1
|
Dong L, Zhong B, Zhang YS, Yang JD, Cheng JP. Phosphination of aryl/alkyl bromides via Mn-mediated reductive C-P coupling. Chem Commun (Camb) 2024; 60:12549-12552. [PMID: 39380453 DOI: 10.1039/d4cc04750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Mn-mediated reductive cross-coupling of organic bromides with 2-bromo-1,3,2-diazaphospholene was developed for efficient construction of C-P bonds under mild conditions. Mechanistic studies suggested that bromides are activated by in situ formed bis-diazaphospholene via hybrid radical and polar mechanisms.
Collapse
Affiliation(s)
- Likun Dong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Bing Zhong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
2
|
Gu Y, Zhang Z, Gao T, Gómez-Bombarelli R, Chen M. Low-Dispersity Polymers via Free Radical Alternating Copolymerization: Effects of Charge-Transfer-Complexes. Angew Chem Int Ed Engl 2024; 63:e202409744. [PMID: 39058330 DOI: 10.1002/anie.202409744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Alternating copolymers are crucial for diverse applications. While dispersity (Ð, also known as molecular weight distribution, MWD) influences the properties of polymers, achieving low dispersities in alternating copolymers poses a notable challenge via free radical polymerizations (FRPs). In this work, we demonstrated an unexpected discovery that dispersities are affected by the participation of charge transfer complexes (CTCs) formed between monomer pairs during free radical alternating copolymerization, which have inspired the successful synthesis of various alternating copolymers with low dispersities (>30 examples, Ð=1.13-1.39) under visible-light irradiation. The synthetic method is compatible with binary, ternary and quaternary alternating copolymerizations and is expandable for both fluorinated and non-fluorinated monomer pairs. DFT calculations combined with model experiments indicated that CTC-absent reaction exhibits higher propagation rates and affords fewer radical terminations, which could contribute to low dispersities. Based on the integration of Monte Carlo simulation and Bayesian optimization, we established the relationship map between FRP parameter space and dispersity, further suggested the correlation between low dispersities and higher propagation rates. Our research sheds light on dispersity control via FRPs and creates a novel platform to investigate polymer dispersity through machine learning.
Collapse
Affiliation(s)
- Yu Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| | - Zexi Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| | - Tianyi Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 02139, Massachusetts, USA
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433, Shanghai, China
| |
Collapse
|
3
|
Chen X, Liang H, He X, Li W, Nian Z, Mahmood Z, Huo Y, Ji S. Exploring the triplet state properties of thio-benzothioxanthene imides with applications in TTA-upconversion and photopolymerization. Chem Commun (Camb) 2024; 60:11132-11135. [PMID: 39269145 DOI: 10.1039/d4cc04049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Thio-benzothioxanthene imide (BTXI) exhibits long excited state lifetime (τT = 17.7 μs) and high ISC efficiency (ΦΔ = 97%). For the first time, BTXI derivatives were used as photosensitizers for triplet-triplet annihilation upconversion, achieving the highest efficiency of 13.8%. In addition, thio-BTXI derivatives were used as photoinitiators for photopolymerization, resulting in a series of green light-activated radical polymerization systems.
Collapse
Affiliation(s)
- Xiaoping Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Xitong He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Weiqiang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zhiyao Nian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zafar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
4
|
Chen Y, Han S, Chen K, Guo X, Wen P, Chen M. Controlled Radical Copolymerization toward Tailored F/N Hybrid Polymers by Using Light-Driven Organocatalysis. Angew Chem Int Ed Engl 2024; 63:e202408611. [PMID: 38924225 DOI: 10.1002/anie.202408611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Controlled radical copolymerizations present attractive avenues to obtain polymers with complicated compositions and sequences. In this work, we report the development of a visible-light-driven organocatalyzed controlled copolymerization of fluoroalkenes and acyclic N-vinylamides for the first time. The approach enables the on-demand synthesis of a broad scope of amide-functionalized main-chain fluoropolymers via novel fluorinated thiocarbamates, facilitating regulations over chemical compositions and alternating fractions by rationally selecting comonomer pairs and ratios. This method allows temporally controlled chain-growth by external light, and maintains high chain-end fidelity that promotes facile preparation of block sequences. Notably, the obtained F/N hybrid polymers, upon hydrolysis, afford free amino-substituted fluoropolymers versatile for post modifications toward various functionalities (e.g., amide, sulfonamide, carbamide, thiocarbamide). We further demonstrate the in situ formation of polymer networks with desirable properties as protective layers on lithium metal anodes, presenting a promising avenue for advancing lithium metal batteries.
Collapse
Affiliation(s)
- Yufei Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200433
| | - Shantao Han
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200433
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200433
| | - Xing Guo
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200433
| | - Peng Wen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200433
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China, 200433
| |
Collapse
|
5
|
Zeng L, Huang L, Huang Z, Mani T, Huang K, Duan C, Han G. Long wavelength near-infrared and red light-driven consecutive photo-induced electron transfer for highly effective photoredox catalysis. Nat Commun 2024; 15:7270. [PMID: 39179545 PMCID: PMC11344023 DOI: 10.1038/s41467-024-50795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/17/2024] [Indexed: 08/26/2024] Open
Abstract
Consecutive photoinduced electron transfer (conPET) processes accumulate the energies of two photons to overcome the thermodynamic limit of traditional photoredox catalysis. However, the excitation wavelength of conPET systems mainly focused on short wavelength visible light, leading to photodamage and incompatibility with large-scale reactions. Herein, we report on conPET systems triggered by near-infrared (NIR) and red light. Specifically, a blue-absorbing conPET photocatalyst, perylene diimide (PDI) is sensitized by a palladium-based photosensitizer to triplet excited state (3PDI*), which generates PDI radical anion (PDI•-) over 100-fold faster than that in the conventional conPET. Accordingly, photoreduction with superior reaction rate and penetration depth, as well as reduced photodamage is detected. More importantly, our work offers comprehensive design rules for the triplet-mediated conPET strategy, whose versatility is confirmed by metal-free dye pairs and NIR-active PtTNP/PDI. Notably, our work achieves NIR-driven atom transfer radical polymerization using an inert aromatic halide as the initiator.
Collapse
Affiliation(s)
- Le Zeng
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, PR China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, PR China
- School of Materials Science and Engineering, Nankai University, Tianjin, PR China
| | - Ling Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, PR China
| | - Zhi Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, PR China
| | - Tomoyasu Mani
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Kai Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, PR China.
| | - Gang Han
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Li X, Che Y, Chen L, Liu T, Wang K, Liu L, Yang H, Pyzer-Knapp EO, Cooper AI. Sequential closed-loop Bayesian optimization as a guide for organic molecular metallophotocatalyst formulation discovery. Nat Chem 2024; 16:1286-1294. [PMID: 38862641 PMCID: PMC11321994 DOI: 10.1038/s41557-024-01546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
Conjugated organic photoredox catalysts (OPCs) can promote a wide range of chemical transformations. It is challenging to predict the catalytic activities of OPCs from first principles, either by expert knowledge or by using a priori calculations, as catalyst activity depends on a complex range of interrelated properties. Organic photocatalysts and other catalyst systems have often been discovered by a mixture of design and trial and error. Here we report a two-step data-driven approach to the targeted synthesis of OPCs and the subsequent reaction optimization for metallophotocatalysis, demonstrated for decarboxylative sp3-sp2 cross-coupling of amino acids with aryl halides. Our approach uses a Bayesian optimization strategy coupled with encoding of key physical properties using molecular descriptors to identify promising OPCs from a virtual library of 560 candidate molecules. This led to OPC formulations that are competitive with iridium catalysts by exploring just 2.4% of the available catalyst formulation space (107 of 4,500 possible reaction conditions).
Collapse
Affiliation(s)
- Xiaobo Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Zhejiang Normal University, Jinhua, China.
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK.
| | - Yu Che
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, UK
| | - Linjiang Chen
- School of Chemistry and School of Computer Science, University of Birmingham, Birmingham, UK.
| | - Tao Liu
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Kewei Wang
- Department of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, China
| | - Lunjie Liu
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Haofan Yang
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, UK
| | | | - Andrew I Cooper
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK.
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool, UK.
| |
Collapse
|
7
|
Rotaru-Zăvăleanu AD, Dinescu VC, Aldea M, Gresita A. Hydrogel-Based Therapies for Ischemic and Hemorrhagic Stroke: A Comprehensive Review. Gels 2024; 10:476. [PMID: 39057499 PMCID: PMC11276304 DOI: 10.3390/gels10070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Stroke remains the second leading cause of death and a major cause of disability worldwide, significantly impacting individuals, families, and healthcare systems. This neurological emergency can be triggered by ischemic events, including small vessel arteriolosclerosis, cardioembolism, and large artery atherothromboembolism, as well as hemorrhagic incidents resulting from macrovascular lesions, venous sinus thrombosis, or vascular malformations, leading to significant neuronal damage. The resultant motor impairment, cognitive dysfunction, and emotional disturbances underscore the urgent need for effective therapeutic interventions. Recent advancements in biomaterials, particularly hydrogels, offer promising new avenues for stroke management. Hydrogels, composed of three-dimensional networks of hydrophilic polymers, are notable for their ability to absorb and retain substantial amounts of water. Commonly used polymers in hydrogel formulations include natural polymers like alginate, chitosan, and collagen, as well as synthetic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), and polyacrylamide. Their customizable characteristics-such as their porosity, swelling behavior, mechanical strength, and degradation rates-make hydrogels ideal for biomedical applications, including drug delivery, cell delivery, tissue engineering, and the controlled release of therapeutic agents. This review comprehensively explores hydrogel-based approaches to both ischemic and hemorrhagic stroke therapy, elucidating the mechanisms by which hydrogels provide neuroprotection. It covers their application in drug delivery systems, their role in reducing inflammation and secondary injury, and their potential to support neurogenesis and angiogenesis. It also discusses current advancements in hydrogel technology and the significant challenges in translating these innovations from research into clinical practice. Additionally, it emphasizes the limited number of clinical trials utilizing hydrogel therapies for stroke and addresses the associated limitations and constraints, underscoring the need for further research in this field.
Collapse
Affiliation(s)
- Alexandra-Daniela Rotaru-Zăvăleanu
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2-4 Petru Rares Str., 200349 Craiova, Romania;
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Madalina Aldea
- Psychiatry Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andrei Gresita
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680, USA
| |
Collapse
|
8
|
Jeon W, Kwon Y, Kwon MS. Highly efficient dual photoredox/copper catalyzed atom transfer radical polymerization achieved through mechanism-driven photocatalyst design. Nat Commun 2024; 15:5160. [PMID: 38886349 PMCID: PMC11183263 DOI: 10.1038/s41467-024-49509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Atom transfer radical polymerization (ATRP) with dual photoredox/copper catalysis combines the advantages of photo-ATRP and photoredox-mediated ATRP, utilizing visible light and ensuring broad monomer scope and solvent compatibility while minimizing side reactions. Despite its popularity, challenges include high photocatalyst (PC) loadings (10 to 1000 ppm), requiring additional purification and increasing costs. In this study, we discover a PC that functions at the sub-ppm level for ATRP through mechanism-driven PC design. Through studying polymerization mechanisms, we find that the efficient polymerizations are driven by PCs whose ground state oxidation potential-responsible for PC regeneration-play a more important role than their excited state reducing power, responsible for initiation. This is verified by screening PCs with varying redox potentials and triplet excited state generation capabilities. Based on these findings, we identify a highly efficient PC, 4DCDP-IPN, featuring moderate excited state reducing power and a maximized ground state oxidation potential. Employing this PC at 50 ppb, we synthesize poly(methyl methacrylate) with high conversion, narrow molecular weight distribution, and high chain-end fidelity. This system exhibits oxygen tolerance and supports large-scale reactions under ambient conditions. Our findings, driven by the systematic PC design, offer meaningful insights for controlled radical polymerizations and metallaphotoredox-mediated syntheses beyond ATRP.
Collapse
Affiliation(s)
- Woojin Jeon
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea.
| | - Min Sang Kwon
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Peng HY, Xu MK, Li X, Cai T. Exploiting Photoinduced Atom Transfer Radical Polymerizations with Boron-Dopant and Nitrogen-Defect Synergy in Carbon Nitride Nanosheets. Macromol Rapid Commun 2024:e2400365. [PMID: 38849126 DOI: 10.1002/marc.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Graphitic carbon nitrides (g-C3N4) possess various benefits as heterogeneous photocatalysts, including tunable bandgaps, scalability, and chemical robustness. However, their efficacy and ongoing advancement are hindered by challenges like limited charge-carrier separation rates, insufficient driving force for photocatalysis, small specific surface area, and inadequate absorption of visible light. In this study, boron dopants and nitrogen defects synergy are introduced into bulk g-C3N4 through the calcination of a blend of nitrogen-defective g-C3N4 and NaBH4 under inert conditions, resulting in the formation of BCN nanosheets characterized by abundant porosity and increased specific surface area. These BCN nanosheets promote intermolecular single electron transfer to the radical initiator, maintaining radical intermediates at a low concentration for better control of photoinduced atom transfer radical polymerization (photo-ATRP). Consequently, this method yields polymers with low dispersity and tailorable molecular weights under mild blue light illumination, outperforming previous reports on bulk g-C3N4. The heterogeneity of BCN enables easy separation and efficient reuse in subsequent polymerization processes. This study effectively showcases a simple method to alter the electronic and band structures of g-C3N4 with simultaneously introducing dopants and defects, leading to high-performance photo-ATRP and providing valuable insights for designing efficient photocatalytic systems for solar energy harvesting.
Collapse
Affiliation(s)
- He Yu Peng
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Meng Kai Xu
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Xue Li
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Tao Cai
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
10
|
Jin W, Yang CY, Pau R, Wang Q, Tekelenburg EK, Wu HY, Wu Z, Jeong SY, Pitzalis F, Liu T, He Q, Li Q, Huang JD, Kroon R, Heeney M, Woo HY, Mura A, Motta A, Facchetti A, Fahlman M, Loi MA, Fabiano S. Photocatalytic doping of organic semiconductors. Nature 2024; 630:96-101. [PMID: 38750361 PMCID: PMC11153156 DOI: 10.1038/s41586-024-07400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs)1-3 and ultimately enhances device performance4-7. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants8-10, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge. Here, we report a previously undescribed concept for the photocatalytic doping of OSCs that uses air as a weak oxidant (p-dopant) and operates at room temperature. This is a general approach that can be applied to various OSCs and photocatalysts, yielding electrical conductivities that exceed 3,000 S cm-1. We also demonstrate the successful photocatalytic reduction (n-doping) and simultaneous p-doping and n-doping of OSCs in which the organic salt used to maintain charge neutrality is the only chemical consumed. Our photocatalytic doping method offers great potential for advancing OSC doping and developing next-generation organic electronic devices.
Collapse
Affiliation(s)
- Wenlong Jin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
- n-Ink AB, Norrköping, Sweden.
| | - Riccardo Pau
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, Italy
| | - Qingqing Wang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- n-Ink AB, Norrköping, Sweden
| | - Eelco K Tekelenburg
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | - Federico Pitzalis
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, Italy
| | - Tiefeng Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Qiao He
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Jun-Da Huang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, Italy
| | - Alessandro Motta
- Dipartimento di Scienze Chimiche, Università di Roma "La Sapienza" and INSTM, UdR Roma, Rome, Italy
| | - Antonio Facchetti
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Maria Antonietta Loi
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
- n-Ink AB, Norrköping, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden.
| |
Collapse
|
11
|
Castellanos-Soriano J, Garnes-Portolés F, Jiménez MC, Leyva-Pérez A, Pérez-Ruiz R. In-Flow Heterogeneous Triplet-Triplet Annihilation Upconversion. ACS PHYSICAL CHEMISTRY AU 2024; 4:242-246. [PMID: 38800722 PMCID: PMC11117689 DOI: 10.1021/acsphyschemau.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 05/29/2024]
Abstract
Photon upconversion based on triplet-triplet annihilation (TTA-UC) is an attractive wavelength conversion with increasing use in organic synthesis in the homogeneous phase; however, this technology has not performed with canonical solid catalysts yet. Herein, a BOPHY dye covalently anchored on silica is successfully used as a sensitizer in a TTA system that efficiently catalyzes Mizoroki-Heck coupling reactions. This procedure has enabled the implementation of in-flow reaction conditions for the synthesis of a variety of aromatic compounds, and mechanistic proof has been obtained by means of transient absorption spectroscopy.
Collapse
Affiliation(s)
- Jorge Castellanos-Soriano
- Departamento
de Química, Universitat Politècnica
de València (UPV), Camino de Vera, S/N 46022 Valencia, Spain
| | - Francisco Garnes-Portolés
- Instituto
de Tecnología Química (ITQ), Universitat Politècnica de València-Consejo Superior
de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos, S/N 46022 Valencia, Spain
| | - M. Consuelo Jiménez
- Departamento
de Química, Universitat Politècnica
de València (UPV), Camino de Vera, S/N 46022 Valencia, Spain
| | - Antonio Leyva-Pérez
- Instituto
de Tecnología Química (ITQ), Universitat Politècnica de València-Consejo Superior
de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos, S/N 46022 Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento
de Química, Universitat Politècnica
de València (UPV), Camino de Vera, S/N 46022 Valencia, Spain
| |
Collapse
|
12
|
Yu S, Liu J, Li L, Ma K, Kong J, Zhang X. An electrochemical biosensor for the amplification of thrombin activity by perylene-mediated photoinitiated polymerization. Anal Chim Acta 2024; 1302:342494. [PMID: 38580414 DOI: 10.1016/j.aca.2024.342494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Thrombin, a coagulation system protease, is a key enzyme involved in the coagulation cascade and has been developed as a marker for coagulation disorders. However, the methods developed in recent years have the disadvantages of complex operation, long reaction time, low specificity and sensitivity. Meanwhile, thrombin is at a lower level in the pre-disease period. Therefore, to accurately diagnose the disease, it is necessary to develop a fast, simple, highly sensitive and specific method using signal amplification technology. RESULTS We designed an electrochemical biosensor based on photocatalytic atom transfer radical polymerization (photo-ATRP) signal amplification for the detection of thrombin. Sulfhydryl substrate peptides (without carboxyl groups) are self-assembled to the gold electrode surface via Au-S bond and serve as thrombin recognition probes. The substrate peptide is cleaved in the presence of thrombin to generate -COOH, which can form a carboxylate-Zr(IV)-carboxylate complex via Zr(IV) and initiator (α-bromophenylacetic acid, BPAA). Subsequently, an electrochemical biosensor was prepared by introducing polymer chains with electrochemical signaling molecules (ferrocene, Fc) onto the electrode surface by photocatalytic (perylene, Py) mediated ATRP using ferrocenylmethyl methacrylate (FMMA) as a monomer. The concentration of thrombin was evaluated by the voltammetric signal generated by square wave voltammetry (SWV), and the result showed that the biosensor was linear between 1.0 ng/mL ∼ 10 fg/mL, with a lower detection limit of 4.0 fg/mL (∼0.1 fM). Moreover, it was shown to be highly selective for thrombin activity in complex serum samples and for thrombin inhibition screening. SIGNIFICANCE The biosensor is an environmentally friendly and economically efficient strategy while maintaining the advantages of high sensitivity, anti-interference, good stability and simplicity of operation, which has great potential for application in the analysis of complex samples.
Collapse
Affiliation(s)
- Shuaibing Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jingliang Liu
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing, 211171, PR China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Kefeng Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
13
|
Han Z, Liu R, Zhang L, Song J, Bai Y, Lu X. Bright Luminescence of Free Radical TEMPO Enabled by Electrochemiluminescence Technique. Anal Chem 2024; 96:7304-7310. [PMID: 38651947 DOI: 10.1021/acs.analchem.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Radicals can feature theoretically 100% light utilization owing to their nonelectron spin-forbidden transition and represent the most advanced luminescent materials at present. 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO) acts as a typically stable radical with very broad applications. However, their luminescent properties have not been discovered to date. In the present work, we observed the bright electrochemiluminescence (ECL) emission of TEMPO with a higher efficiency (72.3%) via the electrochemistry and coreactant strategies for the first time. Moreover, the radical-based ECL achieved high detection toward boron acid with a lower limit of detection (LOD) of 1.9 nM. This study offers a new approach to generate emissions for some unconventional luminophores and makes a major breakthrough in the field of new luminescent materials as well.
Collapse
Affiliation(s)
- Zhengang Han
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ruirui Liu
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Lijun Zhang
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Jiangyun Song
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yunfeng Bai
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Water Environment Protection in Plateau Intersection (Ministry of Education), Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
14
|
Ando H, Takamura H, Kadota I, Tanaka K. Strongly reducing helical phenothiazines as recyclable organophotoredox catalysts. Chem Commun (Camb) 2024; 60:4765-4768. [PMID: 38529587 DOI: 10.1039/d4cc00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Recyclable phenothiazine organophotoredox catalysts (PTHS 1-3, E1/2ox* = -2.34 to -2.40 V vs. SCE) have been developed. When the recycling performance was evaluated, PTHS-1 could be recovered at least four times without loss of its catalytic activity. These recyclable organophotoredox catalysts represent a promising tool for sustainable organic synthesis.
Collapse
Affiliation(s)
- Haru Ando
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Kenta Tanaka
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| |
Collapse
|
15
|
Preston-Herrera C, Dadashi-Silab S, Oblinsky DG, Scholes GD, Stache EE. Molecular Photothermal Conversion Catalyst Promotes Photocontrolled Atom Transfer Radical Polymerization. J Am Chem Soc 2024; 146:8852-8857. [PMID: 38507569 PMCID: PMC11299229 DOI: 10.1021/jacs.4c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Photothermal conversion is a growing research area that promotes thermal transformations with visible light irradiation. However, few examples of dual photothermal conversion and catalysis limit the power of this phenomenon. Here, we take inspiration from nature's ability to use porphyrinic compounds for nonradiative relaxation to convert light into heat to facilitate thermal polymerization catalysis. We identify the photothermal conversion catalytic activity of a vitamin B12 derivative, heptamethyl ester cobyrinate (HME-Cob), to perform atom transfer radical polymerization (ATRP) under irradiation. Rapid polymerization are obtained under photothermal activation while maintaining good control over polymerization with the aid of a photoinitiator to enable light-induced catalyst regeneration. The catalyst exhibits exquisite temporal control in photocontrolled thermal polymerization. Ultimately, the activation of this complex is accessed across a broad range of wavelengths, including near-IR light, with excellent temporal control. This work showcases the potential of developing photothermal conversion catalysts.
Collapse
Affiliation(s)
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Erin E Stache
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
16
|
Kwon Y, Lee S, Kim J, Jun J, Jeon W, Park Y, Kim HJ, Gierschner J, Lee J, Kim Y, Kwon MS. Ultraviolet light blocking optically clear adhesives for foldable displays via highly efficient visible-light curing. Nat Commun 2024; 15:2829. [PMID: 38565557 PMCID: PMC10987679 DOI: 10.1038/s41467-024-47104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
In developing an organic light-emitting diode (OLED) panel for a foldable smartphone (specifically, a color filter on encapsulation) aimed at reducing power consumption, the use of a new optically clear adhesive (OCA) that blocks UV light was crucial. However, the incorporation of a UV-blocking agent within the OCA presented a challenge, as it restricted the traditional UV-curing methods commonly used in the manufacturing process. Although a visible-light curing technique for producing UV-blocking OCA was proposed, its slow curing speed posed a barrier to commercialization. Our study introduces a highly efficient photo-initiating system (PIS) for the rapid production of UV-blocking OCAs utilizing visible light. We have carefully selected the photocatalyst (PC) to minimize electron and energy transfer to UV-blocking agents and have chosen co-initiators that allow for faster electron transfer and more rapid PC regeneration compared to previously established amine-based co-initiators. This advancement enabled a tenfold increase in the production speed of UV-blocking OCAs, while maintaining their essential protective, transparent, and flexible properties. When applied to OLED devices, this OCA demonstrated UV protection, suggesting its potential for broader application in the safeguarding of various smart devices.
Collapse
Affiliation(s)
- Yonghwan Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seokju Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Junkyu Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jinwon Jun
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Woojin Jeon
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Youngjoo Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Joong Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, 28049, Madrid, Spain
| | - Jaesang Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Youngdo Kim
- Samsung Display Co., Ltd., Cheonan, Republic of Korea.
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Zhang Y, Li M, Li B, Sheng W. Surface Functionalization with Polymer Brushes via Surface-Initiated Atom Transfer Radical Polymerization: Synthesis, Applications, and Current Challenges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5571-5589. [PMID: 38440955 DOI: 10.1021/acs.langmuir.3c03647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Polymer brushes have received great attention in recent years due to their distinctive properties and wide range of applications. The synthesis of polymer brushes typically employs surface-initiated atom transfer radical polymerization (SI-ATRP) techniques. To realize the control of the polymerization process in different environments, various SI-ATRP techniques triggered by different stimuli have been developed. This review focuses on the latest developments in different stimuli-triggered SI-ATRP methods, such as electrochemically mediated, photoinduced, enzyme-assisted, mechanically controlled, and organocatalyzed ATRP. Additionally, SI-ATRP technology triggered by a combination of multiple stimuli sources is also discussed. Furthermore, the applications of polymer brushes in lubrication, biological applications, antifouling, and catalysis are also systematically summarized and discussed. Despite the advancements in the synthesis of various types of 1D, 2D, and 3D polymer brushes via controlled radical polymerization, contemporary challenges remain in the quest for more efficient and straightforward synthetic protocols that allow for precise control over the composition, structure, and functionality of polymer brushes. We anticipate the readers could promote the understanding of surface functionalization based on ATRP-mediated polymer brushes and envision future directions for their application in surface coating technologies.
Collapse
Affiliation(s)
- Yan Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, Shandong, China
| | - Mengyang Li
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, Shandong, China
| | - Bin Li
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, Shandong, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenbo Sheng
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, Shandong, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
18
|
An B, Cui H, Zheng C, Chen JL, Lan F, You SL, Zhang X. Tunable C-H functionalization and dearomatization enabled by an organic photocatalyst. Chem Sci 2024; 15:4114-4120. [PMID: 38487217 PMCID: PMC10935768 DOI: 10.1039/d4sc00120f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
C-H functionalization and dearomatization constitute fundamental transformations of aromatic compounds, which find wide applications in various research areas. However, achieving both transformations from the same substrates with a single catalyst by operating a distinct mechanism remains challenging. Here, we report a photocatalytic strategy to modulate the reaction pathways that can be directed toward either C-H functionalization or dearomatization under redox-neutral or net-reductive conditions, respectively. Two sets of indoles and indolines bearing tertiary alcohols are divergently furnished with good yields and high selectivity. The key to success is the introduction of isoazatruxene ITN-2 as a novel photocatalyst (PC), which outperforms the commonly used PCs. The ready synthesis and high modulability of isoazatruxene type PCs indicate their great application potential.
Collapse
Affiliation(s)
- Bohang An
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Hao Cui
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Ji-Lin Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Feng Lan
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| |
Collapse
|
19
|
Sun P, Li Z, Zhang X, Liao Y, Liao S. Visible Light-Regulated Ring-Opening Polymerization of Lactones by Employing Indigo as a Photoacid Catalyst. Macromol Rapid Commun 2024:e2400054. [PMID: 38471494 DOI: 10.1002/marc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The development of visible light-regulated polymerizations for precision synthesis of polymers has drawn considerable attention in the past years. In this study, an ancient dye, indigo, is successfully identified as a new and efficient photoacid catalyst, which can readily promote the ring-opening polymerization of lactones under visible light irradiation in a well-controlled manner, affording the desired polyester products with predictable molecular weights and narrow dispersity. The enhanced acidity of indigos by excitation is crucial to the H-bonding activation of the lactone monomers. Chain extension and block copolymer synthesis are also demonstrated with this method.
Collapse
Affiliation(s)
- Pan Sun
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zixuan Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xun Zhang
- Department State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, Lingling Lu, Shanghai, 200032, China
| | - Yun Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
20
|
Liu X, Shen J, Wang Y, Li M, Fu S. Photoinduced Metal-Free Atom Transfer Radical Polymerization for the Modification of Cellulose with Poly( N-isopropylacrylamide) to Create Thermo-Responsive Injectable Hydrogels. Int J Mol Sci 2024; 25:2867. [PMID: 38474111 DOI: 10.3390/ijms25052867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Photoinduced metal-free ATRP has been successfully applied to fabricate thermo-responsive cellulose graft copolymer (PNIPAM-g-Cell) using 2-bromoisobuturyl bromide-modified cellulose as the macroinitiator. The polymerization of N-isopropylacrylamide (NIPAM) from cellulose was efficiently activated and deactivated with UV irradiation in the presence of an organic-based photo-redox catalyst. Both FTIR and 13C NMR analysis confirmed the structural similarity between the obtained PNIPAM-g-Cell and that synthesized via traditional ATRP methods. When the concentration of the PNIPAM-g-Cell is over 5% in water, it forms an injectable thermos-responsive hydrogel composed of micelles at 37 °C. Since organic photocatalysis is a metal-free ATRP, it overcomes the challenge of transition-metal catalysts remaining in polymer products, making this cellulose-based graft copolymer suitable for biomedical applications. In vitro release studies demonstrated that the hydrogel can continuously release DOX for up to 10 days, and its cytotoxicity indicates that it is highly biocompatible. Based on these findings, this cellulose-based injectable, thermo-responsive drug-loaded hydrogel is suitable for intelligent drug delivery systems.
Collapse
Affiliation(s)
- Xiaohong Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Juanli Shen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ming Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
21
|
Guo T, He B, Mu R, Li J, Sun C, Wang R, Zhang G, Sheng W, Yu B, Li B. Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by ppm of Cu II/Tris(2-pyridylmethyl)amine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2664-2671. [PMID: 38253013 DOI: 10.1021/acs.langmuir.3c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Atom transfer radical polymerization (ATRP) is one of the most widely used methods for modifying surfaces with functional polymer films and has received considerable attention in recent years. Here, we report an electrochemically mediated surface-initiated ATRP to graft polymer brushes onto solid substrates catalyzed by ppm amounts of CuII/TPMA in water/MeOH solution. We systematically investigated the type and concentrations of copper/ligand and applied potentials correlated to the polymerization kinetics and polymer brush thickness. Gradient polymer brushes and various types of polymer brushes are prepared. Block copolymerization of 2-hydroxyethyl methacrylate (HEMA) and 3-sulfopropyl methacrylate potassium salt (PSPMA) (poly(HEMA-b-SPMA)) with ultralow ppm eATRP indicates the remarkable preservation of chain end functionality and a pronounced "living" characteristic feature of ppm-level eATRP in aqueous solution for surface polymerization.
Collapse
Affiliation(s)
- Tingting Guo
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Baoluo He
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Mu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Chufeng Sun
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guorui Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Laboratory of Advanced Materials and Green Manufacturing, Yantai, Shandong 264000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Laboratory of Advanced Materials and Green Manufacturing, Yantai, Shandong 264000, China
| |
Collapse
|
22
|
Wang Z, Wu C, Liu W. Toward the Rational Design of Organic Catalysts for Organocatalysed Atom Transfer Radical Polymerisation. Polymers (Basel) 2024; 16:323. [PMID: 38337212 DOI: 10.3390/polym16030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Thanks to their diversity, organic photocatalysts (PCs) have been widely used in manufacturing polymeric products with well-defined molecular weights, block sequences, and architectures. Still, however, more universal property-performance relationships are needed to enable the rational design of such PCs. That is, a set of unique descriptors ought to be identified to represent key properties of the PCs relevant for polymerisation. Previously, the redox potentials of excited PCs (PC*) were used as a good descriptor for characterising very structurally similar PCs. However, it fails to elucidate PCs with diverse chromophore cores and ligands, among which those used for polymerisation are a good representative. As showcased by model systems of organocatalysed atom transfer radical polymerisation (O-ATRP), new universal descriptors accounting for additional factors, such as the binding and density overlap between the PC* and initiator, are proposed and proved to be successful in elucidating the experimental performances of PCs in polymerisation. While O-ATRP is exemplified here, the approach adopted is general for studying other photocatalytic systems.
Collapse
Affiliation(s)
- Zhilei Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Chenyu Wu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Wenjian Liu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
23
|
Xu GQ, Wang WD, Xu PF. Photocatalyzed Enantioselective Functionalization of C(sp 3)-H Bonds. J Am Chem Soc 2024; 146:1209-1223. [PMID: 38170467 DOI: 10.1021/jacs.3c06169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
24
|
Zhou C, Zhang Z, Li W, Chen M. Organocatalyzed Photo-Controlled Synthesis of Ultrahigh-Molecular-Weight Fluorinated Alternating Copolymers. Angew Chem Int Ed Engl 2024; 63:e202314483. [PMID: 38014865 DOI: 10.1002/anie.202314483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
Ultrahigh-molecular-weight (UHMW) polymers with tailored structures are highly desirable for the outstanding properties. In this work, we developed a novel photoorganocatalyzed controlled radical alternating copolymerizations of fluoroalkyl maleimide and diverse vinyl comonomers, enabling efficient preparation of fluorinated copolymers of predetermined UHMWs and well-defined structures at high conversions. Versatility of this method was demonstrated by expanding to controlled terpolymerization, which allows facial access toward fluorinated terpolymers of UHMWs and functional pendants. The obtained copolymers exhibited attractive physical properties and furnished thermoplastic, anticorrosive and (super)hydrophobic attributes as coatings on different substrates. Molecular simulations provided insights into the coating morphology, which unveiled a fluorous protective layer on the top surface with polar groups attached to the bottom substrate, resulting in good adhesion and hydrophobicity, simultaneously. This synthetic method and customized copolymers shed light on the design of high-performance coatings by macromolecular engineering.
Collapse
Affiliation(s)
- Chengda Zhou
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Weiping Li
- Division of Natural and Applied Sciences & Environmental Research Center, Duke Kunshan University, Suzhou, Kunshan, 215316, China
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
25
|
Xia Z, Liu B, Xiao Y, Hu W, Deng M, Lü C. Integrating Hybrid Perovskite Nanocrystals into Metal-Organic Framework as Efficient S-Scheme Heterojunction Photocatalyst for Synergistically Boosting Controlled Radical Photopolymerization under 980 nm NIR Light. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38032100 DOI: 10.1021/acsami.3c13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
S-scheme heterojunction photocatalyst MAPbI3@PCN-222 with light absorption extending to the NIR region is constructed by embedding organic-inorganic hybrid perovskite (MAPbI3) into porphyrinic Zr-MOF (PCN-222). Both in situ X-ray photoelectron spectroscopy, ultraviolet photoelectron spectral characterization, and photocatalytic polymerization experiment prove the formation of S-scheme heterojunction. MAPbI3@PCN-222 with a low dosage (90 ppm) displays an impressive photocatalytic ability for 980 nm light-mediated photoinduced electron/energy-transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization in air. The well-defined controllable-molecular weight polymers including block copolymers and ultrahigh-molecular weight polymers can be achieved with narrow distributions (Mw/Mn < 1.20) via rapid photopolymerization. The industrial application potential of the photocatalyst also has been proved by scale-up synthesis of polymers with low polydispersity under NIR light-induced photopolymerization in a large-volume reaction system (200 mL) with high monomer conversion up to 99%. The penetration photopolymerization through the 5 mm polytetrafluoroethylene plate and excellent photocontrollable behavior illustrate the existence of long-term photogenerated electron transfer of heterojunction and abundant free radicals in photopolymerization. The photocatalyst still retains high catalytic activity after 10 cycles of photopolymerization in air. It is revealed for the first time that the special PET-RAFT polymerization pathway is initiated by the aldehyde-bearing α-aminoalkyl radical derived from the oxidization of triethanolamine (TEOA) by the heterojunction photocatalyst. This research offers a new insight into understanding the NIR-light-activated PET-RAFT polymerization mechanism in the presence of TEOA.
Collapse
Affiliation(s)
- Zhinan Xia
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Bei Liu
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yang Xiao
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Wanchao Hu
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Mingxiao Deng
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
26
|
Chen K, Guo X, Chen M. Controlled Radical Copolymerization toward Well-Defined Fluoropolymers. Angew Chem Int Ed Engl 2023; 62:e202310636. [PMID: 37581580 DOI: 10.1002/anie.202310636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/16/2023]
Abstract
In the past 80 years, fluoropolymers have found broad applications in both industrial and academic settings, owing to their unique physicochemical properties. Copolymerizations of fluoroalkene feedstocks present an important avenue to obtain high-performance materials by merging intrinsic attributes of fluorocarbons and great versatility of comonomers. Recently, while massive investigations have disclosed the great potentials of precisely synthesized polymers, researchers have made considerable efforts to approach well-defined fluorinated copolymers. This minireview discusses challenges in controlled radical copolymerizations (CRCPs) of fluoroalkenes and provides a concise perspective on recent progress in CRCPs of fluoroalkenes (e.g., tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropene, perfluoroalkyl vinyl ethers) with non-fluorinated vinyl comonomers, which have enabled on-demand preparations of various main-chain fluoropolymers with predefined molar masses, low dispersities, as well as regulable chemical compositions and sequences. The synthetic advantages of CRCPs will promote controlled and facile access to customized fluoropolymers for high-tech applications such as batteries, coatings and so on.
Collapse
Affiliation(s)
- Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xing Guo
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
27
|
Zhang Z, Chen K, Ameduri B, Chen M. Fluoropolymer Nanoparticles Synthesized via Reversible-Deactivation Radical Polymerizations and Their Applications. Chem Rev 2023; 123:12431-12470. [PMID: 37906708 DOI: 10.1021/acs.chemrev.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.
Collapse
Affiliation(s)
- Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Bruno Ameduri
- Institute Charles Gerhardt of Montpellier (ICGM), CNRS, University of Montpellier, ENSCM, Montpellier 34296, France
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
28
|
Hu X, Szczepaniak G, Lewandowska-Andralojc A, Jeong J, Li B, Murata H, Yin R, Jazani AM, Das SR, Matyjaszewski K. Red-Light-Driven Atom Transfer Radical Polymerization for High-Throughput Polymer Synthesis in Open Air. J Am Chem Soc 2023; 145:24315-24327. [PMID: 37878520 PMCID: PMC10636753 DOI: 10.1021/jacs.3c09181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Photoinduced reversible-deactivation radical polymerization (photo-RDRP) techniques offer exceptional control over polymerization, providing access to well-defined polymers and hybrid materials with complex architectures. However, most photo-RDRP methods rely on UV/visible light or photoredox catalysts (PCs), which require complex multistep synthesis. Herein, we present the first example of fully oxygen-tolerant red/NIR-light-mediated photoinduced atom transfer radical polymerization (photo-ATRP) in a high-throughput manner under biologically relevant conditions. The method uses commercially available methylene blue (MB+) as the PC and [X-CuII/TPMA]+ (TPMA = tris(2-pyridylmethyl)amine) complex as the deactivator. The mechanistic study revealed that MB+ undergoes a reductive quenching cycle in the presence of the TPMA ligand used in excess. The formed semireduced MB (MB•) sustains polymerization by regenerating the [CuI/TPMA]+ activator and together with [X-CuII/TPMA]+ provides control over the polymerization. This dual catalytic system exhibited excellent oxygen tolerance, enabling polymerizations with high monomer conversions (>90%) in less than 60 min at low volumes (50-250 μL) and high-throughput synthesis of a library of well-defined polymers and DNA-polymer bioconjugates with narrow molecular weight distributions (Đ < 1.30) in an open-air 96-well plate. In addition, the broad absorption spectrum of MB+ allowed ATRP to be triggered under UV to NIR irradiation (395-730 nm). This opens avenues for the integration of orthogonal photoinduced reactions. Finally, the MB+/Cu catalysis showed good biocompatibility during polymerization in the presence of cells, which expands the potential applications of this method.
Collapse
Affiliation(s)
- Xiaolei Hu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Anna Lewandowska-Andralojc
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Uniwersytetu
Poznanskiego 10, 61-614 Poznan, Poland
| | - Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Bingda Li
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Arman Moini Jazani
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Subha R. Das
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
29
|
Puffer KO, Corbin DA, Miyake GM. Impact of Alkyl Core Substitution Kinetics in Diaryl Dihydrophenazine Photoredox Catalysts on Properties and Performance in O-ATRP. ACS Catal 2023; 13:14042-14051. [PMID: 38883439 PMCID: PMC11178316 DOI: 10.1021/acscatal.3c04060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Organocatalyzed atom transfer radical polymerization (O-ATRP) is a controlled radical polymerization method mediated by organic photoredox catalysts (PCs) for producing polymers with well-defined structures. While N,N-diaryl dihydrophenazine PCs have successfully produced polymers with low dispersity (Đ < 1.3) in O-ATRP, low initiator efficiencies (I* ~ 60-80%) indicate an inability to achieve targeted molecular weights and have been attributed to the addition of radicals to the PC core. In this work, we measure the rates of alkyl core substitution (AkCS) to gain insight into why PCs differing in N-aryl group connectivity exhibit differences in polymerization control. Additionally, we evaluate how PC properties evolve during O-ATRP when a non-core-substituted PC is used. PC 1 with 1-naphthyl groups in the N-aryl position resulted in faster AkCS (k 1 = 1.21 ± 0.16 × 10-3 s-1, k 2 = 2.04 ± 0.11 × 10-3 s-1) and better polymerization control at early reaction times as indicated by plots of molecular weight (number average molecular weight = M n) vs conversion compared to PC 2 with 2-naphthyl groups (k 1 = 6.28 ± 0.38 × 10-4 s-1, k 2 = 1.15 ± 0.07 × 10-3 s-1). The differences in rates indicate that N-aryl connectivity can influence polymerization control by changing the rate of AkCS PC formation. The rate of AkCS increased from the initial to the second substitution, suggesting that PC properties are modified by AkCS. Increased PC radical cation (PC•+) oxidation potentials (E 1/2 = 0.26-0.27 V vs SCE) or longer triplet excited-state lifetimes (τ T1 = 1.4-33 μs) for AkCS PCs 1b and 2b compared to parent PCs 1 and 2 (E 1/2 = 0.21-0.22 V vs SCE, τ T1 = 0.61-3.3 μs) were observed and may explain changes to PC performance with AkCS. Insight from evaluation of the formation, properties, and performance of AkCS PCs will facilitate their use in O-ATRP and in other PC-driven organic transformations.
Collapse
Affiliation(s)
- Katherine O Puffer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Daniel A Corbin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
30
|
Choi WO, Jung YJ, Kim M, Kim H, Li J, Ko H, Lee HI, Lee HJ, Lee JK. Substituent Effects of Fluorescein on Photoredox Initiating Performance under Visible Light. ACS OMEGA 2023; 8:40277-40286. [PMID: 37929095 PMCID: PMC10620908 DOI: 10.1021/acsomega.3c04324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
We demonstrated the effects of substituents in fluorescein on the photoredox catalytic performance under visible light. For the systematic investigation, the phenyl ring of fluorescein was substituted with six different functional groups (i.e., amine, amide, isothiocyanate, aminomethyl, bromo, or nitro group) at the 5- or 6-position. The fluorescein derivatives were carefully characterized through photophysical and electrochemical analyses. The substituent effects were estimated by comparing the photopolymerization of poly(ethylene glycol) diacrylate (PEGDA) and N-vinylpyrrolidone (VP) in the presence of triethanolamine (TEOA) under aerobic conditions to that of intact fluorescein. As a result, the amine and nitro groups exhibited the lowest performances, presumably due to intramolecular photoinduced electron transfer (PET) promoted by the strong electron push-pull effect. The others, representative moderate or weak deactivators and activators, exhibited inferior performances than intact fluorescein, presumably owing to the more negative ΔGPET values, resulting in a decreased rate of intermolecular PET. These results are crucial for understanding the structure-performance relationship and the development of visible-light photoredox catalysts with improved performance and functionality.
Collapse
Affiliation(s)
| | | | | | - Hoyun Kim
- Department of Chemistry and
Green-Nano Materials Research Center, Kyungpook
National University, Daegu 41566, South Korea
| | - Jingjing Li
- Department of Chemistry and
Green-Nano Materials Research Center, Kyungpook
National University, Daegu 41566, South Korea
| | - Hyebin Ko
- Department of Chemistry and
Green-Nano Materials Research Center, Kyungpook
National University, Daegu 41566, South Korea
| | - Hong-In Lee
- Department of Chemistry and
Green-Nano Materials Research Center, Kyungpook
National University, Daegu 41566, South Korea
| | - Hye Jin Lee
- Department of Chemistry and
Green-Nano Materials Research Center, Kyungpook
National University, Daegu 41566, South Korea
| | - Jungkyu K. Lee
- Department of Chemistry and
Green-Nano Materials Research Center, Kyungpook
National University, Daegu 41566, South Korea
| |
Collapse
|
31
|
Seo T, Kubota K, Ito H. Dual Nickel(II)/Mechanoredox Catalysis: Mechanical-Force-Driven Aryl-Amination Reactions Using Ball Milling and Piezoelectric Materials. Angew Chem Int Ed Engl 2023; 62:e202311531. [PMID: 37638843 DOI: 10.1002/anie.202311531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The combination of a nickel(II) catalyst and a mechanoredox catalyst under ball-milling conditions promotes mechanical-force-driven C-N cross-coupling reactions. In this nickel(II)/mechanoredox cocatalyst system, the modulation of the oxidation state of the nickel center, induced by piezoelectricity, is used to facilitate a highly efficient aryl-amination reaction, which is characterized by a broad substrate scope, an inexpensive combination of catalysts (NiBr2 and BaTiO3 ), short reaction times, and an almost negligible quantity of solvents. Moreover, this reaction can be readily up-scaled to the multi-gram scale, and all synthetic operations can be carried out under atmospheric conditions without the need for complicated reaction setups. Furthermore, this force-induced system is suitable for excitation-energy-accepting molecules and poorly soluble polyaromatic substrates that are incompatible with solution-based nickel(II)/photoredox cocatalysts.
Collapse
Affiliation(s)
- Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-0021, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-0021, Japan
| |
Collapse
|
32
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
33
|
Dang VQ, Teets TS. Reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers. Chem Sci 2023; 14:9526-9532. [PMID: 37712019 PMCID: PMC10498680 DOI: 10.1039/d3sc03000h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Visible-light photoredox catalysis is well-established as a powerful and versatile organic synthesis strategy. However, some substrate classes, despite being attractive precursors, are recalcitrant to single-electron redox chemistry and thus not very amenable to photoredox approaches. Among these are carbonyl derivatives, e.g. ketones, aldehydes, and imines, which in most cases require Lewis or Brønsted acidic additives to activate via photoinduced electron transfer. In this work, we unveil a range of photoredox transformations on ketones and imines, enabled by strongly reducing photosensitizers and operating under simple, general conditions with a single sacrificial reductant and no additives. Specific reactions described here are umpolung C-C bond forming reactions between aromatic ketones or imines and electron-poor alkenes, imino-pinacol homocoupling reactions of challenging alkyl-aryl imine substrates, and γ-lactonization reactions of aromatic ketones with methyl acrylate. The reactions are all initiated by photoinduced electron transfer to form a ketyl or iminyl that is subsequently trapped.
Collapse
Affiliation(s)
- Vinh Q Dang
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
34
|
Dadashi-Silab S, Preston-Herrera C, Stache EE. Vitamin B 12 Derivative Enables Cobalt-Catalyzed Atom Transfer Radical Polymerization. J Am Chem Soc 2023; 145:19387-19395. [PMID: 37606469 DOI: 10.1021/jacs.3c06783] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Advances in controlled radical polymerizations by cobalt complexes have primarily taken advantage of the reactivity of cobalt as a persistent radical to reversibly deactivate propagating chains by forming a carbon-cobalt bond. However, cobalt-mediated radical polymerizations require stoichiometric ratios of a cobalt complex, deterring its utility in synthesizing well-defined polymers. Here, we developed a strategy to use cobalt as a catalyst to control radical polymerizations via halogen atom transfer with alkyl halide initiators. Using a modified, hydrophobic analogue of vitamin B12 (heptamethyl ester cobyrinate) as a cobalt precatalyst, we controlled the polymerization of acrylate monomers. The polymerization efficiency of the cobalt catalyst was significantly improved by additional bromide anions, which enhanced the deactivation of propagating radicals yielding polymers with dispersity values <1.2 using catalyst concentrations as low as 5 mol %. We anticipate that the development of cobalt catalysis in atom transfer radical polymerization will enable new opportunities in designing catalytic systems for the controlled synthesis of polymers.
Collapse
Affiliation(s)
- Sajjad Dadashi-Silab
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cristina Preston-Herrera
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Erin E Stache
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
35
|
Ahmed M, Wu Y, Schiavone MR, Lang K, You L, Zeller M, Mei J. Synthesis and Reduction of Nitrogen-Substituted Diaryl Dihydrophenazine Diradical Dications. Org Lett 2023; 25:6363-6367. [PMID: 37607053 DOI: 10.1021/acs.orglett.3c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A one-pot synthetic approach to form core-extended N,N'-disubstituted diaryl dihydrophenazine (DADHP) diradical dications (DRDCs) via chemical oxidation from aryl-substituted ortho-phenyldiamines is reported. The isolated N,N'-disubstituted DADHP DRDCs were reduced to their neutral counterparts with hydrazine. The model system featuring an unsubstituted fluorene aryl group, 2a, was tested as a photocatalyst for the polymerization of methyl methacrylate using organocatalyzed atom transfer polymerization (O-ATRP), which yielded a polymer with a controlled molecular weight and narrow polydispersity.
Collapse
Affiliation(s)
- Mustafa Ahmed
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yukun Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthew R Schiavone
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kai Lang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Liyan You
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
36
|
Xia GD, Liu ZK, Zhao YL, Jia FC, Hu XQ. Radical Phosphorylation of Aliphatic C-H Bonds via Iron Photocatalysis. Org Lett 2023; 25:5279-5284. [PMID: 37431881 DOI: 10.1021/acs.orglett.3c01824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The synthesis of tertiary phosphines(III) has been a long-standing challenge in synthetic chemistry because of inevitable issues including harsh conditions, sensitive organometallic reagents, and prefunctionalized substrates in traditional synthesis. Herein, we report a strategically novel C(sp3)-H bond phosphorylation that enables the assembly of structurally diverse tertiary phosphines(III) from industrial phosphine(III) sources under mild photocatalytic conditions. The merger of ligand-to-metal charge transfer (LMCT) of FeCl3 with the hydrogen atom-transfer (HAT) process is the key for the generation of alkyl radicals from hydrocarbons. Strikingly, this catalytic system can be successfully applied for the polymerization of electron-deficient alkenes.
Collapse
Affiliation(s)
- Guang-Da Xia
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yu-Lian Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Feng-Cheng Jia
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
37
|
Zeppuhar AN, Falvey DE. Lamp vs Laser: A Visible Light Photoinitiator That Promotes Radical Polymerization at Low Intensities and Cationic Polymerization at High Intensities. J Org Chem 2023. [PMID: 37418315 DOI: 10.1021/acs.joc.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
A visible light absorbing anthraquinone derivative 1-tosyloxy-2-methoxy-9,10-anthraquinone (QT) mediates both cationic and radical polymerizations depending on the intensity of visible light used. A previous study showed that this initiator generates para-toluenesulfonic acid through a stepwise, two-photon excitation mechanism. Thus, under high-intensity irradiation, QT generates acid in sufficient quantities to catalyze the cationic ring-opening polymerization of lactones. However, under low-intensity (lamp) conditions, the two-photon process is negligible, and QT photooxidizes DMSO, generating methyl radicals which initiate the RAFT polymerization of acrylates. This dual capability was utilized to switch between radical and cationic polymerizations to synthesize a copolymer using a one-pot procedure.
Collapse
Affiliation(s)
- Andrea N Zeppuhar
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel E Falvey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
38
|
Nan J, Huang G, Liu S, Wang J, Ma Y, Luan X. In(OTf) 3-catalyzed reorganization/cycloaddition of two imine units and subsequent modular assembly of acridinium photocatalysts. Chem Sci 2023; 14:5160-5166. [PMID: 37206409 PMCID: PMC10189902 DOI: 10.1039/d3sc00163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023] Open
Abstract
Herein, we disclose a novel reorganization/cycloaddition between two imine units catalyzed by In(OTf)3 Lewis acid that differs from the well-known [4 + 2] cycloaddition version via the Povarov reaction. By means of this unprecedented imine chemistry, a collection of synthetically useful dihydroacridines has been synthesized. Notably, the obtained products give rise to a series of structurally novel and fine-tuneable acridinium photocatalysts, offering a heuristic paradigm for synthesis and efficiently facilitating several encouraging dihydrogen coupling reactions.
Collapse
Affiliation(s)
- Jiang Nan
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Guanjie Huang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Shilei Liu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Jing Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yangmin Ma
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710021 China
| |
Collapse
|
39
|
López‐Domínguez P, Ríos‐López M, Rivera‐Peláez JE, Barragán‐Aroche JF, Vivaldo‐Lima E. Modelling of polymerization kinetics and molar mass development in the nitroxide‐mediated polymerization (
NMP
) of styrene in supercritical carbon dioxide using the
PC‐SAFT
equation of state. CAN J CHEM ENG 2023. [DOI: 10.1002/cjce.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Porfirio López‐Domínguez
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
- Centro de Investigación en Química Aplicada Blvd. Enrique Reyna 140 Saltillo 25294 Mexico
| | - Marlene Ríos‐López
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
| | - Jesús Eduardo Rivera‐Peláez
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
| | - José Fernando Barragán‐Aroche
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
| | - Eduardo Vivaldo‐Lima
- Facultad de Química, Departamento de Ingeniería Química Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
| |
Collapse
|
40
|
Wang Y, Lorandi F, Fantin M, Matyjaszewski K. Atom transfer radical polymerization in dispersed media with low-ppm catalyst loading. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
41
|
Kapil K, Jazani AM, Szczepaniak G, Murata H, Olszewski M, Matyjaszewski K. Fully Oxygen-Tolerant Visible-Light-Induced ATRP of Acrylates in Water: Toward Synthesis of Protein-Polymer Hybrids. Macromolecules 2023; 56:2017-2026. [PMID: 36938511 PMCID: PMC10019465 DOI: 10.1021/acs.macromol.2c02537] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/05/2023] [Indexed: 02/22/2023]
Abstract
Over the last decade, photoinduced ATRP techniques have been developed to harness the energy of light to generate radicals. Most of these methods require the use of UV light to initiate polymerization. However, UV light has several disadvantages: it can degrade proteins, damage DNA, cause undesirable side reactions, and has low penetration depth in reaction media. Recently, we demonstrated green-light-induced ATRP with dual catalysis, where eosin Y (EYH2) was used as an organic photoredox catalyst in conjunction with a copper complex. This dual catalysis proved to be highly efficient, allowing rapid and well-controlled aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate without the need for deoxygenation. Herein, we expanded this system to synthesize polyacrylates under biologically relevant conditions using CuII/Me6TREN (Me6TREN = tris[2-(dimethylamino)ethyl]amine) and EYH2 at ppm levels. Water-soluble oligo(ethylene oxide) methyl ether acrylate (average M n = 480, OEOA480) was polymerized in open reaction vessels under green light irradiation (520 nm). Despite continuous oxygen diffusion, high monomer conversions were achieved within 40 min, yielding polymers with narrow molecular weight distributions (1.17 ≤ D̵ ≤ 1.23) for a wide targeted DP range (50-800). In situ chain extension and block copolymerization confirmed the preserved chain end functionality. In addition, polymerization was triggered/halted by turning on/off a green light, showing temporal control. The optimized conditions also enabled controlled polymerization of various hydrophilic acrylate monomers, such as 2-hydroxyethyl acrylate, 2-(methylsulfinyl)ethyl acrylate), and zwitterionic carboxy betaine acrylate. Notably, the method allowed the synthesis of well-defined acrylate-based protein-polymer hybrids using a straightforward reaction setup without rigorous deoxygenation.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Arman Moini Jazani
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie
Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
42
|
Zaborniak I, Pieńkowska N, Chmielarz P, Bartosz G, Dziedzic A, Sadowska-Bartosz I. Nitroxide-containing amphiphilic polymers prepared by simplified electrochemically mediated ATRP as candidates for therapeutic antioxidants. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
43
|
Recent Advances in the Application of ATRP in the Synthesis of Drug Delivery Systems. Polymers (Basel) 2023; 15:polym15051234. [PMID: 36904474 PMCID: PMC10007417 DOI: 10.3390/polym15051234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Advances in atom transfer radical polymerization (ATRP) have enabled the precise design and preparation of nanostructured polymeric materials for a variety of biomedical applications. This paper briefly summarizes recent developments in the synthesis of bio-therapeutics for drug delivery based on linear and branched block copolymers and bioconjugates using ATRP, which have been tested in drug delivery systems (DDSs) over the past decade. An important trend is the rapid development of a number of smart DDSs that can release bioactive materials in response to certain external stimuli, either physical (e.g., light, ultrasound, or temperature) or chemical factors (e.g., changes in pH values and/or environmental redox potential). The use of ATRPs in the synthesis of polymeric bioconjugates containing drugs, proteins, and nucleic acids, as well as systems applied in combination therapies, has also received considerable attention.
Collapse
|
44
|
Förster C, Andrieu-Brunsen A. Recent developments in visible light induced polymerization towards its application to nanopores. Chem Commun (Camb) 2023; 59:1554-1568. [PMID: 36655782 PMCID: PMC9904278 DOI: 10.1039/d2cc06595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Visible light induced polymerizations are a strongly emerging field in recent years. Besides the often mild reaction conditions, visible light offers advantages of spatial and temporal control over chain growth, which makes visible light ideal for functionalization of surfaces and more specifically of nanoscale pores. Current challenges in nanopore functionalization include, in particular, local and highly controlled polymer functionalizations. Using spatially limited light sources such as lasers or near field modes for light-induced polymer functionalization is envisioned to allow local functionalization of nanopores and thereby improve nanoporous material performance. These light sources are usually providing visible light while classical photopolymerizations are mostly based on UV-irradiation. In this review, we highlight developments in visible light induced polymerizations and especially in visible light induced controlled polymerizations as well as their potential for nanopore functionalization. Existing examples of visible light induced polymerizations in nanopores are emphasized.
Collapse
Affiliation(s)
- Claire Förster
- Macromolecular Chemistry – Smart Membranes, Technische Universität Darmstadt64287DarmstadtGermanyannette.andrieu-brunsen@.tu-darmstadt.de
| | - Annette Andrieu-Brunsen
- Macromolecular Chemistry – Smart Membranes, Technische Universität Darmstadt64287DarmstadtGermanyannette.andrieu-brunsen@.tu-darmstadt.de
| |
Collapse
|
45
|
Li R, Kong W, An Z. Controlling Radical Polymerization with Biocatalysts. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Weina Kong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
46
|
Ham R, Nielsen CJ, Pullen S, Reek JNH. Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis. Chem Rev 2023; 123:5225-5261. [PMID: 36662702 PMCID: PMC10176487 DOI: 10.1021/acs.chemrev.2c00759] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Because sunlight is the most abundant energy source on earth, it has huge potential for practical applications ranging from sustainable energy supply to light driven chemistry. From a chemical perspective, excited states generated by light make thermodynamically uphill reactions possible, which forms the basis for energy storage into fuels. In addition, with light, open-shell species can be generated which open up new reaction pathways in organic synthesis. Crucial are photosensitizers, which absorb light and transfer energy to substrates by various mechanisms, processes that highly depend on the distance between the molecules involved. Supramolecular coordination cages are well studied and synthetically accessible reaction vessels with single cavities for guest binding, ensuring close proximity of different components. Due to high modularity of their size, shape, and the nature of metal centers and ligands, cages are ideal platforms to exploit preorganization in photocatalysis. Herein we focus on the application of supramolecular cages for photocatalysis in artificial photosynthesis and in organic photo(redox) catalysis. Finally, a brief overview of immobilization strategies for supramolecular cages provides tools for implementing cages into devices. This review provides inspiration for future design of photocatalytic supramolecular host-guest systems and their application in producing solar fuels and complex organic molecules.
Collapse
Affiliation(s)
- Rens Ham
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - C Jasslie Nielsen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| |
Collapse
|
47
|
Li M, Ma JA, Liao S. Atom-Transfer Radical Polymerization of a SuFExable Vinyl Monomer and Polymer Library Construction via SuFEx Click Reaction. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Meng Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Jun-An Ma
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology, Ministry of Education, Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Beijing National Laboratory of Molecular Science (BNLMS), Beijing 100190, China
| |
Collapse
|
48
|
Wang W, Rondon B, Wang Z, Wang J, Niu J. Macrocyclic Allylic Sulfone as a Universal Comonomer in Organocatalyzed Photocontrolled Radical Copolymerization with Vinyl Monomers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wenqi Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts02467, United States
| | - Brayan Rondon
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts02467, United States
| | - Zeyu Wang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio44325, United States
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio44325, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts02467, United States
| |
Collapse
|
49
|
Bortolato T, Simionato G, Vayer M, Rosso C, Paoloni L, Benetti EM, Sartorel A, Lebœuf D, Dell’Amico L. The Rational Design of Reducing Organophotoredox Catalysts Unlocks Proton-Coupled Electron-Transfer and Atom Transfer Radical Polymerization Mechanisms. J Am Chem Soc 2023; 145:1835-1846. [PMID: 36608266 PMCID: PMC9881005 DOI: 10.1021/jacs.2c11364] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photocatalysis has become a prominent tool in the arsenal of organic chemists to develop and (re)imagine transformations. However, only a handful of versatile organic photocatalysts (PCs) are available, hampering the discovery of new reactivities. Here, we report the design and complete physicochemical characterization of 9-aryl dihydroacridines (9ADA) and 12-aryl dihydrobenzoacridines (12ADBA) as strong reducing organic PCs. Punctual structural variations modulate their molecular orbital distributions and unlock locally or charge-transfer (CT) excited states. The PCs presenting a locally excited state showed better performances in photoredox defunctionalization processes (yields up to 92%), whereas the PCs featuring a CT excited state produced promising results in atom transfer radical polymerization under visible light (up to 1.21 Đ, and 98% I*). Unlike all the PC classes reported so far, 9ADA and 12ADBA feature a free NH group that enables a catalytic multisite proton-coupled electron transfer (MS-PCET) mechanism. This manifold allows the reduction of redox-inert substrates including aryl, alkyl halides, azides, phosphate and ammonium salts (Ered up to -2.83 vs SCE) under single-photon excitation. We anticipate that these new PCs will open new mechanistic manifolds in the field of photocatalysis by allowing access to previously inaccessible radical intermediates under one-photon excitation.
Collapse
Affiliation(s)
- Tommaso Bortolato
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Gianluca Simionato
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Marie Vayer
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 allée Gaspard Monge, 67000Strasbourg, France
| | - Cristian Rosso
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Paoloni
- Dipartimento
di Fisica e Astronomia G. Galilei, University
of Padova, Via Marzolo
8, 35131, Padova, Italy
| | - Edmondo M. Benetti
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Andrea Sartorel
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - David Lebœuf
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), CNRS UMR 7006, Université
de Strasbourg, 8 allée Gaspard Monge, 67000Strasbourg, France,E-mail:
| | - Luca Dell’Amico
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy,E-mail:
| |
Collapse
|
50
|
Zaborniak I, Chmielarz P. How we can improve ARGET ATRP in an aqueous system: Honey as an unusual solution for polymerization of (meth)acrylates. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|