protein revealed none of the mutations previously described as being associated with amantadine resistance. We used reverse genetics to generate viruses containing the haemagglutinin (HA) or M gene of A/Netherlands/219/03 virus to investigate the role of these genes in amantadine sensitivity. All recombinant viruses carrying the HA segment of A/Netherlands/219/03 (H7N7) virus were amantadine-resistant, regardless of the origin of their other genes. To study the role of fusion activity in the mechanism of drug resistance, we introduced the Gly23→Cys mutation in the H7 fusion peptide. This substitution resulted in a decrease of the pH of fusion and was also associated with reduced virus replication in both MDCK cells and mice, as compared to that of the wild-type virus. We suggest that H7 HA protein plays a role in amantadine resistance, although all HA amino acids that participate in drug resistance still remain to be characterized. Our finding reveals that sequence analysis of the transmembrane domain of M2 protein may not adequately identify all drug-resistant variants.
Collapse
Affiliation(s)
- Natalia A Ilyushina
- The D. I. Ivanovsky Institute of Virology, 16 Gamaleya Street, 123098 Moscow, Russia
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elena A Govorkova
- The D. I. Ivanovsky Institute of Virology, 16 Gamaleya Street, 123098 Moscow, Russia
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles J Russell
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erich Hoffmann
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert G Webster
- Department of Pathology, University of Tennessee, Memphis, TN 38105, USA
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
34
|
Cantín C, Holguera J, Ferreira L, Villar E, Muñoz-Barroso I. Newcastle disease virus may enter cells by caveolae-mediated endocytosis. J Gen Virol 2007; 88:559-569. [PMID: 17251575 DOI: 10.1099/vir.0.82150-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The entry into cells of Newcastle disease virus (NDV), a prototype member of the paramyxoviruses, is believed to occur by direct fusion at the plasma membrane through a pH-independent mechanism. In addition, NDV may enter host cells by an endocytic pathway. Treatment of cells with drugs that block caveolae-dependent endocytosis reduced NDV fusion and infectivity, the degree of inhibition being dependent on virus concentration. The inhibitory effect was reduced greatly when drugs were added after virus adsorption. Cells treated with methyl beta-cyclodextrin, a drug that sequesters cholesterol from membranes, reduced the extent of fusion, infectivity and virus-cell binding; this indicates that cholesterol plays a role in NDV entry. Double-labelling immunofluorescence assays performed with anti-NDV monoclonal antibodies and antibodies against the early endosome marker EEA1 revealed the localization of the virus in these intracellular structures. Using fluorescence microscopy, it was found that cell-cell fusion was enhanced at low pH. It is concluded that NDV may infect cells through a caveolae-dependent endocytic pathway, suggesting that this pathway could be an alternative route for virus entry into cells.
Collapse
Affiliation(s)
- Celia Cantín
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Javier Holguera
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Laura Ferreira
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Enrique Villar
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Isabel Muñoz-Barroso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| |
Collapse
|
35
|
Abstract
Small ring systems are important topics in both organic and inorganic chemistry, and draw considerable attention from both theoretical and preparative perspectives. This review intends to summarize the studies, focusing on the preparative aspects, that have been carried out in our laboratory. Namely, synthesis of (+)- and (-)-alpha-cuparenone, (+)-ipomeamarone, (+)-epiipomeamarone, (-)-ngaione, (-)-alpha-bisabolol, (-)-aplysin, (-)-debromoaplysin, (-)-mesembrine, (-)-filiformin, (-)-debromofiliformin, and (-)-4-deoxyverrucarol via successive asymmetric epoxidation and enantiospecific ring expansion of cyclopropylidenes, (+)-equilenin via successive ring expansion-insertion reaction, estrone, estradiol, chenodeoxycholic acid, 19-norspironolactone, 19-nordeoxycorticosterone, cortisone, adrenosterone, 11-oxoprogesterone, and 1alpha,25-dihydroxyvitamin D3 via intramolecular cycloaddition reaction of o-quinodimethanes. Medicinal chemistry aiming at developing a new type of anti-influenza agent, novel reaction mode of electrocyclic reaction, and substituent effect on that reaction are also discussed.
Collapse
Affiliation(s)
- Hideo Nemoto
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Japan.
| |
Collapse
|
36
|
Loyter A, Citovsky V, Blumenthal R. The use of fluorescence dequenching measurements to follow viral membrane fusion events. METHODS OF BIOCHEMICAL ANALYSIS 2006; 33:129-64. [PMID: 3128721 DOI: 10.1002/9780470110546.ch4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Li M, Li ZN, Yao Q, Yang C, Steinhauer DA, Compans RW. Murine leukemia virus R Peptide inhibits influenza virus hemagglutinin-induced membrane fusion. J Virol 2006; 80:6106-14. [PMID: 16731949 PMCID: PMC1472558 DOI: 10.1128/jvi.02665-05] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic tail of the murine leukemia virus (MuLV) envelope (Env) protein is known to play an important role in regulating viral fusion activity. Upon removal of the C-terminal 16 amino acids, designated as the R peptide, the fusion activity of the Env protein is activated. To extend our understanding of the inhibitory effect of the R peptide and investigate the specificity of inhibition, we constructed chimeric influenza virus-MuLV hemagglutinin (HA) genes. The influenza virus HA protein is the best-studied membrane fusion model, and we investigated the fusion activities of the chimeric HA proteins. We compared constructs in which the coding sequence for the cytoplasmic tail of the influenza virus HA protein was replaced by that of the wild-type or mutant MuLV Env protein or in which the cytoplasmic tail sequence of the MuLV Env protein was added to the HA cytoplasmic domain. Enzyme-linked immunosorbent assays and Western blot analysis showed that all chimeric HA proteins were effectively expressed on the cell surface and cleaved by trypsin. In BHK21 cells, the wild-type HA protein had a significant ability after trypsin cleavage to induce syncytium formation at pH 5.1; however, neither the chimeric HA protein with the full-length cytoplasmic tail of MuLV Env nor the full-length HA protein followed by the R peptide showed any syncytium formation. When the R peptide was truncated or mutated, the fusion activity was partially recovered in the chimeric HA proteins. A low-pH conformational-change assay showed that similar conformational changes occurred for the wild-type and chimeric HA proteins. All chimeric HA proteins were capable of promoting hemifusion and small fusion pore formation, as shown by a dye redistribution assay. These results indicate that the R peptide of the MuLV Env protein has a sequence-dependent inhibitory effect on influenza virus HA protein-induced membrane fusion and that the inhibitory effect occurs at a late stage in fusion pore enlargement.
Collapse
Affiliation(s)
- Min Li
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
38
|
Irie T, Kankanamge PJ, Kawai A. Two different conformations of rabies virus glycoprotein taken under neutral pH conditions. Microbiol Immunol 2006; 50:435-46. [PMID: 16785715 DOI: 10.1111/j.1348-0421.2006.tb03812.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We previously reported that the rabies virus glycoprotein (G) takes either of two different conformations (referred to as B and C forms) under neutral pH conditions, that could be differentiated by their reactivity to a monoclonal antibody (mAb), #1-30-44, that recognizes the acid-sensitive conformational epitope, and the formation taken is dependent on two separate regions containing Lys-202 and Asn-336 of the protein (Kankanamge et al., Microbiol. Immunol., 47, 507-519, 2003). Semi-quantitative antibody-binding assays demonstrated that only one-third to one-fourth of mature G proteins on the cell surface were taking the 1-30-44 epitope-positive B form even at pH 7.4. The ratio of B to C varied, depending on the environmental pH, but did not decrease to zero even at pH 5.8-6.2, preserving a certain content (about 15-20%) of B form. Immunoprecipitation studies demonstrated that a portion of G proteins were intimately associated with a dimer form of matrix (M) protein in terms of resistance to treatment with a mixture of 1% deoxycholate and 1% Nonidet P-40, and seemed to preserve the B form even at lower pHs. Similar results were also obtained with the virion-associated G proteins, including the intimate association of a portion of the G proteins with the M protein dimer. From these results, we assume that a certain portion of the rabies virion-associated G proteins are associated with a dimer form of M protein, keeping the 1-30-44 epitope-positive B conformation under various pH conditions, which might possibly assure the virion's recognition of host cell receptor molecules in the body.
Collapse
Affiliation(s)
- Takashi Irie
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
39
|
Atif SM, Hasan I, Ahmad N, Khan U, Owais M. Fusogenic potential of sperm membrane lipids: Nature's wisdom to accomplish targeted gene delivery. FEBS Lett 2006; 580:2183-90. [PMID: 16580670 DOI: 10.1016/j.febslet.2006.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/03/2006] [Accepted: 03/04/2006] [Indexed: 10/24/2022]
Abstract
The membrane-membrane fusion during fertilization of oocyte by spermatozoa is believed to be mainly mediated by so called "fusion proteins". In the present study we have tried to demonstrate that beside the proteins, lipid components of membrane may play an important role in fusion of oocyte with spermatozoa. Conventional membrane-membrane fusion assays were used as means to demonstrate fusogenic potential of human sperm membrane lipids. The liposomes (spermatosomes) made of the lipids isolated from sperm membrane were found to undergo strong membrane-membrane fusion as evident from fluorescence dequenching and resonance energy transfer assays. Furthermore, the fusion of these liposomes with living cells (J774 A.1 macrophage cell line) was demonstrated to result in an effective transfer of a water-soluble fluorescent probe (calcein) to cytosol of the target cell. Lastly, the liposomes were demonstrated to behave like efficient vehicles for the in vivo cytosolic delivery of the antigens to target cells resulting in elicitation of antigen specific CD8(+) T cell responses.
Collapse
Affiliation(s)
- Shaikh Muhammad Atif
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
40
|
Tischler ND, Gonzalez A, Perez-Acle T, Rosemblatt M, Valenzuela PDT. Hantavirus Gc glycoprotein: evidence for a class II fusion protein. J Gen Virol 2006; 86:2937-2947. [PMID: 16227214 DOI: 10.1099/vir.0.81083-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hantavirus cell entry is promoted by its envelope glycoproteins, Gn and Gc, through cell attachment and by fusion between viral and endosomal membranes at low pH. However, the role of Gn and Gc in receptor binding and cell fusion has not yet been defined. In this work, a sequence presenting characteristics similar to those of class II fusion peptides (FPs) of alphavirus E1 and flavivirus E proteins is identified within the hantavirus Gc glycoprotein. A three-dimensional comparative molecular model based on crystallographic data of tick-borne encephalitis virus E protein is proposed for the Andes virus (ANDV) Gc ectodomain, which supports a feasible class II fusion-protein fold. In vitro experimental evidence is provided for the binding activity of the ANDV FP candidate to artificial membranes, as demonstrated by fluorescence anisotropy assays. Taken together, these results support the hypothesis that the Gc glycoprotein of hantaviruses and of other members of the family Bunyaviridae directs the viral fusion activity and that it may be classified as a class II viral fusion protein.
Collapse
Affiliation(s)
- Nicole D Tischler
- Instituto Milenio MIFAB, Zañartu 1482, Santiago, Chile
- Fundación Ciencia para la Vida, Zañartu 1482, Santiago, Chile
| | - Angel Gonzalez
- Centro de Genómica y Bioinformática, Pontificia Universidad Católica, Zañartu 1482, Santiago, Chile
| | - Tomas Perez-Acle
- Centro de Genómica y Bioinformática, Pontificia Universidad Católica, Zañartu 1482, Santiago, Chile
| | - Mario Rosemblatt
- Universidad Andrés Bello, Zañartu 1482, Santiago, Chile
- Instituto Milenio MIFAB, Zañartu 1482, Santiago, Chile
- Fundación Ciencia para la Vida, Zañartu 1482, Santiago, Chile
| | - Pablo D T Valenzuela
- Fundación Ciencia para la Vida, Zañartu 1482, Santiago, Chile
- Centro de Genómica y Bioinformática, Pontificia Universidad Católica, Zañartu 1482, Santiago, Chile
- Instituto Milenio MIFAB, Zañartu 1482, Santiago, Chile
- Universidad Andrés Bello, Zañartu 1482, Santiago, Chile
| |
Collapse
|
41
|
Sainz B, Rausch JM, Gallaher WR, Garry RF, Wimley WC. Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein. J Virol 2005; 79:7195-206. [PMID: 15890958 PMCID: PMC1112137 DOI: 10.1128/jvi.79.11.7195-7206.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membrane interactions and subsequent fusion. Although the SARS-CoV fusion protein heptad repeats have been well characterized, the fusion peptide has yet to be identified. Based on the conserved features of known viral fusion peptides and using Wimley and White interfacial hydrophobicity plots, we have identified two putative fusion peptides (SARS(WW-I) and SARS(WW-II)) at the N terminus of the SARS-CoV S2 subunit. Both peptides are hydrophobic and rich in alanine, glycine, and/or phenylalanine residues and contain a canonical fusion tripeptide along with a central proline residue. Only the SARS(WW-I) peptide strongly partitioned into the membranes of large unilamellar vesicles (LUV), adopting a beta-sheet structure. Likewise, only SARS(WW-I) induced the fusion of LUV and caused membrane leakage of vesicle contents at peptide/lipid ratios of 1:50 and 1:100, respectively. The activity of this synthetic peptide appeared to be dependent on its amino acid (aa) sequence, as scrambling the peptide rendered it unable to partition into LUV, assume a defined secondary structure, or induce both fusion and leakage of LUV. Based on the activity of SARS(WW-I), we propose that the hydrophobic stretch of 19 aa corresponding to residues 770 to 788 is a fusion peptide of the SARS-CoV S2 subunit.
Collapse
Affiliation(s)
- Bruno Sainz
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-43, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
42
|
Homhuan A, Prakongpan S, Poomvises P, Maas RA, Crommelin DJA, Kersten GFA, Jiskoot W. Virosome and ISCOM vaccines against Newcastle disease: preparation, characterization and immunogenicity. Eur J Pharm Sci 2005; 22:459-68. [PMID: 15265516 DOI: 10.1016/j.ejps.2004.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 04/26/2004] [Accepted: 05/04/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to prepare and characterize virosomes and ISCOMs containing envelope proteins of Newcastle disease virus (NDV) and to evaluate their immunogenicity in target animals (chickens). Virosomes were prepared by solubilization of virus with either Triton X-100 or octyl glucoside (OG) followed by detergent removal. Biochemical analysis revealed that these virosomes contained both the haemagglutinin-neuraminidase protein (HN) and the fusion protein (F), with preserved biological activity. Acidic environment triggered the fusion between virosomes and chicken erythrocyte ghosts. Formation of ISCOMs was achieved by solubilizing phospholipids, cholesterol, envelope protein antigen and Quil A in Triton X-100. The ISCOM particles were formed by removal of the detergent. In each formulation the relative HN content correlated with the capability to agglutinate red blood cells. The immunogenicity of these lipid-based subunit vaccines was determined in chickens after subcutaneous immunization. The relative HN content of the subunit vaccines correlated with the haemagglutination-inhibition (HI) antibody titres. Virosomes prepared with Triton X-100 and ISCOMs offered high clinical protection (> 80%) upon challenge with virulent NDV. Virosomes prepared with OG yielded lower clinical protection despite high HI antibody titres. Virosomes with reduced antigen density showed poor immunogenicity and protection. In conclusion, ND virosomes and ISCOMs were found to be immunogenic and provided good protection.
Collapse
Affiliation(s)
- Atthachai Homhuan
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | |
Collapse
|
43
|
Paredes AM, Ferreira D, Horton M, Saad A, Tsuruta H, Johnston R, Klimstra W, Ryman K, Hernandez R, Chiu W, Brown DT. Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion. Virology 2004; 324:373-86. [PMID: 15207623 DOI: 10.1016/j.virol.2004.03.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 03/29/2004] [Indexed: 01/12/2023]
Abstract
Alphaviruses have the ability to induce cell-cell fusion after exposure to acid pH. This observation has served as an article of proof that these membrane-containing viruses infect cells by fusion of the virus membrane with a host cell membrane upon exposure to acid pH after incorporation into a cell endosome. We have investigated the requirements for the induction of virus-mediated, low pH-induced cell-cell fusion and cell-virus fusion. We have correlated the pH requirements for this process to structural changes they produce in the virus by electron cryo-microscopy. We found that exposure to acid pH was required to establish conditions for membrane fusion but that membrane fusion did not occur until return to neutral pH. Electron cryo-microscopy revealed dramatic changes in the structure of the virion as it was moved to acid pH and then returned to neutral pH. None of these treatments resulted in the disassembly of the virus protein icosahedral shell that is a requisite for the process of virus membrane-cell membrane fusion. The appearance of a prominent protruding structure upon exposure to acid pH and its disappearance upon return to neutral pH suggested that the production of a "pore"-like structure at the fivefold axis may facilitate cell penetration as has been proposed for polio (J. Virol. 74 (2000) 1342) and human rhino virus (Mol. Cell 10 (2002) 317). This transient structural change also provided an explanation for how membrane fusion occurs after return to neutral pH. Examination of virus-cell complexes at neutral pH supported the contention that infection occurs at the cell surface at neutral pH by the production of a virus structure that breaches the plasma membrane bilayer. These data suggest an alternative route of infection for Sindbis virus that occurs by a process that does not involve membrane fusion and does not require disassembly of the virus protein shell.
Collapse
Affiliation(s)
- Angel M Paredes
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Akhtar S, Juliano RL. Cellular uptake and intracellular fate of antisense oligonucleotides. Trends Cell Biol 2004; 2:139-44. [PMID: 14731968 DOI: 10.1016/0962-8924(92)90100-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antisense oligonucleotides with sequences complementary to a given genetic target can enter cells in sufficient quantities to selectively inhibit gene expression. Thus, they have a potential therapeutic use in preventing undesirable gene expression in diseases such as cancer and AIDS. However, it is remarkable that these molecules, which have high molecular weights and are often charged, gain entry to cells at all. In this article, we review the possible mechanisms by which oligonucleotides enter cells and their subsequent intracellular fates. We also discuss current approaches for improving cellular uptake and delivery of antisense nucleic acids to their intended targets.
Collapse
Affiliation(s)
- S Akhtar
- Pharmaceutical Sciences Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | | |
Collapse
|
45
|
Tanghe S, Van Soom A, Duchateau L, Nauwynck H, de Kruif A. Carbohydrates and glycoproteins involved in bovine fertilization in vitro. Mol Reprod Dev 2004; 68:492-9. [PMID: 15236335 DOI: 10.1002/mrd.20095] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, efforts were made towards identifying carbohydrates and glycoproteins involved in bovine in vitro fertilization (IVF). In vitro matured cumulus-oocyte complexes (COCs) were inseminated in the presence of a variety of carbohydrates and glycoproteins to determine which glycoconjugates act as competitive inhibitors of oocyte penetration. Among the carbohydrates and glycoproteins tested, D-mannose, fucoidan, dextran sulfate, and fibronectin were the most potent inhibitors of oocyte penetration (90% or more inhibition), while L-fucose and vitronectin inhibited the penetration rate to a lesser extent (around 50% inhibition). Other carbohydrates caused less than 40% inhibition (i.e., D-galactose, N-acetyl-D-galactosamine, D-fucose, and sialic acid) or were not effective as inhibitors of oocyte penetration (i.e., mannan, N-acetyl-D-glucosamine, dextran, and heparan sulfate). Heparin was the only carbohydrate that significantly increased the penetration rate. To exclude a possible toxic effect on spermatozoa, sperm motility was evaluated over time by means of computer-assisted sperm analysis in the presence of carbohydrates and/or glycoproteins that inhibited the penetration rate with 40% or more. L-fucose, dextran sulfate, and vitronectin did not significantly influence total and progressive sperm motility, whereas D-mannose, fucoidan, and fibronectin caused a significant, but slight reduction in both motility parameters. These results are indicative for the involvement of D-mannose, L-fucose, fucoidan, dextran sulfate, fibronectin, and vitronectin in bovine IVF.
Collapse
Affiliation(s)
- S Tanghe
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
46
|
Mandal M, Mathew E, Provoda C, Dall-Lee K. Delivery of macromolecules into cytosol using liposomes containing hemolysin. Methods Enzymol 2003; 372:319-39. [PMID: 14610821 DOI: 10.1016/s0076-6879(03)72018-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Manas Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
47
|
Peisajovich SG, Shai Y. Liposomes in identification and characterization of viral fusogenic peptides. Methods Enzymol 2003; 372:361-73. [PMID: 14610824 DOI: 10.1016/s0076-6879(03)72021-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
|
48
|
Kankanamge PJ, Irie T, Shoji J, Tochikura TS, Kawai A. Further characterization of the rabies virus glycoproteins produced by virus-infected and G cDNA-transfected cells using a monoclonal antibody, #1-30-44, which recognizes an acid-sensitive epitope. Microbiol Immunol 2003; 47:337-49. [PMID: 12825895 DOI: 10.1111/j.1348-0421.2003.tb03405.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of rabies virus glycoprotein (G) by G cDNA-transfected mammalian cells resulted in the production of only a fusion-negative form. Low pH-dependent fusion activity, however, was seen when the expression was done under control of the T7 promoter with the help of recombinant vaccinia virus (RVV-T7) that provided T7 RNA polymerase. Fusion-inactive G proteins were transported to the cell surface as being detected by a conformational epitope-specific monoclonal antibody (mAb; #1-46-12). The fusion-inactive G proteins were recognized by most of our 13 conformation-specific mAbs, except for one mAb, #1-30-44, that recognized the low pH-sensitive conformational epitope. When the G gene expression was done with the help of RVV-T7, although most G proteins remained in the epitope-negative form, a small fraction of G gene products were 1-30-44 epitope-positive, and cell fusion activity could be seen when cells were exposed to low pH conditions. From these results, we conclude that acquisition of low pH-dependent fusion activity is closely related to structural maturation of the G protein to form the low pH-sensitive 1-30-44 epitope. Such maturation seems to be dependent on certain rabies virus-induced cellular conditions or functions, which might also be provided in part by the vaccinia virus infection. We further assume that expression of G cDNA alone mostly results in the production of mis-folded and/or differently folded forms of G protein, and only a small fraction is correctly folded even under RVV-T7-mediated expression conditions.
Collapse
Affiliation(s)
- Pushpa Jenette Kankanamge
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
49
|
Peisajovich SG, Shai Y. Viral fusion proteins: multiple regions contribute to membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:122-9. [PMID: 12873773 DOI: 10.1016/s0005-2736(03)00170-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In recent years, the simple picture of a viral fusion protein interacting with the cell and/or viral membranes by means of only two localized segments (i.e. the fusion peptide and the transmembrane domain) has given way to a more complex picture in which multiple regions from the viral proteins interact with membranes. Indeed, possible roles in membrane binding and/or destabilization have been postulated for the N-terminal heptad repeats, pre-transmembrane segments, and other internal regions of fusion proteins from distant viruses (such as orthomyxo-, retro-, paramyxo-, or flaviviruses). This review focuses on the experimental evidence and functional models postulated so far about the role of these regions in the process of virus-induced membrane fusion.
Collapse
Affiliation(s)
- Sergio G Peisajovich
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | |
Collapse
|
50
|
Rawat SS, Viard M, Gallo SA, Rein A, Blumenthal R, Puri A. Modulation of entry of enveloped viruses by cholesterol and sphingolipids (Review). Mol Membr Biol 2003; 20:243-54. [PMID: 12893532 DOI: 10.1080/0968768031000104944] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Enveloped animal viruses infect host cells by fusion of viral and target membranes. This crucial fusion event occurs either with the plasma membrane of the host cells at the physiological pH or with the endosomal membranes at low pH and is triggered by specific glycoproteins in the virus envelope. Both lipids and proteins play critical and co-operative roles in the fusion process. Interactions of viral proteins with their receptors direct which membranes fuse and viral fusion proteins then drive the process. These fusion proteins operate on lipid assemblies, whose physical and mechanical properties are equally important to the proper functioning of the process. Lipids contribute to the viral fusion process by virtue of their distinct chemical structure, composition and/or their preferred partitioning into specific microdomains in the plasma membrane called 'rafts'. An involvement of lipid rafts in viral entry and membrane fusion has been examined recently. However, the mechanism(s) by which lipids as dynamic raft components control viral envelope-glycoprotein-triggered fusion is not clear. This paper will review literature findings on the contribution of the two raft-associated lipids, cholesterol and sphingolipids in viral entry.
Collapse
Affiliation(s)
- Satinder S Rawat
- Laboratory of Experimental and Computational Biology, Center for Cancer Research NCI-Frederick, NIH, PO Box B, Bldg. 469, Rm. 211, Miller Drive Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|