1
|
Ma Y, Xia S, Hu A, Zhang Q, Shao Z, Tian B, Lin Q. Ultrabright contrast agents with synergistic Raman enhancements for precise intraoperative imaging and photothermal ablation of orthotopic tumor models. J Nanobiotechnology 2025; 23:26. [PMID: 39828675 PMCID: PMC11743016 DOI: 10.1186/s12951-025-03099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Intraoperative imaging is critical for achieving precise cancer resection. Among available techniques, Raman spectral imaging emerges as a promising modality due to its high spatial resolution and signal stability. However, its clinical application for in vivo imaging is limited by the inherently weak Raman scattering signal. To address this challenge, we developed a novel strategy that integrates two enhancement mechanisms into a single Raman contrast agent. RESULTS This contrast agent exploits the synergistic effects of an anisotropic gold nanorod and a polypyrrole-polydopamine hybrid, resulting in a substantial amplification of Raman signals. Consequently, the agent enables clear delineation of malignant tissues in both orthotopic and subcutaneous tumor models. Beyond its imaging capability, the agent also facilitates photothermal ablation, providing a long-term solution for suppressing tumor recurrence. CONCLUSION This study systematically evaluates the imaging performance of the synthesized Raman contrast agents across different tumor models and highlights the critical role of optimizing the aspect ratio of anisotropic agents for in vivo imaging. By offering a dual-function Raman contrast agent, this research advances the potential of Raman spectral imaging for intraoperative applications and clinical translation.
Collapse
Affiliation(s)
- Yiqun Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Shuchi Xia
- Department of Dentistry, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Annan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Qianyi Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China.
| | - Bo Tian
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| | - Qinrui Lin
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Cai Y, Wang W, Jiao Q, Hu T, Ren Y, Su X, Li Z, Feng M, Liu X, Wang Y. Nanotechnology for the Diagnosis and Treatment of Liver Cancer. Int J Nanomedicine 2024; 19:13805-13821. [PMID: 39735328 PMCID: PMC11681781 DOI: 10.2147/ijn.s490661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Liver cancer has become a major global health challenge due to its high incidence, high rate of late diagnosis and limited treatment options. Although there are many clinical treatments available for liver cancer, the cure rate is still very low, and now researchers have begun to explore new aspects of liver cancer treatment, and nanotechnology has shown great potential for improving diagnostic accuracy and therapeutic efficacy and is therefore a promising treatment option. In diagnosis, nanomaterials such as gold nanoparticles, magnetic nanoparticles, and silver nanoparticles can realize highly sensitive and specific detection of liver cancer biomarkers, supporting diagnosis and real-time monitoring of the disease process. In terms of treatment, nanocarriers can realize precise targeted delivery of drugs, improve the bioavailability of liver cancer therapeutic drugs and reduce systemic toxic side effects. In addition, advanced technologies such as nanoparticle-based photothermal therapy and photodynamic therapy provide innovative solutions to overcome drug resistance and local tumor ablation. Therefore, in this paper, we will introduce nanotechnology for hepatocellular carcinoma in terms of tumor marker detection, targeted drug delivery, and synergistic PDT/CDT therapy.
Collapse
Affiliation(s)
- Yuxuan Cai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Tangbin Hu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yidan Ren
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, People’s Republic of China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, People’s Republic of China
| | - Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
3
|
Zhang S, Yu S, Sun J, Huang T, Lin H, Li Z, Xiao Z, Lu W. Au@CuS Nanoshells for Surface-Enhanced Raman Scattering Image-Guided Tumor Photothermal Therapy with Accelerated Hepatobiliary Excretion. Pharmaceutics 2024; 16:1089. [PMID: 39204434 PMCID: PMC11360001 DOI: 10.3390/pharmaceutics16081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Gold-based nanoparticles for surface-enhanced Raman scattering (SERS) imaging show great potential for precise tumor detection and photothermal therapy (PTT). However, the metabolizability of gold nanoparticles (Au NPs) raises big concerns. Herein, we designed a core-shelled nanostructure of copper sulfide (CuS)-coated Au NPs with surface pegylation (PEG-Au@CuS NSs). The excreted Au in the gallbladders at 1 h and 4 h in mice injected with PEG-Au@CuS NSs was 8.2- and 19.1-fold of that with the pegylated Au NPs (PEG-AuNPs) of the same Au particle size, respectively. By loading the Raman reporter 3,3'-Diethylthiatricarbocyanine iodide (DTTC) in the core-shell junction of PEG-Au@CuS NSs, the PEG-Au-DTTC@CuS NSs exhibited the Raman signal-to-noise (S/N) ratio of 4.01 after 24 h of intravenous (IV) injection in the mice bearing an orthotopic CT26-Luc colon tumor. By contrast, the DTTC-coated PEG-AuNPs (PEG-Au-DTTC NPs) achieved an S/N ratio of 2.71. Moreover, PEG-Au-DTTC@CuS NSs exhibited an increased photothermal conversion effect compared with PEG-Au-DTTC NPs excited with an 808-nm laser. PEG-Au-DTTC@CuS NSs enabled intraoperative SERS image-guided photothermal therapy for a complete cure of the colon tumor-bearing mice. Our data demonstrated that the PEG-Au-DTTC@CuS NSs are promising intraoperative Raman image-guided theranostic nanoplatform with enhanced hepatobiliary excretion.
Collapse
Affiliation(s)
- Sihang Zhang
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Sheng Yu
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jingwen Sun
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Teng Huang
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Hongzheng Lin
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Wei Lu
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Quzhou Fudan Institute, 108 Minjiang Avenue, Quzhou 324002, China
| |
Collapse
|
4
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
5
|
He C, Liu F, Wang J, Bi X, Pan J, Xue W, Qian X, Chen Z, Ye J. When surface-enhanced Raman spectroscopy meets complex biofluids: A new representation strategy for reliable and comprehensive characterization. Anal Chim Acta 2024; 1312:342767. [PMID: 38834270 DOI: 10.1016/j.aca.2024.342767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Surface-enhanced Raman spectroscopy (SERS) has gained increasing importance in molecular detection due to its high specificity and sensitivity. Complex biofluids (e.g., cell lysates and serums) typically contain large numbers of different bio-molecules with various concentrations, making it extremely challenging to be reliably and comprehensively characterized via conventional single SERS spectra due to uncontrollable electromagnetic hot spots and irregular molecular motions. The traditional approach of directly reading out the single SERS spectra or calculating the average of multiple spectra is less likely to take advantage of the full information of complex biofluid systems. RESULTS Herein, we propose to construct a spectral set with unordered multiple SERS spectra as a novel representation strategy to characterize full molecular information of complex biofluids. This new SERS representation not only contains details from each single spectra but captures the temporal/spatial distribution characteristics. To address the ordering-independent property of traditional chemometric methods (e.g., the Euclidean distance and the Pearson correlation coefficient), we introduce Wasserstein distance (WD) to quantitatively and comprehensively assess the quality of spectral sets on biofluids. WD performs its superiority for the quantitative assessment of the spectral sets. Additionally, WD benefits from its independence of the ordering of spectra in a spectral set, which is undesirable for traditional chemometric methods. With experiments on cell lysates and human serums, we successfully achieve the verification for the reproducibility between parallel samples, the uniformity at different positions in the same sample, the repeatability from multiple tests at one location of the same sample, and the cardinality effect of the spectral set. SERS spectral sets also manage to distinguish different classes of human serums and achieve higher accuracy than the traditional prostate-specific antigen in prostate cancer classification. SIGNIFICANCE The proposed SERS spectral set is a robust representation approach in accessing full information of biological samples compared to relying on a single or averaged spectra in terms of reproducibility, uniformity, repeatability, and cardinality effect. The application of WD further demonstrates the effectiveness and robustness of spectral sets in characterizing complex biofluid samples, which extends and consolidates the role of SERS.
Collapse
Affiliation(s)
- Chang He
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, PR China
| | - Fugang Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, PR China
| | - Jiayi Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai PR China
| | - Xinyuan Bi
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, PR China
| | - Jiahua Pan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai PR China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai PR China
| | - Xiaohua Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, PR China.
| | - Zhou Chen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, PR China.
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, PR China; Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai PR China; Institute of Medical Robotics, Shanghai Jiao Tong University, 200240, Shanghai, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China.
| |
Collapse
|
6
|
Nicolson F, Andreiuk B, Lee E, O’Donnell B, Whitley A, Riepl N, Burkhart DL, Cameron A, Protti A, Rudder S, Yang J, Mabbott S, Haigis KM. In vivo imaging using surface enhanced spatially offset raman spectroscopy (SESORS): balancing sampling frequency to improve overall image acquisition. NPJ IMAGING 2024; 2:7. [PMID: 38939049 PMCID: PMC11210722 DOI: 10.1038/s44303-024-00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/08/2024] [Indexed: 06/29/2024]
Abstract
In the field of optical imaging, the ability to image tumors at depth with high selectivity and specificity remains a challenge. Surface enhanced resonance Raman scattering (SERRS) nanoparticles (NPs) can be employed as image contrast agents to specifically target cells in vivo; however, this technique typically requires time-intensive point-by-point acquisition of Raman spectra. Here, we combine the use of "spatially offset Raman spectroscopy" (SORS) with that of SERRS in a technique known as "surface enhanced spatially offset resonance Raman spectroscopy" (SESORRS) to image deep-seated tumors in vivo. Additionally, by accounting for the laser spot size, we report an experimental approach for detecting both the bulk tumor, subsequent delineation of tumor margins at high speed, and the identification of a deeper secondary region of interest with fewer measurements than are typically applied. To enhance light collection efficiency, four modifications were made to a previously described custom-built SORS system. Specifically, the following parameters were increased: (i) the numerical aperture (NA) of the lens, from 0.2 to 0.34; (ii) the working distance of the probe, from 9 mm to 40 mm; (iii) the NA of the fiber, from 0.2 to 0.34; and (iv) the fiber diameter, from 100 μm to 400 μm. To calculate the sampling frequency, which refers to the number of data point spectra obtained for each image, we considered the laser spot size of the elliptical beam (6 × 4 mm). Using SERRS contrast agents, we performed in vivo SESORRS imaging on a GL261-Luc mouse model of glioblastoma at four distinct sampling frequencies: par-sampling frequency (12 data points collected), and over-frequency sampling by factors of 2 (35 data points collected), 5 (176 data points collected), and 10 (651 data points collected). In comparison to the previously reported SORS system, the modified SORS instrument showed a 300% improvement in signal-to-noise ratios (SNR). The results demonstrate the ability to acquire distinct Raman spectra from deep-seated glioblastomas in mice through the skull using a low power density (6.5 mW/mm2) and 30-times shorter integration times than a previous report (0.5 s versus 15 s). The ability to map the whole head of the mouse and determine a specific region of interest using as few as 12 spectra (6 s total acquisition time) is achieved. Subsequent use of a higher sampling frequency demonstrates it is possible to delineate the tumor margins in the region of interest with greater certainty. In addition, SESORRS images indicate the emergence of a secondary tumor region deeper within the brain in agreement with MRI and H&E staining. In comparison to traditional Raman imaging approaches, this approach enables improvements in the detection of deep-seated tumors in vivo through depths of several millimeters due to improvements in SNR, spectral resolution, and depth acquisition. This approach offers an opportunity to navigate larger areas of tissues in shorter time frames than previously reported, identify regions of interest, and then image the same area with greater resolution using a higher sampling frequency. Moreover, using a SESORRS approach, we demonstrate that it is possible to detect secondary, deeper-seated lesions through the intact skull.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
| | - Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
- Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Eunah Lee
- HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA
| | - Bridget O’Donnell
- HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA
- Honeywell International Inc., Fort Washington, PA 19034, USA
| | - Andrew Whitley
- HORIBA Instruments Incorporated, Piscataway, NJ 08854, USA
| | - Nicole Riepl
- College of Science, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Deborah L. Burkhart
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Amy Cameron
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
| | - Andrea Protti
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA02215, USA
| | - Scott Rudder
- Innovative Photonic Solutions, Monmouth Junction, Plainsboro Township, NJ 08852, USA
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Samuel Mabbott
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, TX 77840, USA
- Center for Remote Health Technologies & Systems, Texas A & M Engineering Experiment Station, 600 Discovery Drive, College Station, TX 77840, USA
| | - Kevin M. Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
Liu C, Dong J, Zhang Z, Fu K, Wang D, Mi X, Yue S, Tan X, Zhang Y. Four-Color SERS Monitoring of Size-dependent Nanoparticle Delivery in the Same Tumor. Anal Chem 2023; 95:13880-13888. [PMID: 37677106 DOI: 10.1021/acs.analchem.3c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The physicochemical properties of nanoparticles (NPs) significantly influence their deposition at the disease site, ultimately impacting the overall therapeutic efficacy; however, precisely assessing the effects of various factors on NP accumulation within a single cell/tumor tissue is challenging due to the lack of appropriate labeling techniques. Surface-enhanced Raman spectroscopy (SERS) tag is a powerful encoding method that has recently been intensively employed for immunodetection of biomarkers. Herein, we introduce a multiplexed SERS tracking approach for systematic investigation of size-dependent accumulation and distribution of NPs within the same tumor. Four-sized (34, 60, 108, and 147 nm) NPs encoded with different SERS "colors" were fabricated, mixed, and incubated with monolayer tumor cells, multicellular tumor spheroids, or injected into mouse models bearing xenograft solid tumors in a single dose. Multicolor SERS detection of the specimens revealed that NP accumulation in tumor cells, tumor spheroids, and solid tumors was in the order of 34 nm > 60 nm > 108 nm > 147 nm, 60 nm > 34 nm > 108 nm > 147 nm, and 34 nm > 147 nm > 108 nm > 60 nm, respectively. Inductively coupled plasma mass spectroscopy determination performed in parallel samples were in alignment with the four-color SERS probing results, demonstrating the effectiveness of this multiplexed evaluation assay. Furthermore, in combination with fluorescence labeling of specific biomolecules, this method can be applied for the colocalization of different NPs in various pathological structures and provide additional information for analysis of the possible mechanisms.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jianguo Dong
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zedong Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Kexin Fu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dekun Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xue Mi
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shijing Yue
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoyue Tan
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuying Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
He S, Jia X, Feng S, Hu J. Three Strategies in Engineering Nanomedicines for Tumor Microenvironment-Enabled Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300078. [PMID: 37226364 DOI: 10.1002/smll.202300078] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Indexed: 05/26/2023]
Abstract
Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H2 O2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME-induced nanoparticle disassembly or surface modification. The second strategy involves near-infrared absorption increase-induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.
Collapse
Affiliation(s)
- Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiao Jia
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Sai Feng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
9
|
Zhang J, Ding H, Zhang F, Xu Y, Liang W, Huang L. New trends in diagnosing and treating ovarian cancer using nanotechnology. Front Bioeng Biotechnol 2023; 11:1160985. [PMID: 37082219 PMCID: PMC10110946 DOI: 10.3389/fbioe.2023.1160985] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Ovarian cancer stands as the fifth most prevalent cancer among women, causing more mortalities than any other disease of the female reproductive system. There are numerous histological subtypes of ovarian cancer, each of which has distinct clinical characteristics, risk factors, cell origins, molecular compositions, and therapeutic options. Typically, it is identified at a late stage, and there is no efficient screening method. Standard therapies for newly diagnosed cancer are cytoreductive surgery and platinum-based chemotherapy. The difficulties of traditional therapeutic procedures encourage researchers to search for other approaches, such as nanotechnology. Due to the unique characteristics of matter at the nanoscale, nanomedicine has emerged as a potent tool for creating novel drug carriers that are more effective and have fewer adverse effects than traditional treatments. Nanocarriers including liposomes, dendrimers, polymer nanoparticles, and polymer micelles have unique properties in surface chemistry, morphology, and mechanism of action that can distinguish between malignant and normal cells, paving the way for targeted drug delivery. In contrast to their non-functionalized counterparts, the development of functionalized nano-formulations with specific ligands permits selective targeting of ovarian cancers and ultimately increases the therapeutic potential. This review focuses on the application of various nanomaterials to the treatment and diagnosis of ovarian cancer, their advantages over conventional treatment methods, and the effective role of controlled drug delivery systems in the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Yan Xu
- Intensive Care Unit, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Liping Huang, ; Wenqing Liang,
| | - Liping Huang
- Department of Medical Oncology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Liping Huang, ; Wenqing Liang,
| |
Collapse
|
10
|
Mal S, Duarte E Souza L, Allard C, David C, Blais-Ouellette S, Gaboury L, Tang NYW, Martel R. Duplex Phenotype Detection and Targeting of Breast Cancer Cells Using Nanotube Nanoprobes and Raman Imaging. ACS APPLIED BIO MATERIALS 2023; 6:1173-1184. [PMID: 36795958 DOI: 10.1021/acsabm.2c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
We designed, synthesized, and characterized a Raman nanoprobe made of dye-sensitized single-walled carbon nanotubes (SWCNTs) that can selectively target biomarkers of breast cancer cells. The nanoprobe is composed of Raman-active dyes encapsulated inside a SWCNT, whose surface is covalently grafted with poly(ethylene glycol) (PEG) at a density of ∼0.7% per carbon. Using α-sexithiophene- and β-carotene-derived nanoprobes covalently bound to an antibody, either anti-E-cadherin (E-cad) or anti-keratin-19 (KRT19), we prepared two distinct nanoprobes that specifically recognize biomarkers on breast cancer cells. Immunogold experiments and transmission electron microscopy (TEM) images are first used to guide the synthesis protocol for higher PEG-antibody attachment and biomolecule loading capacity. The duplex of nanoprobes was then applied to target E-cad and KRT19 biomarkers in T47D and MDA-MB-231 breast cancer cell lines. Hyperspectral imaging of specific Raman bands allows for simultaneous detection of this nanoprobe duplex on target cells without the need for additional filters or subsequent incubation steps. Our results confirm the high reproducibility of the nanoprobe design for duplex detection and highlight the potential of Raman imaging for advanced biomedical applications in oncology.
Collapse
Affiliation(s)
- Suraj Mal
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Layane Duarte E Souza
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Charlotte Allard
- Department of Engineering Physics, Polytechnique of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Carolane David
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | | | - Louis Gaboury
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Nathalie Y-W Tang
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Richard Martel
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
11
|
Huang Y, Li C, Zhang X, Zhang M, Ma Y, Qin D, Tang S, Fei W, Qin J. Nanotechnology-integrated ovarian cancer metastasis therapy: Insights from the metastatic mechanisms into administration routes and therapy strategies. Int J Pharm 2023; 636:122827. [PMID: 36925023 DOI: 10.1016/j.ijpharm.2023.122827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Ovarian cancer is a kind of malignant tumour which locates in the pelvic cavity without typical clinical symptoms in the early stages. Most patients are diagnosed in the late stage while about 60 % of them have suffered from the cancer cells spreading in the abdominal cavity. The high recurrence rate and mortality seriously damage the reproductive needs and health of women. Although recent advances in therapeutic regimes and other adjuvant therapies improved the overall survival of ovarian cancer, overcoming metastasis has still been a challenge and is necessary for achieving cure of ovarian cancer. To present potential targets and new strategies for curbing the occurrence of ovarian metastasis and the treatment of ovarian cancer after metastasis, the first section of this paper explained the metastatic mechanisms of ovarian cancer comprehensively. Nanomedicine, not limited to drug delivery, offers opportunities for metastatic ovarian cancer therapy. The second section of this paper emphasized the advantages of various administration routes of nanodrugs in metastatic ovarian cancer therapy. Furthermore, the third section of this paper focused on advances in nanotechnology-integrated strategies for targeting metastatic ovarian cancer based on the metastatic mechanisms of ovarian cancer. Finally, the challenges and prospects of nanotherapeutics for ovarian cancer metastasis therapy were evaluated. In general, the greatest emphasis on using nanotechnology-based strategies provides avenues for improving metastatic ovarian cancer outcomes in the future.
Collapse
Affiliation(s)
- Yu Huang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chaoqun Li
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xiao Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Meng Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yidan Ma
- Department of Pharmacy, Yipeng Medical Care Center, Hangzhou 311225, China
| | - Dongxu Qin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Sangsang Tang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weidong Fei
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Jiale Qin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
12
|
Li Q, Huo H, Wu Y, Chen L, Su L, Zhang X, Song J, Yang H. Design and Synthesis of SERS Materials for In Vivo Molecular Imaging and Biosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202051. [PMID: 36683237 PMCID: PMC10015885 DOI: 10.1002/advs.202202051] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a feasible and ultra-sensitive method for biomedical imaging and disease diagnosis. SERS is widely applied to in vivo imaging due to the development of functional nanoparticles encoded by Raman active molecules (SERS nanoprobes) and improvements in instruments. Herein, the recent developments in SERS active materials and their in vivo imaging and biosensing applications are overviewed. Various SERS substrates that have been successfully used for in vivo imaging are described. Then, the applications of SERS imaging in cancer detection and in vivo intraoperative guidance are summarized. The role of highly sensitive SERS biosensors in guiding the detection and prevention of diseases is discussed in detail. Moreover, its role in the identification and resection of microtumors and as a diagnostic and therapeutic platform is also reviewed. Finally, the progress and challenges associated with SERS active materials, equipment, and clinical translation are described. The present evidence suggests that SERS could be applied in clinical practice in the future.
Collapse
Affiliation(s)
- Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Hongqi Huo
- Department of Nuclear MedicineHan Dan Central HospitalHandanHebei056001P. R. China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| |
Collapse
|
13
|
Current Update on Nanotechnology-Based Approaches in Ovarian Cancer Therapy. Reprod Sci 2023; 30:335-349. [PMID: 35585292 DOI: 10.1007/s43032-022-00968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Ovarian cancer is one of the leading causes of cancer-related deaths among women. The drawbacks of conventional therapeutic strategies encourage researchers to look for alternative strategies, including nanotechnology. Nanotechnology is one of the upcoming domains of science that is rechanneled towards targeted cancer therapy and diagnosis. Nanocarriers such as dendrimers, liposomes, polymer micelles, and polymer nanoparticles present distinct surface characteristics in morphology, surface chemistry, and mode of action that help differentiate normal and malignant cells, which paves the way for target-specific drug delivery. Similarly, nanoparticles have been strategically utilized as efficacious vehicles to deliver drugs that alter the epigenetic modifications in epigenetic therapy. Some studies suggest that the use of specialized target-modified nanoparticles in siRNA-based nanotherapy prevents internalization and improves the antitumor activity of siRNA by ensuring unrestrained entry of siRNA into the tumor vasculature and efficient intracellular delivery of siRNA. Moreover, research findings highlight the significance of utilizing nanoparticles as depots for photosensitive drugs in photodynamic therapy. The applicability of nanoparticles is further extended to medical imaging. They serve as contrast agents in combination with conventional imaging modalities such as MRI, CT, and fluorescence-based imaging to produce vivid and enhanced images of tumors. Therefore, this review aims to explore and delve deeper into the advent of various nanotechnology-based therapeutic and imaging techniques that provide non-invasive and effective means to tackle ovarian cancers.
Collapse
|
14
|
Liu R, Xu Y, Zhang N, Qu S, Zeng W, Li R, Dai Z. Nanotechnology for Enhancing Medical Imaging. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
15
|
Gong T, Das CM, Yin MJ, Lv TR, Singh NM, Soehartono AM, Singh G, An QF, Yong KT. Development of SERS tags for human diseases screening and detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Constantinou M, Hadjigeorgiou K, Abalde-Cela S, Andreou C. Label-Free Sensing with Metal Nanostructure-Based Surface-Enhanced Raman Spectroscopy for Cancer Diagnosis. ACS APPLIED NANO MATERIALS 2022; 5:12276-12299. [PMID: 36210923 PMCID: PMC9534173 DOI: 10.1021/acsanm.2c02392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 05/03/2023]
Abstract
Surface-Enhanced Raman Spectroscopy (SERS) is a powerful analytical technique for the detection of small analytes with great potential for medical diagnostic applications. Its high sensitivity and excellent molecular specificity, which stems from the unique fingerprint of molecular species, have been applied toward the detection of different types of cancer. The noninvasive and rapid detection offered by SERS highlights its applicability for point-of-care (PoC) deployment for cancer diagnosis, screening, and staging, as well as for predicting tumor recurrence and treatment monitoring. This review provides an overview of the progress in label-free (direct) SERS-based chemical detection for cancer diagnosis with the main focus on the advances in the design and preparation of SERS substrates on the basis of metal nanoparticle structures formed via bottom-up strategies. It begins by introducing a synopsis of the working principles of SERS, including key chemometric approaches for spectroscopic data analysis. Then it introduces the advances of label-free sensing with SERS in cancer diagnosis using biofluids (blood, urine, saliva, sweat) and breath as the detection media. In the end, an outlook of the advances and challenges in cancer diagnosis via SERS is provided.
Collapse
Affiliation(s)
- Marios Constantinou
- Department
of Electrical and Computer Engineering, University of Cyprus, Nicosia, 2112, Cyprus
| | - Katerina Hadjigeorgiou
- Department
of Electrical and Computer Engineering, University of Cyprus, Nicosia, 2112, Cyprus
| | - Sara Abalde-Cela
- International
Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga 4715-330, Portugal
| | - Chrysafis Andreou
- Department
of Electrical and Computer Engineering, University of Cyprus, Nicosia, 2112, Cyprus
| |
Collapse
|
17
|
HER-2-mediated nano-delivery of molecular targeted drug potently suppresses orthotopic epithelial ovarian cancer and metastasis. Int J Pharm 2022; 625:122126. [PMID: 35995316 DOI: 10.1016/j.ijpharm.2022.122126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
The treatment of epithelial ovarian cancer (EOC) has made slow progress due to absence of effective adjuvant chemotherapy that is capable of preventing tumor relapse and metastasis. Molecular targeted drugs such as PARP and PLK1 inhibitors appear to be promising new treatments for EOC. The low EOC cell uptake, poor selectivity and pronounced toxicity, however, greatly compromise their clinical efficacy. Herein, we report that HER-2-mediated nano-delivery of clinical PLK1-targeted drug, volasertib (Vol), while causing little toxicity potently suppresses orthotopic EOC and metastasis. Anti-HER-2 antibody, trastuzumab (Tra), was conjugated onto Vol-loaded polymersomes via click chemistry yielding Tra-PVol with a size of 33 nm and optimally about 5 Tra per polymersome. Tra-PVol exhibited clearly stronger uptake and anti-tumor activity (IC50 = 59 nM) in HER-2 overexpressing SKOV-3 cells than free Vol and non-targeted PVol controls. Both biodistribution and therapeutic studies in orthotopic SKOV-3-Luc tumor-bearing mice displayed that Tra-PVol induced significantly better tumor deposition and retardation than PVol and that intraperitoneal administration outperformed intravenous administration. More interestingly, Tra-PVol was shown to effectively suppress the intraperitoneal metastasis and to markedly prolong the survival time of SKOV-3-Luc tumor-bearing mice. This HER-2 directed molecular therapy emerges as a potential treatment strategy toward EOC.
Collapse
|
18
|
Andreou C, Weissleder R, Kircher MF. Multiplexed imaging in oncology. Nat Biomed Eng 2022; 6:527-540. [PMID: 35624151 DOI: 10.1038/s41551-022-00891-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/06/2021] [Indexed: 01/24/2023]
Abstract
In oncology, technologies for clinical molecular imaging are used to diagnose patients, establish the efficacy of treatments and monitor the recurrence of disease. Multiplexed methods increase the number of disease-specific biomarkers that can be detected simultaneously, such as the overexpression of oncogenic proteins, aberrant metabolite uptake and anomalous blood perfusion. The quantitative localization of each biomarker could considerably increase the specificity and the accuracy of technologies for clinical molecular imaging to facilitate granular diagnoses, patient stratification and earlier assessments of the responses to administered therapeutics. In this Review, we discuss established techniques for multiplexed imaging and the most promising emerging multiplexing technologies applied to the imaging of isolated tissues and cells and to non-invasive whole-body imaging. We also highlight advances in radiology that have been made possible by multiplexed imaging.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Moritz F Kircher
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.,Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Abstract
Current advances in the fabrication of smart nanomaterials and nanostructured surfaces find wide usage in the biomedical field. In this context, nanosensors based on localized surface plasmon resonance exhibit unprecedented optical features that can be exploited to reduce the costs, analytic times, and need for expensive lab equipment. Moreover, they are promising for the design of nanoplatforms with multiple functionalities (e.g., multiplexed detection) with large integration within microelectronics and microfluidics. In this review, we summarize the most recent design strategies, fabrication approaches, and bio-applications of plasmonic nanoparticles (NPs) arranged in colloids, nanoarrays, and nanocomposites. After a brief introduction on the physical principles behind plasmonic nanostructures both as inherent optical detection and as nanoantennas for external signal amplification, we classify the proposed examples in colloid-based devices when plasmonic NPs operate in solution, nanoarrays when they are assembled or fabricated on rigid substrates, and nanocomposites when they are assembled within flexible/polymeric substrates. We highlight the main biomedical applications of the proposed devices and offer a general overview of the main strengths and limitations of the currently available plasmonic nanodevices.
Collapse
|
20
|
Morsby J, Thimes RL, Olson JE, McGarraugh HH, Payne JN, Camden JP, Smith BD. Enzyme Sensing Using 2-Mercaptopyridine-Carbonitrile Reporters and Surface-Enhanced Raman Scattering. ACS OMEGA 2022; 7:6419-6426. [PMID: 35224403 PMCID: PMC8867545 DOI: 10.1021/acsomega.2c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The high sensitivity and functional group selectivity of surface-enhanced Raman scattering (SERS) make it an attractive method for enzyme sensing, but there is currently a severe lack of enzyme substrates that release SERS reporter molecules with favorable detection properties. We find that 2-mercaptopyridine-3-carbonitrile ( o-MPN) and 2-mercaptopyridine-5-carbonitrile ( p-MPN) are highly effective as SERS reporter molecules that can be captured by silver or gold nanoparticles to give intense SERS spectra, each with a distinctive nitrile peak at 2230 cm-1. p-MPN is a more sensitive reporter and can be detected at low nanomolar concentrations. An assay validation study synthesized two novel substrate molecules, Glc-o-MPN and Glc-p-MPN, and showed that they can be cleaved efficiently by β-glucosidase (K m = 228 and 162 μM, respectively), an enzyme with broad industrial and biomedical utility. Moreover, SERS detection of the released reporters ( o-MPN or p-MPN) enabled sensing of β-glucosidase activity and β-glucosidase inhibition. Comparative experiments using a crude almond flour extract showed that the presence of β-glucosidase activity could be confirmed by SERS detection in a much shorter time period (>10 time shorter) than by UV-vis absorption detection. It is likely that a wide range of enzyme assays and diagnostic tests can be developed using 2-mercaptopyridine-carbonitriles as SERS reporter molecules.
Collapse
Affiliation(s)
- Janeala
J. Morsby
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Rebekah L. Thimes
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Jacob E. Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Hannah H. McGarraugh
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Jason N. Payne
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Jon P. Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| |
Collapse
|
21
|
Liu H, Gao X, Xu C, Liu D. SERS Tags for Biomedical Detection and Bioimaging. Theranostics 2022; 12:1870-1903. [PMID: 35198078 PMCID: PMC8825578 DOI: 10.7150/thno.66859] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/09/2021] [Indexed: 11/05/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as a valuable technique for molecular identification. Due to the characteristics of high sensitivity, excellent signal specificity, and photobleaching resistance, SERS has been widely used in the fields of environmental monitoring, food safety, and disease diagnosis. By attaching the organic molecules to the surface of plasmonic nanoparticles, the obtained SERS tags show high-performance multiplexing capability for biosensing. The past decade has witnessed the progress of SERS tags for liquid biopsy, bioimaging, and theranostics applications. This review focuses on the advances of SERS tags in biomedical fields. We first introduce the building blocks of SERS tags, followed by the summarization of recent progress in SERS tags employed for detecting biomarkers, such as DNA, miRNA, and protein in biological fluids, as well as imaging from in vitro cell, bacteria, tissue to in vivo tumors. Further, we illustrate the appealing applications of SERS tags for delineating tumor margins and cancer diagnosis. In the end, perspectives of SERS tags projecting into the possible obstacles are deliberately proposed in future clinical translation.
Collapse
Affiliation(s)
- Huiqiao Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin 300000, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Kenry, Nicolson F, Clark L, Panikkanvalappil SR, Andreiuk B, Andreou C. Advances in Surface Enhanced Raman Spectroscopy for in Vivo Imaging in Oncology. Nanotheranostics 2022; 6:31-49. [PMID: 34976579 PMCID: PMC8671959 DOI: 10.7150/ntno.62970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, the application of surface enhanced Raman scattering (SERS) nanoparticles for preclinical cancer imaging has attracted increasing attention. Raman imaging with SERS nanoparticles offers unparalleled sensitivity, providing a platform for molecular targeting, and granting multiplexed and multimodal imaging capabilities. Recent progress has been facilitated not only by the optimization of the SERS contrast agents themselves, but also by the developments in Raman imaging approaches and instrumentation. In this article, we review the principles of Raman scattering and SERS, present advances in Raman instrumentation specific to cancer imaging, and discuss the biological means of ensuring selective in vivo uptake of SERS contrast agents for targeted, multiplexed, and multimodal imaging applications. We offer our perspective on areas that must be addressed in order to facilitate the clinical translation of SERS contrast agents for in vivo imaging in oncology.
Collapse
Affiliation(s)
- Kenry
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Louise Clark
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Chrysafis Andreou
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
23
|
Andreiuk B, Nicolson F, Clark LM, Panikkanvalappil SR, Kenry, Rashidian M, Harmsen S, Kircher MF. Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications. Nanotheranostics 2022; 6:10-30. [PMID: 34976578 PMCID: PMC8671966 DOI: 10.7150/ntno.61244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) nanotags hold a unique place among bioimaging contrast agents due to their fingerprint-like spectra, which provide one of the highest degrees of detection specificity. However, in order to achieve a sufficiently high signal intensity, targeting capabilities, and biocompatibility, all components of nanotags must be rationally designed and tailored to a specific application. Design parameters include fine-tuning the properties of the plasmonic core as well as optimizing the choice of Raman reporter molecule, surface coating, and targeting moieties for the intended application. This review introduces readers to the principles of SERS nanotag design and discusses both established and emerging protocols of their synthesis, with a specific focus on the construction of SERS nanotags in the context of bioimaging and theranostics.
Collapse
Affiliation(s)
- Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Louise M. Clark
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Kenry
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Stefan Harmsen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 022115, USA
| |
Collapse
|
24
|
Nanotechnology for Enhancing Medical Imaging. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_8-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
25
|
Canetta E. Current and Future Advancements of Raman Spectroscopy Techniques in Cancer Nanomedicine. Int J Mol Sci 2021; 22:13141. [PMID: 34884946 PMCID: PMC8658204 DOI: 10.3390/ijms222313141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
Raman scattering is one of the most used spectroscopy and imaging techniques in cancer nanomedicine due to its high spatial resolution, high chemical specificity, and multiplexity modalities. The flexibility of Raman techniques has led, in the past few years, to the rapid development of Raman spectroscopy and imaging for nanodiagnostics, nanotherapy, and nanotheranostics. This review focuses on the applications of spontaneous Raman spectroscopy and bioimaging to cancer nanotheranostics and their coupling to a variety of diagnostic/therapy methods to create nanoparticle-free theranostic systems for cancer diagnostics and therapy. Recent implementations of confocal Raman spectroscopy that led to the development of platforms for monitoring the therapeutic effects of anticancer drugs in vitro and in vivo are also reviewed. Another Raman technique that is largely employed in cancer nanomedicine, due to its ability to enhance the Raman signal, is surface-enhanced Raman spectroscopy (SERS). This review also explores the applications of the different types of SERS, such as SERRS and SORS, to cancer diagnosis through SERS nanoprobes and the detection of small-size biomarkers, such as exosomes. SERS cancer immunotherapy and immuno-SERS (iSERS) microscopy are reviewed.
Collapse
Affiliation(s)
- Elisabetta Canetta
- Faculty of Sport, Applied Health and Performance Science, St Mary's University, Twickenham, London TW1 4SX, UK
| |
Collapse
|
26
|
Lin S, Cheng Z, Li Q, Wang R, Yu F. Toward Sensitive and Reliable Surface-Enhanced Raman Scattering Imaging: From Rational Design to Biomedical Applications. ACS Sens 2021; 6:3912-3932. [PMID: 34726891 DOI: 10.1021/acssensors.1c01858] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early specific detection through indicative biomarkers and precise visualization of lesion sites are urgent requirements for clinical disease diagnosis. However, current detection and optical imaging methods are insufficient for these demands. Molecular imaging technologies are being intensely studied for reliable medical diagnosis. In the past several decades, molecular imaging with surface-enhanced Raman scattering (SERS) has significant advances from analytical chemistry to medical science. SERS is the inelastic scattering generated from the interaction between photons and substances, presenting molecular structure information. The outstanding SERS virtues of high sensitivity, high specificity, and resistance to biointerference are highly advantageous for biomarker detection in a complex biological matrix. In this work, we review recent progress on the applications of SERS imaging in clinical diagnostics. With the assistance of SERS imaging, the detection of disease-related proteins, nucleic acids, small molecules, and pH of the cellular microenvironment can be implemented for adjuvant medical diagnosis. Moreover, multimodal imaging integrates the high penetration and high speed of other imaging modalities and imaging precision of SERS imaging, resulting in final complete and accurate imaging outcomes and exhibiting robust potential in the discrimination of pathological tissues and surgical navigation. As a promising molecular imaging technology, SERS imaging has achieved remarkable performance in clinical diagnostics and the biomedical realm. It is expected that this review will provide insights for further development of SERS imaging and promote the rapid progress and successful translation of advanced molecular imaging with clinical diagnostics.
Collapse
Affiliation(s)
- Shanshan Lin
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Qifu Li
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
27
|
Henderson E, Huynh G, Wilson K, Plebanski M, Corrie S. The Development of Nanoparticles for the Detection and Imaging of Ovarian Cancers. Biomedicines 2021; 9:1554. [PMID: 34829783 PMCID: PMC8615601 DOI: 10.3390/biomedicines9111554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022] Open
Abstract
Ovarian cancer remains as one of the most lethal gynecological cancers to date, with major challenges associated with screening, diagnosis and treatment of the disease and an urgent need for new technologies that can meet these challenges. Nanomaterials provide new opportunities in diagnosis and therapeutic management of many different types of cancers. In this review, we highlight recent promising developments of nanoparticles designed specifically for the detection or imaging of ovarian cancer that have reached the preclinical stage of development. This includes contrast agents, molecular imaging agents and intraoperative aids that have been designed for integration into standard imaging procedures. While numerous nanoparticle systems have been developed for ovarian cancer detection and imaging, specific design criteria governing nanomaterial targeting, biodistribution and clearance from the peritoneal cavity remain key challenges that need to be overcome before these promising tools can accomplish significant breakthroughs into the clinical setting.
Collapse
Affiliation(s)
- Edward Henderson
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Gabriel Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- ARC Training Center for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
28
|
Qiu C, Cheng Z, Lv C, Wang R, Yu F. Development of bioorthogonal SERS imaging probe in biological and biomedical applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Zhang Y, Zhao R, Liu J, Kong H, Zhang K, Zhang YN, Kong X, Zhang Q, Zhao Y. Hierarchical nano-to-molecular disassembly of boron dipyrromethene nanoparticles for enhanced tumor penetration and activatable photodynamic therapy. Biomaterials 2021; 275:120945. [PMID: 34126410 DOI: 10.1016/j.biomaterials.2021.120945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022]
Abstract
The development of activatable photosensitizers (PSs) is of particular interest for achieving tumor photodynamic therapy (PDT) with minimal side effects. However, the in vivo applications of PSs are limited by complex physiological and biological delivery barriers. Herein, boron dipyrromethene (BDP)-based nanoparticles are developed through the self-assembly of a multifunctional "one-for-all" building block for enhanced tumor penetration and activatable PDT. The nanoparticles show excellent colloidal stability and long circulation lifetime in blood. Once they reach the tumor site, the first-stage size reduction occurs due to the hydrolysis of the Schiff base bond between polyethylene glycol and the cyclic Arg-Gly-Asp peptide in the acidic tumor microenvironment (pH~6.5), facilitating tumor penetration and specific recognition by cancer cells overexpressing integrin ανβ3 receptors. Upon the endocytosis by cancer cells, the second-stage size reduction is triggered by more acidic pH in lysosomes (pH~4.5). Importantly, the protonated diethylamino groups can block photoinduced electron transfer from the amine donor to the excited PSs and accelerate complete disassembly of the nanoparticles into single PS molecule, with the recovery of the fluorescence and photoactivity for efficient PDT. This study presents a smart PS delivery strategy involving acidity-triggered hierarchical disassembly from the nano to molecular scale for precise tumor PDT.
Collapse
Affiliation(s)
- Yonghe Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronics, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Hao Kong
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Kebiao Zhang
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuan-Ning Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Quan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
30
|
Abstract
IR780, a small molecule with a strong optical property and excellent photoconversion efficiency following near infrared (NIR) irradiation, has attracted increasing attention in the field of cancer treatment and imaging. This review is focused on different IR780-based nanoplatforms and the application of IR780-based nanomaterials for cancer bioimaging and therapy. Thus, this review summarizes the overall aspects of IR780-based nanomaterials that positively impact cancer biomedical applications.
Collapse
Affiliation(s)
- Long Wang
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chengcheng Niu
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Ultrasound Diagnosis and Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
31
|
Wei Q, He J, Wang S, Hua S, Qi Y, Li F, Ling D, Zhou M. Low-dose X-ray enhanced tumor accumulation of theranostic nanoparticles for high-performance bimodal imaging-guided photothermal therapy. J Nanobiotechnology 2021; 19:155. [PMID: 34039369 PMCID: PMC8152352 DOI: 10.1186/s12951-021-00875-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Theranostic nanoparticles (NPs) have achieved rapid development owing to their capacity for personalized multimodal diagnostic imaging and antitumor therapy. However, the efficient delivery and bulk accumulation of NPs in tumors are still the decisive factors in improving therapeutic effect. It is urgent to seek other methods to alters tumor microenvironment (like vascular permeability and density) for enhancing the efficiency of nanoparticles delivery and accumulation at the tumor site. METHODS Herein, we developed a Raman-tagged hollow gold nanoparticle (termed as HAuNP@DTTC) with surface-enhanced Raman scattering (SERS) property, which could be accumulated efficiently in tumor site with the pre-irradiation of low-dose (3 Gy) X-ray and then exerted highly antitumor effect in breast cancer model. RESULTS The tumor growth inhibition (TGI) of HAuNP@DTTC-induced photothermal therapy (PTT) was increased from 60% for PTT only to 97%, and the lethal distant metastasis of 4T1 breast cancer (such as lung and liver) were effectively inhibited under the X-ray-assisted PTT treatment. Moreover, with the strong absorbance induced by localized surface plasmon resonance in near-infrared (NIR) region, the signals of Raman/photoacoustic (PA) imaging in tumor was also significantly enhanced after the administration of HAuNP@DTTC, indicating it could be used as the Raman/PA imaging and photothermal agent simultaneously under 808 nm laser irradiation. CONCLUSIONS Our studied of the as-prepared HAuNP@DTTC integrated the Raman/PA imaging and PTT functions into the single platform, and showed the good prospects for clinical applications especially with the low-dose X-ray irradiation as an adjuvant, which will be a productive strategy for enhancing drug delivery and accumulation in tumor theranostics.
Collapse
Affiliation(s)
- Qiaolin Wei
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
- Institute of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jian He
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Shuaifei Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiyuan Hua
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
- State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Establishment of a reliable scheme for obtaining highly stable SERS signal of biological serum. Biosens Bioelectron 2021; 189:113315. [PMID: 34049082 DOI: 10.1016/j.bios.2021.113315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/27/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
As a rapid and non-destructive biological serum detection method, SERS technology was widely used in the screening and medical diagnosis of various diseases by combining the analysis of serum SERS spectrum and multivariate statistical algorithm. Because of the high complexity of serum components and the variability of SERS spectra, which often resulted in the phenomenon that the SERS spectrum of the same biological serum was significantly different due to the different test conditions. In this experiment, through the dilution treatment of the serum and the systematic test of the serum of all concentration gradients with lasers of wavelength of 785, 633 and 532 nm, the most suitable conditions for detecting the serum were investigated. The experimental results showed that only when the serum is diluted to low concentration (10 ppm), the SERS spectrum with high reproducibility and stability could be obtained, furthermore, the low concentration serum had weak tolerance to laser, and 532 nm laser was not suitable for serum detection. In this paper, a set of test scheme for obtaining highly stable serum SERS spectra was established by using high-performance gold nanoparticles (Au NPs) as the active substrate of SERS. Through comparative analysis of SERS spectrum of serum of normal people and cervical cancer, the reliability of the established low-concentration serum test program was verified, as well as its great potential advantages in disease screening and diagnosis.
Collapse
|
33
|
Liu CH, Grodzinski P. Nanotechnology for Cancer Imaging: Advances, Challenges, and Clinical Opportunities. Radiol Imaging Cancer 2021; 3:e200052. [PMID: 34047667 PMCID: PMC8183257 DOI: 10.1148/rycan.2021200052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
Nanoparticle (NP) imaging applications have the potential to improve cancer diagnostics, therapeutics, and treatment management. In biomedical research and clinical practice, NPs can serve as labels or labeled carriers for monitoring drug delivery or serve as imaging agents for enhanced imaging contrast, as well as providing improved signal sensitivity and specificity for in vivo imaging of molecular and cellular processes. These qualities offer exciting opportunities for NP-based imaging agents to address current limitations in oncologic imaging. Despite substantial advancements in NP design and development, very few NP-based imaging agents have translated into clinics within the past 5 years. This review highlights some promising NP-enabled imaging techniques and their potential to address current clinical cancer imaging limitations. Although most examples provided herein are from the preclinical space, discussed imaging solutions could offer unique in vivo tools to solve biologic questions, improve cancer treatment effectiveness, and inspire clinical translation innovation to improve patient care. Keywords: Molecular Imaging-Cancer, Molecular Imaging-Nanoparticles, Molecular Imaging-Optical Imaging, Metastases, Oncology, Surgery, Treatment Effects.
Collapse
Affiliation(s)
- Christina H. Liu
- From the Cancer Imaging Program, National Cancer Institute, National
Institutes of Health, 9609 Medical Center Dr, Room 4W216, Rockville, MD
20850
| | - Piotr Grodzinski
- From the Cancer Imaging Program, National Cancer Institute, National
Institutes of Health, 9609 Medical Center Dr, Room 4W216, Rockville, MD
20850
| |
Collapse
|
34
|
Nicolson F, Kircher MF, Stone N, Matousek P. Spatially offset Raman spectroscopy for biomedical applications. Chem Soc Rev 2021; 50:556-568. [PMID: 33169761 PMCID: PMC8323810 DOI: 10.1039/d0cs00855a] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/24/2022]
Abstract
In recent years, Raman spectroscopy has undergone major advancements in its ability to probe deeply through turbid media such as biological tissues. This progress has been facilitated by the advent of a range of specialist techniques based around spatially offset Raman spectroscopy (SORS) to enable non-invasive probing of living tissue through depths of up to 5 cm. This represents an improvement in depth penetration of up to two orders of magnitude compared to what can be achieved with conventional Raman methods. In combination with the inherently high molecular specificity of Raman spectroscopy, this has therefore opened up entirely new prospects for a range of new analytical applications across multiple fields including medical diagnosis and disease monitoring. This article discusses SORS and related variants of deep Raman spectroscopy such as transmission Raman spectroscopy (TRS), micro-SORS and surface enhanced spatially offset Raman spectroscopy (SESORS), and reviews the progress made in this field during the past 5 years including advances in non-invasive cancer diagnosis, monitoring of neurotransmitters, and assessment of bone disease.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute & Harvard Medical SchoolBostonMA 02215USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute & Harvard Medical SchoolBostonMA 02215USA
- Department of Radiology, Brigham & Women's Hospital & Harvard Medical SchoolBostonMA 022115USA
| | - Nick Stone
- School of Physics and Astronomy, University of ExeterExeterEX4 4QLUK
- Royal Devon and Exeter NHS Foundation TrustBarrack RoadExeterDevonEX2 5DWUK
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRIHarwellOxfordOX11 0QXUK
| |
Collapse
|
35
|
Nicolson F, Kircher MF. Theranostics: Agents for Diagnosis and Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
36
|
Yin Y, Mei R, Wang Y, Zhao X, Yu Q, Liu W, Chen L. Silica-Coated, Waxberry-like Surface-Enhanced Raman Resonant Scattering Tag-Pair with Near-Infrared Raman Dye Encoding: Toward In Vivo Duplexing Detection. Anal Chem 2020; 92:14814-14821. [PMID: 33045167 DOI: 10.1021/acs.analchem.0c03674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface-enhanced Raman resonant scattering (SERRS) tags encoded with near-infrared (NIR) Raman reporters showed great potential for in vivo detection owing to their ultrasensitivity. However, in vivo signal stability of such tags is a remaining problem due to the lack of suitable silica coating method because the weakly adsorbed NIR reporters tend to detach from traditional gold nanosubstrates in the ethanol-rich and high pH conditions, which are commonly used for silica coating. Herein, we propose a silica coating method for NIR SERRS tags by using waxberry-like gold nanoparticles (NPs) as substrates. The lipid bilayer of the NPs played a crucial role in the coating, which can encapsulate the NIR Raman reporter via hydrophobic interactions and prevent the interference from a harsh medium. Thus, the silica-coated tags well preserved ultrasensitivity of bare tags and simultaneously gained satisfactory signal stability in vivo. Moreover, the coating method is compatible for the encapsulation of a variety of thiol group-free NIR reporters (as exemplified by DTTC, Cy7, IR792, and DIR), relying on which a tag-pair with distinguishable peaks can be screened (labeling with DTTC and Cy7, respectively). In vivo duplexing detection revealed that the tag-pair-labeled liposome was cleared faster in the liver than polydopamine NPs within one mouse. The developed method paves an easy way for gaining high-quality SERRS tags and will promote their in vivo multiplex analysis and diagnostics applications.
Collapse
Affiliation(s)
- Yingchao Yin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Qian Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Wanhui Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
37
|
Han W, Liu X, Wang L, Zhou X. Engineering of lipid microbubbles-coated copper and selenium nanoparticles: Ultrasound-stimulated radiation of anticancer activity ian human ovarian cancer cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Du Z, Qi Y, He J, Zhong D, Zhou M. Recent advances in applications of nanoparticles in SERS in vivo imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1672. [PMID: 33073511 DOI: 10.1002/wnan.1672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 12/22/2022]
Abstract
Surface-enhanced Raman scattering (SERS) technique has been regarded as one of the most important research methods in the field of single-molecule science. Since the previous decade, the application of nanoparticles for in vivo SERS imaging becomes the focus of research. To enhance the performance of SERS imaging, researchers have developed several SERS nanotags such as gold nanostars, copper-based nanomaterials, semiconducting quantum dots, and so on. The development of Raman equipment is also necessary owing to the current limitations. This review describes the recent advances of SERS nanoparticles and their applications for in vivo imaging in detail. Specific examples highlighting the in vivo cancer imaging and treatment application of SERS nanoparticles. A perspective on the challenges and opportunities of nanoparticles in SERS in vivo imaging is also provided. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Zhen Du
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yuchen Qi
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jian He
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Danni Zhong
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Min Zhou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.,The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1624. [PMID: 32162485 PMCID: PMC9469762 DOI: 10.1002/wnan.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Surgical resection is a mainstay treatment for solid tumors. Yet, methods to distinguish malignant from healthy tissue are primarily limited to tactile and visual cues as well as the surgeon's experience. As a result, there is a possibility that a positive surgical margin (PSM) or the presence of residual tumor left behind after resection may occur. It is well-documented that PSMs can negatively impact treatment outcomes and survival, as well as pose an economic burden. Therefore, surgical tumor imaging techniques have emerged as a promising method to decrease PSM rates. Nanoparticles (NPs) have unique characteristics to serve as optical contrast agents during image-guided surgery (IGS). Recently, there has been tremendous growth in the volume and types of NPs used for IGS, including clinical trials. Herein, we describe the most recent contributions of nanotechnology for surgical tumor identification. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Nicholas E. Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
40
|
Zhang C, Cui X, Yang J, Shao X, Zhang Y, Liu D. Stimulus-responsive surface-enhanced Raman scattering: a "Trojan horse" strategy for precision molecular diagnosis of cancer. Chem Sci 2020; 11:6111-6120. [PMID: 34094100 PMCID: PMC8159367 DOI: 10.1039/d0sc01649g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/15/2020] [Indexed: 11/21/2022] Open
Abstract
Molecular diagnosis has played an increasingly important role in cancer detection. However, it remains challenging to develop an in situ analytical method capable of profiling the molecular phenotype of tumors for precision cancer diagnosis. A "Trojan horse" strategy based on stimulus-responsive surface-enhanced Raman scattering (SR-SERS) is reported here for selectively recording the comprehensive molecular information of tumors in situ, without resorting to destructive sample preparation and complex data analysis. This technique is employed to delineate the margin between tumors and normal tissues with high accuracy, and to further discriminate the molecular fingerprints of tumors in the early and late stages. Based on molecular profiling, we discovered that the signal ratios of fatty acid-to-phenylalanine could serve as promising indicators for identifying the primary tumors in different stages. This simple SR-SERS technique also provides a potential useful means for identifying tumor classifications or distinguishing primary and metastatic tumors.
Collapse
Affiliation(s)
- Cai Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Xiaoyu Cui
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Jie Yang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Xueguang Shao
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Yuying Zhang
- School of Medicine, Nankai University Tianjin 300071 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| |
Collapse
|
41
|
Wang P, Jiang S, Li Y, Luo Q, Lin J, Hu L, Fan L. Downshifting nanoprobes with follicle stimulating hormone peptide fabrication for highly efficient NIR II fluorescent bioimaging guided ovarian tumor surgery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102198. [PMID: 32334101 DOI: 10.1016/j.nano.2020.102198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/05/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
Failure of intraoperative detection, early minimal lesion and microscopic residual tumor margins elimination causes metastatic diffusion and lethal recurrence. However, during surgical process, surgeons can only rely largely on palpation and visual examination. Intraoperative bioimaging with the aid of the second near-infrared fluorescent (NIR II FL) light has entered the surgical excision area to bridge the gap of preoperative bioimaging and intraoperative resection. Here, we demonstrate that the follicle-stimulating hormone peptide (FSHP) engineered NIR II downshifting nanoparticles (DSNPs@FSHP) selectively undergo efficient ovarian tumor targeting property. Owing to the special biocompatibility of nanoprobes, this strategy provided rapid body clearance and efficient tumor targeting with significantly tumor to background (T/B) ratio enhanced for surgical excision. Based on these, this strategy can successfully empower the detection and surgical removal for both ovarian tumor lesions and ovarian tumor margins by NIR II FL bioimaging.
Collapse
Affiliation(s)
- Peiyuan Wang
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, PR China; Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, PR China
| | - Suhua Jiang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, PR China
| | - Yang Li
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, PR China
| | - Qiang Luo
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, PR China
| | - Jinyan Lin
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, PR China
| | - Lidan Hu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Biochemistry and Molecular Biology, University of South China, Hengyang, PR China
| | - Lingling Fan
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, PR China; Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, PR China; Obstetrics and Gynecology Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
42
|
Schreiber CL, Zhai C, Dempsey JM, McGarraugh HH, Matthews BP, Christmann CR, Smith B. Paired Agent Fluorescence Imaging of Cancer in a Living Mouse Using Preassembled Squaraine Molecular Probes with Emission Wavelengths of 690 and 830 nm. Bioconjug Chem 2020; 31:214-223. [PMID: 31756298 PMCID: PMC7768864 DOI: 10.1021/acs.bioconjchem.9b00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New methods are described for the construction of targeted fluorescence probes for imaging cancer and the assessment of tumor targeting performance in a living mouse model. A novel noncovalent assembly process was used to fabricate a set of structurally related targeted fluorescent probes with modular differences in three critical assembly components: the emission wavelength of the squaraine fluorochrome, the number of cRGDfK peptide units that target the cancer cells, and the length of the polyethylene glycol chains as pharmacokinetic controllers. Selective targeting of cancer cells was proven by a series of cell microscopy experiments followed by in vivo imaging of subcutaneous tumors in living mice. The mouse imaging studies included a mock surgery that completely removed a fluorescently labeled tumor. Enhanced tumor accumulation due to probe targeting was first evaluated by conducting Single Agent Imaging (SAI) experiments that compared tumor imaging performance of a targeted probe and untargeted probe in separate mouse cohorts. Although there was imaging evidence for enhanced tumor accumulation of the targeted probe, there was moderate scatter in the data due to tumor-to-tumor variability of the vasculature structure and interstitial pressure. A subsequent Paired Agent Imaging (PAI) study coinjected a binary mixture of targeted probe (with emission at 690 nm) and untargeted probe (with emission at 830 nm) into the same tumor-burdened animal. The conclusion of the PAI experiment also indicated enhanced tumor accumulation of the targeted probe, but the statistical significance was much higher, even though the experiment required a much smaller cohort of mice. The imaging data from the PAI experiment was analyzed to determine the targeted probe's Binding Potential (BP) for available integrin receptors within the tumor tissue. In addition, pixelated maps of BP within each tumor indicated a heterogeneous spatial distribution of BP values. The results of this study show that the combination of fluorescent probe preassembly and PAI is a promising new way to rapidly develop targeted fluorescent probes for tumors with high BP and eventual use in clinical applications such as targeted therapy, image guided surgery, and personalized medicine.
Collapse
Affiliation(s)
- Cynthia L. Schreiber
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Janel M. Dempsey
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hannah H. McGarraugh
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Braden P. Matthews
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Caroline R. Christmann
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
43
|
Jabłońska A, Jaworska A, Kasztelan M, Berbeć S, Pałys B. Graphene and Graphene Oxide Applications for SERS Sensing and Imaging. Curr Med Chem 2020; 26:6878-6895. [PMID: 30289065 DOI: 10.2174/0929867325666181004152247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/22/2022]
Abstract
Surface Enhanced Raman Spectroscopy (SERS) has a long history as an ultrasensitive platform for the detection of biological species from small aromatic molecules to complex biological systems as circulating tumor cells. Thanks to unique properties of graphene, the range of SERS applications has largely expanded. Graphene is efficient fluorescence quencher improving quality of Raman spectra. It contributes also to the SERS enhancement factor through the chemical mechanism. In turn, the chemical flexibility of Reduced Graphene Oxide (RGO) enables tunable adsorption of molecules or cells on SERS active surfaces. Graphene oxide composites with SERS active nanoparticles have been also applied for Raman imaging of cells. This review presents a survey of SERS assays employing graphene or RGO emphasizing the improvement of SERS enhancement brought by graphene or RGO. The structure and physical properties of graphene and RGO will be discussed too.
Collapse
Affiliation(s)
- Anna Jabłońska
- Chemical and Biological Research Centre, University of Warsaw, Zwirki i Wigury str. 101, Warsaw, PL-02- 089, Poland
| | - Aleksandra Jaworska
- Faculty of Chemistry, University of Warsaw, Pasteur str. 1, Warsaw, PL-02-093, Poland
| | - Mateusz Kasztelan
- Faculty of Chemistry, University of Warsaw, Pasteur str. 1, Warsaw, PL-02-093, Poland
| | - Sylwia Berbeć
- Faculty of Chemistry, University of Warsaw, Pasteur str. 1, Warsaw, PL-02-093, Poland
| | - Barbara Pałys
- Chemical and Biological Research Centre, University of Warsaw, Zwirki i Wigury str. 101, Warsaw, PL-02- 089, Poland
| |
Collapse
|
44
|
Fang W, Zhu W, Chen H, Zhang H, Hong S, Wei W, Zhao T. MRI Enhancement and Tumor Targeted Drug Delivery Using Zn2+-Doped Fe3O4 Core/Mesoporous Silica Shell Nanocomposites. ACS APPLIED BIO MATERIALS 2020; 3:1690-1697. [DOI: 10.1021/acsabm.9b01244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Weijun Fang
- College of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Wenjuan Zhu
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Hu Chen
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Hanyuan Zhang
- Department of Sports Medicine and Arthroscopic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Shi Hong
- College of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Wenmei Wei
- College of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Tingting Zhao
- College of Basic Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
45
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1565] [Impact Index Per Article: 313.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
46
|
Li N, Zuo H, Chen L, Liu H, Zhou J, Yao Y, Xu B, Gong H, Weng Y, Hu Q, Song Q, Peng M, Cheng Y. Circulating Tumor Cell Detection In Epithelial Ovarian Cancer Using Dual-Component Antibodies Targeting EpCAM And FRα. Cancer Manag Res 2019; 11:10939-10948. [PMID: 32021417 PMCID: PMC6978676 DOI: 10.2147/cmar.s211455] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/02/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose Circulating tumor cell (CTC) detection methods based on epithelial cell adhesion molecule (EpCAM) have low detection rates in epithelial ovarian cancer (EOC). Meanwhile, folate receptor alpha (FRα) has high expression in EOC cells. We explored the feasibility of combining FRα and EpCAM as CTC capture targets in EOC. Patients and methods EpCAM and FRα antibodies were linked to magnetic nanospheres (MNs) using the principle of carbodiimide chemistry. Blood samples from healthy donor spiked with A2780 ovarian cancer cells were used for detecting the capture rate. Ninety-five blood samples from 30 patients with EOC were used for comparing the positive rate of detection when using anti-EpCAM-MNs alone with that when using combination of anti-EpCAM-MNs and anti-FRα-MNs. Samples from 28 patients initially diagnosed with EOC and 20 patients with ovarian benign disease were used for evaluating the sensitivity and specificity of combination of anti-EpCAM-MNs and anti-FRα-MNs. Results Regression analysis between the number of recovered and that of spiked A2780 cells revealed yEpCAM = 0.535x (R2 = 0.99), yFRα = 0.901x (R2 = 0.99), and yEpCAM+FRα = 0.928x (R2 = 0.99). In mixtures of A2780 and MCF7 cells, the capture rate was 92% using the combination of anti-EpCAM-MNs and anti-FRα-MNs, exceeding the rate when using anti-EpCAM-MNs or anti-FRα-MNs alone by approximately 20% (P < 0.01). The combination of anti-EpCAM-MNs and anti-FRα-MNs showed a significantly increased positive rate of CTC detection in EOC patients compared with anti-EpCAM-MNs alone (χ2 = 14.45, P < 0.001). Sensitivity values were 0.536 and 0.75 and specificity values were 0.9 and 0.85 when using anti-EpCAM-MNs alone and when using the combination of anti-EpCAM-MNs and anti-FRα-MNs, respectively. Conclusion The combination of FRα and EpCAM is feasible as a CTC capture target of CTC detection in patients with EOC.
Collapse
Affiliation(s)
- Na Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Hao Zuo
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Luojun Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Huali Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Jin Zhou
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yi Yao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Bin Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Hongyun Gong
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yiming Weng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Qibin Song
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
47
|
Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol 2019; 12:137. [PMID: 31847897 PMCID: PMC6918551 DOI: 10.1186/s13045-019-0833-3] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
In the fight against cancer, early detection is a key factor for successful treatment. However, the detection of cancer in the early stage has been hindered by the intrinsic limits of conventional cancer diagnostic methods. Nanotechnology provides high sensitivity, specificity, and multiplexed measurement capacity and has therefore been investigated for the detection of extracellular cancer biomarkers and cancer cells, as well as for in vivo imaging. This review summarizes the latest developments in nanotechnology applications for cancer diagnosis. In addition, the challenges in the translation of nanotechnology-based diagnostic methods into clinical applications are discussed.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China
- Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Xiaomei Gao
- Department of Pathology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China.
| | - Ting Liu
- Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
48
|
Talebzadeh S, Queffélec C, Knight DA. Surface modification of plasmonic noble metal-metal oxide core-shell nanoparticles. NANOSCALE ADVANCES 2019; 1:4578-4591. [PMID: 36133114 PMCID: PMC9443677 DOI: 10.1039/c9na00581a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/28/2019] [Indexed: 05/31/2023]
Abstract
A comprehensive survey on the methods for the surface modification of plasmonic noble metal-metal oxide core-shell nanoparticles is presented. The review highlights various strategies for covalent attachment and electrostatic binding of molecules and molecular ions to core-shell nanoparticles with a focus on plasmonically active silver and gold nanoparticles encapsulated by SiO2 and TiO2 shells.
Collapse
Affiliation(s)
- Somayeh Talebzadeh
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology 150 West University Boulevard Melbourne Florida 32901 USA
| | | | - D Andrew Knight
- Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology 150 West University Boulevard Melbourne Florida 32901 USA
| |
Collapse
|
49
|
Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Surgical resection is the primary and most effective treatment for most patients with solid tumors. However, patients suffer from postoperative recurrence and metastasis. In the past years, emerging nanotechnology has led the way to minimally invasive, precision and intelligent oncological surgery after the rapid development of minimally invasive surgical technology. Advanced nanotechnology in the construction of nanomaterials (NMs) for precision imaging-guided surgery (IGS) as well as surgery-assisted synergistic therapy is summarized, thereby unlocking the advantages of nanotechnology in multimodal IGS-assisted precision synergistic cancer therapy. First, mechanisms and principles of NMs to surgical targets are briefly introduced. Multimodal imaging based on molecular imaging technologies provides a practical method to achieve intraoperative visualization with high resolution and deep tissue penetration. Moreover, multifunctional NMs synergize surgery with adjuvant therapy (e.g., chemotherapy, immunotherapy, phototherapy) to eliminate residual lesions. Finally, key issues in the development of ideal theranostic NMs associated with surgical applications and challenges of clinical transformation are discussed to push forward further development of NMs for multimodal IGS-assisted precision synergistic cancer therapy.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zijian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
50
|
Peerzade SAMA, Qin X, Laroche FJ, Palantavida S, Dokukin M, Feng H, Sokolov I. Ultrabright fluorescent silica nanoparticles for in vivo targeting of xenografted human tumors and cancer cells in zebrafish. NANOSCALE 2019; 11:22316-22327. [PMID: 31724677 PMCID: PMC7384872 DOI: 10.1039/c9nr06371d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
New ultrabright fluorescent silica nanoparticles capable of the fast targeting of epithelial tumors in vivo are presented. The as-synthesized folate-functionalized ultrabright particles of 30-40 nm are 230 times brighter than quantum dots (QD450) and 50% brighter than the polymer dots with similar spectra (excitation 365 nm and emission 486 nm). To decrease non-specific targeting, particles are coated with polyethylene glycol (PEG). We demonstrate the in vivo targeting of xenographic human cervical epithelial tumors (HeLa cells) using zebrafish as a model system. The particles target tumors (and probably even individual HeLa cells) as small as 10-20 microns within 20-30 minutes after blood injection. To demonstrate the advantages of ultrabrightness, we repeated the experiments with similar but 200× less bright particles. Compared to those, ultrabright particles showed ∼3× faster tumor detection and ∼2× higher relative fluorescent contrast of tumors/cancer cells.
Collapse
Affiliation(s)
| | - Xiaodan Qin
- Departments of Pharmacology and Medicine, The Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Fabrice J.F. Laroche
- Departments of Pharmacology and Medicine, The Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Shajesh Palantavida
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
| | - Maxim Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, The Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Igor Sokolov
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Physics, Tufts University, Medford, MA 02155, USA
| |
Collapse
|