1
|
Tao Z, Xia T, Chen F, Zhang L, Wei R, Chen S, Jia L, Lan W, Pan K. Cadmium contamination in sediments from a mangrove wetland: Insights from lead isotopes. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135667. [PMID: 39226682 DOI: 10.1016/j.jhazmat.2024.135667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Cadmium (Cd) pollution has gained significant attention in mangrove sediments due to its high toxicity and mobility. However, the sources of Cd and the factors influencing its accumulation in these sediments have remained elusive. In this study, we utilized lead (Pb) isotopic signatures for the first time to assess Cd contamination in mangrove sediments from the northern region of the Beibu Gulf. A strong correlation was observed between Cd and Pb concentrations in the mangrove sediments, suggesting a shared source that can be estimated using Pb isotopic signatures. By employing a Bayesian mixing model, we determined that 70.1 ± 8.2 % of Cd originated from natural sources, while 12.9 ± 4.9 %, 9.8 ± 3.7 %, and 7.1 ± 3.4 % were attributed to agricultural activities, non-ferrous metal smelting, and coal combustion, respectively. Our study clearly suggests that natural Cd could also dominate the high Cd content. Agricultural activities were the most important anthropogenic Cd sources, and the increased anthropogenic Cd accumulation in mangrove sediment was related to organic matter. This study introduces a novel approach for assessing Cd contamination in mangrove sediment, providing useful insights into Cd pollution in coastal wetlands.
Collapse
Affiliation(s)
- Zhenghua Tao
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianxiang Xia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Lina Zhang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shanshan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Lin Jia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Wenlu Lan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Li Y, Qin Y, Zhang L, Qi L, Wang S, Guo J, Tang A, Goulding K, Liu X. Bioavailability and ecological risk assessment of metal pollutants in ambient PM 2.5 in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174129. [PMID: 38917907 DOI: 10.1016/j.scitotenv.2024.174129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Metal pollutants in fine particulate matter (PM2.5) are physiologically toxic, threatening ecosystems through atmospheric deposition. Biotoxicity and bioavailability are mainly determined by the active speciation of metal pollutants in PM2.5. As a megacity in China, Beijing has suffered severe particulate pollution over the past two decades, and the health effects of metal pollutants in PM2.5 have received significant attention. However, there is a limited understanding of the active forms of metals in PM2.5 and their ecological risks to plants, soil or water in Beijing. It is essential that the ecological risks of metal pollutants in PM2.5 are accurately evaluated based on their bioavailability, identifying the key pollutants and revealing historic trends to future risks control. A two-year project measured the chemical speciation of pollution elements (As, Cd, Cu, Cr, Ni, Mn, Pb, Sb, Sr, Ti, and Zn) in PM2.5 in Beijing, in particular their bioavailability, assessing ecological risks and identifying key pollutants. The mass concentrations of total and active species of pollution elements were 199.12 ng/m3 and 114.97 ng/m3, respectively. Active fractions accounted for 57.7 % of the total. Cd had the highest active proportion. Based on the risk assessment code (RAC), most pollution elements except Ti had moderate or high ecological risk, with RAC exceeding 30 %. Cd, with an RAC of 70 %, presented the strongest ecological risk. Comparing our data with previous research shows that concentrations of pollution elements in PM2.5 in Beijing have decreased over the past decade. However, although the total concentrations of Cd in PM2.5 have decreased by >50 % over the past decade, based on machine model simulation, its ecological risk has reduced by only 10 %. Our research shows that the ecological risks of pollution elements remain high despite their decreasing concentrations. Controlling the active species of metal pollutants in PM2.5 in Beijing in the future is vital.
Collapse
Affiliation(s)
- Yunzhe Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yanyi Qin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Lisha Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Linxi Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Shuifeng Wang
- Analysis and Testing Center, Beijing Normal University, Beijing 100875, China
| | - Jinghua Guo
- Analysis and Testing Center, Beijing Normal University, Beijing 100875, China
| | - Aohan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Keith Goulding
- Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Xuejun Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Wang X, Gao Q, Wang W, Yan J, Liu Y, Kuang S, Lu J. Determining priority control factors for heavy metal management in urban road dust based on source-oriented probabilistic ecological-health risk assessment: A study in Xi'an during peak pollution season. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122105. [PMID: 39213844 DOI: 10.1016/j.jenvman.2024.122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Urban road dust (URD) is essential for transporting heavy metals (HMs), which can be a major danger to both the environment and human health. Moreover, URD has the potential to be carried into bodies of water, leading to contamination of the aquatic ecosystem. A study was conducted in Xi'an, a city in northwestern China known for high air pollution levels, during January 2024 - a period characterized by peak pollution due to frequent low wind speeds and temperature inversions. The research investigated the presence of 10 types of HMs (Cu, Zn, Cd, Cr, Pb, As, Ni, Hg, Co, and Mn) in URD. Findings revealed elevated levels of Cu, Zn, Cd, Cr, Pb, As, and Hg in URD compared to background levels. Hg showed the most significant contamination (moderate to heavy), followed by moderate contamination of Cd, and lower levels of As, Zn, and Cu. The main sources of HMs were traffic (58.2%), mixed natural and industrial (30.3%), and industrial (11.5%). The ecological risk in the area was deemed to be very high, primarily because of Hg and Cd. Based on probabilistic health risk assessments, it was determined that non-carcinogenic risks were deemed acceptable for all groups. Nevertheless, the possibility of carcinogenic risks should not be disregarded. Strategies for controlling ecological-health risks prioritize mixed natural and industrial sources, with a focus on Hg, Cd, and As in URD. The results offer a foundation for policymakers to create specific control strategies.
Collapse
Affiliation(s)
- Xuan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qi Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Weizhou Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jiaxin Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yunchong Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shixiang Kuang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
4
|
Li C, Wang H, Dai S, Liu F, Xiao S, Wang X, Cao P, Zhang Y, Yang J. Source-specific ecological and human health risk analysis of topsoil heavy metals in urban greenspace: a case study from Tianshui City, northwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:445. [PMID: 39316158 DOI: 10.1007/s10653-024-02228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Soil contamination of heavy metals in urban greenspaces can exert detrimental impacts on ecological biodiversity and the health of inhabitants through cross-media migration-induced risks. Here, a total of 72 topsoil samples were collected from greenspaces in the popular tourist city of Tianshui, ranging from areas with parks, residential, road, industrial and educational soils. The study aimed to evaluate an integrated source-specific ecological and human health risk assessment of heavy metals. Among the analyzed heavy metals, except Cr (mean), all exceeded the local background values by 1.30-5.67-fold, and Hg, Cd, Pb and As were the metals with large CV values. The Igeo and CF results showed Hg, Cd, As and Pb exhibited significantly high pollution levels and were the primary pollution factors. The mean PLI values indicated moderate pollution in educational (2.21), industrial (2.07), and road (2.02) soils but slight pollution in park (1.84) and residential (1.39) greenspaces. The Igeo, CF, and PLI results also revealing that these heavy metals are more likely to be affected by human activity. Four primary source factors were identified based on PMF model: coal combustion (25.57%), agricultural sources (14.49%), atmospheric deposition (20.44%) and mixed sources (39.50%). In terms of ecological risk, the mean IRI values showed considerable risks in educational soils (287.52) and moderate risks in road (215.09), park (151.27) and residential (136.71) soils. And the contribution ratio of atmospheric deposition for park, residential, road, industrial and educational greenspaces were 57.72%, 65.41%, 67.69%, 59.60% and 75.76%, respectively. In terms of human health risk, the HI (below 1) and CR (below 1.00E-04) for adults from soils of all land use types was negligible. However, children have more significant non-carcinogenic and carcinogenic hazards especially in residential soils, the HI (above 1) and CR (above 1.00E-04) revealed the significance of regarding legacy As contamination from coal combustion when formulating risk mitigation strategies in this area. The proposed method for source and risk identification makes the multifaceted concerns of pollution and the different relevant risks into a concrete decision-making process, providing robust support for soil contamination control.
Collapse
Affiliation(s)
- Chunyan Li
- Gansu Engineering Research Centre for Mine Environmental Geology and Urban Geology, School of Earth Sciences, Lanzhou University & Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, 730000, China
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hai Wang
- College of Environment Engineering, Gansu Forestry Voctech University, Tianshui, 741020, China.
| | - Shuang Dai
- Gansu Engineering Research Centre for Mine Environmental Geology and Urban Geology, School of Earth Sciences, Lanzhou University & Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, 730000, China.
| | - Futian Liu
- Gansu Engineering Research Centre for Mine Environmental Geology and Urban Geology, School of Earth Sciences, Lanzhou University & Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, 730000, China.
| | - Shun Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinmin Wang
- School of Resources and Environmental Engineering, Tianshui Normal University, Tianshui, 741001, China
| | - Pengju Cao
- Gansu Engineering Research Centre for Mine Environmental Geology and Urban Geology, School of Earth Sciences, Lanzhou University & Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, 730000, China
| | - Yongquan Zhang
- Gansu Engineering Research Centre for Mine Environmental Geology and Urban Geology, School of Earth Sciences, Lanzhou University & Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, 730000, China
| | - Jie Yang
- Gansu Engineering Research Centre for Mine Environmental Geology and Urban Geology, School of Earth Sciences, Lanzhou University & Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, 730000, China
| |
Collapse
|
5
|
Cui S, Yu W, Han X, Hu T, Yu M, Liang Y, Guo S, Ma J, Teng L, Liu Z. Factors influencing the distribution, risk, and transport of microplastics and heavy metals for wildlife and habitats in "island" landscapes: From source to sink. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134938. [PMID: 38901262 DOI: 10.1016/j.jhazmat.2024.134938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Microplastics (MPs) and heavy metals (HMs) are important pollutants in terrestrial ecosystems. In particular, the "island" landscape's weak resistance makes it vulnerable to pollution. However, there is a lack of research on MPs and HMs in island landscapes. Therefore, we used Helan Mountain as the research area. Assess the concentrations, spatial distribution, ecological risks, sources, and transport of MPs and HMs in the soil and blue sheep (Pseudois nayaur) feces. Variations in geographical distribution showed a connection between human activity and pollutants. Risk assessment indicated soil and wildlife were influenced by long-term pollutant polarization and multi-element inclusion (Igeo, Class I; PHI, Class V; RI (MPs), 33 % Class II, and 17 % Class IV; HI = 452.08). Source apportionment showed that tourism and coal combustion were the primary sources of pollutants. Meanwhile, a new coupling model of PMF/Risk was applied to quantify the source contribution of various risk types indicated transportation roads and tourism sources were the main sources of ecological and health risks, respectively. Improve the traceability of pollution source risks. Furthermore, also developed a novel tracing model for pollutant transportation, revealing a unique "source-sink-source" cycle in pollutant transportation, which provides a new methodological framework for the division of pollution risk areas in nature reserves and the evaluation of spatial transport between sources and sinks. Overall, this study establishes a foundational framework for conducting comprehensive risk assessments and formulating strategies for pollution control and management.
Collapse
Affiliation(s)
- Shuang Cui
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Wei Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - XingZhi Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianhua Hu
- Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan 750021, China
| | - Mengqi Yu
- Forest Pest Control and Quarantine Station of Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yongliang Liang
- Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan 750021, China
| | - Songtao Guo
- The College of Life Sciences, Northwest University, Shaanxi Key Laboratory for Animal Conservation, Xi'an 710069, China
| | - Jinlian Ma
- Inner Mongolia Helan Mountain National Natural Nature Reserve Administration, Alxa League, 750306, China
| | - Liwei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin 150040, China.
| | - Zhensheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin 150040, China.
| |
Collapse
|
6
|
Zhao J, Xu J, Xu Y, Ji Y. Pollution Characteristics of Heavy Metals in PM 1 and Source-Specific Health Risks in the Tianjin Airport Community, China. TOXICS 2024; 12:601. [PMID: 39195703 PMCID: PMC11359593 DOI: 10.3390/toxics12080601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The airport and its surrounding areas are home to a variety of pollution sources, and air pollution is a recognized health concern for local populated regions. Submicron particulate matter (PM1 with an aerodynamic diameter of <1 mm) is a typical pollutant at airports, and the enrichment of heavy metals (HMs) in PM1 poses a great threat to human health. To comprehensively assess the source-specific health effects of PM1-bound HMs in an airport community, PM1 filter samples were collected around the Tianjin Binhai International Airport for 12 h during the daytime and nighttime, both in the spring and summer, and 10 selected HMs (V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, and Pb) were analyzed. The indicatory elements of aircraft emissions were certified as Zn and Pb, which accounted for more than 60% of the sum concentration of detected HMs. The health risks assessment showed that the total non-cancer risks (TNCRs) of PM1-bound HMs were 0.28 in the spring and 0.23 in the summer, which are lower than the safety level determined by the USEPA, and the total cancer risk (TCR) was 2.37 × 10-5 in the spring and 2.42 × 10-5 in the summer, implying that there were non-negligible cancer risks in the Tianjin Airport Community. After source apportionment with EF values and PMF model, four factors have been determined in both seasons. Consequently, the source-specific health risks were also evaluated by combining the PMF model with the health risk assessment model. For non-cancer risk, industrial sources containing high concentrations of Mn were the top contributors in both spring (50.4%) and summer (44.2%), while coal combustion with high loads of As and Cd posed the highest cancer risk in both seasons. From the perspective of health risk management, targeted management and control strategies should be adopted for industrial emissions and coal combustion in the Tianjin Airport Community.
Collapse
Affiliation(s)
- Jingbo Zhao
- College of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China; (J.Z.)
| | - Jingcheng Xu
- College of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China; (J.Z.)
| | - Yanhong Xu
- College of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China; (J.Z.)
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Yang D, Li M, Geng X, Feng Z. Sources and Specified Health Risks of 12 PM 2.5-Bound Metals in a Typical Air-Polluted City in Northern China during the 13th Five-Year Plan. TOXICS 2024; 12:581. [PMID: 39195683 PMCID: PMC11360060 DOI: 10.3390/toxics12080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
The continuous monitoring of PM2.5 (including 12 metal elements) was conducted in Jinan, a city with poor air quality in China, during the 13th Five-Year Plan (2016-2020). Positive matrix factorization (PMF) was used to identify emission sources of PM2.5-bound metals, and the health risks of the metals and their emission sources were assessed. During the study period, the concentration of most metals showed a decreasing trend (except Al and Be), and a significant seasonal difference was found: winter > fall > spring > summer. The PMF analysis showed that there were four main sources of PM2.5-bound metals, and their contributions to the total metals (TMs) were dust emissions (54.3%), coal combustion and industrial emissions (22.3%), vehicle emissions (19.3%), and domestic emissions (4.1%). The results of the health risk assessment indicated that the carcinogenic risk of metals (Cr and As) exceeded the acceptable level (1 × 10-6), which was of concern. Under the influence of emission reduction measures, the contribution of emission sources to health risks changes dynamically, and the emission sources that contribute more to health risks were coal combustion and industrial emissions, as well as vehicle emissions. In addition, our findings suggest that a series of emission reduction measures effectively reduced the health risk from emission sources of PM2.5-bound metals.
Collapse
Affiliation(s)
- Deai Yang
- Department of Labor Hygiene and Environmental Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan 250021, China;
| | - Mingjun Li
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan 250021, China;
| | - Xingyi Geng
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan 250021, China;
| | - Zhihui Feng
- Department of Labor Hygiene and Environmental Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| |
Collapse
|
8
|
Anaman R, Peng C, Jiang Z, Amanze C, Fosua BA. Distinguishing the contributions of different smelting emissions to the spatial risk footprints of toxic elements in soil using PMF, Bayesian isotope mixing models, and distance-based regression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173153. [PMID: 38735332 DOI: 10.1016/j.scitotenv.2024.173153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Toxic element pollution of soils emanating from smelting operations is an escalating global concern due to its severe impact on ecosystems and human health. In this study, soil samples were collected and analyzed to quantify the risk contributions and delineate the spatial risk footprints from smelting emissions for 8 toxic elements. A comprehensive health risk contribution and delineation framework was utilized, consisting of Positive matrix factorization (PMF), spatial interpolation, an advanced Bayesian isotope mixing model via Mixing Stable Isotope Analysis in R (MixSIAR), and distance-based regression. The results showed that the mean concentrations of As, Cd, Cu, Hg, Pb, and Zn exceeded the background levels, indicating substantial contamination. Three sources were identified using the PMF model and confirmed by spatial interpolation and MixSIAR, with contributions ranked as follows: industrial wastewater discharge and slag runoff from the smelter site (48.9 %) > natural geogenic inputs from soil parent materials (26.7 %) > atmospheric deposition of dust particles from smelting operations (24.5 %). Among the identified sources, smelter runoff posed the most significant risk, accounting for 97.9 % of the non-carcinogenic risk (NCR) and 59.9 % of the carcinogenic risk (CR). Runoff also drove NCR and CR exceedances at 7.8 % and 4.7 % of sites near the smelter, respectively. However, atmospheric deposition from smelting emissions affected soils across a larger 0.8 km radius. Although it posed lower risks, contributing just 1.1 % to NCR and 22.6 % to CR due to the limited elevation of toxic elements, deposition reached more distant soils. Spatial interpolation and distance-based regression delineated high NCR and CR exposure hotspots within 1.4 km for runoff and 0.8 km for deposition, with exponentially diminishing risks at further distances. These findings highlight the need for pathway-specific interventions that prioritize localized wastewater containment and drainage controls near the smelter while implementing broader regional air pollution mitigation measures.
Collapse
Affiliation(s)
- Richmond Anaman
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Zhichao Jiang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Bridget Ataa Fosua
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
9
|
Papagiannis S, Abdullaev SF, Vasilatou V, Manousakas MI, Eleftheriadis K, Diapouli E. Air quality challenges in Central Asian urban areas: a PM 2.5 source apportionment analysis in Dushanbe, Tajikistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39588-39601. [PMID: 38822961 DOI: 10.1007/s11356-024-33833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
This work presents the first comprehensive assessment of PM pollution sources in Dushanbe, Tajikistan. A total of 138 PM2.5 samples were collected during 2015-2016 and 2018-2019 and were analyzed through gravimetric, ED-XRF, and multi-wavelength absorption techniques. The results show that PM2.5 concentrations were substantially higher than the European annual limit value and WHO Air Quality Guidelines annual average value, with an average of 90.9 ± 68.5 μg m-3. The PMF application identified eight sources of pollution that influenced PM2.5 concentration levels in the area. Coal burning (21.3%) and biomass burning (22.3%) were the dominant sources during the winter, while vehicular traffic (7.7%) contributed more during the warm season. Power plant emissions (17.5%) showed enhanced contributions during the warm months, likely due to high energy demand. Cement industry emissions (6.9%) exhibited significant contribution during the cold period of 2018-2019, while soil dust (11.3%) and secondary sulphates (11.5%) displayed increased contribution during the warm and cold months, respectively. Finally, waste burning (1.5%) displayed the lowest contribution, with no significant temporal variation. Our results highlight the significant impact of anthropogenic activities, and especially the use of coal burning for energy production (both in power plants and for residential heating), and the significant contribution of biomass burning during both warm and cold seasons.
Collapse
Affiliation(s)
- Stefanos Papagiannis
- EΝvironmental Radioactivity & Aerosol Technology for Atmospheric & Climate ImpacT Lab (ENRACT), Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310, Athens, Greece.
- Institute of Nuclear & Particle Physics, NCSR Demokritos, 15310, Athens, Greece.
- Department of Materials Science & Engineering, University of Ioannina, 45110, Ioannina, Greece.
| | - Sabur Fuzaylovich Abdullaev
- S.U.Umarov Physical Technical Institute National Academy of Sciences of Tajikistan, 734063, Dushanbe, Tajikistan
| | - Vasiliki Vasilatou
- EΝvironmental Radioactivity & Aerosol Technology for Atmospheric & Climate ImpacT Lab (ENRACT), Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310, Athens, Greece
| | - Manousos Ioannis Manousakas
- EΝvironmental Radioactivity & Aerosol Technology for Atmospheric & Climate ImpacT Lab (ENRACT), Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310, Athens, Greece
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen, PSI, Switzerland
| | - Konstantinos Eleftheriadis
- EΝvironmental Radioactivity & Aerosol Technology for Atmospheric & Climate ImpacT Lab (ENRACT), Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310, Athens, Greece
| | - Evangelia Diapouli
- EΝvironmental Radioactivity & Aerosol Technology for Atmospheric & Climate ImpacT Lab (ENRACT), Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310, Athens, Greece
| |
Collapse
|
10
|
Wang L, Zhuang X, Bao H, Ma C, Ma C, Yang G. Chemical characterization and source apportionment of PM 2.5 in a Northeastern China city during the epidemic period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32901-32913. [PMID: 38668944 DOI: 10.1007/s11356-024-33473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
To investigate the influence of COVID-19 lockdown measures on PM2.5 and its chemical components in Shenyang, PM2.5 samples were continuously collected from January 1 to May 31, 2020. The samples were then analyzed for water-soluble inorganic ions, metal elements, organic carbon, and elemental carbon. The findings indicated a significant decrease in PM2.5 and its various chemical components during the lockdown period, compared to pre-lockdown levels (p < 0.05), suggesting a substantial improvement in air quality. Water-soluble inorganic ions (WSIIs) were identified as the primary contributors to PM2.5, accounting for 47% before the lockdown, 46% during the lockdown, and 37% after the lockdown. Ionic balance analysis revealed that PM2.5 exhibited neutral, weakly alkaline, and alkaline characteristics before, during, and after the lockdown, respectively. NH4+ was identified as the main balancing cation and was predominantly present in the form of NH4NO3 in the absence of complete neutralization of SO42- and NO3-. Moreover, the higher sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR), along with the significant increase in PM2.5/EC, suggested intense secondary transformation during the lockdown period. The elevated OC/EC ratio during the lockdown period implied higher secondary organic carbon (SOC), and the notable increase in SOC/EC ratio indicated a significant secondary transformation of total carbon. The enrichment factor (EF) results revealed that during the lockdown, 9 metal elements (As, Sn, Pb, Zn, Cu, Sb, Ag, Cd, and Se) were substantially impacted by anthropogenic emissions. Source analysis of PMF was employed to identify the sources of PM2.5 in Shenyang during the study period, and the analysis identified six factors: secondary sulfate and vehicle emissions, catering fume sources, secondary nitrate and coal combustion emissions, dust sources, biomass combustion, and industrial emissions, with secondary sulfate and vehicle emissions and catering fume sources contributing the most to PM2.5.
Collapse
Affiliation(s)
- Lukai Wang
- College of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Xiaohong Zhuang
- College of Environmental Science, Liaoning University, Shenyang, 110036, China.
| | - Hongxu Bao
- College of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Chunlei Ma
- College of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Chen Ma
- College of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Guangchao Yang
- College of Environmental Science, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
11
|
Zhou Y, Ding D, Zhao Y, Li Q, Jiang D, Lv Z, Wei J, Zhang S, Deng S. Determining priority control toxic metal for different protection targets based on source-oriented ecological and human health risk assessment around gold smelting area. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133782. [PMID: 38387175 DOI: 10.1016/j.jhazmat.2024.133782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Determining the priority control source and pollutant is the key for the eco-health protection and risk management around gold smelting area. To this end, a case study was conducted to explore the pollution characteristics, source apportionment, ecological risk and human health risk of toxic metals (TMs) in agricultural soils surrounding a gold smelting enterprise. Three effective receptor models, including positive matrix factorization model (PMF), ecological risk assessment (ERA), and probabilistic risk assessment (PRA) have been combined to apportion eco-human risks for different targets. More than 95.0% of samples had a Nemerow pollution index (NPI) > 2 (NPImean=4.27), indicating moderately or highly soil TMs contamination. Four pollution sources including gold smelting activity, mining source, agricultural activity and atmosphere deposition were identified as the major sources, with the contribution rate of 17.52%, 44.16%, 13.91%, and 24.41%, respectively. For ecological risk, atmosphere deposition accounting for 30.8% was the greatest contributor, which was mainly loaded on Hg of 51.35%. The probabilistic health risk assessment revealed that Carcinogenic risks and Non-carcinogenic risks of all population were unacceptable, and children suffered from a greater health risk than adults. Gold smelting activity (69.2%) and mining source (42.0%) were the largest contributors to Carcinogenic risks and Non-carcinogenic risks, respectively, corresponding to As and Cr as the target pollutants. The priority pollution sources and target pollutants were different for the eco-health protection. This work put forward a new perspective for soil risk control and management, which is very beneficial for appropriate soil remediation under limited resources and costs.
Collapse
Affiliation(s)
- Yan Zhou
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuanchao Zhao
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Qun Li
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dengdeng Jiang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhengyong Lv
- NJSOIL Ecology & Environmental Co, Ltd., Nanjing 211100, China
| | - Jing Wei
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Shaopo Deng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
12
|
Liu X, Turner JR, Oxford CR, McNeill J, Walsh B, Le Roy E, Weagle CL, Stone E, Zhu H, Liu W, Wei Z, Hyslop NP, Giacomo J, Dillner AM, Salam A, Hossen AA, Islam Z, Abboud I, Akoshile C, Amador-Muñoz O, Anh NX, Asfaw A, Balasubramanian R, Chang RYW, Coburn C, Dey S, Diner DJ, Dong J, Farrah T, Gahungu P, Garland RM, Grutter de la Mora M, Hasheminassab S, John J, Kim J, Kim JS, Langerman K, Lee PC, Lestari P, Liu Y, Mamo T, Martins M, Mayol-Bracero OL, Naidoo M, Park SS, Schechner Y, Schofield R, Tripathi SN, Windwer E, Wu MT, Zhang Q, Brauer M, Rudich Y, Martin RV. Elemental Characterization of Ambient Particulate Matter for a Globally Distributed Monitoring Network: Methodology and Implications. ACS ES&T AIR 2024; 1:283-293. [PMID: 38633206 PMCID: PMC11020157 DOI: 10.1021/acsestair.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
Global ground-level measurements of elements in ambient particulate matter (PM) can provide valuable information to understand the distribution of dust and trace elements, assess health impacts, and investigate emission sources. We use X-ray fluorescence spectroscopy to characterize the elemental composition of PM samples collected from 27 globally distributed sites in the Surface PARTiculate mAtter Network (SPARTAN) over 2019-2023. Consistent protocols are applied to collect all samples and analyze them at one central laboratory, which facilitates comparison across different sites. Multiple quality assurance measures are performed, including applying reference materials that resemble typical PM samples, acceptance testing, and routine quality control. Method detection limits and uncertainties are estimated. Concentrations of dust and trace element oxides (TEO) are determined from the elemental dataset. In addition to sites in arid regions, a moderately high mean dust concentration (6 μg/m3) in PM2.5 is also found in Dhaka (Bangladesh) along with a high average TEO level (6 μg/m3). High carcinogenic risk (>1 cancer case per 100000 adults) from airborne arsenic is observed in Dhaka (Bangladesh), Kanpur (India), and Hanoi (Vietnam). Industries of informal lead-acid battery and e-waste recycling as well as coal-fired brick kilns likely contribute to the elevated trace element concentrations found in Dhaka.
Collapse
Affiliation(s)
- Xuan Liu
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jay R. Turner
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Christopher R. Oxford
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jacob McNeill
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brenna Walsh
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Emmie Le Roy
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Crystal L. Weagle
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Emily Stone
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Haihui Zhu
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Wenyu Liu
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zilin Wei
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nicole P. Hyslop
- Air
Quality Research Center, University of California
Davis, Davis, California 95616, United States
| | - Jason Giacomo
- Air
Quality Research Center, University of California
Davis, Davis, California 95616, United States
| | - Ann M. Dillner
- Air
Quality Research Center, University of California
Davis, Davis, California 95616, United States
| | - Abdus Salam
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Al-amin Hossen
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Zubayer Islam
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Ihab Abboud
- Air
Quality Research Division, Environment and
Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Clement Akoshile
- Department
of Physics, University of Ilorin, Ilorin 240003, Nigeria
| | - Omar Amador-Muñoz
- Instituto
de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Nguyen Xuan Anh
- Institute
of Geophysics, Vietnam Academy of Science
and Technology, Hanoi 11307, Vietnam
| | - Araya Asfaw
- Institute
of Geophysics and Space Science, Addis Ababa
University, Addis
Ababa 1176, Ethiopia
| | - Rajasekhar Balasubramanian
- Department
of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Rachel Ying-Wen Chang
- Department
of Physics and Atmospheric Science, Dalhousie
University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Craig Coburn
- Department
of Geography and Environment, University
of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Sagnik Dey
- Centre
for Atmospheric Sciences, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - David J. Diner
- Jet
Propulsion Laboratory, California Institute
of Technology, Pasadena, California 91109, United States
| | - Jinlu Dong
- School
of Environment, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Tareq Farrah
- Research
Laboratories, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Paterne Gahungu
- Institute
of Applied Statistics, University of Burundi, Bujumbura BP1550, Burundi
| | - Rebecca M. Garland
- Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Unit
for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
- Department
of Geography, Geo-Informatics and Meteorology, University of Pretoria, Pretoria 0002, South Africa
| | - Michel Grutter de la Mora
- Instituto
de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sina Hasheminassab
- Jet
Propulsion Laboratory, California Institute
of Technology, Pasadena, California 91109, United States
| | - Juanette John
- Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Jhoon Kim
- Department
of Atmospheric Sciences, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong Sung Kim
- Department
of Community Health and Epidemiology, Dalhousie
University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kristy Langerman
- Department
of Geography, Environmental Management and Energy Studies, University of Johannesburg, Johannesburg 2006, South Africa
| | - Pei-Chen Lee
- Department
of Public Health, National Cheng Kung University, Tainan 701, Taiwan
| | - Puji Lestari
- Faculty
of Civil and Environmental Engineering, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - Yang Liu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Tesfaye Mamo
- Physics
Department, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Mathieu Martins
- Research
Laboratories, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Olga L. Mayol-Bracero
- Department
of Environmental Science, University of
Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Mogesh Naidoo
- Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Sang Seo Park
- Department
of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yoav Schechner
- Department
of Electrical Engineering, Technion Israel
Institute of Technology, Haifa 3200003, Israel
| | - Robyn Schofield
- School
of Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne 3010, Australia
| | - Sachchida N. Tripathi
- Department
of Civil Engineering, Indian Institute of
Technology Kanpur, Kanpur 208016, India
| | - Eli Windwer
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Ming-Tsang Wu
- PhD
Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department
of Family Medicine, Kaohsiung Medical University
Hospital, Kaohsiung 807, Taiwan
| | - Qiang Zhang
- Department
of Earth System Science, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Michael Brauer
- School
of Population and Public Health, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Randall V. Martin
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
13
|
Upadhyay V, Kumari A, Kumar S. From soil to health hazards: Heavy metals contamination in northern India and health risk assessment. CHEMOSPHERE 2024; 354:141697. [PMID: 38484997 DOI: 10.1016/j.chemosphere.2024.141697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Heavy metals contamination in soil is a global concern affecting the environment with far-reaching consequences for ecosystems and the health of human beings. Heavy metals contamination of soil entails a significant threat to the environment and human health. This research paper focuses on the quantification of heavy metals contamination in soil in Kanpur district, a highly industrialized and densely populated region in India. The study was aimed to identify the sources of heavy metals, map their spatial distribution, and evaluate the potential implications on the environment and human well-being. The prime intent of the current study was quantification of heavy metals in the soil as well as the comparison of risk on the health of human being using two different methods i.e., US EPA methodology for risk assessment and epidemiological study-based risk assessment. Heavy metals like Fe, Ni, Co, Cu, Mn, Cr, and Cd were analyzed in agricultural samples of soil with the help of inductively coupled plasma optical emission spectroscopy. On the basis of epidemiological data, the attributable and relative risk came out to be 0.001 and 1.060, respectively. On the basis of the calculation of Cr alone, the values of carcinogenic risk for adults came out to be 3.87 × 10-7 and for children it was 3.01 × 10- 6. In conclusion, this research paper highlights the alarming levels of heavy metals contamination in the soil of Kanpur district, emphasizing the urgent need for remediation and mitigation efforts, thereby guiding policy makers and stakeholders in developing targeted strategies for soil protection and safeguarding human health.
Collapse
Affiliation(s)
- Vidisha Upadhyay
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Archana Kumari
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
14
|
Lin Z, Fan X, Chen G, Hong Y, Li M, Xu L, Hu B, Yang C, Chen Y, Shao Z, Chen J. Sources appointment and health risks of PM 2.5-bound trace elements in a coastal city of southeastern China. J Environ Sci (China) 2024; 138:561-571. [PMID: 38135420 DOI: 10.1016/j.jes.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 12/24/2023]
Abstract
To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM2.5 concentrations, 15 trace elements (Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Sn, Ba, Pb) in PM2.5 were monitored from December 2020 to November 2021 in a representative city, Xiamen. The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K, Fe, Al, Ca and Zn. Based on Positive Matrix Factorization analysis, source appointment revealed that the major sources of trace elements in Xiamen were traffic, dust, biomass and firework combustion, industrial manufacture and shipping emission. According to health risk assessment combined with the source appointment results, it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals (Cr, Ni, As, Pb) exceeded the threshold (10-6). Traffic-related source had almost half amount of contribution to the health risk induced by PM2.5-bound trace elements. During the dust transport period or Spring Festival period, the health risks exceeded an acceptable threshold even an order of magnitude higher, suggesting that the serious health risks still existed in low PM2.5 environment at certain times. Health risk assessment reminded that the health risk reduction in PM2.5 at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.
Collapse
Affiliation(s)
- Ziyi Lin
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Fan
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gaojie Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mengren Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lingling Xu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Baoye Hu
- Minnan Normal University, Zhangzhou 363000, China
| | - Chen Yang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhiqian Shao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
15
|
Chen Q, Wu L, Zhou C, Liu G, Yao L. A study of environmental pollution and risk of heavy metals in the bottom water and sediment of the Chaohu Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19658-19673. [PMID: 38361101 DOI: 10.1007/s11356-024-32141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Most of the existing research for heavy metals in water at present is focusing on surface water. However, potential environmental risk of heavy metals in the bottom water of lakes cannot be ignored. In this study, the content, distribution, and speciation of nine heavy metals (As, V, Cr, Co, Ni, Cu, Zn, Cd, and Pb) in the bottom water and sediment of Chaohu Lake were studied. Some pollution assessment methods were used to evaluate the environmental effect of heavy metals. Positive matrix factorization was conducted to investigate the potential sources of heavy metals in sediment. The contents of heavy metals in the bottom water of Chaohu Lake mean that its environmental pollution can be ignored. In sediment, Cd and Zn have showed stronger ecological risk. pH and redox potential are more likely to affect the stability of heavy metals in the bottom water of Chaohu Lake during the dry reason. Industrial sources (16%) are no longer the largest source of heavy metal pollution; traffic sources (33.6%) and agricultural sources (23.4%) have become the main sources of pollution at present. This study can provide some support and suggestions for the treatment of heavy metals in lakes.
Collapse
Affiliation(s)
- Qiang Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Lei Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Anhui Provincial Academy of Eco-Environmental Science Research, Hefei, 230061, Anhui, China.
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Chuncai Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Gang Liu
- Chaohu Administration Environmental Protection Monitoring Station, Hefei, 238000, Anhui, China
| | - Long Yao
- Chaohu Administration Environmental Protection Monitoring Station, Hefei, 238000, Anhui, China
| |
Collapse
|
16
|
Cheng K, Chang Y, Lee X, Ji D, Qiao L, Zou Z, Duan Y, Huang RJ. Life-Course Health Risk Assessment of PM 2.5 Elements in China: Exposure Disparities by Species, Source, Age, Gender, and Location. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3629-3640. [PMID: 38354315 DOI: 10.1021/acs.est.3c05404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Key stages in people's lives have particular relevance for their health; the life-course approach stresses the importance of these stages. Here, we applied a life-course approach to analyze the health risks associated with PM2.5-bound elements, which were measured at three sites with varying environmental conditions in eastern China. Road traffic was found to be the primary source of PM2.5-bound elements at all three locations, but coal combustion was identified as the most important factor to induce both cancer risk (CR) and noncancer risk (NCR) across all age groups due to the higher toxicity of elements such as As and Pb associated with coal. Nearly half of NCR and over 90% of CR occurred in childhood (1-6 years) and adulthood (>18 years), respectively, and females have slightly higher NCR and lower CR than males. Rural population is found to be subject to the highest health risks. Synthesizing previous relevant studies and nationwide PM2.5 concentration measurements, we reveal ubiquitous and large urban-rural environmental exposure disparities over China.
Collapse
Affiliation(s)
- Kai Cheng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Yunhua Chang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Xuhui Lee
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Liping Qiao
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Zhong Zou
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Yusheng Duan
- Shanghai Environmental Monitoring Center, Shanghai 200030, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth and Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
17
|
Gao Y, Lyu T, Zhang W, Zhou X, Zhang R, Tang Y, Jiang Y, Cao H. Control priority based on source-specific DALYs of PM 2.5-bound heavy metals by PMF-PSCF-IsoSource model in urban and suburban Beijing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120016. [PMID: 38232599 DOI: 10.1016/j.jenvman.2024.120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
To determine the priority control sources, an approach was proposed to evaluate the source-specific contribution to health risks from inhaling PM2.5-bound heavy metals (PBHMs). A total of 482 daily PM2.5 samples were collected from urban and suburban areas of Beijing, China, between 2018 and 2019. In addition to the PMF-PSCF model, a Pb isotopic IsoSource model was built for more reliable source apportionment. By using the comprehensive indicator of disability-adjusted life years (DALYs), carcinogenic and noncarcinogenic health risks could be compared on a unified scale. The study found that the annual average concentrations of the total PBHMs were significantly higher in suburban areas than in urban areas, with significantly higher concentrations during the heating season than during the nonheating season. Comprehensive dust accounted for the largest contribution to the concentration of PBHMs, while coal combustion contributed the most to the DALYs associated with PBHMs. These results suggest that prioritizing the control of coal combustion could effectively reduce the disease burden associated with PBHMs, leading to notable public health benefits.
Collapse
Affiliation(s)
- Yue Gao
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Tong Lyu
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Wei Zhang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xu Zhou
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Ruidi Zhang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yilin Tang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yanxue Jiang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Hongbin Cao
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal University, Beijing, 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
18
|
Wang L, Wen H, Guo L, Liang A, Liu T, Zhao D, Dong L. The Effect of Nitrogen Functional Groups on Pb 0, PbO, and PbCl 2 Adsorption over a Carbonaceous Surface. Molecules 2024; 29:511. [PMID: 38276589 PMCID: PMC10820923 DOI: 10.3390/molecules29020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Lead (Pb) pollution, especially from the incineration of municipal solid waste (MSW), poses a significant threat to the environment. Among all the effective methods, activated carbon (AC) injection serves as an effective approach for lead removal from flue gas, while the modification of ACs emerges as a crucial pathway for enhancing Pb adsorption capacities. Density functional theory (DFT) is employed in this study to investigate the mechanisms underlying the enhanced adsorption of Pb species (Pb0, PbO, and PbCl2) on nitrogen-functionalized carbonaceous surfaces. The results show that nitrogen-containing groups substantially enhance lead adsorption capacity, with adsorption energies ranging from -526.18 to -288.31 kJ/mol on nitrogen-decorated carbonaceous surfaces, much higher than those on unmodified surfaces (-310.35 to -260.96 kJ/mol). Additionally, electrostatic potential and density-of-states analyses evidence that pyridinic nitrogen atoms remarkably expand charge distribution and strengthen orbital hybridization, thereby augmenting lead capture. This research elucidates the role of nitrogen-containing functional groups in lead adsorption, offering valuable insights for the development of highly efficient biomass-derived activated carbon sorbents for lead removal.
Collapse
Affiliation(s)
- Liang Wang
- China Power Hua Chuang (Suzhou) Electricity Technology Research Company Co., Ltd., Suzhou 215125, China; (L.W.); (L.G.); (T.L.)
| | - Huaizhou Wen
- Xi’an Thermal Power Research Institute Co., Ltd., Xi’an 740032, China;
| | - Lei Guo
- China Power Hua Chuang (Suzhou) Electricity Technology Research Company Co., Ltd., Suzhou 215125, China; (L.W.); (L.G.); (T.L.)
| | - Ancheng Liang
- Haikou China Power Environmental Protection Power Generation Co., Ltd., Haikou 570106, China; (A.L.); (D.Z.)
| | - Tingan Liu
- China Power Hua Chuang (Suzhou) Electricity Technology Research Company Co., Ltd., Suzhou 215125, China; (L.W.); (L.G.); (T.L.)
| | - Dongxu Zhao
- Haikou China Power Environmental Protection Power Generation Co., Ltd., Haikou 570106, China; (A.L.); (D.Z.)
| | - Lu Dong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
19
|
Slavković-Beškoski L, Ignjatović L, Ćujić M, Vesković J, Trivunac K, Stojaković J, Perić-Grujić A, Onjia A. Ecological and Health Risks Attributed to Rare Earth Elements in Coal Fly Ash. TOXICS 2024; 12:71. [PMID: 38251026 PMCID: PMC10818428 DOI: 10.3390/toxics12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
The occurrence and distribution of yttrium and rare earth elements (REYs), along with major elements and heavy metal(loid)s (HMs) in coal fly ash (CFA) from five coal-fired power plants (CFPPs), were analyzed, and the REY-associated ecological and health risks were assessed. The individual REYs in CFA were abundant in the following order: Ce > La > Nd > Y > Pr > Gd > Sm > Dy > Er > Yb > Eu > Ho > Tb > Tm > Lu. The total REY content ranged from 135 to 362 mg/kg, averaging 302 mg/kg. The mean light-to-heavy REY ratio was 4.1, indicating prevalent light REY enrichment in CFA. Significantly positive correlations between the REYs suggested that they coexist and share similar origins in CFA. REYs were estimated to pose low to moderate ecological risks, with risk index (RI) values ranging from 66 to 245. The hazard index (HI) and target cancer risk (TCR) of REYs from CFA, estimated to be higher for children (HIc = 0.15, TCRc = 8.4 × 10-16) than for adults (HIa = 0.017, TCRa = 3.6 × 10-16), were well below the safety limits (HI = 1, TCR = 1.0 × 10-6). However, the danger to human health posed by HMs in the same CFA samples (HIc = 5.74, TCRc = 2.6 × 10-4, TCRa = 1.1 × 10-4) exceeded the safe thresholds (excl. HIa = 0.63). The mean RI and HI attributed to REYs in CFA were 14% and 2.6%, respectively, of the total risks that include HMs.
Collapse
Affiliation(s)
| | - Ljubiša Ignjatović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Mirjana Ćujić
- Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Serbia
| | - Jelena Vesković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Katarina Trivunac
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Jelena Stojaković
- Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Aleksandra Perić-Grujić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
20
|
Qi Z, Zheng Y, Feng Y, Chen C, Lei Y, Xue W, Xu Y, Liu Z, Ni X, Zhang Q, Yan G, Wang J. Co-drivers of Air Pollutant and CO 2 Emissions from On-Road Transportation in China 2010-2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20992-21004. [PMID: 38055305 DOI: 10.1021/acs.est.3c08035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Co-controlling the emissions of air pollutants and CO2 from automobiles is crucial for addressing the intertwined challenges of air pollution and climate change in China. Here, we analyze the synergetic characteristics of air pollutant and CO2 emissions from China's on-road transportation and identify the co-drivers influencing these trends. Using detailed emission inventories and employing index decomposition analysis, we found that despite notable progress in pollution control, minimizing on-road CO2 emissions remains a formidable task. Over 2010-2020, the estimated sectoral emissions of VOCs, NOx, PM2.5, and CO declined by 49.9%, 25.9%, 75.2%, and 63.5%, respectively, while CO2 emissions increased by 46.1%. Light-duty passenger vehicles and heavy-duty trucks have been identified as the primary contributors to carbon-pollution co-emissions, highlighting the need for tailored policies. The driver analysis indicates that socioeconomic changes are primary drivers of emission growth, while policy controls, particularly advances in emission efficiency, can facilitate co-reductions. Regional disparities emphasize the need for policy refinement, including reducing dependency on fuel vehicles in the passenger subsector and prioritizing co-reduction strategies in high-emission provinces in the freight subsector. Overall, our study confirms the effectiveness of China's on-road control policies and provides valuable insights for future policy makers in China and other similarly positioned developing countries.
Collapse
Affiliation(s)
- Zhulin Qi
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, P. R. China
| | - Yixuan Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, P. R. China
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, 100041, Beijing, P. R. China
| | - Yueyi Feng
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, P. R. China
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, 100041, Beijing, P. R. China
| | - Chuchu Chen
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, P. R. China
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, 100041, Beijing, P. R. China
| | - Yu Lei
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, P. R. China
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, 100041, Beijing, P. R. China
| | - Wenbo Xue
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, P. R. China
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, 100041, Beijing, P. R. China
| | - Yanling Xu
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, P. R. China
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, 100041, Beijing, P. R. China
| | - Zeyuan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiufeng Ni
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qingyu Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Gang Yan
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing 100041, P. R. China
| | - Jinnan Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing 100041, P. R. China
| |
Collapse
|
21
|
Han W, Pan Y, Welsch E, Liu X, Li J, Xu S, Peng H, Wang F, Li X, Shi H, Chen W, Huang C. Prioritization of control factors for heavy metals in groundwater based on a source-oriented health risk assessment model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115642. [PMID: 37924799 DOI: 10.1016/j.ecoenv.2023.115642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Heavy metals (HMs) in groundwater seriously threaten ecological safety and human health. To facilitate the effective management of groundwater contamination, priority control factors of HMs in groundwater need to be categorized. A total of 86 groundwater samples were collected from the Huangpi district of Wuhan city, China, during the dry and wet seasons. To determine priority control factors, a source-oriented health risk assessment model was applied to compare the pollution sources and health risks of seven HMs (Cu, Pb, Zn, Cr, Ni, As, and Fe). The results showed that the groundwater had higher As and Fe contents. The sources of HM pollution during the wet period were mainly industrial and agricultural activities and natural sources. During the dry period, origins were more complex due to the addition of domestic discharges, such as sewage wastewater. Industrial activities (74.10% during the wet period), agricultural activities (53.84% during the dry period), and As were identified as the priority control factors for groundwater HMs. The results provide valuable insights for policymakers to coordinate targeted management of HM pollution in groundwater and reduce the cost of HM pollution mitigation.
Collapse
Affiliation(s)
- Wenjing Han
- Geological Survey Research Institute, China University of Geosciences, Wuhan 430074, China
| | - Yujie Pan
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Emily Welsch
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Department of Geography and Environment, The London School of Economics and Political Science, London, UK
| | - Xiaorui Liu
- China Electric Power Research Institute, Beijing 100192, China
| | - Jiarui Li
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shasha Xu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hongxia Peng
- School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Fangtin Wang
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan 430205, China
| | - Xuan Li
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan 430205, China
| | - Huanhuan Shi
- School of Environment, China University of Geosciences, Wuhan 430074, China
| | - Wei Chen
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan 430205, China
| | - Changsheng Huang
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan 430205, China.
| |
Collapse
|
22
|
Wang M, Xu X, Han Q, Lin X, Yuan H, Wang M, Jiang F, Wang W. Assessment of source-oriented health risk associated with the oral ingestion of heavy metals in dust within an iron/steel smelting-affected area of the North China Plain. ENVIRONMENTAL RESEARCH 2023; 237:117101. [PMID: 37689335 DOI: 10.1016/j.envres.2023.117101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Heavy metals (HMs) from iron/steel smelting activities pose notable risks to human health, especially to those living around industrial facilities of North China Plain, the base of China's steel production. In this study, 78 outdoor windowsill dust samples were collected around a large-scale iron/steel smelter with more than 65 years of production history in the western North China Plain. Nine HMs were analysed to comprehensively assess the health risks by integrating Monte Carlo simulation, oral bioaccessibility, and source apportionment. Results showed serious pollution with Cd, Pb, and Zn based on their geo-accumulation index values and concentrations. Four potential sources including industrial sources (49.85%), traffic sources (21.78%), natural sources (20.58%), and coal combustion (7.79%) were quantitatively identified by multivariate statistical analysis. The oral bioaccessibilities of HMs determined by the physiologically based extraction test ranged from 0.02% to 65.16%. Zn, Mn, Cd, and Pb had higher bioaccessibilities than other HMs. After incorporating oral bioavailability adjustments, noncarcinogenic and carcinogenic risks were significantly reduced, especially for adults. The mean hazard index (HI) for children and adults was below the safety threshold (1.0), whereas the mean of the total carcinogenic risk (TCR) based on HM bioaccessibilities in the gastric phase remained above the acceptable level (1.0E-06) (children: 5.20E-06; adults: 1.16E-06). Traffic sources warranted increased concern as it substantially increased TCR. Cd was identified as the priority pollution in iron/steel smelting areas. Assessing source-oriented health risks associated with oral ingestion exposure can guide the management and control of HM contamination within iron/steel smelting-affected areas.
Collapse
Affiliation(s)
- Mingya Wang
- College of Resource and Environment, Henan Polytechnic University, 454003, Jiaozuo, China
| | - Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Colleage of Resources and Environmental Engineering, Guizhou University, 550025, Guiyang, China
| | - Qiao Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China.
| | - Xihuang Lin
- Analysis and Test Center, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, China
| | - Haijun Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081, Guiyang, China
| | - Mingshi Wang
- College of Resource and Environment, Henan Polytechnic University, 454003, Jiaozuo, China
| | - Fengcheng Jiang
- College of Resource and Environment, Henan Polytechnic University, 454003, Jiaozuo, China
| | - Wenju Wang
- College of Resource and Environment, Henan Polytechnic University, 454003, Jiaozuo, China
| |
Collapse
|
23
|
Du Z, Tian Z, Yin Y, Wei J, Mu Y, Cai J, Song Z, Cen K. Bioavailability-based risk assessment of various heavy metals via multi-exposure routes for children and teenagers in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114985-115002. [PMID: 37878177 DOI: 10.1007/s11356-023-30436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Assessing the health risks of sensitive population, such as children and teenagers, through multiple exposure routes (MERs) such as ingestion, inhalation, and dermal contact is critical for policy creation that protects or reduces exposure to pollutants for all populations. Heavy metal (HM) contents in food and environmental media in Beijing, capital of China, were collected. Furthermore, on the basis of considering the bioavailability of HMs, we evaluated the multiple environmental routes and health risks to HMs in children and teenagers of eight age groups (2-<3, 3-<4, 4-<5, 5-<6, 6-<9, 9-<12, 12-<15, and 15-<18) in Beijing, China by Monte Carlo simulation approach. The main findings are as follows: lead exposure in children aged 2-<3 years exceeds the exposure dose (0.3 μg·kg-1·d-1) of 0.5 point reduction in intelligence quotient. Moreover, children aged 2-<3 and 6-<9 years have relatively high non-carcinogenic risk (NCR) of 1.32 and 1.30, respectively. The carcinogenic risk (CR) for children aged 6-<9 and 9-<12 years is 2.73×10-6 and 2.39×10-6, respectively. Specifically, the contributions of oral ingestion, dermal contact, and inhalation to the NCR were 69.5%, 18.9%, and 11.6%, respectively. Moreover, the combined NCR contributions of copper, cadmium, mercury, and arsenic (As) were about 69.4%. The contributions of the above three routes to the CR were 93.4%, 4.1%, and 2.5%, in that order, with the largest CR contribution of As being about 92.0%. This study can provide new ideas for accurately assessing the exposure and health risks of HMs in the population, and we believe that it is necessary to update the national standards for food and soil based on the bioavailability of HMs.
Collapse
Affiliation(s)
- Zhongwen Du
- Baoding University of Technology, Baoding, 071000, China
| | - Zuguang Tian
- Baoding Productivity Promotion Center, Baoding, 071000, China
| | - Yelan Yin
- No. 4 Drilling Engineering Branch Company, CNPC Bohai Drilling Engineering Company Limited, Hejian, 062400, Hebei, China
| | - Junxiao Wei
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yue Mu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Jianjun Cai
- School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Zefeng Song
- Institute of Resources and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, China
| | - Kuang Cen
- School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
24
|
Wei Y, Zhao Z, He J, Nie Y, Xu L, Xu A, Wu L. Connection between health risk and heavy metals in agricultural soils of China: a study based on current field investigations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7775-7789. [PMID: 37432490 DOI: 10.1007/s10653-023-01680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Heavy metal pollution in agricultural soil is a threat to people's health and sustainable development. However, there is currently no nationwide health risk assessment in China. In this study, we performed a preliminary assessment of heavy metals in agricultural soils of the Chinese mainland, and found obvious carcinogenic risks (total lifetime carcinogenic risk (TLCR) > 1 × 10-5). A similar spatial distribution pattern was found in soil heavy metal and the mortality of esophagus and stomach cancers. Combining the potential carcinogenic risk assessed by LCR for individual heavy metal with Pearson correlation, Geographical Detector (q statistic > 0.75 for TLCR, p < 0.05), and redundancy analysis (RDA), it was found that long-term exposure and intake route of heavy metals exceeding the maximum safety threshold (Health Canada standard) may induce digestive system (esophagus, stomach, liver, and colorectum) cancers in rural populations. Through Partial Least Squares Path Model (PLS-PM), it was also revealed that the LCR of heavy metals was closely related to the soil environmental background (path coefficients = 0.82), which in turn was affected by factors such as economic development and pollution discharge. The current research results highlight the potential carcinogenic risk to the digestive system associated with low-dose and long-term exposure to heavy metals in agricultural soils, and policymakers should propose countermeasures and solutions according to the local conditions.
Collapse
Affiliation(s)
- Yutong Wei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Zihui Zhao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Jianuo He
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Liqiang Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - An Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| |
Collapse
|
25
|
Zou C, Li S, Huan X, Hu H, Dong L, Zhang H, Dai Q, Yao H. The adsorption mechanism of arsenic in flue gas over the P-doped carbonaceous adsorbent: Experimental and theoretical study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165066. [PMID: 37355128 DOI: 10.1016/j.scitotenv.2023.165066] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
The utilization of carbon-based sorbent has gained extensive attention for arsenic removal from flue gas due to their high specific surface area, sufficient active sites and abundant sources. This study proposes that the addition of phosphorous could be used as an effective promoter for the activation and modification of carbonaceous sorbent to enhance their arsenic fixation capacity. Both experimental and density functional theory (DFT) methods were employed to systematically investigate the adsorption characteristics of arsenic over different carbon based sorbents. The results reveal that the modification of H3PO4 generated C-O-P, C-P-O, and C3-P-O functional groups on the surface of activated carbon, and the adsorption ability of H3PO4-modified activated carbon for gaseous arsenic was significantly improved compared with the untreated activated carbon. DFT calculations indicate that unsaturated C atoms on carbonaceous surface served as active sites during arsenic adsorption, the electronegativity of which could be enhanced by phosphorous functional group, thereby facilitating the adsorption of gaseous arsenic species. Additionally, the positive effect of the phosphorous functional group on arsenic adsorption is more pronounced on zigzag carbonaceous surface than on armchair carbonaceous surface. This work provides a theoretical basis of the development of high-performance biochar preparation for arsenic adsorption by explaining the promoting effect of phosphorous functional group on gaseous arsenic adsorption on carbonaceous surface.
Collapse
Affiliation(s)
- Chan Zou
- State key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518000, China
| | - Shuai Li
- State key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuanzhou Huan
- Xi'an Thermal Power Research Institute Co., Ltd., Xi'an 740032, China
| | - Hongyun Hu
- State key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518000, China
| | - Lu Dong
- State key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518000, China.
| | - Haojie Zhang
- State key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiqi Dai
- State key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yao
- State key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
26
|
Tao Z, Hu J, Guo Q, Wei R, Jiao L, Li Y, Chen F, Fan B, Lan W, Pan K. Coupling isotopic signatures and partial extraction method to examine lead pollution in mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132252. [PMID: 37604039 DOI: 10.1016/j.jhazmat.2023.132252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
Elevated lead (Pb) has been widely observed in mangrove sediments due to human activities, yet understanding the sources of Pb in these sediments and the factors influencing Pb accumulation is challenging. Here, we combined Pb isotopes with partial extraction methods to study Pb contamination levels in mangrove sediments from the eastern and western parts of the Maowei Sea, China. Our results showed that the Pb in the leachate and residual fraction was mainly from anthropogenic and natural sources, respectively. The use of 204Pb isotope analysis can reveal some overlooked differences between anthropogenic and natural sources. Calculation by Bayesian mixing model showed no significant difference in the total anthropogenic contribution between the two sites, but the relative contribution of each end member differed. The contribution of Pb/Zn ores was much higher in the eastern sites (30.9 ± 5.1%) than in the west (18.4 ± 5.5%), while that of agricultural activities was much lower in the east (5.2 ± 3.1%) than in the west (13.5 ± 4.6%). The elevated anthropogenic Pb accumulation in mangrove sediments was ascribed to organic matter. This study provides more data on Pb isotopic composition and new insights into Pb biogeochemistry in the mangrove environment.
Collapse
Affiliation(s)
- Zhenghua Tao
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Linlin Jiao
- College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Bailing Fan
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Wenlu Lan
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
27
|
Yang Y, Lu X, Yu B, Zuo L, Wang L, Lei K, Fan P, Liang T, Rennert T, Rinklebe J. Source-specific risk judgement and environmental impact of potentially toxic elements in fine road dust from an integrated industrial city, North China. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131982. [PMID: 37413801 DOI: 10.1016/j.jhazmat.2023.131982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
The contamination of potentially toxic elements (PTEs) in road dust of large industrial cities is extremely serious. Determining the priority risk control factors of PTE contamination in road dust is critical to enhance the environmental quality of such cities and mitigate the risk of PTE pollution. The Monte Carlo simulation (MCS) method and geographical models were employed to assess the probabilistic pollution levels and eco-health risks of PTEs originating from different sources in fine road dust (FRD) of large industrial cities, and to identify key factors affecting the spatial variability of priority control sources and target PTEs. It was observed that in FRD of Shijiazhuang, a typical large industrial city in China, more than 97% of the samples had an INI > 1 (INImean = 1.8), indicating moderately contaminated with PTEs. The eco-risk was at least considerable (NCRI >160) with more than 98% of the samples, mainly caused by Hg (Ei (mean) = 367.3). The coal-related industrial source (NCRI(mean) = 235.1) contributed 70.9% to the overall eco-risk (NCRI(mean) = 295.5) of source-oriented risks. The non-carcinogenic risk of children and adults are of less importance, but the carcinogenic risk deserves attention. The coal-related industry is a priority control pollution source for human health protection, with As corresponding to the target PTE. The major factors affecting the spatial changes of target PTEs (Hg and As) and coal-related industrial sources were plant distribution, population density, and gross domestic product. The hot spots of coal-related industrial sources in different regions were strongly interfered by various human activities. Our results illustrate spatial changes and key-influencing factors of priority source and target PTEs in Shijiazhuang FRD, which are helpful for environmental protection and control of environmental risks by PTEs.
Collapse
Affiliation(s)
- Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Thilo Rennert
- Department of Soil Chemistry and Pedology, Institute of Soil Science and Land Evaluation, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|
28
|
Ainur D, Chen Q, Sha T, Zarak M, Dong Z, Guo W, Zhang Z, Dina K, An T. Outdoor Health Risk of Atmospheric Particulate Matter at Night in Xi'an, Northwestern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37311058 DOI: 10.1021/acs.est.3c02670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The deterioration of air quality via anthropogenic activities during the night period has been deemed a serious concern among the scientific community. Thereby, we explored the outdoor particulate matter (PM) concentration and the contributions from various sources during the day and night in winter and spring 2021 in a megacity, northwestern China. The results revealed that the changes in chemical compositions of PM and sources (motor vehicles, industrial emissions, coal combustion) at night lead to substantial PM toxicity, oxidative potential (OP), and OP/PM per unit mass, indicating high oxidative toxicity and exposure risk at nighttime. Furthermore, higher environmentally persistent free radical (EPFR) concentration and its significant correlation with OP were observed, suggesting that EPFRs cause reactive oxygen species (ROS) formation. Moreover, the noncarcinogenic and carcinogenic risks were systematically explained and spatialized to children and adults, highlighting intensified hotspots to epidemiological researchers. This better understanding of day-night-based PM formation pathways and their hazardous impact will assist to guide measures to diminish the toxicity of PM and reduce the disease led by air pollution.
Collapse
Affiliation(s)
- Dyussenova Ainur
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tong Sha
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mahmood Zarak
- UNSW Centre for Transformational Environmental Technologies, Yixing 214200, China
| | - Zipeng Dong
- Shaanxi Academy of Meteorological Sciences, Xi'an 710014, China
| | - Wei Guo
- Shaanxi Academy of Environmental Sciences, Xi'an 710061, China
| | - Zimeng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Kukybayeva Dina
- Faculty of Tourism and Languages, Yessenov University, Aktau 130000, Kazakhstan
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
29
|
Liu F, Liu C, Liu Y, Wang J, Wang Y, Yan B. Neurotoxicity of the air-borne particles: From molecular events to human diseases. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131827. [PMID: 37315411 DOI: 10.1016/j.jhazmat.2023.131827] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Exposure to PM2.5 is associated with an increased incidence of CNS diseases in humans, as confirmed by numerous epidemiological studies. Animal models have demonstrated that PM2.5 exposure can damage brain tissue, neurodevelopmental issues and neurodegenerative diseases. Both animal and human cell models have identified oxidative stress and inflammation as the primary toxic effects of PM2.5 exposure. However, understanding how PM2.5 modulates neurotoxicity has proven challenging due to its complex and variable composition. This review aims to summarize the detrimental effects of inhaled PM2.5 on the CNS and the limited understanding of its underlying mechanism. It also highlights new frontiers in addressing these issues, such as modern laboratory and computational techniques and chemical reductionism tactics. By utilizing these approaches, we aim to fully elucidate the mechanism of PM2.5-induced neurotoxicity, treat associated diseases, and ultimately eliminate pollution.
Collapse
Affiliation(s)
- Fang Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China
| | - Chunyan Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jiahui Wang
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yibing Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
30
|
Liu S, Wu T, Wang Q, Zhang Y, Tian J, Ran W, Cao J. High time-resolution source apportionment and health risk assessment for PM 2.5-bound elements at an industrial city in northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161907. [PMID: 36731549 DOI: 10.1016/j.scitotenv.2023.161907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
To better respond to heavy air pollution, the local government of Baoji City, a traditionally industry dominated city in northwest China, released several warning levels between December 2019 and January 2020. The system aims to provide a more efficient control of pollution sources. In this study, a high-time resolution measurement of PM2.5-bound elements was applied to capture the diurnal-scale dynamic processes associated with major pollution activities in northwest China. A series of elements were quantified and used for source apportionment using the positive matrix factorization (PMF) model. Combined with the local characteristics, nine sources were resolved with contributions in descending order: fugitive dust (36.6 %), biomass burning (20.1 %), traffic-related (10.4 %), coal combustion (10.0 %), titanium alloy smelting (7.2 %), As-related industry (6.9 %), Zn-related industry (5.6 %), molybdenum alloy smelting (2.5 %), and Cr-related industry (0.7 %). The health risk assessment indicated non-carcinogenic risks for Mn and carcinogenic risks for As and Cr in both adults and children. The cumulative non-carcinogenic risk for the elements was 3.2 times the safety threshold, while the carcinogenic risk (CR) was 6.8 and 27 times the acceptable levels for children and adults, respectively. For source-resolved risks, As- and Cr-related industry emissions showed the highest carcinogenic risk. Five of the nine resolved sources for adults have CR values 1.4 and 9.7 times the acceptable level. This study provides valuable information for developing targeted strategies to control air pollutants and protect public health.
Collapse
Affiliation(s)
- Suixin Liu
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Tingting Wu
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Shaanxi, Xi'an 710061, China
| | - Qiyuan Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Shaanxi, Xi'an 710061, China.
| | - Yong Zhang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jie Tian
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Weikang Ran
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Shaanxi, Xi'an 710061, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
31
|
Yu P, Han Y, Wang M, Zhu Z, Tong Z, Shao X, Peng J, Hamid Y, Yang X, Deng Y, Huang Y. Heavy metal content and health risk assessment of atmospheric particles in China: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161556. [PMID: 36640888 DOI: 10.1016/j.scitotenv.2023.161556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/10/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
In recent decades, China has devoted significant attention to the heavy metals pollution in particulate matter. However, the majority of studies have only focused on the field monitoring in relatively remote areas, which may not be representative of air quality across the country. This study reevaluated the characteristics, temporal and spatial changes, and health concerns associated with heavy metal pollution in atmospheric particulates on a national scale by coupling Meta-analysis and Monte Carlo simulation analysis. In terms of spatial distribution, the heavy metals pollution levels in the northern coast and northeastern regions are relatively high, whereas it is low along the middle Yellow River, middle Yangtze River, as well as Southwest. With the exception of Cu, the distribution of all elements in PM2.5 steadily decreased over time Moreover, PM10 and PM2.5 performed similar where Cd and Ni both first increased followed by a decline while, Cr displayed a decrease before it showed an increment. And since the implementation of prevention and control policies about the atmospheric release, the focus of industrial emission has gradually shifted from energy production and processing to living products manufacturing. Moreover, the carcinogenic risk was shown to be Cr > As, Pb > Ni, Cd, while the non-carcinogenic risk was as follows: As, Ni > Cr, Cd. Among all contaminants, Cd, As, and Cr in PM2.5 and PM10 exceeded the WHO standard in the cities with worst air quality. It was observed that As posed the largest non-carcinogenic risk to adults while, Cr caused the most carcinogenic risk to adults and children, where the carcinogenic risk of children remains higher than that of adults. Therefore, the findings of this study may offer data support to the China's heavy metal pollution standards in airborne particles and offer theoretical data support for pollution management.
Collapse
Affiliation(s)
- Pengyue Yu
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yongliang Han
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Maodi Wang
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zhen Zhu
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zhenglong Tong
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - XingYuan Shao
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jianwei Peng
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Yaocheng Deng
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Ying Huang
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
32
|
Liu J, Kang H, Tao W, Li H, He D, Ma L, Tang H, Wu S, Yang K, Li X. A spatial distribution - Principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160112. [PMID: 36375553 DOI: 10.1016/j.scitotenv.2022.160112] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
With the rapid development of urbanization, heavy metal pollution of soil has received great attention. Over-enrichment of heavy metals in soil may endanger human health. Assessing soil pollution and identifying potential sources of heavy metals are crucial for prevention and control of soil heavy metal pollution. This study introduced a spatial distribution - principal component analysis (SD-PCA) model that couples the spatial attributes of soil pollution with linear data transformation by the eigenvector-based principal component analysis. By evaluating soil pollution in the spatial dimension it identifies the potential sources of heavy metals more easily. In this study, soil contamination by eight heavy metals was investigated in the Lintong District, a typical multi-source urban area in Northwest China. In general, the soils in the study area were lightly contaminated by Cr and Pb. Pearson correlation analysis showed that Cr was negatively correlated with other heavy metals, whereas the spatial autocorrelation analysis revealed that there was strong association in the spatial distribution of eight heavy metals. The aggregation forms were more varied and the correlation between Cr contamination and other heavy metals was lower. The aggregation forms of Mn and Cu, Zn and Pb, on the other hand, were remarkably comparable. Agriculture was the largest pollution source, contributing 65.5 % to soil pollution, which was caused by the superposition of multiple heavy metals. Additionally, traffic and natural pollution sources contributed 17.9 % and 11.1 %, respectively. The ability of this model to track pollution of heavy metals has important practical significance for the assessment and control of multi-source soil pollution.
Collapse
Affiliation(s)
- Jiawei Liu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Hou Kang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China.
| | - Wendong Tao
- Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY 13210, USA.
| | - Hanyu Li
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Dan He
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Lixia Ma
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Haojie Tang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Siqi Wu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Kexin Yang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Xuxiang Li
- School of Human Settlements and Civil Engineering, Xi'an Jiao Tong University, Xi'an 710049, China
| |
Collapse
|
33
|
Liang J, Liu Z, Tian Y, Shi H, Fei Y, Qi J, Mo L. Research on health risk assessment of heavy metals in soil based on multi-factor source apportionment: A case study in Guangdong Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159991. [PMID: 36347288 DOI: 10.1016/j.scitotenv.2022.159991] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 05/16/2023]
Abstract
Environmental problems caused by heavy metal pollution in soil have attracted widespread attention worldwide. Identifying and quantifying the heavy metal pollution sources and risks is crucial for subsequent soil management. In this study, an integrated source-risk method for source apportionment and risk assessment based on the PMF model, the geodetector model and the health risk assessment model (HRA) was proposed and applied. Analysis of Hg, As, Pb, Cd, Cu, Ni, Cr, and Zn in 208 topsoils showed that the average contents of eight heavy metals were 1.87-5.86 times greater than corresponding background values, among which Cd and As were relatively high, which were higher than the specified soil risk screening values, high-value areas of heavy metals are mainly concentrated in the central part of the study area. The source apportionment showed that the accumulation of heavy metals was affected by five sources: atmospheric deposition (16.3 %), natural sources (33.1 %), industrial activities dominated by metal mining (15.1 %), industrial activities dominated by metal smelting (12.6 %) and traffic sources (22.9 %). The results of the health risk assessment showed that the carcinogenic risks (adult: 4.74E-05, children: 7.41E-05) of heavy metals in soil to the study population were both acceptable, the non-carcinogenic risk of adult (THI = 0.277) was within the limit, while the non-carcinogenic risk of children (THI = 1.70) was higher than the limit value. Ingestion (89.5 %-95.9 %) contributed the greatest health risk among all exposure routes. Source 3 (arsenic-related industrial activities dominated by metal mining) contributed the most to the HI and CRI of adults and children (all above 50 %), therefore, in the formulation stage of soil management strategy in this area, priority should be given to the control and management of this pollution source. These results can provide more detailed support for environmental protection departments to propose targeted soil pollution control measures.
Collapse
Affiliation(s)
- Jiahui Liang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Zhaoyue Liu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yiqi Tian
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Huading Shi
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Yang Fei
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Jingxian Qi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Li Mo
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| |
Collapse
|
34
|
Su C, Wang J, Chen Z, Meng J, Yin G, Zhou Y, Wang T. Sources and health risks of heavy metals in soils and vegetables from intensive human intervention areas in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159389. [PMID: 36243077 DOI: 10.1016/j.scitotenv.2022.159389] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution greatly harms the soil environment and poses threats to food safety and human health. This study aimed to quantify and analyze the sources of heavy metals and assess the health risks associated with the human intake of contaminated vegetables in South China. Heavy metals (Cd, As, Hg, Cu, Ni, Pb, Zn, and Cr) in soil and vegetables (leaf vegetables, legume vegetables, and cucurbits) were investigated and evaluated for contamination. By combining the correlation analysis (CA), positive matrix factorization (PMF), and GeoDetector model, source apportionments were comprehensively identified. Results showed that Cd was the predominant element in soils throughout the study area. Industrial (28.36 %, 20.24 %, 31.50 %), agricultural (27.19 %, 46.50 %, 27.30 %), besides traffic, atmospheric deposition and natural sources were identified as the dominant sources of heavy metals in GD01, GD02, and GD03, respectively. The human health risk assessment showed that the total non-cancer risk of heavy metals (i.e., Cr, Ni, As, Cd, and Pb) ingested through vegetables was 2.3E+00 for children and 9.67E-01 for adults, and the total cancer risk for children was 2.54E-02 and 1.07E-02 for adults, both of which exceeded acceptable levels. It is worth noting that children are more susceptible to health risks due to the consumption of contaminated vegetables than adults.
Collapse
Affiliation(s)
- Chuanghong Su
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jianwen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Zhenwei Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jing Meng
- Key Laboratory of Environment Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangcai Yin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yunqiao Zhou
- Key Laboratory of Environment Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| |
Collapse
|
35
|
Kim N, Yum SS, Cho S, Jung J, Lee G, Kim H. Atmospheric sulfate formation in the Seoul Metropolitan Area during spring/summer: Effect of trace metal ions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120379. [PMID: 36240964 DOI: 10.1016/j.envpol.2022.120379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Despite the effort to control SO2 emission, sulfate is still one of the major inorganic components of PM2.5 in urban area. Moreover, there is still a lack of understanding of the sulfate formation mechanism via SO2 oxidation under various ambient conditions. In this study, we focus on sulfate formation during a haze pollution episode in the spring/summertime of 2016 in Seoul Metropolitan Area (SMA). During the pollution episode, PM2.5 mass concentration exceeded over 60 μg m-3, and sulfate accounted for about 25% of the total PM2.5 mass concentration. A sharp increase of sulfur oxidation ratio (SOR) values along with aerosol liquid water content (AWC) under humid conditions could be ascribed to an apparent contribution of aqueous-phase oxidation of SO2 of sulfate formation during the pollution period. Comparisons of SOR values with four representative oxidants for the aqueous-phase oxidation (i.e., NO2, H2O2, O3, and TMIs) indicated that TMIs concentration, especially for Mn (II), showed the best positive correlation. Furthermore, for calculating the sulfate production rate, the contribution of TMIs concentration was found to be dominant within the pH range in SMA (2.1-3.0), which was determined by the chemical composition and derived AWC. These results imply that not only the SO2 emission but also other chemical components (e.g., TMI and nitrate) would play a critical combined role in sulfate formation under urban haze condition.
Collapse
Affiliation(s)
- Najin Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 08826, Seoul, Republic of Korea
| | - Seong Soo Yum
- Department of Atmospheric Sciences, Yonsei University, 03722, Seoul, Republic of Korea
| | - Seogju Cho
- Seoul Research Institute of Public Health and Environment, 13818, Gwacheon, Gyeonggi, Republic of Korea
| | - Jinsang Jung
- Korea Research Institute of Standards and Science, 34113, Daejeon, South Korea
| | - Gangwoong Lee
- Science Division, Hankuk University of Foreign Studies, 17035, Yongin, Republic of Korea
| | - Hwajin Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 08826, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Wang Y, Huang RJ, Xu W, Zhong H, Duan J, Lin C, Gu Y, Wang T, Li Y, Ovadnevaite J, Ceburnis D, O’Dowd C. Staggered-peak production is a mixed blessing in the control of particulate matter pollution. NPJ CLIMATE AND ATMOSPHERIC SCIENCE 2022; 5:99. [PMID: 36530483 PMCID: PMC9739352 DOI: 10.1038/s41612-022-00322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Staggered-peak production (SP)-a measure to halt industrial production in the heating season-has been implemented in North China Plain to alleviate air pollution. We compared the variations of PM1 composition in Beijing during the SP period in the 2016 heating season (SPhs) with those in the normal production (NP) periods during the 2015 heating season (NPhs) and 2016 non-heating season (NPnhs) to investigate the effectiveness of SP. The PM1 mass concentration decreased from 70.0 ± 54.4 μg m-3 in NPhs to 53.0 ± 56.4 μg m-3 in SPhs, with prominent reductions in primary emissions. However, the fraction of nitrate during SPhs (20.2%) was roughly twice that during NPhs (12.7%) despite a large decrease of NOx, suggesting an efficient transformation of NOx to nitrate during the SP period. This is consistent with the increase of oxygenated organic aerosol (OOA), which almost doubled from NPhs (22.5%) to SPhs (43.0%) in the total organic aerosol (OA) fraction, highlighting efficient secondary formation during SP. The PM1 loading was similar between SPhs (53.0 ± 56.4 μg m-3) and NPnhs (50.7 ± 49.4 μg m-3), indicating a smaller difference in PM pollution between heating and non-heating seasons after the implementation of the SP measure. In addition, a machine learning technique was used to decouple the impact of meteorology on air pollutants. The deweathered results were comparable with the observed results, indicating that meteorological conditions did not have a large impact on the comparison results. Our study indicates that the SP policy is effective in reducing primary emissions but promotes the formation of secondary species.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 China
- Interdisciplinary Research Center of Earth Science Frontier (IRCESF), Beijing Normal University, Beijing, 100875 China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 China
- Laoshan Laboratory, Qingdao, 266061 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wei Xu
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 China
- Ryan Institute’s Centre for Climate & Air Pollution Studies, School of Natural Sciences, Physics Unit, University of Galway, University Road, Galway, H91CF50 Ireland
| | - Haobin Zhong
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 China
| | - Jing Duan
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 China
| | - Chunshui Lin
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 China
| | - Yifang Gu
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ting Wang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 China
| | - Yongjie Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau, SAR 999078 China
| | - Jurgita Ovadnevaite
- Ryan Institute’s Centre for Climate & Air Pollution Studies, School of Natural Sciences, Physics Unit, University of Galway, University Road, Galway, H91CF50 Ireland
| | - Darius Ceburnis
- Ryan Institute’s Centre for Climate & Air Pollution Studies, School of Natural Sciences, Physics Unit, University of Galway, University Road, Galway, H91CF50 Ireland
| | - Colin O’Dowd
- Ryan Institute’s Centre for Climate & Air Pollution Studies, School of Natural Sciences, Physics Unit, University of Galway, University Road, Galway, H91CF50 Ireland
| |
Collapse
|
37
|
Hassan SK, Alghamdi MA, Khoder MI. Effect of restricted emissions during COVID-19 on atmospheric aerosol chemistry in a Greater Cairo suburb: Characterization and enhancement of secondary inorganic aerosol production. ATMOSPHERIC POLLUTION RESEARCH 2022; 13:101587. [PMID: 36340245 PMCID: PMC9627639 DOI: 10.1016/j.apr.2022.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
To prevent the rapid spreading of the COVID-19 pandemic, the Egyptian government had imposed partial lockdown restrictions which led emissions reduction. This served as ideal conditions for a natural experiment, for study the effect of partial lockdown on the atmospheric aerosol chemistry and the enhanced secondary inorganic aerosol production in a semi-desert climate area like Egypt. To achieve this objective, SO2, NO2, and PM2.5 and their chemical compositions were measured during the pre-COVID, COVID partial lockdown, and post-COVID periods in 2020 in a suburb of Greater Cairo, Egypt. Our results show that the SO2, NO2, PM2.5 and anthropogenic elements concentrations follow the pattern pre-COVID > post-COVID > COVID partial lockdown. SO2 and NO2 reductions were high compared with their secondary products during the COVID partial lockdown compared with pre-COVID. Although, PM2.5, anthropogenic elements, NO2, SO2, SO4 2-, NO3 -, and NH4 + decreased by 39%, 38-55%, 38%, 32.9%. 9%, 14%, and 4.3%, respectively, during the COVID partial lockdown compared with pre-COVID, with the secondary inorganic ions (SO4 2-, NO3 -, and NH4 +) being the dominant components in PM2.5 during the COVID partial lockdown. Moreover, the enhancement of NO3 - and SO4 2- formation during the COVID partial lockdown was high compared with pre-COVID. SO4 2- and NO3 - formation enhancements were significantly positive correlated with PM2.5 concentration. Chemical forms of SO4 2- and NO3 - were identified in PM2.5 based on their NH4 +/SO4 2- molar ratio and correlation between NH4 + and both NO3 - and SO4 2-. The particles during the COVID partial lockdown were more acidic than those in pre-COVID.
Collapse
Affiliation(s)
- Salwa K Hassan
- Air Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza, 12622, Egypt
| | - Mansour A Alghamdi
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah, 21589, Saudi Arabia
| | - Mamdouh I Khoder
- Air Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza, 12622, Egypt
| |
Collapse
|
38
|
Men C, Liu R, Wang Y, Cao L, Jiao L, Li L, Wang Y. Impact of particle sizes on health risks and source-specific health risks for heavy metals in road dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75471-75486. [PMID: 35655016 DOI: 10.1007/s11356-022-21060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
To analyze the impact of particle sizes on sources and related health risks for heavy metals, road dust samples in Beijing were collected and sifted into five particle sizes. The positive matrix factorization (PMF), human health risk assessment model (HHRA), and Monte Carlo simulation were used in the health risk assessment and source apportionment. Results showed that mass of particles < 74 μm occupied about 50% of the total particles, while only 8.48% of the particles were > 500 μm. Mass distribution and concentrations of heavy metals in each particle size changed in temporal. Over 85.00% of carcinogenic risks (CR) were from particles <74 μm, whereas CR from particles >250 μm were ignorable. Sources for health risks in each particle size were traffic exhaust, fuel combustion, construction, and use of pesticides and fertilizers. Proportions of sources to CR differed among particle sizes. Traffic exhaust and fuel combustion contributed over 90% to CR in particles <74 μm, whereas construction contributed the highest (31.68-54.14%) among all sources in particles 74-250 μm. Furthermore, the difference between health risks based on sifted road dust and that based on unsifted road dust was quantitatively analyzed. Source-specific health risk apportionment based on unsifted road dust was not presentative to all particle sizes, and true value of health risks could be over 2.5 times of the estimated value based on unsifted road dust, emphasized the importance of sifting of road dust.
Collapse
Affiliation(s)
- Cong Men
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Yifan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Leiping Cao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Lijun Jiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Lin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yue Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| |
Collapse
|
39
|
Zhao Z, Hao M, Li Y, Li S. Contamination, sources and health risks of toxic elements in soils of karstic urban parks based on Monte Carlo simulation combined with a receptor model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156223. [PMID: 35643134 DOI: 10.1016/j.scitotenv.2022.156223] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Understanding the health risks of toxic elements (TEs) in urban park soils and determining their priority control factors are crucial for public health and pollution management. Soil samples were collected from 33 urban parks in Guiyang, a typical karstic city. For each park, 15-45 topsoil samples were collected according to the area and then thoroughly mixed to obtain a representative sample. The results showed that the mean concentrations of TEs in park soils (22.5, 0.37, 88.6, 43.7, 0.26, 39.9, 44.7, and 101.0 mg/kg for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, respectively) were higher than their background values. Approximately 54.5% and 33.3% of enrichment factor (EF) values reached moderately enriched to significantly enriched levels for Cd and Hg, respectively. Moreover, 54.5% and 42.4% of monomial potential ecological index (EI) values were at considerable to high risk levels for Cd and Hg, respectively. These results illustrate that Cd and Hg pose high ecological risks. According to the potential ecological risk index (RI) values, 21.2% of the parks were exposed to considerable ecological risk and 48.5% were at moderate risk. Based on the positive matrix factorization (PMF) model, four sources governing TE contamination (including coal combustion, natural sources, traffic emissions, and industrial activities) were identified, with contribution rates of 32.3%, 31.0%, 19.6%, and 17.1%, respectively. A probabilistic health risk assessment showed acceptable non-carcinogenic risks and high levels of carcinogenic risk in all populations. Based on the source-specific health risk assessment, arsenic from coal combustion was determined to be a major contributor to human health risks. Although several efforts have been made by the local government to eliminate coal-borne arsenicosis, our results revealed that the accumulation of arsenic in the soil due to coal combustion poses a potential threat to human health.
Collapse
Affiliation(s)
- Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ming Hao
- College of Medical humanities, Guizhou Medical University, Guiyang 550025, China
| | - Yunlong Li
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250013, China
| | - Shehong Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
40
|
Jia B, Tian Y, Dai Y, Chen R, Zhao P, Chu J, Feng X, Feng Y. Seasonal variation of dissolved bioaccessibility for potentially toxic elements in size-resolved PM: Impacts of bioaccessibility on inhalable risk and uncertainty. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119551. [PMID: 35649451 DOI: 10.1016/j.envpol.2022.119551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The health effects of potentially toxic elements (PTEs) in airborne particulate matter (PM) are strongly dependent on their size distribution and dissolution. This study examined PTEs within nine distinct sizes of PM in a Chinese megacity, with a focus on their deposited and dissolved bioaccessibility in the human pulmonary region. A Multiple Path Particle Dosimetry (MPPD) model was used to estimate the deposited bioaccessibility, and an in-vitro experiment with simulated lung fluid was conducted for dissolved bioaccessibility. During the non-heating season, the dissolved bioaccessible fraction (DBF) of As, Cd, Co, Cr, Mn, Pb and V were greater in fine PM (aerodynamics less than 2.1 μm) than in coarse PM (aerodynamics between 2.1 and 10 μm), and vice versa for Ni. With the increased demand of heating, the DBF of Pb and As decreased in fine particle sizes, probably due to the presence of oxide/silicate compounds from coal combustion. Inhalation health risks based on the bioaccessible concentrations of PTEs displayed the peaks in <0.43 μm and 2.1-3.3 μm particulate sizes. The non-cancer risk was at an acceptable level (95th percentiles of hazard index (HI) was 0.49), but the cancer risk exceeded the threshold value (95th percentiles of total incremental lifetime cancer risk (TCR) was 8.91 × 10-5). Based on the results of uncertainty analysis, except for the exposure frequency, the total concentrations and DBF of As and Cr in <0.43 μm particle size segment have a greater influence on the uncertainty of probabilistic risk.
Collapse
Affiliation(s)
- Bin Jia
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China
| | - Yingze Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin, 300350, China.
| | - Yuqing Dai
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rui Chen
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China
| | - Peng Zhao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China
| | - Jingjing Chu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China
| | - Xin Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science & Engineering, Nankai University, Tianjin, 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin, 300350, China
| |
Collapse
|
41
|
Leng X, She M, Jin X, Chen J, Ma X, Chen F, Li J, Yang B. A Highly Sensitive and Selective Fluorescein-Based Cu 2+ Probe and Its Bioimaging in Cell. Front Nutr 2022; 9:932826. [PMID: 35832048 PMCID: PMC9271948 DOI: 10.3389/fnut.2022.932826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022] Open
Abstract
Copper is a vital trace metal in human body, which plays the significant roles in amounts of physiological and pathological processes. The application of copper-selective probe has attracted great interests from environmental tests to life process research, yet a few of sensitive Cu2+ tests based on on-site analysis have been reported. In this paper, a novel fluorescein-based fluorescent probe N4 was designed, synthesized, and characterized, which exhibited high selectivity and sensitivity to Cu2+ comparing with other metal ions in ethanol–water (1/1, v/v) solution. The probe N4 bonded with Cu2+ to facilitate the ring-opening, and an obvious new band at 525 nm in the fluorescence spectroscopy appeared, which could be used for naked-eye detection of Cu2+ within a broad pH range of 6–9. Meanwhile, a good linearity between the fluorescence intensity and the concentrations of Cu2+ ranged 0.1–1.5 eq. was observed, and the limit of detection of N4 to Cu2+ was calculated to be as low as 1.20 μm. In addition, the interaction mode between N4 and Cu2+ was found to be 1:1 by the Job's plot and mass experiment. Biological experiments showed that the probe N4 exhibited low biological toxicity and could be applied for Cu2+ imaging in living cells. The significant color shift associated with the production of the N4-Cu2+ complex at low micromolar concentrations under UV light endows N4 with a promising probe for field testing of trace Cu2+ ions.
Collapse
Affiliation(s)
- Xin Leng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China.,Biomedicine Key Laboratory of Shaanxi Province, Xi'an, China.,Lab of Tissue Engineering, Faculty of Life Science & Medicine, The College of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| | - Mengyao She
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China.,Biomedicine Key Laboratory of Shaanxi Province, Xi'an, China.,Lab of Tissue Engineering, Faculty of Life Science & Medicine, The College of Life Sciences, Northwest University, Xi'an, China
| | - Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, China
| | - Jiao Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China.,Biomedicine Key Laboratory of Shaanxi Province, Xi'an, China.,Lab of Tissue Engineering, Faculty of Life Science & Medicine, The College of Life Sciences, Northwest University, Xi'an, China
| | - Xuehao Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Xi'an, China.,Biomedicine Key Laboratory of Shaanxi Province, Xi'an, China.,Lab of Tissue Engineering, Faculty of Life Science & Medicine, The College of Life Sciences, Northwest University, Xi'an, China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| | - Bingqin Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| |
Collapse
|
42
|
Yan RH, Peng X, Lin W, He LY, Wei FH, Tang MX, Huang XF. Trends and Challenges Regarding the Source-Specific Health Risk of PM 2.5-Bound Metals in a Chinese Megacity from 2014 to 2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6996-7005. [PMID: 35050611 DOI: 10.1021/acs.est.1c06948] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Identifying the health risk of PM2.5 is essential for urban air pollution control. In 2013, China announced the ever-strict national Air Pollution Prevention and Control Action Plan, and its health benefit should be evaluated to provide reference for future policymaking. In this study, we conducted a seven-year (2014-2020) continuous observation of PM2.5 in Shenzhen, the third largest city in China, which has relatively good air quality. The results showed that the annual mean PM2.5 and total concentration of 21 associated metals dropped from 37.7 to 18.5 μg/m3 and from 2.4 to 1.1 μg/m3, respectively. Combining methods for source apportionment and health risk assessment, we found that the total carcinogenic risk (CR) of five hazardous metals (Cd, Cr, Ni, Co, and Pb) showed a clear decreasing trend. However, the total CR (1.8 × 10-6) in 2020 still exceeded the widely acceptable risk level (i.e., 1 × 10-6), with the primary contributor changing from industrial emissions (61%) to vehicle emissions (63%). Further analysis indicated that the CR of vehicles mainly came from Cr and Ni released by braking and tire wearing and has fluctuated in recent years, highlighting a great challenge of controlling nonexhaust emissions of vehicles (including electric cars) in the future.
Collapse
Affiliation(s)
- Run-Hua Yan
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xing Peng
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Weiwei Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ling-Yan He
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Feng-Hua Wei
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Meng-Xue Tang
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiao-Feng Huang
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
43
|
Chen R, Zhao Y, Tian Y, Feng X, Feng Y. Sources and uncertainties of health risks for PM 2.5-bound heavy metals based on synchronous online and offline filter-based measurements in a Chinese megacity. ENVIRONMENT INTERNATIONAL 2022; 164:107236. [PMID: 35447425 DOI: 10.1016/j.envint.2022.107236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/13/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Accurate measurements of PM2.5 related heavy metals (HMs) and some components are critical to better understanding the sources and health risks of PM2.5. HMs and other components in PM2.5 were simultaneously measured using online and offline filter-based methods in a Chinese megacity. Online Mn, Pb, Cu, and Zn concentrations exhibited good correspondence with offline results (R2 ≥ 0.7, relative biases = -3%-22%). Some differences were observed for Cr, As, Co, and V. The assessment of online and offline probabilistic health risks indicated that non-cancer and total cancer risks were higher than the acceptable limits. Different analytical methods of As may result in different uncertainties in risk analysis. The positive matrix factorization model (PMF) was used to perform online and offline source apportionment. Five sources (coal combustion, vehicle source, industrial source, secondary source, and resuspended dust) were identified. Lower online percentage contribution of resuspended dust (8%) might relate to the lack of Si and Al measurements. The different rate contributions of vehicle source were potentially linked to the different time resolutions of the online and offline data. The assessment of online and offline source-specific health risks revealed that industrial source and coal combustion were the most important sources. Online and offline source-specific risks were not significantly different (P > 0.05). This contrastive study not only helps decision makers to manage health risk more effectively, but also provides insights into the applicability of online and offline measurements for quantifying source-specific risks.
Collapse
Affiliation(s)
- Rui Chen
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yehui Zhao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingze Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| | - Xin Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| |
Collapse
|
44
|
Zou X, Fang J, Yang Y, Wu R, Wang S, Xu H, Jia J, Yang H, Yuan N, Hu M, Zhao Y, Xie Y, Zhu Y, Wang T, Deng Y, Song X, Ma X, Huang W. Maternal exposure to traffic-related ambient particles and risk of gestational diabetes mellitus with isolated fasting hyperglycaemia: A retrospective cohort study in Beijing, China. Int J Hyg Environ Health 2022; 242:113973. [PMID: 35447399 DOI: 10.1016/j.ijheh.2022.113973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Ambient particles have been associated with gestational diabetes mellitus (GDM), however, no study has evaluated the effects of traffic-related ambient particles on the risks of GDM subgroups classified by oral glucose tolerance test (OGTT) values. METHODS A retrospective analysis was conducted among 24,001 pregnant women who underwent regular prenatal care and received OGTT at Haidian Maternal and Child Health Hospital in Beijing, China, 2014-2017. A total of 3,168 (13.2%) pregnant women were diagnosed with GDM, including 1,206 with isolated fasting hyperglycaemia (GDM-IFH). At a fixed-location monitoring station, routinely monitored ambient particles included fine particulate matter (PM2.5), black carbon (BC) and particles in size ranges of 5-560 nm (PNC5-560). Contributions of PNC5-560 sources were apportioned by positive matrix factorization model. Logistic regression model was applied to estimate odds ratio (OR) of ambient particles on GDM risk. RESULTS Among the 24,001 pregnancy women recruited in this study, 3,168 (13.2%) were diagnosed with GDM, including 1,206 with isolated fasting hyperglycaemia (GDM-IFH) and 1,295 with isolated post-load hyperglycaemia (GDM-IPH). We observed increased GDM-IFH risk with per interquartile range increase in first-trimester exposures to PM2.5 (OR = 1.94; 95% Confidence Intervals: 1.23-3.07), BC (OR = 2.14; 1.73-2.66) and PNC5-560 (OR = 2.46; 1.90-3.19). PNC5-560 originated from diesel and gasoline vehicle emissions were found in associations with increases in GDM-IFH risk, but not in GDM-IPH risk. CONCLUSION Our findings suggest that exposure to traffic-related ambient particles may increase GDM risk by exerting adverse effects on fasting glucose levels during pregnancy, and support continuing efforts to reduce traffic emissions for protecting vulnerable population who are at greater risk of glucose metabolism disorder.
Collapse
Affiliation(s)
- Xiaoxuan Zou
- Hadian Maternal and Child Health Hospital, Haidian District, Beijing, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China
| | - Ying Yang
- National Research Institute for Family Planning, China; Graduate School of Peking Union Medical College, Dongcheng District, Beijing, China; National Human Genetic Resources Center, Haidian District, Beijing, China.
| | - Rongshan Wu
- Department of Occupational and Environmental Health, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Shuo Wang
- Hadian Maternal and Child Health Hospital, Haidian District, Beijing, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China
| | - Jiajing Jia
- National Research Institute for Family Planning, China; Graduate School of Peking Union Medical College, Dongcheng District, Beijing, China
| | - Haishan Yang
- Hadian Maternal and Child Health Hospital, Haidian District, Beijing, China
| | - Ningman Yuan
- Department of Occupational and Environmental Health, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China
| | - Meina Hu
- Hadian Maternal and Child Health Hospital, Haidian District, Beijing, China
| | - Yinzhu Zhao
- Hadian Maternal and Child Health Hospital, Haidian District, Beijing, China
| | - Yunfei Xie
- Department of Occupational and Environmental Health, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China
| | - Yutong Zhu
- Department of Occupational and Environmental Health, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China
| | - Yuzhi Deng
- National Research Institute for Family Planning, China; Graduate School of Peking Union Medical College, Dongcheng District, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China
| | - Xu Ma
- National Research Institute for Family Planning, China; Graduate School of Peking Union Medical College, Dongcheng District, Beijing, China; National Human Genetic Resources Center, Haidian District, Beijing, China
| | - Wei Huang
- Hadian Maternal and Child Health Hospital, Haidian District, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China.
| |
Collapse
|
45
|
Cheng K, Chang Y, Kuang Y, Khan R, Zou Z. Elucidating the responses of highly time-resolved PM 2.5 related elements to extreme emission reductions. ENVIRONMENTAL RESEARCH 2022; 206:112624. [PMID: 34973195 PMCID: PMC8718126 DOI: 10.1016/j.envres.2021.112624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 05/30/2023]
Abstract
China's unprecedented lockdown to contain the spread of the novel coronavirus disease (COVID-19) in early 2020, provided a tragic natural experiment to investigate the responses of atmospheric pollution to emission reduction at regional scale. Primarily driven by primary emissions, particulate trace elements is vitally important due to their disproportionally adverse impacts on human health and ecosystem. Here 14 trace elements in PM2.5 were selected for continuous measurement hourly in urban representative site of Shanghai, for three different phases: pre-control period (1-23 January 2020), control period (24 January-10 February 2020; overlapped with Chinese Lunar New Year holiday) and post control period (11-26 February 2020) the city's lockdown measures. The results show that all meteorological parameters (including temperature, RH, mixing layer height et al.) were generally consistent among different periods. Throughout the study period, the concentrations of most species displayed a "V-shaped" trend, suggesting significant effects by the restriction measures imposed during the lockdown period. While this is not the case for species like K, Cu and Ba, indicating their unusual origins. As a case study, the geographical origins of Cu were explored. Seven major sources, i.e., Vehicle-related emission (including road dust; indicative of Ca, Fe, Ba, Mn, Zn, Cu; accounting for 30.1%), shipping (Ni; 5.0%), coal combustion (As, Pb; 4.2%), Se and Cr industry (24.9%), nonferrous metal smelting (Au, Hg; 7.5%) and fireworks burning (K, Cu, Ba; 28.3%) were successfully pinpointed based on positive matrix factorization (PMF) analysis. Our source apportionment results also highlight fireworks burning was one of the dominant source of trace elements during the Chinese Lunar New Year holiday. It is worth noting that 56% of the total mass vehicular emissions are affiliated with non-exhaust sources (tire wear, brake wear, and road surface abrasion).
Collapse
Affiliation(s)
- Kai Cheng
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yunhua Chang
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Yaqiong Kuang
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Rehana Khan
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhong Zou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
46
|
Li R, Zhang H, Wang F, Ren Y, Jia S, Jiang B, Jia X, Tang Y, Tang M. Abundance and fractional solubility of phosphorus and trace metals in combustion ash and desert dust: Implications for bioavailability and reactivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151495. [PMID: 34752860 DOI: 10.1016/j.scitotenv.2021.151495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/15/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Aerosol phosphorus (P) and trace metals derived from natural processes and anthropogenic emissions have considerable impacts on ocean ecosystems, human health, and atmospheric processes. However, the abundance and fractional solubility of P and trace metals in combustion ash and desert dust, which are two of the largest emission sources of aerosols, are still not well understood. In this study, the abundance and fractional solubility of P and trace metals in seven coal fly ash samples, two municipal waste fly ash samples, and three desert dust samples were experimentally examined. It was found that the abundance of aluminum (Al) in combustion ash was comparable or even higher than that in desert dust, and, therefore, care should be taken when using Al as a tracer of desert dust. The abundance and fractional solubility of P were higher in combustion ash, with a soluble P content ~4-6 times higher than that of the desert dust, indicating that combustion ash could be an important source of bioavailable P in the atmosphere. Except for Mn, the abundance and fractional solubility of other heavy metals were higher in the combustion ash compared to the desert dust, indicating the potential importance of combustion ash in ocean ecosystems, human health, and atmospheric processes. In contrast, both the abundance and solubility of Mn were highest in the desert dust, indicating a potentially important source of soluble Mn in the atmosphere. The fractional solubilities of P and trace metals are significantly affected by acidity and ions in the extraction solutions, and it is suggested that a buffer solution can better represent the acidity of the aqueous system in the true atmospheric environment. The results of this study improve our understanding of the sources of bioavailable and reactive P and trace metals in ambient aerosols.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Wang
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Yan Ren
- Longhua Center for Disease Control and Prevention of Shenzhen, Shenzhen 518109, China
| | - Shiguo Jia
- School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| | - Bin Jiang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Xiaohong Jia
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujing Tang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Joint Laboratory of Environmental Pollution Process and Control in Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Huang R, Yuan W, Wang T, Cao W, Wang Y, Lin C, Yang L, Guo J, Ni H, Wu F. Chemical signature and fractionation of trace elements in fine particles from anthropogenic and natural sources. J Environ Sci (China) 2022; 114:365-375. [PMID: 35459499 DOI: 10.1016/j.jes.2021.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
The health effects of trace metal elements in atmospheric fine particulate matter (PM2.5) are widely recognized, however, the emission factor profiles and chemical fractionation of metal elements in different sources were poorly understand. In this study, sixteen metal elements, including Cd, Pb, V, Zn, Ba, Sb, As, Fe, Sr, Cr, Rb, Co, Mn, Cu, Ni and Sn from biomass burning, bituminite and anthracite combustion, as well as dust, were quantified. The results show different emission sources were associated with distinct emission profiles, holding important implications for source apportionment of ambient particulate metals. Specifically, Fe was the dominant metal species (28-1922 mg/kg) for all samples, and was followed by different metals for different samples. For dust, Mn (39.9 mg/kgdust) had the second-highest emission factor, while for biomass burning, it was Cr and Ba (7.5 and 7.4 mg/kgbiomass, respectively). For bituminous coal combustion, the emission factor of Zn and Ba was 6.2 and 6.0 mg/kgbituminous, respectively, while for anthracite combustion the corresponding emission factor was 5.6 and 4.3 mg/kganthracite, respectively. Moreover, chemical fractionation (i.e., the exchangeable, reducible fraction, oxidizable, and residual fraction) and the bioavailability index (BI) values of the metal elements from different sources were further investigated to reveal the link between different emission sources and the potential health risk. The findings from this study hold important implications for source apportionment and source-specific particulate metal-associated health effects.
Collapse
Affiliation(s)
- Rujin Huang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Wei Yuan
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ting Wang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wenjuan Cao
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ying Wang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Chunshui Lin
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Lu Yang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jie Guo
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Haiyan Ni
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Feng Wu
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
48
|
Yang X, Zheng M, Liu Y, Yan C, Liu J, Liu J, Cheng Y. Exploring sources and health risks of metals in Beijing PM 2.5: Insights from long-term online measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:151954. [PMID: 34843775 DOI: 10.1016/j.scitotenv.2021.151954] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
To gain a comprehensive understanding of sources, health risks, and regional transport of PM2.5-bound metals in Beijing, one-year continuous measurement (K, Fe, Ca, Zn, Pb, Mn, Ba, Cu, As, Se, Cr, and Ni) was conducted from December 2016 to November 2017 and Positive Matrix Factorization analysis (PMF) was applied for source apportionment. It was found that the seasonal variation of sources could vary significantly among metals. Sources of Ca, Ba, As, Se, and Cr did not show much seasonal variations, with the contribution of its predominant source higher than 35% in each season. However, the major sources of K, Fe, Zn, Pb, Mn, Cu, and Ni exhibited obvious seasonal variations. In addition, the characteristics of metals in haze episodes were comprehensively investigated. Haze episodes in Beijing were characterized by higher metal concentrations and health risks, which were about 2- 6 times higher than non-haze periods. Moreover, the types of haze episode were different in winter and spring. Haze episodes in winter were mostly influenced by coal combustion, the contribution of which increased greatly and accounted for about 30% of PM2.5. The metals such as K, Zn, Pb, As, and Se significantly increased, which were mainly transported from south of Beijing. During haze episodes in spring, dust was an important source, which contributed to higher concentrations of crustal metals that transported from northwest of Beijing. To quickly and effectively identify source regions of metals in Beijing during haze episodes, a new diagnostic ratio method using Ca as a reference was developed. The ratios of some anthropogenic metals to Ca significantly increased when air mass was mainly from south of Beijing during haze episodes while the ratios remained constantly low in non-haze periods, when local emissions dominated. This method could be useful for rapid identification and control of metal pollution in Beijing.
Collapse
Affiliation(s)
- Xi Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mei Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Yue Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Caiqing Yan
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Junyi Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiumeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuan Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
49
|
Feng X, Shao L, Jones T, Li Y, Cao Y, Zhang M, Ge S, Yang CX, Lu J, BéruBé K. Oxidative potential and water-soluble heavy metals of size-segregated airborne particles in haze and non-haze episodes: Impact of the "Comprehensive Action Plan" in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152774. [PMID: 34986423 DOI: 10.1016/j.scitotenv.2021.152774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Accepted: 12/25/2021] [Indexed: 05/17/2023]
Abstract
Air pollution is a major environmental health challenge in megacities, and as such a Comprehensive Action Plan (CAP) was issued in 2017 for Beijing, the capital city of China. Here we investigated the size-segregated airborne particles collected after the implementation of the CAP, intending to understand the change of oxidative potential and water-soluble heavy metal (WSHM) levels in 'haze' and 'non-haze' days. The DNA damage and the levels of WSHM were analyzed by Plasmid Scission Assay (PSA) and High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) techniques. The PM mass concentration was higher in the fine particle size (0.43-2.1 μm) during haze days, except for the samples affected by mineral dust. The particle-induced DNA damage caused by fine sized particles (0.43-2.1 μm) exceeded that caused by the coarse sized particles (4.7-10 μm). The DNA damage from haze day particles significantly exceeded those collected on non-haze days. Prior to the instigation of the CAP, the highest value of DNA damage decreased, and DNA damage was seen in the finer size (0.43-1.1 μm). The Pearson correlation coefficient between the concentrations of water-soluble Pb, Cr, Cd and Zn were positively correlated with DNA damage, suggesting that these WSHM had significant oxidative potential. The mass concentrations of water-soluble trace elements (WSTE) and individual heavy metals were enriched in the finer particles between 0.43 μm to 1.1 μm, implying that smaller sized particles posed higher health risks. In contrast, the significant reduction in the mass concentration of water-soluble Cd and Zn, and the decrease of the maximum and average values of DNA damage after the CAP, demonstrated its effectiveness in restricting coal-burning emissions. These results have demonstrated that the Beijing CAP policy has been successful in reducing the toxicity of 'respirable' ambient particles.
Collapse
Affiliation(s)
- Xiaolei Feng
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Tim Jones
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, UK
| | - Yaowei Li
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Yaxin Cao
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Mengyuan Zhang
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Shuoyi Ge
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Cheng-Xue Yang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jing Lu
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Kelly BéruBé
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
50
|
Wang X, Chen N, Shi X. Has the public habituated to the haze in China? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21396-21411. [PMID: 34757562 DOI: 10.1007/s11356-021-17384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The concept of haze habituation was proposed based on haze perception and behavior in this paper. This study employed factor analysis and Potential Conflict Index (PCI) to analyze the dimensions, degrees, and internal differences of the public's haze habituation. Then, K-means clustering algorithm was applied to classify the public into four categories. The entropy method was used to quantitatively evaluate the public's haze habituation, and the natural breakpoint method was used to grade it into five levels. Finally, an ordered logistic regression model was chosen to analyze the influencing factors of the public's haze habituation. The results indicate that: (1) The public's haze habituation can be measured from five dimensions: protective behavior, haze reduction behavior, haze attention, life impact perception, and health impact perception. The public had the same views on protective behavior, haze reduction behavior, life impact perception, and health impact perception. However, there is a wide divergence among the public on the haze attention; (2) Based on the above five dimensions, the public can be divided into the protective sensitive group, attention sensitive group, health sensitive group, and environmental protection sensitive group; (3) Generally, the public has a low haze habituation where the protective behavior, haze reduction behavior, and health impact perception are the crucial elements; (4) Gender, self-health assessment, and travel mode have a significant positive impact on the public's haze habituation, respectively. Age, the family with elders or children, and annual family income have a significant negative impact on the public's haze habituation, respectively.
Collapse
Affiliation(s)
- Xinxin Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Nan Chen
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xingmin Shi
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|