1
|
Hornink M, Figlino GE, Toledo MFJ, Pimenta DC, Stefani HA. Palladium-Catalyzed Carbonylative Cyclization of 1-Alkynyl-2-iodo-d-glucal. Org Lett 2024; 26:8621-8625. [PMID: 39348604 PMCID: PMC11474949 DOI: 10.1021/acs.orglett.4c03337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Cascade reactions are important synthetic tools for the synthesis of heterocyclic molecules, particularly those catalyzed by palladium. Herein, we report a palladium-catalyzed aminocarbonylative cyclization of new 1-alkynyl-2-iodo-d-glucals, which undergo a tandem carbonylative cyclization in the presence of various amine nucleophiles. A broad range of aromatic and aliphatic amines were applied as coupling partners, resulting in the selective and high-yield synthesis of glycosides fused to pyridinones. A plausible mechanism is proposed, proceeding via a tandem palladium aminocarbonylation followed by a palladium-catalyzed endo-dig cyclization.
Collapse
Affiliation(s)
- Milene
M. Hornink
- Faculdade
de Ciências Farmacêuticas, Departamento de Farmácia, Universidade de São Paulo, São Paulo, SP 05508-220, Brazil
| | | | - Mônica F.
Z. J. Toledo
- Faculdade
de Ciências Farmacêuticas, Departamento de Farmácia, Universidade de São Paulo, São Paulo, SP 05508-220, Brazil
| | | | - Hélio A. Stefani
- Faculdade
de Ciências Farmacêuticas, Departamento de Farmácia, Universidade de São Paulo, São Paulo, SP 05508-220, Brazil
| |
Collapse
|
2
|
Ali W, Oliver GA, Werz DB, Maiti D. Pd-catalyzed regioselective activation of C(sp 2)-H and C(sp 3)-H bonds. Chem Soc Rev 2024; 53:9904-9953. [PMID: 39212454 DOI: 10.1039/d4cs00408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Differentiating between two highly similar C-H bonds in a given molecule remains a fundamental challenge in synthetic organic chemistry. Directing group assisted strategies for the functionalisation of proximal C-H bonds has been known for the last few decades. However, distal C-H bond functionalisation is strenuous and requires distinctly specialised techniques. In this review, we summarise the advancement in Pd-catalysed distal C(sp2)-H and C(sp3)-H bond activation through various redox manifolds including Pd(0)/Pd(II), Pd(II)/Pd(IV) and Pd(II)/Pd(0). Distal C-H functionalisation, where a Pd-catalyst is directly involved in the C-H activation step, either through assistance of an external directing group or directed by an inherent functionality or functional group incorporated at the site of the Pd-C bond is covered. The purpose of this review is to portray the current state of art in Pd-catalysed distal C(sp2)-H and C(sp3)-H functionalisation reactions, their mechanism and application in the late-stage functionalisation of medicinal compounds along with highlighting its limitations, thus leaving the field open for further synthetic adjustment.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| | - Gwyndaf A Oliver
- Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, D-79104 Freiburg, Germany.
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, D-79104 Freiburg, Germany.
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Ding Y, Yao B. Late-Stage Glycosylation of Peptides by Methionine-Directed β-C(sp 3)-H Functionalization with 1-Iodoglycals. Org Lett 2024; 26:7128-7133. [PMID: 39155450 DOI: 10.1021/acs.orglett.4c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Using l-methionine (Met) as the endogenous directing group, we developed Pd-catalyzed β-C(sp3)-H glycosylation of peptides with 1-iodoglycals. A wide range of tri- to hexapeptides containing the Ala-Met motifs underwent Ala C-H glycosylation under the standard conditions to give the glycopeptides smoothly. 15 proteinogenic amino acids (with easily removable protecting groups) were well tolerated. Control experiments indicated that Met acted as a N,S-bidentate directing group and exhibited an effect superior to other amino acid residues such as l-aspartic acid (Asp), l-asparagine (Asn), and S-protected l-cysteine (Cys). In addition, further transformation by HFIP-promoted 1,4-elimination furnished another type of glycopeptide with the 1,3-diene motif, which provides a handle for further derivatization.
Collapse
Affiliation(s)
- Yunhao Ding
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
4
|
Lu F, Zhang X, Geng Y, Wang H, Tang J. Methionine-enabled peptide modification through late-stage Pd-catalyzed β-C(sp 3)-H olefination/cyclization. Chem Commun (Camb) 2024; 60:7942-7945. [PMID: 38984863 DOI: 10.1039/d4cc02739f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We present a method for site-selective diversification of peptides via Pd-catalyzed β-C(sp3)-H olefination/cyclization. In this protocol, the native methionine residue acts as a directing group, enabling site-specific olefination/cyclization of peptides. This chemistry demonstrates broad substrate scope, offering a versatile tool for peptide ligation.
Collapse
Affiliation(s)
- Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Xinyi Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Yujie Geng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Huihui Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P. R. China
- Zhejiang Zhongxin Fluoride Materials Co., LTD, Shangyu 312369, P. R. China
| |
Collapse
|
5
|
Yi LN, Zhao T, Bu J, Long J, Yang Q. Directed C(sp 3)-H Arylation of Free α-Aminophosphonates: Dual Models Exploration via Palladium Catalysis. Org Lett 2024; 26:4132-4136. [PMID: 38717283 DOI: 10.1021/acs.orglett.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In this report, we present the dual activation models for transient directing group-directed and amino-self-directed Pd-catalyzed α-aminophosphonate side-chain C(sp3)-H arylation. Both strategies showed facile, efficient, and single regioselectivity in the reaction between free α-aminophosphonates and aryl iodides. Furthermore, the modification of amino and late-stage functionalization of the C(sp3)-P bond from products indicates potential applications for α-aminophosphonates.
Collapse
Affiliation(s)
- Li Na Yi
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Tao Zhao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jinghan Bu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jiedi Long
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qiang Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
6
|
Akintelu SA, Zhang Q, Yao B. Postassembly Modification of Peptides by Histidine-Directed β-C(sp 3)-H Arylation of Alanine at the Internal Positions: Overcoming the Inhibitory Effect of Peptide Bonds. Org Lett 2024; 26:3991-3996. [PMID: 38691578 DOI: 10.1021/acs.orglett.4c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Peptide modification by C(sp3)-H functionalization of residues at the internal positions remains underdeveloped due to the inhibitory effect of backbone amides. In this study, using histidine (His) as an endogenous directing group, we developed a novel method for the β-C(sp3)-H functionalization of alanine (Ala) at diverse positions of peptides. Through this approach, a wide range of linear peptides were modified on the side-chain of Ala adjacent to His to afford the functionalized peptides in moderate to good yield and excellent position selectivity. Furthermore, conjugation of peptides with functional molecules such as glucuronide, oleanolic acid, dipeptide, and fluorophore derivatives was achieved.
Collapse
Affiliation(s)
- Sunday A Akintelu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Qi Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
7
|
Lu F, Sun Y, Liu YN, Geng Y, Zhang E, Tang J. Backbone-enabled modification of peptides with benzoquinone via palladium-catalyzed δ-C(sp 2)-H functionalization. Chem Commun (Camb) 2024; 60:1754-1757. [PMID: 38249109 DOI: 10.1039/d3cc06020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Backbone-enabled site-selective modification of peptides with benzoquinone via Pd-catalyzed δ-C(sp2)-H functionalization has been achieved. The amide groups of peptides serve as internal directional groups, facilitating C-H functionalization through a kinetically less favored six-membered palladacycle. This methodology presents novel opportunities for the late-stage site-selective diversification of peptides.
Collapse
Affiliation(s)
- Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Yi Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Ya-Ning Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Yujie Geng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
| | - Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210096, China
| |
Collapse
|
8
|
Nanjo T, Matsumoto A, Oshita T, Takemoto Y. Synthesis of Chlorinated Oligopeptides via γ- and δ-Selective Hydrogen Atom Transfer Enabled by the N-Chloropeptide Strategy. J Am Chem Soc 2023; 145:19067-19075. [PMID: 37594470 DOI: 10.1021/jacs.3c06931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The introduction of a chlorine atom could potentially endow peptide derivatives with notable bioactivity and applicability. However, despite considerable recent progress in C(sp3)-H functionalization chemistry, a general method for the site-selective chlorination of inert aliphatic C-H bonds in peptides still remains elusive. Herein, we report a site-selective C(sp3)-H chlorination of oligopeptides based on an N-chloropeptide strategy. N-chloropeptides, which are easily prepared from the corresponding native oligopeptides, are smoothly degraded in the presence of an appropriate copper catalyst, and a subsequent 1,5-hydrogen atom transfer affords γ- or δ-chlorinated peptides in excellent yield. A wide variety of amino acid residues can thus be site-selectively chlorinated in a predictable manner. This method hence enables the efficient synthesis of otherwise less accessible, chlorine-containing peptide fragments of natural peptides. We moreover demonstrate here the successful estimation of the stereochemistry of the chlorinated carbon atom in aquimarin A. Furthermore, we reveal that side-chain-chlorinated peptides can serve as highly useful substructures with a fine balance between stability and reactivity, which renders them promising targets for synthetic and medicinal applications.
Collapse
Affiliation(s)
- Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ayaka Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuma Oshita
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Tang J, Lu F, Geng Y, Liu Y, Zhang E. Site-Selective Modification of Peptides via Late-Stage Pd-Catalyzed Tandem Reaction of Phenylalanine with Benzoquinone. Org Lett 2023; 25:5378-5382. [PMID: 37439546 DOI: 10.1021/acs.orglett.3c01952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
An efficient and straightforward approach for site-selective functionalization of phenylalanine and phenylalanine-containing peptide via a Pd-catalyzed tandem reaction has been developed. The robust method underwent dual C-H activation, including C-C coupling with benzoquinone and intramolecular C-N cyclization, providing a feasible and rapid synthetic route to incorporate 4-benzoquinone-indoline fragments into peptides.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yujie Geng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yanxia Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
10
|
Oyama T, Mendive-Tapia L, Cowell V, Kopp A, Vendrell M, Ackermann L. Late-stage peptide labeling with near-infrared fluorogenic nitrobenzodiazoles by manganese-catalyzed C-H activation. Chem Sci 2023; 14:5728-5733. [PMID: 37265715 PMCID: PMC10231426 DOI: 10.1039/d3sc01868g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Late-stage diversification of structurally complex amino acids and peptides provides tremendous potential for drug discovery and molecular imaging. Specifically, labeling peptides with fluorescent tags is one of the most important methods for visualizing their mode of operation. Despite major recent advances in the field, direct molecular peptide labeling by C-H activation is largely limited to dyes with relatively short emission wavelengths, leading to high background signals and poor signal-to-noise ratios. In sharp contrast, here we report on the fluorescent labeling of peptides catalyzed by non-toxic manganese(i) via C(sp2)-H alkenylation in chemo- and site-selective manners, providing modular access to novel near-infrared (NIR) nitrobenzodiazole-based peptide fluorogenic probes.
Collapse
Affiliation(s)
- Tsuyoshi Oyama
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammanstraße 2 37077 Göttingen Germany
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh EH16 4TJ Edinburgh UK
| | - Verity Cowell
- Centre for Inflammation Research, The University of Edinburgh EH16 4TJ Edinburgh UK
| | - Adelina Kopp
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammanstraße 2 37077 Göttingen Germany
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh EH16 4TJ Edinburgh UK
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammanstraße 2 37077 Göttingen Germany
- German Center for Cardiovascular Research (DZHK) Potsdamer Straße 58 10785 Berlin Germany
| |
Collapse
|
11
|
Han Y, Shi J, Li S, Dan T, Yang W, Yang M. Selective editing of a peptide skeleton via C-N bond formation at N-terminal aliphatic side chains. Chem Sci 2022; 13:14382-14386. [PMID: 36545141 PMCID: PMC9749142 DOI: 10.1039/d2sc04909k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
The applications of peptides and peptidomimetics have been demonstrated in the fields of therapeutics, diagnostics, and chemical biology. Strategies for the direct late-stage modification of peptides and peptidomimetics are highly desirable in modern drug discovery. Transition-metal-catalyzed C-H functionalization is emerging as a powerful strategy for late-stage peptide modification that is able to construct functional groups or increase skeletal diversity. However, the installation of directing groups is necessary to control the site selectivity. In this work, we describe a transition metal-free strategy for late-stage peptide modification. In this strategy, a linear aliphatic side chain at the peptide N-terminus is cyclized to deliver a proline skeleton via site-selective δ-C(sp3)-H functionalization under visible light. Natural and unnatural amino acids are demonstrated as suitable substrates with the transformations proceeding with excellent regio- and stereo-selectivity.
Collapse
Affiliation(s)
- Yujie Han
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Junjie Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Songrong Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Tingting Dan
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Wenwen Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Mingyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| |
Collapse
|
12
|
Li G, Yuan F, Yao B. Post-Assembly Modification of Head-to-Tail Cyclic Peptides by Methionine-Directed β-C(sp 3)-H Arylation. Org Lett 2022; 24:5767-5771. [PMID: 35916500 DOI: 10.1021/acs.orglett.2c02253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Peptide modification by C(sp3)-H functionalization of internal residues remains a major challenge due to the inhibitory effect of peptide bonds. In this work, we developed a methionine-directed β-C(sp3)-H arylation method for internal alanine functionalization. By tuning the σC-C bond rotation of internal Ala through head-to-tail cyclization, we overcame the inhibitory effect and functionalized a wide range of head-to-tail cyclic peptides with aryl iodides with excellent position selectivity.
Collapse
Affiliation(s)
- Gang Li
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Feipeng Yuan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing 102488, P. R. China
| |
Collapse
|
13
|
Liu L, Fan X, Wang B, Deng H, Wang T, Zheng J, Chen J, Shi Z, Wang H. P
III
‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206177. [DOI: 10.1002/anie.202206177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Lei Liu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Xinlong Fan
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Boning Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Hong Deng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Tianhang Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jun Chen
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
14
|
Chen X, Li B, Tong H, Qi L, He G, Chen G. Palladium‐catalyzed Methionine‐facilitated β and γ C(sp
3
)‐H Arylation of
N‐Terminal
Aliphatic Amino Acids of Peptides. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiangxiang Chen
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Bo Li
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Huarong Tong
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Liping Qi
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Gang He
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
15
|
Moradiya RB, Morja MI, Chauhan PM, Chikhalia KH. Metal‐Catalyzed Approaches for the Construction of Azepinones. ChemistrySelect 2022. [DOI: 10.1002/slct.202201168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Riddhi B. Moradiya
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Mayur I. Morja
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | | | - Kishor H. Chikhalia
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| |
Collapse
|
16
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
17
|
Shahid M, Banakar VB, Ganesh PSKP, Gopinath P. Transition‐metal Catalyzed Remote C(sp3)‐H functionalization of carboxylic acid and its derivative. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- M. Shahid
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | | | | | - Purushothaman Gopinath
- Indian Institute of Science Education and Research Chemistry Karkambadi Road 517507 Tirupati INDIA
| |
Collapse
|
18
|
LIU LEI, FAN XINLONG, WANG BONING, DENG HONG, WANG TIANHANG, ZHENG JIE, CHEN JUN, SHI ZHUANGZHI, Wang H. P(III)‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- LEI LIU
- Nanjing University CHEMISTRY AND CHEMICAL ENGINEERING CHINA
| | | | | | | | | | | | - JUN CHEN
- Nanjing University CHEMISTRY CHINA
| | | | - Huan Wang
- Nanjing University Chemistry and Chemical Engineering 163 Xianlin Ave.Chemistry Building, E504 210023 Nanjing CHINA
| |
Collapse
|
19
|
|
20
|
Nicholson JM, Millham AB, Bucknam AR, Markham LE, Sailors XI, Micalizio GC. General Enantioselective and Stereochemically Divergent Four-Stage Approach to Fused Tetracyclic Terpenoid Systems. J Org Chem 2022; 87:3352-3362. [PMID: 35175755 PMCID: PMC9438405 DOI: 10.1021/acs.joc.1c02979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tetracyclic terpenoid-derived natural products are a broad class of medically relevant agents that include well-known steroid hormones and related structures, as well as more synthetically challenging congeners such as limonoids, cardenolides, lanostanes, and cucurbitanes, among others. These structurally related compound classes present synthetically disparate challenges based, in part, on the position and stereochemistry of the numerous quaternary carbon centers that are common to their tetracyclic skeletons. While de novo syntheses of such targets have been a topic of great interest for over 50 years, semisynthesis is often how synthetic variants of these natural products are explored as biologically relevant materials and how such agents are further matured as therapeutics. Here, focus was directed at establishing an efficient, stereoselective, and molecularly flexible de novo synthetic approach that could offer what semisynthetic approaches do not. In short, a unified strategy to access common molecular features of these natural product families is described that proceeds in four stages: (1) conversion of epichlorohydrin to stereodefined enynes, (2) metallacycle-mediated annulative cross-coupling to generate highly substituted hydrindanes, (3) tetracycle formation by stereoselective forging of the C9-C10 bond, and (4) group-selective oxidative rearrangement that repositions a quaternary center from C9 to C10. These studies have defined the structural features required for highly stereoselective C9-C10 bond formation and document the generality of this four-stage synthetic strategy to access a range of unique stereodefined systems, many of which bear stereochemistry/substitution/functionality not readily accessible from semisynthesis.
Collapse
Affiliation(s)
- Joshua M. Nicholson
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Adam B. Millham
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Andrea R. Bucknam
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Lauren E. Markham
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Xenia Ivanna Sailors
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Glenn C. Micalizio
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire 03755, United States
| |
Collapse
|
21
|
Ni SF, Huang G, Chen Y, Wright JS, Li M, Dang L. Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Font M, Gulías M, Mascareñas JL. Transition‐Metal‐Catalyzed Annulations Involving the Activation of C(sp
3
)−H Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marc Font
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
23
|
Font M, Gulías M, Mascareñas JL. Transition-Metal-Catalyzed Annulations Involving the Activation of C(sp 3 )-H Bonds. Angew Chem Int Ed Engl 2022; 61:e202112848. [PMID: 34699657 PMCID: PMC9300013 DOI: 10.1002/anie.202112848] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 12/15/2022]
Abstract
The selective functionalization of C(sp3 )-H bonds using transition-metal catalysis is among the more attractive transformations of modern synthetic chemistry. In addition to its inherent atom economy, such reactions open unconventional retrosynthetic pathways that can streamline synthetic processes. However, the activation of intrinsically inert C(sp3 )-H bonds, and the selection among very similar C-H bonds, represent highly challenging goals. In recent years there has been notable progress tackling these issues, especially with regard to the development of intermolecular reactions entailing the formation of C-C and C-heteroatom bonds. Conversely, the assembly of cyclic products from simple acyclic precursors using metal-catalyzed C(sp3 )-H bond activations has been less explored. Only recently has the number of reports on such annulations started to grow. Herein we give an overview of some of the more relevant advances in this exciting topic.
Collapse
Grants
- SAF2016-76689-R Ministerio de Ciencia, Innovación y Universidades
- PID2019-108624RBI00 Ministerio de Ciencia, Innovación y Universidades
- PID2019-110385GB-I00 Ministerio de Ciencia, Innovación y Universidades
- IJCI-2017-31450 Ministerio de Ciencia, Innovación y Universidades
- 2021-CP054, ED431C-2021/25 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- ED431G 2019/03 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- 340055 FP7 Ideas: European Research Council
- European Regional Development Fund
- Ministerio de Ciencia, Innovación y Universidades
- Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- FP7 Ideas: European Research Council
- European Regional Development Fund
Collapse
Affiliation(s)
- Marc Font
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
24
|
Tomar R, Bhattacharya D, Arulananda Babu S. Direct lactamization of β‐arylated δ‐aminopentanoic acid carboxamides: En route to 4‐aryl‐ 2‐piperidones, piperidines, antituberculosis molecule Q203 (Telacebec) and its analogues. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Radha Tomar
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | | | - Srinivasarao Arulananda Babu
- Indian Institute of Science Education and Research Mohali Department of Chemical Sciences Knowledge City, Sector 81, SAS Nagar,Mohali, Manauli P.O., 140306 Mohali INDIA
| |
Collapse
|
25
|
Abstract
AbstractCarbonylation, one of the most powerful approaches to the preparation of carbonylated compounds, has received significant attention from researchers active in various fields. Indeed, impressive progress has been made on this subject over the past few decades. Among the various types of carbonylation reactions, asymmetric carbonylation is a straightforward methodology for constructing chiral compounds. Although rhodium-catalyzed enantioselective hydroformylations have been discussed in several elegant reviews, a general review on palladium-catalyzed asymmetric carbonylations is still missing. In this review, we summarize and discuss recent achievements in palladium-catalyzed asymmetric carbonylation reactions. Notably, this review’s contents are categorized by reaction type.
Collapse
|
26
|
Liu S, Zhuang Z, Qiao JX, Yeung KS, Su S, Cherney EC, Ruan Z, Ewing WR, Poss MA, Yu JQ. Ligand Enabled Pd(II)-Catalyzed γ-C(sp 3)-H Lactamization of Native Amides. J Am Chem Soc 2021; 143:21657-21666. [PMID: 34914877 PMCID: PMC9116424 DOI: 10.1021/jacs.1c10183] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
γ-Lactams form important structural cores of a range of medicinally relevant natural products and clinical drugs, principal examples being the new generation of immunomodulatory imide drugs (IMiDs) and the brivaracetam family. Compared to conventional multistep synthesis, an intramolecular γ-C-H amination of aliphatic amides would allow for the direct construction of valuable γ-lactam motifs from abundant amino acid precursors. Herein we report a novel 2-pyridone ligand enabled Pd(II)-catalyzed γ-C(sp3)-H lactamization of amino acid derived native amides, providing the convenient synthesis of γ-lactams, isoindolinones, and 2-imidazolidinones. C6-Substitution of the 2-pyridone ligand is crucial for the lactam formation. This protocol features the use of N-acyl amino acids, which serve as both the directing group and cyclization partner, practical and environmentally benign tert-butyl hydrogen peroxide (TBHP) as the sole bystanding oxidant, and a broad substrate scope. The utility of this protocol was demonstrated through the two-step syntheses of a lenalidomide analog and brivaracetam from readily available carboxylic acids and amino acids.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jennifer X. Qiao
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kap-Sun Yeung
- Bristol Myers Squibb Research and Development, 100 Binney Street, Cambridge, MA 02142, United States
| | - Shun Su
- Bristol Myers Squibb, 10300 Campus Point Drive Suite 100, San Diego, CA 92121, United States
| | - Emily C. Cherney
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Zheming Ruan
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - William R. Ewing
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael A. Poss
- Discovery Chemistry, Bristol Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States,Corresponding Author.
| |
Collapse
|
27
|
Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp 3)-H Bonds. Chem Rev 2021; 121:14957-15074. [PMID: 34714620 PMCID: PMC8968411 DOI: 10.1021/acs.chemrev.1c00519] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
Collapse
Affiliation(s)
- Bin Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Andrew M. Romine
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States.,Corresponding Author- (K. M. E.); (B.-F. S.)
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China,Corresponding Author- (K. M. E.); (B.-F. S.)
| |
Collapse
|
28
|
Talukdar K, Shah TA, Sarkar T, Roy S, Maharana PK, Punniyamurthy T. Pd-catalyzed bidentate auxiliary assisted remote C(sp 3)-H functionalization. Chem Commun (Camb) 2021; 57:13221-13233. [PMID: 34816830 DOI: 10.1039/d1cc05291h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pd-catalyzed C-H functionalisation affords effective synthetic tools to construct C-C and C-X bonds. Despite the challenges, the distal functionalization of C(sp3)-H bonds has witnessed significant developments and the use of bidentate auxiliaries has garnished this area by providing an opportunity to control reactivity as well as selectivity beyond proximal sites. This article covers the recent developments on the Pd-catalyzed bidentate auxiliary-assisted distal C(sp3)-H functionalization and is categorized based on the nature of functionalizations.
Collapse
Affiliation(s)
- Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Tariq A Shah
- Department of Chemistry, University of Kashmir, Srinagar-190006, India
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Subhasish Roy
- Department of Chemistry, School of Fundamental and Applied Sciences, Assam Don Bosco University, Kamarkuchi, Sonapur-782402, India
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
29
|
Deng T, Huang J, Lian G, Sun W, Wu B. Pd(II)‐catalyzed Carbonylative Cyclization of
N
‐aryl‐2‐aminopyrimidines with Mo(CO)
6
as Carbon Monoxide Source. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ting‐Ting Deng
- School of Pharmaceutical Sciences South-Central University for Nationalities 430074 Wuhan P. R. China
| | - Jie Huang
- School of Pharmaceutical Sciences South-Central University for Nationalities 430074 Wuhan P. R. China
| | - Guo Lian
- School of Pharmaceutical Sciences South-Central University for Nationalities 430074 Wuhan P. R. China
| | - Wen‐Wu Sun
- School of Pharmaceutical Sciences South-Central University for Nationalities 430074 Wuhan P. R. China
| | - Bin Wu
- School of Pharmaceutical Sciences South-Central University for Nationalities 430074 Wuhan P. R. China
| |
Collapse
|
30
|
Hu XQ, Liu ZK, Hou YX, Xu JH, Gao Y. Merging C-H Activation and Strain-Release in Ruthenium-Catalyzed Isoindolinone Synthesis. Org Lett 2021; 23:6332-6336. [PMID: 34346680 DOI: 10.1021/acs.orglett.1c02131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The merger of strain-release of 1,2-oxazetidines with carboxylic acid directed C-H activation in catalytic synthesis of isoindolinones is reported for the first time. This reaction opens a new and sustainable avenue to prepare a range of structurally diverse isoindolinone skeletons from readily available benzoic acids. The success of late-stage functionalization of some bioactive acids, and concise synthesis of biologically important skeletons demonstrated its great synthetic potential in drug discovery. Mechanistic studies indicated a plausible C-H activation/β-carbon elimination/intramolecular cyclization cascade pathway.
Collapse
Affiliation(s)
- Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Ye-Xing Hou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Ji-Hang Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
31
|
Zhuang Z, Herron AN, Yu J. Synthesis of Cyclic Anhydrides via Ligand‐Enabled C–H Carbonylation of Simple Aliphatic Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhe Zhuang
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Alastair N. Herron
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jin‐Quan Yu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
32
|
Shabani S, Wu Y, Ryan HG, Hutton CA. Progress and perspectives on directing group-assisted palladium-catalysed C-H functionalisation of amino acids and peptides. Chem Soc Rev 2021; 50:9278-9343. [PMID: 34254063 DOI: 10.1039/d0cs01441a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide modifications can unlock a variety of compounds with structural diversity and abundant biological activity. In nature, peptide modifications, such as functionalisation at the side-chain position of amino acids, are performed using post-translational modification enzymes or incorporation of unnatural amino acids. However, accessing these modifications remains a challenge for organic chemists. During the past decades, selective C-H activation/functionalisation has attracted considerable attention in synthetic organic chemistry as a pathway to peptide modification. Various directing group strategies have been discovered that assist selective C-H activation. In particular, bidentate directing groups that enable tuneable and reversible coordination are now recognised as one of the most efficient methods for the site-selective C-H activation and functionalisation of numerous families of organic compounds. Synthetic peptide chemists have harnessed bidentate directing group strategies for selective functionalisation of the β- and γ-positions of amino acids. This method has been expanded and recognised as an effective device for the late stage macrocyclisation and total synthesis of complex peptide natural products. In this review, we discuss various β-, γ-, and δ-C(sp3)-H bond functionalisation reactions of amino acids for the formation of C-X bonds with the aid of directing groups and their application in late-stage macrocyclisation and the total synthesis of complex peptide natural products.
Collapse
Affiliation(s)
- Sadegh Shabani
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | | | | | | |
Collapse
|
33
|
Banga S, Kaur R, Babu SA. Construction of Racemic and Enantiopure Biaryl Unnatural Amino Acid Derivatives via Pd(II)‐Catalyzed Arylation of Unactivated Csp
3
−H Bonds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shefali Banga
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City Sector 81 SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Ramandeep Kaur
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City Sector 81 SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Knowledge City Sector 81 SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
34
|
Li M, Akintelu SA, Yao B. Post-Assembly Modification of Peptides by Ligand-Enabled β-C(sp 3)-H Arylation of Alanine at the C-Terminus: Overcoming the Inhibition Effect of Peptide Bonds. Org Lett 2021; 23:4807-4812. [PMID: 34060311 DOI: 10.1021/acs.orglett.1c01481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Postassembly modification of peptides via C(sp3)-H functionalization on aliphatic side chains provides a straightforward approach to access functionalized peptides as therapeutics. However, C(sp3)-H functionalization of C-terminal residues remains underdeveloped due to the inhibition effect of secondary amides in the backbone. Herein, we report a ligand-enabled, bidentate auxiliary-assisted β-C(sp3)-H arylation method, which is well tolerant of secondary amides. A wide range of peptides (tri- to dodecapeptides) underwent position-specific modification of alanine at the C-terminus.
Collapse
Affiliation(s)
- Ming Li
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Sunday A Akintelu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
35
|
Zhuang Z, Herron AN, Yu JQ. Synthesis of Cyclic Anhydrides via Ligand-Enabled C-H Carbonylation of Simple Aliphatic Acids. Angew Chem Int Ed Engl 2021; 60:16382-16387. [PMID: 33977635 DOI: 10.1002/anie.202104645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 11/08/2022]
Abstract
The development of C(sp3 )-H functionalizations of free carboxylic acids has provided a wide range of versatile C-C and C-Y (Y=heteroatom) bond-forming reactions. Additionally, C-H functionalizations have lent themselves to the one-step preparation of a number of valuable synthetic motifs that are often difficult to prepare through conventional methods. Herein, we report a β- or γ-C(sp3 )-H carbonylation of free carboxylic acids using Mo(CO)6 as a convenient solid CO source and enabled by a bidentate ligand, leading to convenient syntheses of cyclic anhydrides. Among these, the succinic anhydride products are versatile stepping stones for the mono-selective introduction of various functional groups at the β position of the parent acids by decarboxylative functionalizations, thus providing a divergent strategy to synthesize a myriad of carboxylic acids inaccessible by previous β-C-H activation reactions. The enantioselective carbonylation of free cyclopropanecarboxylic acids has also been achieved using a chiral bidentate thioether ligand.
Collapse
Affiliation(s)
- Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Alastair N Herron
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
36
|
Chen Z, Zhu M, Cai M, Xu L, Weng Y. Palladium-Catalyzed C(sp 3)–H Arylation and Alkynylation of Peptides Directed by Aspartic Acid (Asp). ACS Catal 2021. [DOI: 10.1021/acscatal.1c01417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhuo Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Meijie Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Mengwei Cai
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Lulu Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Yiyi Weng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| |
Collapse
|
37
|
Martínez-Mingo M, García-Viada A, Alonso I, Rodríguez N, Gómez Arrayás R, Carretero JC. Overcoming the Necessity of γ-Substitution in δ-C(sp3)–H Arylation: Pd-Catalyzed Derivatization of α-Amino Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mario Martínez-Mingo
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Andrés García-Viada
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Inés Alonso
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Ramón Gómez Arrayás
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Juan C. Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| |
Collapse
|
38
|
Sun J, Sun H, Hao L, Liu H, Zhang Z, Wen F, Li H, Duan G, You G, Xia C. Metal‐Free Synthesis of Pyrrole‐imidazole Alkaloids via a Tandem C−N, C−C coupling Protocol. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jian Sun
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Haoyi Sun
- Institute of Materia Medica Shandong First Medical University
- Shandong Academy of Medical Sciences Jinan 250062 People's Republic of China
| | - Liqiang Hao
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Hongyan Liu
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Zheng Zhang
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Fuqiang Wen
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Hongshuang Li
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Guiyun Duan
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Guirong You
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| | - Chengcai Xia
- Institute of Pharmacology School of Pharmaceutical Sciences Shandong First Medical University
- Shandong Academy of Medical Sciences 619 Changcheng Road Taian 271016 People's Republic of China
| |
Collapse
|
39
|
Das A, Maji B. The Emergence of Palladium-Catalyzed C(sp 3 )-H Functionalization of Free Carboxylic Acids. Chem Asian J 2021; 16:397-408. [PMID: 33427411 DOI: 10.1002/asia.202001440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Indexed: 01/15/2023]
Abstract
Palladium-catalyzed directing group assisted C-H bond activation has emerged as a powerful tool in synthetic organic chemistry. However, only recently, among various directing groups, widely available carboxylate moiety is recognized as a versatile candidate for the regioselective transformations. Notably, palladium-catalyzed carboxylate directed C(sp3 )-H bond activation and diverse functionalization is highly challenging and has gained huge attention for its versatile applications. Mono- and bidentate ligands have proven to be useful for accelerating the C(sp3 )-H bond activation step, which helps to control reactivity and selectivity (including enantioselectivity). In this Minireview, we discuss the recent progress made in palladium-catalyzed C(sp3 )-H bond functionalization reactions for the construction of C-C and C-Heteroatom bonds with the direction of free carboxylic acid.
Collapse
Affiliation(s)
- Animesh Das
- Indian Institute of Science Education and Research Kolkata Nadia, West Bengal, India
| | - Biplab Maji
- Indian Institute of Science Education and Research Kolkata Nadia, West Bengal, India
| |
Collapse
|
40
|
Vicens L, Bietti M, Costas M. General Access to Modified α-Amino Acids by Bioinspired Stereoselective γ-C-H Bond Lactonization. Angew Chem Int Ed Engl 2021; 60:4740-4746. [PMID: 33210804 DOI: 10.1002/anie.202007899] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/02/2020] [Indexed: 01/06/2023]
Abstract
α-Amino acids represent a valuable class of natural products employed as building blocks in biological and chemical synthesis. Because of the limited number of natural amino acids available, and of their widespread application in proteomics, diagnosis, drug delivery and catalysis, there is an increasing demand for the development of procedures for the preparation of modified analogues. Herein, we show that the use of bioinspired manganese catalysts and H2 O2 under mild conditions, provides access to modified α-amino acids via γ-C-H bond lactonization. The system can efficiently target 1°, 2° and 3° γ-C-H bonds of α-substituted and achiral α,α-disubstituted α-amino acids with outstanding site-selectivity, good to excellent diastereoselectivity and (where applicable) enantioselectivity. This methodology may be considered alternative to well-established organometallic procedures.
Collapse
Affiliation(s)
- Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Rome, Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Catalonia, Spain
| |
Collapse
|
41
|
Gandon V, Hoarau C. Concerted vs Nonconcerted Metalation-Deprotonation in Orthogonal Direct C-H Arylation of Heterocycles with Halides: A Computational Study. J Org Chem 2021; 86:1769-1778. [PMID: 33406843 DOI: 10.1021/acs.joc.0c02604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A computational study on the base-assisted orthogonal C-H arylation of azoles with halides is reported. Although concerted metalation-deprotonation (CMD) is favored under acetate assistance at the C5 site that displays the best balance of nucleophilic and acidic character, the most acidic C2 site may be selectively targeted under carbonate assistance by taking advantage of a carbanionic-type (or non-concerted) metalation-deprotonation mechanism (nCMD). For the latter, several experimental probes including base, ligand, and solvent effects have been collected in favor of an outer-sphere deprotonation process after the formation of a [(Ln)(N1-heteroaryl)PdArX] complex. However, no computational analysis of this fundamental elementary step has been so far provided. We have carried out a series of density functional theory (DFT) calculations that delineate the structural and energetic aspects of the nCMD pathway. Starting with the oxa(thia)zole-4-carboxylates selected in our group to engineer the competitive C2 vs C5 arylation in azoles, we show that the energy barrier of the C2 anion generation is lying unexpectedly lower than the prior heterocycle coordination to Pd that is eventually identified as the rate-determining step. These calculations provide satisfactory explanations for the experimental observations of the divergence between nCMD and CMD reactivity, and notably a lower barrier at the C2 site for the nCMD process. On the other hand, the nCMD process is ineffective at the C5 site. Evaluation of various azoles reveals that the nCMD mechanism at C2 is viable from the most acidic (benzo)oxazoles to moderately acidic (benzo)thiazoles, as well as weakly acidic imidazoles. In all cases, in accordance with previously reported experimental data in orthogonal direct C-H arylation of azoles, the nCMD route is found energetically competitive to the CMD one at C5 for all azoles, except for imidazole which needs stronger basic conditions than simple carbonate assistance. Additionally, the acetate ligand, which is the base of choice for CMD, was found inefficient for nCMD and the comparative performance of acetate vs carbonate to assist CMD in the azole series reveals also considerable changes from electronically close but environmentally divergent C5-H vs C2-H bonds.
Collapse
Affiliation(s)
- Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau cedex, France
| | - Christophe Hoarau
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
42
|
Zhang M, Zhong S, Peng Y, Jiang J, Zhao Y, Wan C, Zhang Z, Zhang R, Zhang AQ. Site-selective and diastereoselective functionalization of α-amino acid and peptide derivatives via palladium-catalyzed sp3 C–H activation. Org Chem Front 2021. [DOI: 10.1039/d0qo00988a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review introduces palladium-catalyzed C–H functionalization of amino acids and peptides.
Collapse
Affiliation(s)
- Ming Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Yiyuan Peng
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Jianwen Jiang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Yongli Zhao
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Changfeng Wan
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Zhenming Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Rongli Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Ai Qin Zhang
- Department of Environmental and Chemical Engineering
- Nanchang Hangkong University
- Nanchang
- China
| |
Collapse
|
43
|
Hu XQ, Hou YX, Liu ZK, Gao Y. Ruthenium-catalysed C–H/C–N bond activation: facile access to isoindolinones. Org Chem Front 2021. [DOI: 10.1039/d0qo01406k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A facile ruthenium-catalysed C–H/C–N bond activation and the subsequent annulation of readily available benzoic acids with in situ generated formaldimines are developed for the efficient synthesis of a wide range of biologically important isoindolinones.
Collapse
Affiliation(s)
- Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Ye-Xing Hou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Zi-Kui Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Yang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| |
Collapse
|
44
|
Martínez-Mingo M, Alonso I, Rodríguez N, Gómez Arrayás R, Carretero JC. Mechanistic understanding enables chemoselective sp 3 over sp 2 C–H activation in Pd-catalyzed carbonylative cyclization of amino acids. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02328k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An understanding on the factors controlling C(sp2)–H vs, C(sp3)–H selectivity in Pd-catalyzed carbonylative cyclization of γ-arylated valine derivatives has allowed to reverse the remarkable selectivity of Pd for aryl C(sp2)–H over C(sp3)–H cleavage.
Collapse
Affiliation(s)
| | - Inés Alonso
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| | - Nuria Rodríguez
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| | - Juan C. Carretero
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| |
Collapse
|
45
|
Song KL, Wu B, Gan WE, Yang WC, Chen XB, Cao J, Xu LW. Palladium-catalyzed gaseous CO-free carbonylative C–C bond activation of cyclobutanones. Org Chem Front 2021. [DOI: 10.1039/d1qo00467k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A palladium-catalyzed carbonylative C–C bond activation reaction of cyclobutanones is reported, and it affords a variety of indanones bearing ester or amide groups using phenyl formate and benzene-1,3,5-triyl triformate as CO surrogates.
Collapse
Affiliation(s)
- Kun-Long Song
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Bin Wu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Wan-Er Gan
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Wan-Chun Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Xiao-Bing Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- and Key Laboratory of Organosilicon Material Technology of Zhejiang Province
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| |
Collapse
|
46
|
Boto A, González CC, Hernández D, Romero-Estudillo I, Saavedra CJ. Site-selective modification of peptide backbones. Org Chem Front 2021. [DOI: 10.1039/d1qo00892g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exciting developments in the site-selective modification of peptide backbones are allowing an outstanding fine-tuning of peptide conformation, folding ability, and physico-chemical and biological properties.
Collapse
Affiliation(s)
- Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Concepción C. González
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Iván Romero-Estudillo
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico
- Catedrático CONACYT-CIQ-UAEM, Mexico
| | - Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
- Programa Agustín de Betancourt, Universidad de la Laguna, 38200 Tenerife, Spain
| |
Collapse
|
47
|
General Access to Modified α‐Amino Acids by Bioinspired Stereoselective γ‐C−H Bond Lactonization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Hou ZL, Yuan F, Yao B. Peptide Modification via N-Terminal-Residue-Directed γ-C(sp3)–H Arylation. Org Lett 2020; 22:8692-8696. [DOI: 10.1021/acs.orglett.0c03279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen-Lin Hou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic−Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Feipeng Yuan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic−Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic−Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
49
|
Das J, Guin S, Maiti D. Diverse strategies for transition metal catalyzed distal C(sp 3)-H functionalizations. Chem Sci 2020; 11:10887-10909. [PMID: 34094339 PMCID: PMC8162984 DOI: 10.1039/d0sc04676k] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/26/2020] [Indexed: 01/26/2023] Open
Abstract
Transition metal catalyzed C(sp3)-H functionalization is a rapidly growing field. Despite severe challenges, distal C-H functionalizations of aliphatic molecules by overriding proximal positions have witnessed tremendous progress. While usage of stoichiometric directing groups played a crucial role, reactions with catalytic transient directing groups or methods without any directing groups are gaining more attention due to their practicality. Various innovative strategies, slowly but steadily, circumvented issues related to remote functionalizations of aliphatic molecules. A systematic compilation has been presented here to provide insights into the recent developments and future challenges in the field. The Present perspective is expected to open up a new dimension and provide an avenue for deep insights into the distal C(sp3)-H functionalizations that could be applied routinely in various pharmaceutical and agrochemical industries.
Collapse
Affiliation(s)
- Jayabrata Das
- Department of Chemistry, IIT Bombay Powai Mumbai 400076 India
| | - Srimanta Guin
- Department of Chemistry, IIT Bombay Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay Powai Mumbai 400076 India
| |
Collapse
|
50
|
Kapoor M, Singh A, Sharma K, Hua Hsu M. Site‐Selective C(
sp
3
)−H and C(
sp
2
)−H Functionalization of Amines Using a Directing‐Group‐Guided Strategy. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000689] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Mohit Kapoor
- Chitkara University Institute of Engineering and Technology Chitkara University Punjab India 140401
| | - Adhish Singh
- Chitkara University Institute of Engineering and Technology Chitkara University Punjab India 140401
| | - Kirti Sharma
- Chitkara University Institute of Engineering and Technology Chitkara University Punjab India 140401
| | - Ming Hua Hsu
- Department of Chemistry National Changhua University of Education Taiwan 500, R.O.C Changhua
| |
Collapse
|