1
|
Fitzgerald P, Dixit A, Zhang C, Mobley DL, Paegel BM. Building Block-Centric Approach to DNA-Encoded Library Design. J Chem Inf Model 2024; 64:4661-4672. [PMID: 38860710 PMCID: PMC11200258 DOI: 10.1021/acs.jcim.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
DNA-encoded library technology grants access to nearly infinite opportunities to explore the chemical structure space for drug discovery. Successful navigation depends on the design and synthesis of libraries with appropriate physicochemical properties (PCPs) and structural diversity while aligning with practical considerations. To this end, we analyze combinatorial library design constraints including the number of chemistry cycles, bond construction strategies, and building block (BB) class selection in pursuit of ideal library designs. We compare two-cycle library designs (amino acid + carboxylic acid, primary amine + carboxylic acid) in the context of PCPs and chemical space coverage, given different BB selection strategies and constraints. We find that broad availability of amines and acids is essential for enabling the widest exploration of chemical space. Surprisingly, cost is not a driving factor, and virtually, the same chemical space can be explored with "budget" BBs.
Collapse
Affiliation(s)
- Patrick
R. Fitzgerald
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| | - Anjali Dixit
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Chris Zhang
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - David L. Mobley
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
2
|
Keller M, Petrov D, Gloger A, Dietschi B, Jobin K, Gradinger T, Martinelli A, Plais L, Onda Y, Neri D, Scheuermann J. Highly pure DNA-encoded chemical libraries by dual-linker solid-phase synthesis. Science 2024; 384:1259-1265. [PMID: 38870307 DOI: 10.1126/science.adn3412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
The first drugs discovered using DNA-encoded chemical library (DEL) screens have entered late-stage clinical development. However, DEL technology as a whole still suffers from poor chemical purity resulting in suboptimal performance. In this work, we report a technique to overcome this issue through self-purifying release of the DEL after magnetic bead-based synthesis. Both the first and last building blocks of each assembled library member were linked to the beads by tethers that could be cleaved by mutually orthogonal chemistry. Sequential cleavage of the first and last tether, with washing in between, ensured that the final library comprises only the fully complete compounds. The outstanding purity attained by this approach enables a direct correlation of chemical display and encoding, allows for an increased chemical reaction scope, and facilitates the use of more diversity elements while achieving greatly improved signal-to-noise ratios in selections.
Collapse
Affiliation(s)
- Michelle Keller
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Dimitar Petrov
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Andreas Gloger
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Bastien Dietschi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Kilian Jobin
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Timon Gradinger
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Louise Plais
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Yuichi Onda
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Sun Z, Zhong Y, Chen Y, Xiao L, Wang J, Zeng F, Yang K, Duchemin N, Hu YJ. Innovative On-DNA Synthesis of Sulfides and Sulfoximines: Enriching the DEL Synthesis Toolbox. Org Lett 2024; 26:4082-4087. [PMID: 38717253 DOI: 10.1021/acs.orglett.4c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
DNA-encoded library (DEL) technologies enable the fast exploration of gigantic chemical space to identify ligands for the target protein of interest and have become a powerful hit finding tool for drug discovery projects. However, amenable DEL chemistry is restricted to a handful of reactions, limiting the creativity of drug hunters. Here, we describe a new on-DNA synthetic pathway to access sulfides and sulfoximines. These moieties, usually contemplated as challenging to achieve through alkylation and oxidation, can now be leveraged in routine DEL selection campaigns.
Collapse
Affiliation(s)
- Zhaomei Sun
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Ying Zhong
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Yahui Chen
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Lingqian Xiao
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Jiangying Wang
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Fanming Zeng
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| | - Kexin Yang
- Pharmaron Beijing Company, Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Nicolas Duchemin
- Pharmaron U.K., Ltd., Innovation Park, West Cl, Hertford Road, Hoddesdon EN11 9FH, U.K
| | - Yun Jin Hu
- Pharmaron (Ningbo) Technology Development Company, Ltd., No. 800 Bin-Hai 4th Road, Hangzhou Bay New Zone, Ningbo 315336, China
| |
Collapse
|
4
|
Merrifield JL, Pimentel EB, Peters-Clarke TM, Nesbitt DJ, Coon JJ, Martell JD. DNA-Compatible Copper/TEMPO Oxidation for DNA-Encoded Libraries. Bioconjug Chem 2023; 34:1380-1386. [PMID: 37540561 PMCID: PMC10831869 DOI: 10.1021/acs.bioconjchem.3c00254] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Aldehydes are important synthons for DNA-encoded library (DEL) construction, but the development of a DNA-compatible method for the oxidation of alcohols to aldehydes remains a significant challenge in the field of DEL chemistry. We report that a copper/TEMPO catalyst system enables the solution-phase DNA-compatible oxidation of DNA-linked primary activated alcohols to aldehydes. The semiaqueous, room-temperature reaction conditions afford oxidation of benzylic, heterobenzylic, and allylic alcohols in high yield, with DNA compatibility verified by mass spectrometry, qPCR, Sanger sequencing, and ligation assays. Subsequent transformations of the resulting aldehydes demonstrate the potential of this method for robust library diversification.
Collapse
Affiliation(s)
- Justice L. Merrifield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Edward B. Pimentel
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Trenton M. Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Nesbitt
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| | - Jeffrey D. Martell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
5
|
Ding Z, Wu Y, Liu L, Qi B, Peng Z. Construction of Isocytosine Scaffolds via DNA-Compatible Biginelli-like Reaction. Org Lett 2023; 25:5515-5519. [PMID: 37462924 DOI: 10.1021/acs.orglett.3c01986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Herein we report a DNA-compatible Biginelli reaction to construct isocytosine scaffolds. This reaction utilizes a one-pot reaction of DNA-conjugated guanidines with aldehydes and methyl cyanoacetates to give isocytosine derivatives, and the method is well compatible with different types of substrates. This is the first report on the synthesis of an isocytosine backbone in the field of DNA-compatible organic synthesis. The successful development of this reaction can widen the chemical space of DELs.
Collapse
Affiliation(s)
- Zhaobing Ding
- PharmaBlock Sciences (Nanjing), Inc., Nanjing 210032, Jiangsu Province, China
| | - Yizhou Wu
- PharmaBlock Sciences (Nanjing), Inc., Nanjing 210032, Jiangsu Province, China
| | - Liu Liu
- PharmaBlock Sciences (Nanjing), Inc., Nanjing 210032, Jiangsu Province, China
| | | | | |
Collapse
|
6
|
Li X, Zhang J, Liu C, Sun J, Li Y, Zhang G, Li Y. Aryl diazonium intermediates enable mild DNA-compatible C-C bond formation for medicinally relevant combinatorial library synthesis. Chem Sci 2022; 13:13100-13109. [PMID: 36425486 PMCID: PMC9667928 DOI: 10.1039/d2sc04482j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 08/24/2023] Open
Abstract
Forging carbon-carbon (C-C) linkage in DNA-encoded combinatorial library synthesis represents a fundamental task for drug discovery, especially with broad substrate scope and exquisite functional group tolerance. Here we reported the palladium-catalyzed Suzuki-Miyaura, Heck and Hiyama type cross-coupling via DNA-conjugated aryl diazonium intermediates for DNA-encoded chemical library (DEL) synthesis. Starting from commodity arylamines, this synthetic route facilely delivers vast chemical diversity at a mild temperature and pH, thus circumventing damage to fragile functional groups. Given its orthogonality with traditional aryl halide-based cross-coupling, the aryl diazonium-centered strategy expands the compatible synthesis of complex C-C bond-connected scaffolds. In addition, DNA-tethered pharmaceutical compounds (e.g., HDAC inhibitor) are constructed without decomposition of susceptible bioactive warheads (e.g., hydroxamic acid), emphasizing the superiority of the aryl diazonium-based approach. Together with the convenient transformation into an aryl azide photo-crosslinker, aryl diazonium's DNA-compatible diversification synergistically demonstrated its competence to create medicinally relevant combinatorial libraries and investigate protein-ligand interactions in pharmaceutical research.
Collapse
Affiliation(s)
- Xianfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Changyang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Jie Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
7
|
Xu H, Tan T, Zhang Y, Wang Y, Pan K, Yao Y, Zhang S, Gu Y, Chen W, Li J, Dong H, Meng Y, Ma P, Hou W, Yang G. Metal-Free and Open-Air Arylation Reactions of Diaryliodonium Salts for DNA-Encoded Library Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202790. [PMID: 35853237 PMCID: PMC9475524 DOI: 10.1002/advs.202202790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
A successful DNA-encoded library (DEL) will consist of diverse skeletons and cover chemical space as comprehensive as possible to fully realize its potential in drug discovery and chemical biology. However, the lack of versatile on-DNA arylation methods for phenols that are less nucleophilic and reactive poses a great hurdle for DEL to include diaryl ether, a privileged chemotype in pharmaceuticals and natural products. This work describes the use of "substrate activation" approach to address the arylation of DNA-conjugated phenols. Diaryliodonium salt, a highly electrophilic and reactive arylation reagent, is employed as Ar+ sources to ensure highly selective on-DNA arylation of phenols and oximes with both high yields and DNA fidelity. Notably, the new on-DNA arylation reaction can be applied to the late-stage modification of peptides containing tyrosine side-chain and to synthesize DNA-tagged analogues of existing drug molecules such as sorafenib, a known pan-kinase inhibitor. The new on-DNA diaryliodonium salts chemistry affords a greater flexibility in DEL design and synthesis.
Collapse
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Tingting Tan
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Kangyin Pan
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Ying Yao
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Yu Meng
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
- Shanghai Key Laboratory of Orthopedic ImplantsDepartment of Orthopedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong UniversitySchool of MedicineShanghai200011P. R. China
| | - Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| |
Collapse
|
8
|
Melsen PRA, Yoshisada R, Jongkees SAK. Opportunities for Expanding Encoded Chemical Diversification and Improving Hit Enrichment in mRNA-Displayed Peptide Libraries. Chembiochem 2022; 23:e202100685. [PMID: 35100479 PMCID: PMC9306583 DOI: 10.1002/cbic.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Indexed: 11/07/2022]
Abstract
DNA-encoded small-molecule libraries and mRNA displayed peptide libraries both use numerically large pools of oligonucleotide-tagged molecules to identify potential hits for protein targets. They differ dramatically, however, in the 'drug-likeness' of the molecules that each can be used to discover. We give here an overview of the two techniques, comparing some advantages and disadvantages of each, and suggest areas where particularly mRNA display can benefit from adopting advances developed with DNA-encoded small molecule libraries. We outline cases where chemical modification of the peptide library has already been used in mRNA display, and survey opportunities to expand this using examples from DNA-encoded small molecule libraries. We also propose potential opportunities for encoding such reactions within the mRNA/cDNA tag of an mRNA-displayed peptide library to allow a more diversity-oriented approach to library modification. Finally, we outline alternate approaches for enriching target-binding hits from a pooled and tagged library, and close by detailing several examples of how an adjusted mRNA-display based approach could be used to discover new 'drug-like' modified small peptides.
Collapse
Affiliation(s)
- Paddy R. A. Melsen
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Ryoji Yoshisada
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Seino A. K. Jongkees
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
9
|
Siripuram VK, Sunkari YK, Nguyen TL, Flajolet M. DNA-Compatible Suzuki-Miyaura Cross-Coupling Reaction of Aryl Iodides With (Hetero)Aryl Boronic Acids for DNA-Encoded Libraries. Front Chem 2022; 10:894603. [PMID: 35774858 PMCID: PMC9237475 DOI: 10.3389/fchem.2022.894603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
An efficient method for the C-C bond formation via water soluble Na2PdCl4/sSPhos mediated Suzuki-Miyaura cross-coupling reaction of DNA-conjugated aryl iodide with (het)aryl boronic acids has been developed. This reaction proceeds at 37°C in water and acetonitrile (4:1) system. We also demonstrated that numerous aromatic and heteroaromatic boronic acids of different electronic natures, and harboring various functional groups, were highly compatible providing the desired coupling products in good to excellent yields. This DNA-compatible Suzuki-Miyaura cross-coupling reaction has strong potential to construct DNA-Encoded Libraries (DELs) in the context of drug discovery.
Collapse
Affiliation(s)
| | | | | | - Marc Flajolet
- *Correspondence: Vijay Kumar Siripuram, ; Marc Flajolet,
| |
Collapse
|
10
|
Cai K, Ran Y, Sun W, Gao S, Li J, Wan J, Liu G. Palladium-Mediated Hydroamination of DNA-Conjugated Aryl Alkenes. Front Chem 2022; 10:851674. [PMID: 35480389 PMCID: PMC9035600 DOI: 10.3389/fchem.2022.851674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
C-N bond formation is one of the most commonly used reactions in medicinal chemistry. Herein, we report an efficient Pd-promoted hydroamination reaction between DNA-conjugated aryl alkenes and a wide scope of aliphatic amines. The described reactions are demonstrated in good to excellent conversions to furnish C (sp3)–N bonds on DNA. This DNA-compatible transformation has strong potentials for the application into DNA-encoded library synthesis.
Collapse
Affiliation(s)
| | | | - Wenbo Sun
- *Correspondence: Guansai Liu, ; Wenbo Sun, ; Sen Gao,
| | - Sen Gao
- *Correspondence: Guansai Liu, ; Wenbo Sun, ; Sen Gao,
| | | | | | - Guansai Liu
- *Correspondence: Guansai Liu, ; Wenbo Sun, ; Sen Gao,
| |
Collapse
|
11
|
Hua Y, Fang X, Xing G, Xu Y, Liang L, Deng C, Dai X, Liu H, Lu T, Zhang Y, Chen Y. Effective Reaction-Based De Novo Strategy for Kinase Targets: A Case Study on MERTK Inhibitors. J Chem Inf Model 2022; 62:1654-1668. [PMID: 35353505 DOI: 10.1021/acs.jcim.2c00068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reaction-based de novo design is the computational generation of novel molecular structures by linking building blocks using reaction vectors derived from chemistry knowledge. In this work, we first adopted a recurrent neural network (RNN) model to generate three groups of building blocks with different functional groups and then constructed an in silico target-focused combinatorial library based on chemical reaction rules. Mer tyrosine kinase (MERTK) was used as a study case. Combined with a scaffold enrichment analysis, 15 novel MERTK inhibitors covering four scaffolds were achieved. Among them, compound 5a obtained an IC50 value of 53.4 nM against MERTK without any further optimization. The efficiency of hit identification could be significantly improved by shrinking the compound library with the fragment iterative optimization strategy and enriching the dominant scaffold in the hinge region. We hope that this strategy can provide new insights for accelerating the drug discovery process.
Collapse
Affiliation(s)
- Yi Hua
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaobao Fang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Guomeng Xing
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yuan Xu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Liang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chenglong Deng
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaowen Dai
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
12
|
Krumb M, Kammer LM, Badir SO, Cabrera-Afonso MJ, Wu VE, Huang M, Csakai A, Marcaurelle LA, Molander GA. Photochemical C-H arylation of heteroarenes for DNA-encoded library synthesis. Chem Sci 2022; 13:1023-1029. [PMID: 35211268 PMCID: PMC8790789 DOI: 10.1039/d1sc05683b] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
DNA-encoded library (DEL) technology has emerged as a time- and cost-efficient technique for the identification of therapeutic candidates in the pharmaceutical industry. Although several reaction classes have been successfully validated in DEL environments, there remains a paucity of DNA-compatible reactions that harness building blocks (BBs) from readily available substructures bearing multifunctional handles for further library diversification under mild, dilute, and aqueous conditions. In this study, the direct C-H carbofunctionalization of medicinally-relevant heteroarenes can be accomplished via the photoreduction of DNA-conjugated (hetero)aryl halides to deliver reactive aryl radical intermediates in a regulated fashion within minutes of blue light illumination. A broad array of electron-rich and electron-poor heteroarene scaffolds undergo transformation in the presence of sensitive functional groups.
Collapse
Affiliation(s)
- Matthias Krumb
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - Lisa Marie Kammer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - Shorouk O Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - María Jesús Cabrera-Afonso
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| | - Victoria E Wu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Minxue Huang
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Adam Csakai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Lisa A Marcaurelle
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|
13
|
Chai J. On-DNA Reductive Amination and Alkylation. Methods Mol Biol 2022; 2541:33-37. [PMID: 36083540 DOI: 10.1007/978-1-0716-2545-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
On-DNA reductive amination (on-DNA aldehyde with amine building blocks) and alkylation (on-DNA amine with aldehyde building blocks) are robust ways to form C-N bond. The large sets of commercially available aldehyde and amine building blocks make reductive amination and alkylation widely used in DEL synthesis.
Collapse
Affiliation(s)
- Jing Chai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, Cambridge, MA, USA.
| |
Collapse
|
14
|
Hunter JH, Potowski M, Stanway-Gordon HA, Madin A, Pairaudeau G, Brunschweiger A, Waring MJ. Functional Group Tolerance of a Micellar on-DNA Suzuki-Miyaura Cross-Coupling Reaction for DNA-Encoded Library Design. J Org Chem 2021; 86:17930-17935. [PMID: 34816720 DOI: 10.1021/acs.joc.1c02259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA-encoded libraries (DELs) offer great promise for the discovery of new ligands for proteins. Many current reactions used for DEL synthesis do not proceed efficiently over a wide range of substrates. Combining a diverse array of multicomponent reactions with micellar-promoted Suzuki-Miyaura cross-coupling provides a strategy for synthesizing highly diverse DELs with exceptionally high fidelity. These results demonstrate that the micellar Suzuki-Miyaura reaction has exceptional functional group tolerance and broad applicability.
Collapse
Affiliation(s)
- James H Hunter
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, U.K
| | - Marco Potowski
- Research Group Medicinal Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Harriet A Stanway-Gordon
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, U.K
| | - Andrew Madin
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Garry Pairaudeau
- Exscientia, Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K
| | - Andreas Brunschweiger
- Research Group Medicinal Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Michael J Waring
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
15
|
Abstract
Click chemistry, proposed nearly 20 years ago, promised access to novel chemical space by empowering combinatorial library synthesis with a "few good reactions". These click reactions fulfilled key criteria (broad scope, quantitative yield, abundant starting material, mild reaction conditions, and high chemoselectivity), keeping the focus on molecules that would be easy to make, yet structurally diverse. This philosophy bears a striking resemblance to DNA-encoded library (DEL) technology, the now-dominant combinatorial chemistry paradigm. This review highlights the similarities between click and DEL reaction design and deployment in combinatorial library settings, providing a framework for the design of new DEL synthesis technologies to enable next-generation drug discovery.
Collapse
Affiliation(s)
- Patrick R Fitzgerald
- Skaggs Doctoral Program in the Chemical and Biological Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M Paegel
- Departments of Pharmaceutical Sciences, Chemistry, & Biomedical Engineering, University of California, Irvine, 101 Theory Suite 100, Irvine, California 92617, United States
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
16
|
Wu R, Du T, Sun W, Shaginian A, Gao S, Li J, Wan J, Liu G. Functionalization of DNA-Tagged Alkenes Enabled by Visible-Light-Induced C–H Activation of N-Aryl Tertiary Amines. Org Lett 2021; 23:3486-3490. [DOI: 10.1021/acs.orglett.1c00924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rongfeng Wu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Tian Du
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Wenbo Sun
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Alex Shaginian
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Sen Gao
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
17
|
Yang G, He D, Zhu Y, Zhu W, Tan Y, Long X, Wan J, Shi Z, Schuman D, Chheda P, Simmons N, Liu G. Cholesterol-Modified Oligonucleotides as Internal Reaction Controls during DNA-Encoded Chemical Library Synthesis. Bioconjug Chem 2021; 32:667-671. [PMID: 33689295 DOI: 10.1021/acs.bioconjchem.1c00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report two cholesterol-modified oligonucleotides for use as internal controls for on-DNA reactions during the pooled stages of a DNA-encoded chemical library (DECL) synthesis. As these cholesterol-tagged oligonucleotides are chromatographically separable from normal DECL intermediates, they can be directly monitored by mass spectrometry to track reaction progression within a complex pool of DNA. We observed similar product conversions for reactions on substrates linked to a standard DECL DNA headpiece, to the cholesterol-modified oligonucleotides, and to the cholesterol-modified oligonucleotides while in the presence of pooled DECL synthetic intermediates-validating their use as a representative control. We also highlight an example from a DECL production in which the use of the cholesterol-modified oligonucleotides provided quality control information that guided synthetic decisions. We conclude that the use of cholesterol-modified oligonucleotides as a regular control will significantly improve the quality of DECL productions.
Collapse
Affiliation(s)
- Guanyu Yang
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Dou He
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Yijun Zhu
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Weiwei Zhu
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Yang Tan
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Xingwen Long
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research and Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - David Schuman
- Discovery Chemistry, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Pratik Chheda
- Discovery Chemistry, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research and Development, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
18
|
Kölmel DK, Zhu H, Flanagan ME, Sakata SK, Harris AR, Wan J, Morgan BA. Employing Photocatalysis for the Design and Preparation of DNA‐Encoded Libraries: A Case Study. CHEM REC 2021; 21:616-630. [DOI: 10.1002/tcr.202000148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Dominik K. Kölmel
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Hongyao Zhu
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Mark E. Flanagan
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Sylvie K. Sakata
- Worldwide Research and Development Pfizer Inc 10770 Science Center Drive San Diego CA 92121 United States
| | - Anthony R. Harris
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Jinqiao Wan
- HitGen Inc Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District Chengdu City Sichuan Province P. R. China
| | - Barry A. Morgan
- HitGen Inc Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District Chengdu City Sichuan Province P. R. China
- HitGen Pharmaceuticals Inc PO Box 88240 Houston TX 77288 United States
| |
Collapse
|
19
|
Palladium-mediated Suzuki-Miyaura Cross-Coupling Reaction of Potassium Boc-protected aminomethyltrifluoroborate with DNA-Conjugated aryl bromides for DNA-Encoded chemical library synthesis. Biochem Biophys Res Commun 2020; 533:209-214. [DOI: 10.1016/j.bbrc.2020.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/05/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
|
20
|
Kölmel DK, Ratnayake AS, Flanagan ME. Photoredox cross-electrophile coupling in DNA-encoded chemistry. Biochem Biophys Res Commun 2020; 533:201-208. [DOI: 10.1016/j.bbrc.2020.04.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
|
21
|
Yuen J, Chai J, Ding Y. Condensation of DNA-Conjugated Imines with Homophthalic Anhydride for the Synthesis of Isoquinolones on DNA. Bioconjug Chem 2020; 31:2712-2718. [DOI: 10.1021/acs.bioconjchem.0c00508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Josephine Yuen
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jing Chai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Yun Ding
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
22
|
Wen H, Ge R, Qu Y, Sun J, Shi X, Cui W, Yan H, Zhang Q, An Y, Su W, Yang H, Kuai L, Satz AL, Peng X. Synthesis of 1,2-Amino Alcohols by Photoredox-Mediated Decarboxylative Coupling of α-Amino Acids and DNA-Conjugated Carbonyls. Org Lett 2020; 22:9484-9489. [DOI: 10.1021/acs.orglett.0c03461] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huanan Wen
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Rui Ge
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yi Qu
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jialin Sun
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaodong Shi
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Weiren Cui
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hao Yan
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qi Zhang
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yulong An
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wenji Su
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hongfang Yang
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Letian Kuai
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Alexander L. Satz
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xuanjia Peng
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
23
|
Rodríguez J, Martínez-Calvo M. Transition-Metal-Mediated Modification of Biomolecules. Chemistry 2020; 26:9792-9813. [PMID: 32602145 DOI: 10.1002/chem.202001287] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/25/2020] [Indexed: 01/15/2023]
Abstract
The site-selective modification of biomolecules has grown spectacularly in recent years. The presence of a large number of functional groups in a biomolecule makes its chemo- and regioselective modification a challenging goal. In this context, transition-metal-mediated reactions are emerging as a powerful tool owing to their unique reactivity and good functional group compatibility, allowing highly efficient and selective bioconjugation reactions that operate under mild conditions. This Minireview focuses on the current state of organometallic chemistry for bioconjugation, highlighting the potential of transition metals for the development of chemoselective and site-specific methods for functionalization of peptides, proteins and nucleic acids. The importance of the selection of ligands attached to the transition metal for conferring the desired chemoselectivity will be highlighted.
Collapse
Affiliation(s)
- Jessica Rodríguez
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Miguel Martínez-Calvo
- Centro de Investigaciones Científicas Avanzadas (CICA), AE CICA-INIBIC, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de Elviña, 15071 A, Coruña, Galicia, Spain
| |
Collapse
|
24
|
Bao Y, Deng Z, Feng J, Zhu W, Li J, Wan J, Liu G. A B 2(OH) 4-Mediated Synthesis of 2-Substituted Indazolone and Its Application in a DNA-Encoded Library. Org Lett 2020; 22:6277-6282. [PMID: 32806212 DOI: 10.1021/acs.orglett.0c02032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Indazolone cores are among the most common structural components in medicinal chemistry and can be found in many biologically active molecules. In this report, a mild and efficient approach to 2-substituted indazolones via B2(OH)4-mediated reductive N-N bond formation is developed. This strategy features mild conditions, no request for a metal catalyst, and a wide scope for both aliphatic and aromatic amines. Meanwhile, this method was further successfully applied on DNA to construct indazolone cores for a DNA-encoded library. This will enable the production of a very attractive indazolone-cored library from simple amines and scaffolds, which will provide considerable diversity.
Collapse
Affiliation(s)
- Yapeng Bao
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Zongfa Deng
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jing Feng
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Weiwei Zhu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
25
|
Buskes MJ, Blanco MJ. Impact of Cross-Coupling Reactions in Drug Discovery and Development. Molecules 2020; 25:E3493. [PMID: 32751973 PMCID: PMC7436090 DOI: 10.3390/molecules25153493] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Cross-coupling reactions have played a critical role enabling the rapid expansion of structure-activity relationships (SAR) during the drug discovery phase to identify a clinical candidate and facilitate subsequent drug development processes. The reliability and flexibility of this methodology have attracted great interest in the pharmaceutical industry, becoming one of the most used approaches from Lead Generation to Lead Optimization. In this mini-review, we present an overview of cross-coupling reaction applications to medicinal chemistry efforts, in particular the Suzuki-Miyaura and Buchwald-Hartwig cross-coupling reactions as a remarkable resource for the generation of carbon-carbon and carbon-heteroatom bonds. To further appreciate the impact of this methodology, the authors discuss some recent examples of clinical candidates that utilize key cross-coupling reactions in their large-scale synthetic process. Looking into future opportunities, the authors highlight the versatility of the cross-coupling reactions towards new chemical modalities like DNA-encoded libraries (DELs), new generation of peptides and cyclopeptides, allosteric modulators, and proteolysis targeting chimera (PROTAC) approaches.
Collapse
Affiliation(s)
| | - Maria-Jesus Blanco
- Medicinal Chemistry. Sage Therapeutics, Inc. 215 First Street, Cambridge, MA 02142, USA;
| |
Collapse
|
26
|
Madsen D, Azevedo C, Micco I, Petersen LK, Hansen NJV. An overview of DNA-encoded libraries: A versatile tool for drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:181-249. [PMID: 32362328 DOI: 10.1016/bs.pmch.2020.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA-encoded libraries (DELs) are collections of small molecules covalently attached to amplifiable DNA tags carrying unique information about the structure of each library member. A combinatorial approach is used to construct the libraries with iterative DNA encoding steps, facilitating tracking of the synthetic history of the attached compounds by DNA sequencing. Various screening protocols have been developed which allow protein target binders to be selected out of pools containing up to billions of different small molecules. The versatile methodology has allowed identification of numerous biologically active compounds and is now increasingly being adopted as a tool for lead discovery campaigns and identification of chemical probes. A great focus in recent years has been on developing DNA compatible chemistries that expand the structural diversity of the small molecule library members in DELs. This chapter provides an overview of the challenges and accomplishments in DEL technology, reviewing the technological aspects of producing and screening DELs with a perspective on opportunities, limitations, and future directions.
Collapse
|
27
|
Wu W, Sun Z, Wang X, Lu X, Dai D. Construction of Thiazole-Fused Dihydropyrans via Formal [4 + 2] Cycloaddition Reaction on DNA. Org Lett 2020; 22:3239-3244. [PMID: 32243186 DOI: 10.1021/acs.orglett.0c01016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and facile formal [4 + 2] cycloaddition reaction was developed to synthesize diverse thiazole-fused dihydropyrans (TFDP) on DNA. Mild reaction conditions, broad substrate scope, and compatibility with subsequent enzymatic ligation demonstrated the utility of this methodology in DNA-encoded library synthesis.
Collapse
Affiliation(s)
- Wenting Wu
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Zhen Sun
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| | - Xuan Wang
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Dongcheng Dai
- Department of Therapeutic Discovery, Amgen Asia R&D Center, Amgen Research, 4560 Jinke Road, Pudong, Shanghai 201210, P. R. China
| |
Collapse
|
28
|
Kölmel DK, Ratnayake AS, Flanagan ME, Tsai MH, Duan C, Song C. Photocatalytic [2 + 2] Cycloaddition in DNA-Encoded Chemistry. Org Lett 2020; 22:2908-2913. [PMID: 32239950 DOI: 10.1021/acs.orglett.0c00574] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The on-DNA synthesis of highly substituted cyclobutanes was achieved through a photocatalytic [2 + 2] cycloaddition reaction in aqueous solution. Readily available DNA-tagged styrene derivatives were reacted with structurally diverse cinnamates in the presence of an iridium-based photocatalyst, Ir(ppy)2(dtbbpy)PF6, to forge two new C(sp3)-C(sp3) bonds. This transformation was demonstrated to have excellent functional group tolerance and allowed for the facile installation of a variety of heteroaromatic substituents on a densely functionalized cyclobutane scaffold.
Collapse
Affiliation(s)
- Dominik K Kölmel
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Anokha S Ratnayake
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Mark E Flanagan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Mei-Hsuan Tsai
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province P. R. China
| | - Cong Duan
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province P. R. China
| | - Chao Song
- HitGen Inc, Building 6, No. 8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province P. R. China
| |
Collapse
|
29
|
Song M, Hwang GT. DNA-Encoded Library Screening as Core Platform Technology in Drug Discovery: Its Synthetic Method Development and Applications in DEL Synthesis. J Med Chem 2020; 63:6578-6599. [PMID: 32039601 DOI: 10.1021/acs.jmedchem.9b01782] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA-encoded library technology (DELT) was introduced to our medicinal chemistry society more than 20 years ago. The application of DELT in the development of clinical candidates has been actively reported in the literature recently. A few representative examples include RIP1K inhibitors for inflammatory diseases and sEH inhibitors for endothelial dysfunction or abnormal tissue repair, among many others. Here, the authors would like to recall the recent developments in on-DNA synthetic methodologies for DEL construction and to analyze recent examples in the literature of DELT-based drug development efforts pursued in both the academic and industrial sectors. With this perspective, we hope to provide a useful summary of recent DELT-based drug discovery research and to discuss the future scope of DELT in medicinal chemistry.
Collapse
Affiliation(s)
- Minsoo Song
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 41061, Korea
| | - Gil Tae Hwang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
30
|
Badir SO, Sim J, Billings K, Csakai A, Zhang X, Dong W, Molander GA. Multifunctional Building Blocks Compatible with Photoredox-Mediated Alkylation for DNA-Encoded Library Synthesis. Org Lett 2020; 22:1046-1051. [PMID: 31940210 PMCID: PMC7060506 DOI: 10.1021/acs.orglett.9b04568] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA-encoded library (DEL) technology has emerged as a novel interrogation modality for ligand discovery in the pharmaceutical industry. Given the increasing demand for a higher proportion of C(sp3)-hybridized centers in DEL platforms, a photoredox-mediated cross-coupling and defluorinative alkylation process is introduced using commercially available alkyl bromides and structurally diverse α-silylamines. Notably, no protecting group strategies for amines are necessary for the incorporation of a variety of amino-acid-based organosilanes, providing crucial branching points for further derivatization.
Collapse
Affiliation(s)
- Shorouk O. Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jaehoon Sim
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Katelyn Billings
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, USA
| | - Adam Csakai
- GlaxoSmithKline, 200 Cambridge Park Dr., Cambridge, Massachusetts 02140, USA
| | - Xuange Zhang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Weizhe Dong
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
31
|
Su L, Feng J, Peng T, Wan J, Fan J, Li J, O’Connell J, Lancia DR, Franklin GJ, Liu G. Synthesis of Multifunctional 2-Aminobenzimidazoles on DNA via Iodine-Promoted Cyclization. Org Lett 2020; 22:1290-1294. [DOI: 10.1021/acs.orglett.9b04578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Liqiang Su
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| | - Jing Feng
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| | - Ting Peng
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| | - Jinqiao Wan
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| | - Jing Fan
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| | - Jin Li
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| | - Jonathan O’Connell
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - David R. Lancia
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - G. Joseph Franklin
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - Guansai Liu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, People’s Republic of China
| |
Collapse
|
32
|
Hunter JH, Prendergast L, Valente LF, Madin A, Pairaudeau G, Waring MJ. High Fidelity Suzuki-Miyaura Coupling for the Synthesis of DNA Encoded Libraries Enabled by Micelle Forming Surfactants. Bioconjug Chem 2020; 31:149-155. [PMID: 31873005 DOI: 10.1021/acs.bioconjchem.9b00838] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA encoded chemical libraries provide a highly efficient means of screening vast numbers of small molecules against an immobilized protein target. Their potential is currently restricted by the constraints of carrying out library synthesis in the presence of attached DNA tags, for which a limited number of reactions and substrates can be used. Even established reactions, such as Suzuki-Miyaura couplings, do not give efficient coupling reactions across a wide range of substrates and can lead to significant DNA degradation. We developed an efficient protocol for carrying out Suzuki-Miyaura couplings on DNA tagged substrates that proceeds with unprecedented efficiency to the desired biaryl products (>98% on average with no detectable DNA degradation) across a wide range of drug-like substrates using a micellar promoted process with commercial TPGS-750-M surfactant. We have demonstrated the applicability of this method in DEL synthesis by preparing a prototypical two-dimensional 36-member library employing the Suzuki-Miyaura coupling methodology as the final library synthesis step. This work shows, for the first time, that standard micellar surfactants can promote reactions for encoded library synthesis, leading to libraries of exceptional fidelity, and demonstrates the potential to expand the range of accessible DNA compatible chemistry.
Collapse
Affiliation(s)
- James H Hunter
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural and Environmental Sciences , Newcastle University , Bedson Building , Newcastle upon Tyne NE1 7RU , U.K
| | - Lisa Prendergast
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer , Newcastle University , Paul O'Gorman Building, Framlington Place , Newcastle upon Tyne NE2 4AD , U.K
| | - Louis F Valente
- JMP Division , SAS Institute Inc. , 100 SAS Campus Drive , Cary , North Carolina 27513 , United States
| | - Andrew Madin
- Discovery Sciences IMED Biotech Unit , AstraZeneca , 310 Cambridge Science Park, Milton Road , Cambridge CB4 0WG , U.K
| | - Garry Pairaudeau
- Discovery Sciences IMED Biotech Unit , AstraZeneca , 310 Cambridge Science Park, Milton Road , Cambridge CB4 0WG , U.K
| | - Michael J Waring
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural and Environmental Sciences , Newcastle University , Bedson Building , Newcastle upon Tyne NE1 7RU , U.K
| |
Collapse
|
33
|
Liu W, Deng W, Sun S, Yu C, Su X, Wu A, Yuan Y, Ma Z, Li K, Yang H, Peng X, Dietrich J. A Strategy for the Synthesis of Sulfonamides on DNA. Org Lett 2019; 21:9909-9913. [DOI: 10.1021/acs.orglett.9b03843] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Liu
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Wei Deng
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Saisai Sun
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Chunyan Yu
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Xubo Su
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Aliang Wu
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Youlang Yuan
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Zhonglin Ma
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Ke Li
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Hongfang Yang
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Xuanjia Peng
- WuXi AppTec (Shanghai) Co., Ltd. 288 Middle Fu Te Road, Shanghai 200131, China
| | - Justin Dietrich
- Research and Development, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
34
|
Xu H, Ma F, Wang N, Hou W, Xiong H, Lu F, Li J, Wang S, Ma P, Yang G, Lerner RA. DNA-Encoded Libraries: Aryl Fluorosulfonates as Versatile Electrophiles Enabling Facile On-DNA Suzuki, Sonogashira, and Buchwald Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901551. [PMID: 31832315 PMCID: PMC6891896 DOI: 10.1002/advs.201901551] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/04/2019] [Indexed: 05/07/2023]
Abstract
Using (hetero)aryl fluorosulfonates as versatile electrophiles, facile on-DNA cross-coupling reactions of Suzuki, Sonogashira, and Buchwald are reported here. Notably, all of these reactions show excellent functional group tolerance, mild reaction conditions (relative low temperature and open to air), rich heterocyclic coupling partners, and more importantly, DNA-compatibility. Thus, these new reactions based on efficient formation of C(sp2)-C(sp2), C(sp2)-C(sp), and C(sp2)-N bonds are highly amenable to synthesis of DNA-encoded libraries with great molecular diversity.
Collapse
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Nan Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Wei Hou
- College of Pharmaceutical Scienceand Institute of Drug Development & Chemical Biology (IDD & CB)Zhejiang University of TechnologyHangzhou310014China
| | - Huan Xiong
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Shuyue Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | | |
Collapse
|
35
|
Cai P, Yang G, Zhao L, Wan J, Li J, Liu G. Synthesis of C3-Alkylated Indoles on DNA via Indolyl Alcohol Formation Followed by Metal-Free Transfer Hydrogenation. Org Lett 2019; 21:6633-6637. [DOI: 10.1021/acs.orglett.9b02132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pinwen Cai
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guanyu Yang
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Lanzhou Zhao
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International
Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
36
|
Li JY, Miklossy G, Modukuri RK, Bohren KM, Yu Z, Palaniappan M, Faver JC, Riehle K, Matzuk MM, Simmons N. Palladium-Catalyzed Hydroxycarbonylation of (Hetero)aryl Halides for DNA-Encoded Chemical Library Synthesis. Bioconjug Chem 2019; 30:2209-2215. [PMID: 31329429 PMCID: PMC6706801 DOI: 10.1021/acs.bioconjchem.9b00447] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A strategy
for DNA-compatible, palladium-catalyzed hydroxycarbonylation
of (hetero)aryl halides on DNA–chemical conjugates has been
developed. This method generally provided the corresponding carboxylic
acids in moderate to very good conversions for (hetero)aryl iodides
and bromides, and in poor to moderate conversions for (hetero)aryl
chlorides. These conditions were further validated by application
within a DNA-encoded chemical library synthesis and subsequent discovery
of enriched features from the library in selection experiments against
two protein targets.
Collapse
Affiliation(s)
- Jian-Yuan Li
- Center for Drug Discovery, Department of Pathology and Immunology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Gabriella Miklossy
- Center for Drug Discovery, Department of Pathology and Immunology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Ram K Modukuri
- Center for Drug Discovery, Department of Pathology and Immunology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Kurt M Bohren
- Center for Drug Discovery, Department of Pathology and Immunology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Zhifeng Yu
- Center for Drug Discovery, Department of Pathology and Immunology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Murugesan Palaniappan
- Center for Drug Discovery, Department of Pathology and Immunology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - John C Faver
- Center for Drug Discovery, Department of Pathology and Immunology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Kevin Riehle
- Center for Drug Discovery, Department of Pathology and Immunology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology and Immunology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Nicholas Simmons
- Center for Drug Discovery, Department of Pathology and Immunology , Baylor College of Medicine , Houston , Texas 77030 , United States
| |
Collapse
|
37
|
Kovalenko M, Yarmoliuk DV, Serhiichuk D, Chernenko D, Smyrnov V, Breslavskyi A, Hryshchuk OV, Kleban I, Rassukana Y, Tymtsunik AV, Tolmachev AA, Kuchkovska YO, Grygorenko OO. The Boron-Wittig Olefination of Aldehydes and Ketones with Bis[(pinacolato)boryl]methane: an Extended Reaction Scope. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maksym Kovalenko
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
| | - Dmytro V. Yarmoliuk
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Dmytro Serhiichuk
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
| | - Daria Chernenko
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”; Prospect Peremogy 37 03056 Kyiv Ukraine
| | - Vladyslav Smyrnov
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Artur Breslavskyi
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
| | - Oleksandr V. Hryshchuk
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Ihor Kleban
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
- Institute of Organic Chemistry; National Academy of Sciences of Ukraine; Murmanska Street 5 02660 Kyiv Ukraine
| | - Yuliya Rassukana
- Institute of Organic Chemistry; National Academy of Sciences of Ukraine; Murmanska Street 5 02660 Kyiv Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”; Prospect Peremogy 37 03056 Kyiv Ukraine
| | - Andriy V. Tymtsunik
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”; Prospect Peremogy 37 03056 Kyiv Ukraine
| | - Andrey A. Tolmachev
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Yuliya O. Kuchkovska
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| |
Collapse
|
38
|
Flood DT, Asai S, Zhang X, Wang J, Yoon L, Adams ZC, Dillingham BC, Sanchez BB, Vantourout JC, Flanagan ME, Piotrowski DW, Richardson P, Green SA, Shenvi RA, Chen JS, Baran PS, Dawson PE. Expanding Reactivity in DNA-Encoded Library Synthesis via Reversible Binding of DNA to an Inert Quaternary Ammonium Support. J Am Chem Soc 2019; 141:9998-10006. [PMID: 31136164 PMCID: PMC7033622 DOI: 10.1021/jacs.9b03774] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA Encoded Libraries have proven immensely powerful tools for lead identification. The ability to screen billions of compounds at once has spurred increasing interest in DEL development and utilization. Although DEL provides access to libraries of unprecedented size and diversity, the idiosyncratic and hydrophilic nature of the DNA tag severely limits the scope of applicable chemistries. It is known that biomacromolecules can be reversibly, noncovalently adsorbed and eluted from solid supports, and this phenomenon has been utilized to perform synthetic modification of biomolecules in a strategy we have described as reversible adsorption to solid support (RASS). Herein, we present the adaptation of RASS for a DEL setting, which allows reactions to be performed in organic solvents at near anhydrous conditions opening previously inaccessible chemical reactivities to DEL. The RASS approach enabled the rapid development of C(sp2)-C(sp3) decarboxylative cross-couplings with broad substrate scope, an electrochemical amination (the first electrochemical synthetic transformation performed in a DEL context), and improved reductive amination conditions. The utility of these reactions was demonstrated through a DEL-rehearsal in which all newly developed chemistries were orchestrated to afford a compound rich in diverse skeletal linkages. We believe that RASS will offer expedient access to new DEL reactivities, expanded chemical space, and ultimately more drug-like libraries.
Collapse
Affiliation(s)
- Dillon T. Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shota Asai
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Xuejing Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jie Wang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Leonard Yoon
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zoë C. Adams
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Blythe C. Dillingham
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Brittany B. Sanchez
- Automated Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Julien C. Vantourout
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Mark E. Flanagan
- Pfizer Medicinal Chemistry, Eastern Point Road, Groton, CT 06340, United States
| | - David W. Piotrowski
- Pfizer Medicinal Chemistry, Eastern Point Road, Groton, CT 06340, United States
| | - Paul Richardson
- Pfizer Medicinal Chemistry, 10578 Science Center Drive, San Diego, CA 92121, United States
| | - Samantha A. Green
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ryan A. Shenvi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jason S. Chen
- Automated Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Philip E. Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
39
|
Zhao G, Huang Y, Zhou Y, Li Y, Li X. Future challenges with DNA-encoded chemical libraries in the drug discovery domain. Expert Opin Drug Discov 2019; 14:735-753. [DOI: 10.1080/17460441.2019.1614559] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guixian Zhao
- Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yiran Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yizhou Li
- Tumour Targeted Therapy and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
40
|
Nicholas F, Bassi G, Zanetti T, Scheuermann J, Neri D. Screening of copper and palladium-mediated reactions compatible with DNA-encoded chemical libraries. Helv Chim Acta 2019; 102. [PMID: 32292208 DOI: 10.1002/hlca.201900033] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The construction of DNA-encoded chemical libraries (DECLs) crucially relies on the availability of chemical reactions, which are DNA-compatible and which exhibit high conversion rates for a large number of diverse substrates. In this work, we present our optimization and validation procedures for three copper and palladium-catalyzed reactions (Suzuki cross-coupling, Sonogashira cross-coupling and copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC)), which have been successfully used by our group for the construction of large encoded libraries.
Collapse
Affiliation(s)
- Favalli Nicholas
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| | - Gabriele Bassi
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| | - Tania Zanetti
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| | - Jörg Scheuermann
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| |
Collapse
|
41
|
Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Arylation Chemistry for Bioconjugation. Angew Chem Int Ed Engl 2019; 58:4810-4839. [PMID: 30399206 PMCID: PMC6433541 DOI: 10.1002/anie.201806009] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Bioconjugation chemistry has been used to prepare modified biomolecules with functions beyond what nature intended. Central to these techniques is the development of highly efficient and selective bioconjugation reactions that operate under mild, biomolecule compatible conditions. Methods that form a nucleophile-sp2 carbon bond show promise for creating bioconjugates with new modifications, sometimes resulting in molecules with unparalleled functions. Here we outline and review sulfur, nitrogen, selenium, oxygen, and carbon arylative bioconjugation strategies and their applications to modify peptides, proteins, sugars, and nucleic acids.
Collapse
Affiliation(s)
- Chi Zhang
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| | - Ekaterina V. Vinogradova
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
- Dr. E. V. Vinogradova, The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexander M. Spokoyny
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
- Prof. Dr. A. M. Spokoyny, Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Stephen L. Buchwald
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| | - Bradley L. Pentelute
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| |
Collapse
|
42
|
Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Arylierungschemie für die Biokonjugation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chi Zhang
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Ekaterina V. Vinogradova
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- The Skaggs Institute for Chemical Biology and Department of Molecular MedicineThe Scripps Research Institute La Jolla CA 92037 USA
| | - Alexander M. Spokoyny
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles 607 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Stephen L. Buchwald
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Bradley L. Pentelute
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
43
|
Phelan JP, Lang SB, Sim J, Berritt S, Peat AJ, Billings K, Fan L, Molander GA. Open-Air Alkylation Reactions in Photoredox-Catalyzed DNA-Encoded Library Synthesis. J Am Chem Soc 2019; 141:3723-3732. [PMID: 30753065 DOI: 10.1021/jacs.9b00669] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA-encoded library (DEL) technology is a powerful tool commonly used by the pharmaceutical industry for the identification of compounds with affinity to biomolecular targets. Success in this endeavor lies in sampling diverse chemical libraries. However, current DELs tend to be deficient in C(sp3) carbon counts. We report unique solutions to the challenge of increasing both the chemical diversity of these libraries and their C(sp3) carbon counts by merging Ni/photoredox dual catalytic C(sp2)-C(sp3) cross-coupling as well as photoredox-catalyzed radical/polar crossover alkylation protocols with DELs. The successful integration of multiple classes of radical sources enables the rapid incorporation of a diverse set of alkyl fragments.
Collapse
Affiliation(s)
- James P Phelan
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Simon B Lang
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Jaehoon Sim
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Simon Berritt
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Andrew J Peat
- GlaxoSmithKline , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Katelyn Billings
- GlaxoSmithKline , 200 Cambridge Park Drive , Cambridge , Massachusetts 02140 , United States
| | - Lijun Fan
- GlaxoSmithKline , 200 Cambridge Park Drive , Cambridge , Massachusetts 02140 , United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
44
|
de Pedro Beato E, Priego J, Gironda-Martínez A, González F, Benavides J, Blas J, Martín-Ortega MD, Toledo MÁ, Ezquerra J, Torrado A. Mild and Efficient Palladium-Mediated C-N Cross-Coupling Reaction between DNA-Conjugated Aryl Bromides and Aromatic Amines. ACS COMBINATORIAL SCIENCE 2019; 21:69-74. [PMID: 30615417 DOI: 10.1021/acscombsci.8b00142] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA-encoded library technology (ELT) has emerged in the pharmaceutical industry as a powerful tool for hit and lead generation. Over the last 10 years, a number of DNA-compatible chemical reactions have been published and used to synthesize libraries. Among the most commonly used reactions in medicinal chemistry is the C-N bond formation, and its application to DNA-encoded library technology affords an alternative approach to identify high-affinity binders for biologically relevant protein targets. Herein we report a newly developed Pd-promoted C-N cross coupling reaction between DNA-conjugated aryl bromides and a wide scope of arylamines in good to excellent yields. The mild reaction conditions should facilitate the synthesis of novel DNA-encoded combinatorial libraries.
Collapse
Affiliation(s)
| | - Julián Priego
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| | | | - Fernando González
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| | - Jesús Benavides
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| | - Jesús Blas
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| | | | | | - Jesús Ezquerra
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| | - Alicia Torrado
- Centro de Investigación Lilly, S. A., 28108 Alcobendas, Madrid, Spain
| |
Collapse
|
45
|
Ichiishi N, Moore KP, Wassermann AM, Wolkenberg SE, Krska SW. Reducing Limitation in Probe Design: The Development of a Diazirine-Compatible Suzuki-Miyaura Cross Coupling Reaction. ACS Med Chem Lett 2019; 10:56-61. [PMID: 30655947 DOI: 10.1021/acsmedchemlett.8b00403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022] Open
Abstract
Access to high quality photoaffinity probe molecules is often constrained by synthetic limitations related to diazirine installation. A survey of recently published photoaffinity probe syntheses identified the Suzuki-Miyaura (S-M) coupling reaction, ubiquitous in drug discovery, as being underutilized to incorporate diazirines. To test whether advances in modern cross-coupling catalysis might enable efficient S-M couplings tolerant of the diazirine moiety, a fragment-based screening approach was employed. A model S-M coupling reaction was screened under various conditions in the presence of an aromatic diazirine fragment. This screen identified reaction conditions that gave good yields of S-M coupling product while minimally perturbing the diazirine reporter fragment. These conditions were found to be highly scalable and exhibited broad scope when applied to a chemistry informer library of 24 pharmaceutically relevant aryl boron pinacol esters. Furthermore, these conditions were used to synthesize a known diazirine-containing probe molecule with improved synthetic efficiency.
Collapse
Affiliation(s)
- Naoko Ichiishi
- Merck & Co., Inc., Discovery Chemistry, HTE and Lead Discovery Capabilities, Kenilworth, New Jersey 07033, United States
| | - Keith P. Moore
- Merck & Co., Inc., Discovery Chemistry, Chemical Biology, West Point, Pennsylvania 19486, United States
| | - Anne Mai Wassermann
- Merck & Co., Inc., Discovery Chemistry, Chemistry Informatics, Boston, Massachusetts 02115, United States
| | - Scott E. Wolkenberg
- Merck & Co., Inc., Discovery Chemistry, Chemical Biology, West Point, Pennsylvania 19486, United States
| | - Shane W. Krska
- Merck & Co., Inc., Discovery Chemistry, HTE and Lead Discovery Capabilities, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
46
|
Ding Y, Chai J, Centrella PA, Gondo C, DeLorey JL, Clark MA. Development and Synthesis of DNA-Encoded Benzimidazole Library. ACS COMBINATORIAL SCIENCE 2018; 20:251-255. [PMID: 29648439 DOI: 10.1021/acscombsci.8b00009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Encoded library technology (ELT) is an effective approach to the discovery of novel small-molecule ligands for biological targets. A key factor for the success of the technology is the chemical diversity of the libraries. Here we report the development of DNA-conjugated benzimidazoles. Using 4-fluoro-3-nitrobenzoic acid as a key synthon, we synthesized a 320 million-member DNA-encoded benzimidazole library using Fmoc-protected amino acids, amines and aldehydes as diversity elements. Affinity selection of the library led to the discovery of a novel, potent and specific antagonist of the NK3 receptor.
Collapse
Affiliation(s)
- Yun Ding
- GlaxoSmithKline, Platform Technology & Science, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jing Chai
- GlaxoSmithKline, Platform Technology & Science, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Paolo A. Centrella
- GlaxoSmithKline, Platform Technology & Science, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Chenaimwoyo Gondo
- GlaxoSmithKline, Platform Technology & Science, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jennifer L. DeLorey
- GlaxoSmithKline, Platform Technology & Science, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Matthew A. Clark
- GlaxoSmithKline, Platform Technology & Science, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
47
|
Lu X, Fan L, Phelps CB, Davie CP, Donahue CP. Ruthenium Promoted On-DNA Ring-Closing Metathesis and Cross-Metathesis. Bioconjug Chem 2017; 28:1625-1629. [DOI: 10.1021/acs.bioconjchem.7b00292] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaojie Lu
- GlaxoSmithKline, Platform Technology & Science, Drug Discovery and Selection, New Chemical Entity Molecular Discovery, Encoded Library Technologies, 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Lijun Fan
- GlaxoSmithKline, Platform Technology & Science, Drug Discovery and Selection, New Chemical Entity Molecular Discovery, Encoded Library Technologies, 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Christopher B. Phelps
- GlaxoSmithKline, Platform Technology & Science, Drug Discovery and Selection, New Chemical Entity Molecular Discovery, Encoded Library Technologies, 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Christopher P. Davie
- GlaxoSmithKline, Platform Technology & Science, Drug Discovery and Selection, New Chemical Entity Molecular Discovery, Encoded Library Technologies, 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Christine P. Donahue
- GlaxoSmithKline, Platform Technology & Science, Drug Discovery and Selection, New Chemical Entity Molecular Discovery, Encoded Library Technologies, 830 Winter Street, Waltham, Massachusetts 02451, United States
| |
Collapse
|
48
|
Yuen LH, Franzini RM. Stability of Oligonucleotide-Small Molecule Conjugates to DNA-Deprotection Conditions. Bioconjug Chem 2017; 28:1076-1083. [PMID: 28233987 DOI: 10.1021/acs.bioconjchem.7b00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oligonucleotide conjugates of small molecules are widely used in chemical biology and have found increasing interest in the context of DNA-encoded chemical libraries for drug discovery. Attachment of molecules to DNA bound to the solid support is an attractive small-molecule conjugation method that permits the use of organic solvents, rigorous reaction conditions, and simple workup. However, the conjugated structures must be resistant to the harsh DNA deprotection/cleavage conditions and the stabilities of building blocks under various deprotection conditions are mostly unexplored. In the present study, we analyzed the stability of 131 structurally diverse fragments that contain amides and amide-like elements during DNA deprotection protocols. Structural features susceptible to decomposition in DNA deprotection conditions were identified and a protocol that enabled the synthesis of DNA conjugates with labile fragments on solid support was identified.
Collapse
Affiliation(s)
- Lik Hang Yuen
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah , 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M Franzini
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah , 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
49
|
Yuen LH, Franzini RM. Achievements, Challenges, and Opportunities in DNA-Encoded Library Research: An Academic Point of View. Chembiochem 2017; 18:829-836. [DOI: 10.1002/cbic.201600567] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Lik Hang Yuen
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E Salt Lake City UT 84113 USA
| | - Raphael M. Franzini
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E Salt Lake City UT 84113 USA
| |
Collapse
|
50
|
Abstract
The nitrosocarbonyls (R-CONO) are highly reactive species and remarkable intermediates toward different synthetic targets. This review will cover a research area whose impact in current organic synthesis is constantly increasing in the chemical community. This review represents the first and comprehensive picture on the generation and trapping of nitrosocarbonyls and is solidly built on more than 380 papers. Six different classes of key starting materials such as hydroxamic acids, N-hydroxy carbamates, N-hydroxyureas, nitrile oxides, and 1,2,4-oxadiazole-4-oxides were highlighted. The content of the review surveys all the methods to generate the nitrosocarbonyls through different approaches (oxidative, thermal, photochemical, catalytic, aerobic, and the less common ones) in the light of efficiency, yields, and mildness. The most successful trapping agents employed to catch these fleeting intermediates are reviewed, exploiting their superior dienophilic, enophilic, and electrophilic power. The work is completed by paragraphs dedicated to the detection of the intermediates, theoretical studies, and insights about the challenges and future directions for the field.
Collapse
Affiliation(s)
- Misal Giuseppe Memeo
- Dipartimento di Chimica, Università degli Studi di Pavia , Viale Taramelli 12, 27100 Pavia, Italy
| | - Paolo Quadrelli
- Dipartimento di Chimica, Università degli Studi di Pavia , Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|