1
|
Fan G, Hou S, Zhang W, Jiang H, Xiao F, Yu J, Tian L. Polymer-DNA Carriers Co-Deliver Photosensitizer and siRNA for Light-Promoted Gene Transfection and Hypoxia-Relieved Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202405600. [PMID: 38757208 DOI: 10.1002/anie.202405600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Photochemical internalization is an efficient strategy relying on photodynamic reactions to promote siRNA endosomal escape for the success of RNA-interference gene regulation, which makes gene-photodynamic combined therapy highly synergistic and efficient. However, it is still desired to explore capable carriers to improve the delivery efficiency of the immiscible siRNA and organic photosensitizers simultaneously. Herein, we employ a micellar nanostructure (PSNA) self-assembled from polymer-DNA molecular chimeras to fulfill this task. PSNA can plentifully load photosensitizers in its hydrophobic core simply by the nanoprecipitation method. Moreover, it can organize siRNA self-assembly by the densely packed DNA shell, which leads to a higher loading capacity than the typical electrostatic condensation method. The experimental results prove that this PSNA carrier can greatly facilitate siRNA escape from the endosome/lysosome and enhance transfection. Accordingly, the PSNA-administrated therapy exhibits a significantly improved anti-tumor efficacy owing to the highly efficient co-delivery capability.
Collapse
Affiliation(s)
- Guiling Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Shengxin Hou
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Hengfeng Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Fan Xiao
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
2
|
Ikawa Y, Wakai T, Funahashi H, Soe TH, Watanabe K, Ohtsuki T. Photo-dependent cytosolic delivery of shRNA into a single blastomere in a mouse embryo. Sci Rep 2023; 13:13050. [PMID: 37567923 PMCID: PMC10421928 DOI: 10.1038/s41598-023-40361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023] Open
Abstract
Single-cell-specific delivery of small RNAs, such as short hairpin RNA (shRNA) and small noncoding RNAs, allows us to elucidate the roles of specific upregulation of RNA expression and RNAi-mediated gene suppression in early embryo development. The photoinduced cytosolic dispersion of RNA (PCDR) method that we previously reported can introduce small RNAs into the cytosol of photoirradiated cells and enable RNA delivery into a single-cell in a spatiotemporally specific manner. However, the PCDR method has only been applied to planer cultured cells and not to embryos. This study demonstrated that the PCDR method can be utilized for photo-dependent cytosolic shRNA delivery into a single blastomere and for single blastomere-specific RNA interference in mouse embryos. Our results indicate that PCDR is a promising approach for studying the developmental process of early embryogenesis.
Collapse
Affiliation(s)
- Yuka Ikawa
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Tet Htut Soe
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Kazunori Watanabe
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Takashi Ohtsuki
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.
| |
Collapse
|
3
|
Ghorai SM, Deep A, Magoo D, Gupta C, Gupta N. Cell-Penetrating and Targeted Peptides Delivery Systems as Potential Pharmaceutical Carriers for Enhanced Delivery across the Blood-Brain Barrier (BBB). Pharmaceutics 2023; 15:1999. [PMID: 37514185 PMCID: PMC10384895 DOI: 10.3390/pharmaceutics15071999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Among the challenges to the 21st-century health care industry, one that demands special mention is the transport of drugs/active pharmaceutical agents across the blood-brain barrier (BBB). The epithelial-like tight junctions within the brain capillary endothelium hinder the uptake of most pharmaceutical agents. With an aim to understand more deeply the intricacies of cell-penetrating and targeted peptides as a powerful tool for desirable biological activity, we provide a critical review of both CPP and homing/targeted peptides as intracellular drug delivery agents, especially across the blood-brain barrier (BBB). Two main peptides have been discussed to understand intracellular drug delivery; first is the cell-penetrating peptides (CPPs) for the targeted delivery of compounds of interest (primarily peptides and nucleic acids) and second is the family of homing peptides, which specifically targets cells/tissues based on their overexpression of tumour-specific markers and are thus at the heart of cancer research. These small, amphipathic molecules demonstrate specific physical and chemical modifications aimed at increased ease of cellular internalisation. Because only a limited number of drug molecules can bypass the blood-brain barrier by free diffusion, it is essential to explore all aspects of CPPs that can be exploited for crossing this barrier. Considering siRNAs that can be designed against any target RNA, marking such molecules with high therapeutic potential, we present a synopsis of the studies on synthetic siRNA-based therapeutics using CPPs and homing peptides drugs that can emerge as potential drug-delivery systems as an upcoming requirement in the world of pharma- and nutraceuticals.
Collapse
Affiliation(s)
- Soma Mondal Ghorai
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India
| | - Auroni Deep
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India
| | - Devanshi Magoo
- Department of Chemistry, Hindu College, University of Delhi, Delhi 110007, India
| | - Chetna Gupta
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, WI 53705, USA
| |
Collapse
|
4
|
Lu M, Xing H, Zheng A, Huang Y, Liang XJ. Overcoming Pharmaceutical Bottlenecks for Nucleic Acid Drug Development. Acc Chem Res 2023; 56:224-236. [PMID: 36624086 DOI: 10.1021/acs.accounts.2c00464] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) pandemic and swift approval of two mRNA vaccines have put nucleic acid therapeutics in the spotlight of both the scientific community and the general public. Actually, in addition to mRNAs, multiple nucleic acid therapeutics have been successively commercialized over the past few years. The rapid development of nucleic acid drugs not only demonstrates their superior potency but also marks a new era of the field. Compared with conventional treatments targeting proteins rather than the root causes of diseases at the genetic level, nucleic acids are capable of achieving long-standing or even curative effects against undruggable disorders by modulating gene expression via inhibition, editing, addition, or replacement. This offers a terrific arsenal for expanding therapeutic access to diseases lacking current treatment options and developing vaccines to provide swift responses to emerging global health threats.Despite the stunning success and recent resurgence of interest in the field, the unfavorable physicochemical characteristics (i.e., the negative charge, large molecular weight, and hydrophilicity), susceptibility to nuclease degradation, off-target toxicity, and immunogenicity are a brake for moving nucleic acid therapeutics from bench to bedside. Currently, developing technologies to improve the circulation stability, targeting affinity, cellular entry, endolysosomal escape, efficacy, and safety of nucleic acid drugs still remains a major pharmaceutical bottleneck.In this Account, we outline the research efforts from our group on the development of technology platforms to overcome the pharmaceutical bottlenecks for nucleic acid therapeutics. We have engineered a variety of intelligent delivery platforms such as synthetic nanomaterials (i.e., lipid nanoparticles, polymers, and inorganic nanoparticles), physical delivery methods (i.e., electroporation), and naturally derived vehicles (i.e., extracellular vesicles), aiming at endowing nucleic acids with improved circulation stability, targeting affinity, and cellular internalization (Get in) and stimuli responsive endolysosomal escape capability (Get out). Moreover, we will discuss our progress in developing a series of modification strategies for sequence engineering of nucleic acids to endow them with enhanced nuclease resistance, translation efficiency, and potency while alleviating their off-target toxicity and immunogenicity (Sequence engineering). Integrating these technologies may promote the development of nucleic acid therapeutics with potent efficacy and improved safety (Efficacy & safety). With this Account, we hope to offer insights into rational design of cutting-edge nucleic acid therapeutic platforms. We believe that the continuing advances in nucleic acid technologies together with academic-industry collaborations in the clinic, will promise to usher in more clinically translatable nucleic acid therapeutics in the foreseeable future.
Collapse
Affiliation(s)
- Mei Lu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing 100081, China.,Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
| | - Haonan Xing
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, No. 27, Taiping Road, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, No. 27, Taiping Road, Beijing 100850, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing 100081, China
| | - Xing-Jie Liang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing 100081, China.,Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
| |
Collapse
|
5
|
Huang S, Hao XY, Li YJ, Wu JY, Xiang DX, Luo S. Nonviral delivery systems for antisense oligonucleotide therapeutics. Biomater Res 2022; 26:49. [PMID: 36180936 PMCID: PMC9523189 DOI: 10.1186/s40824-022-00292-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are an important tool for the treatment of many genetic disorders. However, similar to other gene drugs, vectors are often required to protect them from degradation and clearance, and to accomplish their transport in vivo. Compared with viral vectors, artificial nonviral nanoparticles have a variety of design, synthesis, and formulation possibilities that can be selected to accomplish protection and delivery for specific applications, and they have served critical therapeutic purposes in animal model research and clinical applications, allowing safe and efficient gene delivery processes into the target cells. We believe that as new ASO drugs develop, the exploration for corresponding nonviral vectors is inevitable. Intensive development of nonviral vectors with improved delivery strategies based on specific targets can continue to expand the value of ASO therapeutic approaches. Here, we provide an overview of current nonviral delivery strategies, including ASOs modifications, action mechanisms, and multi-carrier methods, which aim to address the irreplaceable role of nonviral vectors in the progressive development of ASOs delivery.
Collapse
Affiliation(s)
- Si Huang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Yan Hao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yong-Jiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jun-Yong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China. .,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, People's Republic of China. .,Institute of Clinical Pharmacy, Central South University, Changsha, China.
| |
Collapse
|
6
|
Lu M, Xing H, Shao W, Zhang T, Zhang M, Wang Y, Li F, Weng Y, Zheng A, Huang Y, Liang XJ. Photoactivatable Silencing Extracellular Vesicle (PASEV) Sensitizes Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204765. [PMID: 35793475 DOI: 10.1002/adma.202204765] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Indexed: 05/16/2023]
Abstract
Immunotherapy has delivered impressive outcomes in combating tumor malignancies. However, insufficient immune infiltration and poor immunogenicity within the tumor microenvironment (TME) greatly compromise patient response rates. Here, a photoactivatable silencing extracellular vesicle (PASEV) is developed for sensitized cancer immunotherapy. p21-Activated kinase 4 (PAK4) is a newly identified tumor-cell-intrinsic "guard" associated with immune exclusion. Small interfering RNA against PAK4 (siPAK4) is designed and assembled with a photoactivatable reactive-oxygen-species (ROS)-sensitive polymer to form the nanocomplex core, which is further camouflaged by extracellular vesicles from M1 macrophages. The PASEV not only serves as a vehicle for packaging, tumor accumulation, and ROS-responsive release of siPAK4 for potent PAK4 silencing, but also primes the TME through immunogenic phototherapy, thereby simultaneously boosting intratumoral infiltration and immune activation. The combined immunotherapy elicits robust anticancer immunity, thus showing great promise for fighting cancers. This work opens a new avenue to simultaneously boost intratumoral infiltration and immune activation for sensitized cancer immunotherapy.
Collapse
Affiliation(s)
- Mei Lu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Haonan Xing
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wanxuan Shao
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Tian Zhang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengjie Zhang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongchao Wang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Fangzhou Li
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xing-Jie Liang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| |
Collapse
|
7
|
Yang YL, Lin K, Yang L. Progress in Nanocarriers Codelivery System to Enhance the Anticancer Effect of Photodynamic Therapy. Pharmaceutics 2021; 13:1951. [PMID: 34834367 PMCID: PMC8617654 DOI: 10.3390/pharmaceutics13111951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising anticancer noninvasive method and has great potential for clinical applications. Unfortunately, PDT still has many limitations, such as metastatic tumor at unknown sites, inadequate light delivery and a lack of sufficient oxygen. Recent studies have demonstrated that photodynamic therapy in combination with other therapies can enhance anticancer effects. The development of new nanomaterials provides a platform for the codelivery of two or more therapeutic drugs, which is a promising cancer treatment method. The use of multifunctional nanocarriers for the codelivery of two or more drugs can improve physical and chemical properties, increase tumor site aggregation, and enhance the antitumor effect through synergistic actions, which is worthy of further study. This review focuses on the latest research progress on the synergistic enhancement of PDT by simultaneous multidrug administration using codelivery nanocarriers. We introduce the design of codelivery nanocarriers and discuss the mechanism of PDT combined with other antitumor methods. The combination of PDT and chemotherapy, gene therapy, immunotherapy, photothermal therapy, hyperthermia, radiotherapy, sonodynamic therapy and even multidrug therapy are discussed to provide a comprehensive understanding.
Collapse
Affiliation(s)
| | | | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-L.Y.); (K.L.)
| |
Collapse
|
8
|
Zhou Y, Yu M, Tie C, Deng Y, Wang J, Yi Y, Zhang F, Huang C, Zheng H, Mei L, Wu M. Tumor Microenvironment-Specific Chemical Internalization for Enhanced Gene Therapy of Metastatic Breast Cancer. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9760398. [PMID: 38617380 PMCID: PMC11014676 DOI: 10.34133/2021/9760398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/19/2021] [Indexed: 04/16/2024]
Abstract
Benefiting from treating diseases at the genetic level, gene therapy has been considered a new revolution in the biomedical field. However, the extracellular and intracellular barriers during gene transport such as enzymatic degradation and endo-/lysosomal sequestration significantly compromise the therapeutic efficacy. Though photochemical internalization (PCI) has emerged as a promising approach for causing endo-/lysosomal leakage with translocation of the internalized molecules into the cytosol, its effect is still unsatisfactory due to the insufficient light penetration depth. Here, we develop tumor microenvironment-specific enhanced gene delivery by means of ROS generated from the in situ cascaded catalytic reactions in tumors involving GOx-mediated redox reaction and Mn2+-mediated Fenton-like reaction. The efficient enzymatic protection and successful endo-/lysosomal escape of cargo gene complexes have been demonstrated. Moreover, anti-Twist siRNA-loaded G@MMSNs-P exhibit tumor-specific biodegradation, excellent T1-weighted MR imaging, and significant inhibitory effects against breast cancer growth and pulmonary metastasis.
Collapse
Affiliation(s)
- Yun Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Changjun Tie
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Chenyi Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
9
|
Yue D, Cai X, Fan M, Zhu J, Tian J, Wu L, Jiang Q, Gu Z. An Alternating Irradiation Strategy-Driven Combination Therapy of PDT and RNAi for Highly Efficient Inhibition of Tumor Growth and Metastasis. Adv Healthc Mater 2021; 10:e2001850. [PMID: 33314663 DOI: 10.1002/adhm.202001850] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia and hypoxia induced overexpression of vascular endothelial growth factor (VEGF) not only seriously affects the treatment effects of photodynamic therapy (PDT) but also promotes tumor metastasis. Herein, an alternating irradiation strategy (referred to as alternate use of low/high dose of light [ALHDL] irradiation)-driven combination therapy of PDT and RNA interference (RNAi) is developed to synergistically inhibit tumor growth and metastasis. A cationic amphipathic peptide (ALS) served as a carrier in the co-delivery system of photochlor (HPPH) and siVEGF (ALSH/siVEGF). At the beginning of ALHDL-driven ALSH/siVEGF treatment, short-term LDL irradiation can facilitate the tumor penetration, cellular uptake, and endosome escape of ALSH/siVEGF. Moreover, accompanied by HDL-mediated rapid cell apoptosis and LDL-mediated efficient VEGF silencing, the joint use of PDT and RNAi achieved remarkable antitumor effects both in vitro and in vivo. Importantly, benefited from the excellent performance of ALHDL in slowing the rapid deterioration of the anoxic environment of tumors, and ALSH/siVEGF treatment-mediated highly improved VEGF silencing efficacy and inhibitory effect on angiogenesis, the liver and lung metastases of HeLa cells have been successfully suppressed. Together, this study clearly indicates that ALHDL-driven combination therapy of PDT and RNAi is a highly effective modality for inhibition of tumor growth and metastasis.
Collapse
Affiliation(s)
- Dong Yue
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu Sichuan 610065 P. R. China
| | - Xiaojun Cai
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Mengni Fan
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Jingwu Zhu
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Jiang Tian
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Lihuang Wu
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Qian Jiang
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu Sichuan 610065 P. R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu Sichuan 610065 P. R. China
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| |
Collapse
|
10
|
Shah SS, Cultrara CN, Ramos JA, Samuni U, Zilberberg J, Sabatino D. Bifunctional Au-templated RNA nanoparticles enable direct cell uptake detection and GRP75 knockdown in prostate cancer. J Mater Chem B 2021; 8:2169-2176. [PMID: 32096520 DOI: 10.1039/c9tb02438g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nucleic acids templated on gold (Au) surfaces have led to a wide range of functional materials ranging from microarrays, sensors and probes in addition to drug delivery and treatment. In this application, we describe a simple and novel method for templating amino-functionalized RNA onto Au surfaces and their self-assembly into small, discrete nanoparticles. In our method, sample hybridization with a complementary RNA strand with and without a fatty acid (palmitamide) appendage produced functionalized double-stranded RNA on the Au surface. The resulting Au-functionalized RNA particles were found to be stable under reducing conditions according to UV-Vis spectroscopy. Sample characterization by DLS and TEM confirmed self-assembly into primarily small (∼10-40 nm) spherical shaped nanoparticles expected to be amenable to cell biology. However, fluorescence emission (λexc: 350 nm, λem: 650 nm) revealed radiative properties which limited cell uptake detection. Introduction of FITC within the Au-functionalized RNA particles produced a bifunctional probe, in which FITC fluorescence emission (λexc: 494 nm, λem: 522 nm) facilitated cell uptake detection, in a time-dependent manner. The dual encapsulation-release profiles of the FITC-labeled Au-functionalized RNA particles were validated by time-dependent UV-Vis spectroscopy and spectrofluorimetry. These experiments respectively indicated an increase in FITC absorption (λabs: 494 nm) and fluorescence emission (λem: 522 nm) with increased sample incubation times, under physiological conditions. The release of Au-functionalized siRNA particles in prostate cancer (PC-3) cells resulted in concomitant knockdown of GRP75, which led to detectable levels of cell death in the absence of a transfection vector. Thus, the formulation of stable, small and discrete Au-functionalized RNA nanoparticles may prove to be valuable bifunctional probes in the theranostic study of cancer cells.
Collapse
Affiliation(s)
- Sunil S Shah
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, New Jersey 07079, USA.
| | - Christopher N Cultrara
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, New Jersey 07079, USA.
| | - Jorge A Ramos
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA and The PhD Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Uri Samuni
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA and The PhD Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Jenny Zilberberg
- Center for Discovery and Innovation, Hackensack University Medical Center, 340 Kingsland Street, Building 102, Nutley, New Jersey 07110, USA
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, New Jersey 07079, USA.
| |
Collapse
|
11
|
Wang Q, Fan X, Jing N, Zhao H, Yu L, Tang X. Photoregulation of Gene Expression with Ligand-Modified Caged siRNAs through Host/Guest Interaction. Chembiochem 2021; 22:1901-1907. [PMID: 33432703 DOI: 10.1002/cbic.202000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/22/2020] [Indexed: 02/05/2023]
Abstract
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Han Zhao
- National Center for Occupational Safety and Health, NHC, No. 27 Shilong Road, Beijing, P. R. China
| | - Lijia Yu
- National Center for Occupational Safety and Health, NHC, No. 27 Shilong Road, Beijing, P. R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| |
Collapse
|
12
|
Abstract
Cell-Penetrating Peptides (CPP) are valuable tools capable of crossing the plasma membrane to deliver therapeutic cargo inside cells. Small interfering RNAs (siRNA) are double-stranded RNA molecules capable of silencing the expression of a specific protein triggering the RNA interference (RNAi) pathway, but they are unable to cross the plasma membrane and have a short half-life in the bloodstream. In this overview, we assessed the many different approaches used and developed in the last two decades to deliver siRNA through the plasma membrane through different CPPs sorted according to three different loading strategies: covalent conjugation, complex formation, and CPP-decorated (functionalized) nanocomplexes. Each of these strategies has pros and cons, but it appears the latter two are the most commonly reported and emerging as the most promising strategies due to their simplicity of synthesis, use, and versatility. Recent progress with siRNA delivered by CPPs seems to focus on targeted delivery to reduce side effects and amount of drugs used, and it appears to be among the most promising use for CPPs in future clinical applications.
Collapse
|
13
|
Chen C, Wang Z, Jing N, Chen W, Tang X. Photomodulation of Caged RNA Oligonucleotide Functions in Living Systems. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Changmai Chen
- School of Pharmacy Fujian Medical University No.1 Xuefu N Rd, University Town Fuzhou 350122 China
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| | - Zhongyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| | - Wei Chen
- School of Pharmacy Fujian Medical University No.1 Xuefu N Rd, University Town Fuzhou 350122 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| |
Collapse
|
14
|
Chen C, Jing N, Wang Z, Zhang Y, Chen W, Tang X. Multimerized self-assembled caged two-in-one siRNA nanoparticles for photomodulation of RNAi-induced gene silencing. Chem Sci 2020; 11:12289-12297. [PMID: 34094437 PMCID: PMC8162473 DOI: 10.1039/d0sc03562a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We rationally designed and developed caged siRNA nanoparticles (Multi-Chol-siRNA) self-assembled with cholesterol-modified multimerized caged siRNAs for photomodulation of siRNA gene silencing activity. Strong resistance to serum nuclease and RNase A was observed for these cholesterol-modified caged siRNA nanoparticles due to the formation of nanostructures with high intensity of siRNA. These caged Multi-Chol-siRNA self-assembled nanoparticles were successfully used to achieve photochemical regulation of both exogenous GFP and endogenous Eg5 gene expressions with a GFP/RFP transient transfection system and Eg5-associated assays, respectively. Further, Two-in-One caged Multi-Chol-siGFP/siEg5 self-assembled nanoparticles simultaneously targeting GFP and Eg5 genes were also developed. The caged Multi-Chol-siRNA self-assembled nanoparticles have demonstrated the effectiveness of enhancing photomodulation of multiple RNAi-induced gene silencing activities in cells. Upon light irradiation, multimerized self-assembled caged Two-in-One siRNA nanoparticles (Multi-Chol-siRNA) were collapsed to release trapped siRNAs for multiple RNAi-induced gene silencing activity.![]()
Collapse
Affiliation(s)
- Changmai Chen
- School of Pharmacy, Fujian Medical University Fuzhou 350122 China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Zhongyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Wei Chen
- School of Pharmacy, Fujian Medical University Fuzhou 350122 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| |
Collapse
|
15
|
Knutson SD, Sanford AA, Swenson CS, Korn MM, Manuel BA, Heemstra JM. Thermoreversible Control of Nucleic Acid Structure and Function with Glyoxal Caging. J Am Chem Soc 2020; 142:17766-17781. [PMID: 33017148 DOI: 10.1021/jacs.0c08996] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Controlling the structure and activity of nucleic acids dramatically expands their potential for application in therapeutics, biosensing, nanotechnology, and biocomputing. Several methods have been developed to impart responsiveness of DNA and RNA to small-molecule and light-based stimuli. However, heat-triggered control of nucleic acids has remained largely unexplored, leaving a significant gap in responsive nucleic acid technology. Moreover, current technologies have been limited to natural nucleic acids and are often incompatible with polymerase-generated sequences. Here we show that glyoxal, a well-characterized compound that covalently attaches to the Watson-Crick-Franklin face of several nucleobases, addresses these limitations by thermoreversibly modulating the structure and activity of virtually any nucleic acid scaffold. Using a variety of DNA and RNA constructs, we demonstrate that glyoxal modification is easily installed and potently disrupts nucleic acid structure and function. We also characterize the kinetics of decaging and show that activity can be restored via tunable thermal removal of glyoxal adducts under a variety of conditions. We further illustrate the versatility of this approach by reversibly caging a 2'-O-methylated RNA aptamer as well as synthetic threose nucleic acid (TNA) and peptide nucleic acid (PNA) scaffolds. Glyoxal caging can also be used to reversibly disrupt enzyme-nucleic acid interactions, and we show that caging of guide RNA allows for tunable and reversible control over CRISPR-Cas9 activity. We also demonstrate glyoxal caging as an effective method for enhancing PCR specificity, and we cage a biostable antisense oligonucleotide for time-release activation and titration of gene expression in living cells. Together, glyoxalation is a straightforward and scarless method for imparting reversible thermal responsiveness to theoretically any nucleic acid architecture, addressing a significant need in synthetic biology and offering a versatile new tool for constructing programmable nucleic acid components in medicine, nanotechnology, and biocomputing.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Aimee A Sanford
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Colin S Swenson
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Megan M Korn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Brea A Manuel
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
16
|
Zhang J, Jing N, Fan X, Tang X. Photoregulation of Gene Expression with Amantadine‐Modified Caged siRNAs through Host–Guest Interactions. Chemistry 2020; 26:14002-14010. [DOI: 10.1002/chem.202003084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/16/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jinhao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| |
Collapse
|
17
|
Puri A, Viard M, Zakrevsky P, Zampino S, Chen A, Isemann C, Alvi S, Clogston J, Chitgupi U, Lovell JF, Shapiro BA. Photoactivation of sulfonated polyplexes enables localized gene silencing by DsiRNA in breast cancer cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 26:102176. [PMID: 32151748 PMCID: PMC8117728 DOI: 10.1016/j.nano.2020.102176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/23/2020] [Accepted: 02/23/2020] [Indexed: 12/29/2022]
Abstract
Translation potential of RNA interference nanotherapeutics remains challenging due to in vivo off-target effects and poor endosomal escape. Here, we developed novel polyplexes for controlled intracellular delivery of dicer substrate siRNA, using a light activation approach. Sulfonated polyethylenimines covalently linked to pyropheophorbide-α for photoactivation and bearing modified amines (sulfo-pyro-PEI) for regulated endosomal escape were investigated. Gene knock-down by the polymer-complexed DsiRNA duplexes (siRNA-NPs) was monitored in breast cancer cells. Surprisingly, sulfo-pyro-PEI/siRNA-NPs failed to downregulate the PLK1 or eGFP proteins. However, photoactivation of these cell associated-polyplexes with a 661-nm laser clearly restored knock-down of both proteins. In contrast, protein down-regulation by non-sulfonated pyro-PEI/siRNA-NPs occurred without any laser treatments, indicating cytoplasmic disposition of DsiRNA followed a common intracellular release mechanism. Therefore, sulfonated pyro-PEI holds potential as a unique trap and release light-controlled delivery platform for on-demand gene silencing bearing minimal off target effects.
Collapse
Affiliation(s)
- Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Mathias Viard
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Paul Zakrevsky
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Serena Zampino
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Arabella Chen
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Camryn Isemann
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Sohaib Alvi
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Jeff Clogston
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Bruce A Shapiro
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
18
|
Acevedo-Jake A, Ball AT, Galli M, Kukwikila M, Denis M, Singleton DG, Tavassoli A, Goldup SM. AT-CuAAC Synthesis of Mechanically Interlocked Oligonucleotides. J Am Chem Soc 2020; 142:5985-5990. [PMID: 32155338 PMCID: PMC8016193 DOI: 10.1021/jacs.0c01670] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/22/2022]
Abstract
We present a simple strategy for the synthesis of main chain oligonucleotide rotaxanes with precise control over the position of the macrocycle. The novel DNA-based rotaxanes were analyzed to assess the effect of the mechanical bond on their properties.
Collapse
Affiliation(s)
- Amanda Acevedo-Jake
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Andrew T. Ball
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Marzia Galli
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Mikiembo Kukwikila
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Mathieu Denis
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Daniel G. Singleton
- ATDBio
Ltd, School of Chemistry, University of
Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Ali Tavassoli
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Stephen M. Goldup
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| |
Collapse
|
19
|
Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids Surf B Biointerfaces 2020; 185:110596. [DOI: 10.1016/j.colsurfb.2019.110596] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/22/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
|
20
|
Kimura Y, Shu Z, Ito M, Abe N, Nakamoto K, Tomoike F, Shuto S, Ito Y, Abe H. Intracellular build-up RNAi with single-strand circular RNAs as siRNA precursors. Chem Commun (Camb) 2020; 56:466-469. [DOI: 10.1039/c9cc04872c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein report a new approach for RNA interference, so-called “build-up RNAi” approach, where single-strand circular RNAs with a photocleavable unit or disulfide moiety were used as siRNA precursors.
Collapse
Affiliation(s)
- Yasuaki Kimura
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Zhaoma Shu
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Mika Ito
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12, Nishi-6, Kita-ku
- Sapporo 060-0812
- Japan
| | - Naoko Abe
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Kosuke Nakamoto
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Fumiaki Tomoike
- Research Center for Materials Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12, Nishi-6, Kita-ku
- Sapporo 060-0812
- Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team
- RIKEN Center for Emergent Matter Science
- Wako-Shi
- Japan
| | - Hiroshi Abe
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| |
Collapse
|
21
|
Su Z, Erdene-Ochir T, Ganbold T, Baigude H. Design of curdlan-based pH-sensitive polymers with endosome buffering functionality for siRNA delivery. Int J Biol Macromol 2019; 146:773-780. [PMID: 31778701 DOI: 10.1016/j.ijbiomac.2019.10.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/23/2022]
Abstract
Developing nucleic acid-based tools to control disease-relevant gene expression in human disorders, such as siRNAs, opens up potential opportunities for therapeutics. Because of their high molecular weight and polyanionic nature, synthetic siRNAs fail to cross biological membranes by passive diffusion and therefore, generally require transmembrane siRNA delivery technologies to access the cytoplasm of target cells. To create a biocompatible siRNA delivery agent, we chemically modified natural polysaccharide curdlan derivative 6AC-100 in a regioselective manner to introduce different ratios of imidazole rings in the amino units (denoted as Curimi) and evaluated their siRNA binding ability, cytotoxicity, endosome buffering capacity and siRNA transfection efficiency. The novel curdlan based Curimi polymers formed nanoparticles with siRNA at pH 7.4 in range of 85-105 nm and their size distribution increased along with decreasing pH condition. The zeta potential increased by lowering pH value as well. Curimi polymers showed lower toxicity and higher buffering capacity compared to 6AC-100, and efficiently delivered siRNA against to PLK1 into cancer cells, and subsequently, significantly inhibited target mRNA level. Our result suggested that novel curdlan based Curimi polymers may be used as efficient siRNA carrier for cancer therapy.
Collapse
Affiliation(s)
- Zhiyu Su
- School of Chemistry & Chemical Engineering, Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010021, PR China
| | - Tseyenkhorloo Erdene-Ochir
- School of Chemistry & Chemical Engineering, Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010021, PR China
| | - Tsogzolmaa Ganbold
- School of Chemistry & Chemical Engineering, Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010021, PR China.
| | - Huricha Baigude
- School of Chemistry & Chemical Engineering, Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010021, PR China.
| |
Collapse
|
22
|
Li J, Duan H, Pu K. Nanotransducers for Near-Infrared Photoregulation in Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901607. [PMID: 31199021 DOI: 10.1002/adma.201901607] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Photoregulation, which utilizes light to remotely control biological events, provides a precise way to decipher biology and innovate in medicine; however, its potential is limited by the shallow tissue penetration and/or phototoxicity of ultraviolet (UV)/visible light that are required to match the optical responses of endogenous photosensitive substances. Thereby, biologically friendly near-infrared (NIR) light with improved tissue penetration is desired for photoregulation. Since there are a few endogenous biomolecules absorbing or emitting light in the NIR region, the development of molecular transducers is essential to convert NIR light into the cues for regulation of biological events. In this regard, optical nanomaterials able to convert NIR light into UV/visible light, heat, or free radicals are suitable for this task. Here, the recent developments of optical nanotransducers for NIR-light-mediated photoregulation in medicine are summarized. The emerging applications, including photoregulation of neural activity, gene expression, and visual systems, as well as photochemical tissue bonding, are highlighted, along with the design principles of nanotransducers. Moreover, the current challenges and perspectives in this field are discussed.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
23
|
Li J, Leung CWT, Wong DSH, Xu J, Li R, Zhao Y, Yung CYY, Zhao E, Tang BZ, Bian L. Photocontrolled SiRNA Delivery and Biomarker-Triggered Luminogens of Aggregation-Induced Emission by Up-Conversion NaYF 4:Yb 3+Tm 3+@SiO 2 Nanoparticles for Inducing and Monitoring Stem-Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22074-22084. [PMID: 28350958 DOI: 10.1021/acsami.7b00845] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Controlling the differentiation of stem cells and monitoring cell differentiation has attracted much research interest since the discovery of stem cells. In this regard, a novel near-infrared (NIR) light-activated nanoplatform is obtained by encapsulating the photoactivatable caged compound (DMNPE/siRNA) and combining a MMP13 cleaved imaging peptide-tetrapheny-lethene (TPE) unit conjugated with the mesoporous silica-coated up-conversion nanoparticles (UCNPs) for the remote control of cell differentiation and, simultaneously, for the real-time monitoring of differentiation. Upon NIR light illumination, the photoactivated caged compound is activated, and the siRNA is released from UCNPs, allowing controlled differentiation of stem cells by light. More importantly, MMP13 enzyme triggered by osteogenic differentiation would effectively cleave the TPE probe peptide, thereby allowing the real-time monitoring of differentiation in living stem cells by aggregation-induced emission (AIE).
Collapse
Affiliation(s)
- Jinming Li
- Division of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , China
| | - Chris Wai Tung Leung
- Department of Chemistry, Institute of Molecular Functional Materials , The Hong Kong University of Science and Technology (HKUST) , Kowloon, Hong Kong , China
| | - Dexter Siu Hong Wong
- Division of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , China
| | - Jianbin Xu
- Division of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , China
| | - Rui Li
- Division of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , China
| | - Yueyue Zhao
- Department of Chemistry, Institute of Molecular Functional Materials , The Hong Kong University of Science and Technology (HKUST) , Kowloon, Hong Kong , China
| | - Chris Yu Yee Yung
- Department of Chemistry, Institute of Molecular Functional Materials , The Hong Kong University of Science and Technology (HKUST) , Kowloon, Hong Kong , China
| | - Engui Zhao
- Department of Chemistry, Institute of Molecular Functional Materials , The Hong Kong University of Science and Technology (HKUST) , Kowloon, Hong Kong , China
| | - Ben Zhong Tang
- Department of Chemistry, Institute of Molecular Functional Materials , The Hong Kong University of Science and Technology (HKUST) , Kowloon, Hong Kong , China
| | - Liming Bian
- Division of Biomedical Engineering , The Chinese University of Hong Kong , Hong Kong , China
- China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou , China
| |
Collapse
|
24
|
Functionalized MoS2-nanosheets for targeted drug delivery and chemo-photothermal therapy. Colloids Surf B Biointerfaces 2019; 173:101-108. [DOI: 10.1016/j.colsurfb.2018.09.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 12/25/2022]
|
25
|
Lin Y, Mazo MM, Skaalure SC, Thomas MR, Schultz SR, Stevens MM. Activatable cell-biomaterial interfacing with photo-caged peptides. Chem Sci 2018; 10:1158-1167. [PMID: 30774914 PMCID: PMC6349021 DOI: 10.1039/c8sc04725a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022] Open
Abstract
We report an effective strategy to design activatable cell–material interfacing systems enabling photo-modulated cellular entry of cargoes and cell adhesion towards surfaces.
Spatio-temporally tailoring cell–material interactions is essential for developing smart delivery systems and intelligent biointerfaces. Here we report new photo-activatable cell–material interfacing systems that trigger cellular uptake of various cargoes and cell adhesion towards surfaces. To achieve this, we designed a novel photo-caged peptide which undergoes a structural transition from an antifouling ligand to a cell-penetrating peptide upon photo-irradiation. When the peptide is conjugated to ligands of interest, we demonstrate the photo-activated cellular uptake of a wide range of cargoes, including small fluorophores, proteins, inorganic (e.g., quantum dots and gold nanostars) and organic nanomaterials (e.g., polymeric particles), and liposomes. Using this system, we can remotely regulate drug administration into cancer cells by functionalizing camptothecin-loaded polymeric nanoparticles with our synthetic peptide ligands. Furthermore, we show light-controlled cell adhesion on a peptide-modified surface and 3D spatiotemporal control over cellular uptake of nanoparticles using two-photon excitation. We anticipate that the innovative approach proposed in this work will help to establish new stimuli-responsive delivery systems and biomaterials.
Collapse
Affiliation(s)
- Yiyang Lin
- Department of Materials , Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| | - Manuel M Mazo
- Department of Materials , Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| | - Stacey C Skaalure
- Department of Materials , Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| | - Michael R Thomas
- Department of Materials , Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| | - Simon R Schultz
- Department of Bioengineering and Centre for Neurotechnology , Imperial College London , London SW7 2AZ , UK
| | - Molly M Stevens
- Department of Materials , Department of Bioengineering and Institute for Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , UK .
| |
Collapse
|
26
|
Ashwood B, Pollum M, Crespo-Hernández CE. Photochemical and Photodynamical Properties of Sulfur-Substituted Nucleic Acid Bases. Photochem Photobiol 2018; 95:33-58. [PMID: 29978490 DOI: 10.1111/php.12975] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Sulfur-substituted nucleobases (a.k.a., thiobases) are among the world's leading prescriptions for chemotherapy and immunosuppression. Long-term treatment with azathioprine, 6-mercaptopurine and 6-thioguanine has been correlated with the photoinduced formation of carcinomas. Establishing an in-depth understanding of the photochemical properties of these prodrugs may provide a route to overcoming these carcinogenic side effects, or, alternatively, a basis for developing effective compounds for targeted phototherapy. In this review, a broad examination is undertaken, surveying the basic photochemical properties and excited-state dynamics of sulfur-substituted analogs of the canonical DNA and RNA nucleobases. A molecular-level understanding of how sulfur substitution so remarkably perturbs the photochemical properties of the nucleobases is presented by combining experimental results with quantum-chemical calculations. Structure-property relationships demonstrate the impact of site-specific sulfur substitution on the photochemical properties, particularly on the population of the reactive triplet state. The value of fundamental photochemical investigations for driving the development of ultraviolet-A chemotherapeutics is showcased. The most promising photodynamic agents identified thus far have been investigated in various carcinoma cell lines and shown to decrease cell proliferation upon exposure to ultraviolet-A radiation. Overarching principles have been elucidated for the impact that sulfur substitution of the carbonyl oxygen has on the photochemical properties of the nucleobases.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | - Marvin Pollum
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
27
|
Abstract
External photocontrol over RNA function has emerged as a useful tool for studying nucleic acid biology. Most current methods rely on fully synthetic nucleic acids with photocaged nucleobases, limiting application to relatively short synthetic RNAs. Here we report a method to gain photocontrol over RNA by postsynthetic acylation of 2'-hydroxyls with photoprotecting groups. One-step introduction of these groups efficiently blocks hybridization, which is restored after light exposure. Polyacylation (termed cloaking) enables control over a hammerhead ribozyme, illustrating optical control of RNA catalytic function. Use of the new approach on a transcribed 237 nt RNA aptamer demonstrates the utility of this method to switch on RNA folding in a cellular context, and underlines the potential for application in biological studies.
Collapse
Affiliation(s)
- Willem A Velema
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anna M. Kietrys
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
28
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew Chem Int Ed Engl 2018; 57:2768-2798. [PMID: 28521066 PMCID: PMC6026863 DOI: 10.1002/anie.201700171] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Collapse
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Taylor Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
29
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemische Steuerung biologischer Vorgänge in Zellen und Tieren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201700171] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Taylor Courtney
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yuta Naro
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
30
|
Bhattacharya P, Basak A, Campbell A, Alabugin IV. Photochemical Activation of Enediyne Warheads: A Potential Tool for Targeted Antitumor Therapy. Mol Pharm 2018; 15:768-797. [DOI: 10.1021/acs.molpharmaceut.7b00911] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Adam Campbell
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Igor V. Alabugin
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
31
|
Abstract
Although viral vectors comprise the majority of gene delivery vectors, their various safety, production, and other practical concerns have left a research gap to be addressed. The non-viral vector space encompasses a growing variety of physical and chemical methods capable of gene delivery into the nuclei of target cells. Major physical methods described in this chapter are microinjection, electroporation, and ballistic injection, magnetofection, sonoporation, optical transfection, and localized hyperthermia. Major chemical methods described in this chapter are lipofection, polyfection, gold complexation, and carbon-based methods. Combination approaches to improve transfection efficiency or reduce immunological response have shown great promise in expanding the scope of non-viral gene delivery.
Collapse
Affiliation(s)
- Chi Hong Sum
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | | - Shirley Wong
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | |
Collapse
|
32
|
Bridges RJ, Bradbury NA. Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking. Handb Exp Pharmacol 2018; 245:385-425. [PMID: 29460152 DOI: 10.1007/164_2018_103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology. Importantly, several drug therapies can also alter protein trafficking, causing unwanted side effects. Thus, a deeper understanding of trafficking pathways needs to be appreciated as novel therapeutic modalities are proposed. Despite the promising efficacy of novel therapeutic agents, the intracellular bioavailability of these compounds has proved to be a potential barrier, leading to failures in treatments for various diseases and disorders. While endocytosis of drug moieties provides an efficient means of getting material into cells, the subsequent release and endosomal escape of materials into the cytosol where they need to act has been a barrier. An understanding of cellular protein/lipid trafficking pathways has opened up strategies for increasing drug bioavailability. Approaches to enhance endosomal exit have greatly increased the cytosolic bioavailability of drugs and will provide a means of investigating previous drugs that may have been shelved due to their low cytosolic concentration.
Collapse
Affiliation(s)
- Robert J Bridges
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, USA
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, USA.
| |
Collapse
|
33
|
Zhang L, Liang D, Wang Y, Li D, Zhang J, Wu L, Feng M, Yi F, Xu L, Lei L, Du Q, Tang X. Caged circular siRNAs for photomodulation of gene expression in cells and mice. Chem Sci 2017; 9:44-51. [PMID: 29629072 PMCID: PMC5869302 DOI: 10.1039/c7sc03842a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Caged siRNAs with a circular structure were successfully used for photoregulation of target genes in both cells and mice.
By means of RNA interference (RNAi), small interfering RNAs (siRNAs) play important roles in gene function study and drug development. Recently, photolabile siRNAs were developed to elucidate the process of gene silencing in terms of space, time and degree through chemical modification of siRNAs. We report herein a novel type of photolabile siRNA that was synthesized through cyclizing two ends of a single stranded RNA with a photocleavable linker. These circular siRNAs became more resistant to serum degradation. Using reporter assays of firefly/Renilla luciferase and GFP/RFP, the gene silencing activities of caged circular siRNAs for both genes were evaluated in HEK293 cells. The results indicated that the target genes were successfully photomodulated using these caged circular siRNAs that were formed by caged circular antisense guide RNAs and their linear complementary sense RNAs. Using the caged circular siRNA targeting GFP, we also successfully achieved photomodulation of GFP expression in mice. Upon further optimization, this new type of caged circular siRNA is expected to be a promising tool for studying gene therapy.
Collapse
Affiliation(s)
- Liangliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Duanwei Liang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Dong Li
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Jinhao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Mengke Feng
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Fan Yi
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Luzheng Xu
- Medical and Health Analytical Center , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China
| | - Liandi Lei
- Medical and Health Analytical Center , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China
| | - Quan Du
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - XinJing Tang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| |
Collapse
|
34
|
Rajendrakumar SK, Uthaman S, Cho CS, Park IK. Trigger-Responsive Gene Transporters for Anticancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E120. [PMID: 28587119 PMCID: PMC5485767 DOI: 10.3390/nano7060120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/05/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022]
Abstract
In the current era of gene delivery, trigger-responsive nanoparticles for the delivery of exogenous nucleic acids, such as plasmid DNA (pDNA), mRNA, siRNAs, and miRNAs, to cancer cells have attracted considerable interest. The cationic gene transporters commonly used are typically in the form of polyplexes, lipoplexes or mixtures of both, and their gene transfer efficiency in cancer cells depends on several factors, such as cell binding, intracellular trafficking, buffering capacity for endosomal escape, DNA unpacking, nuclear transportation, cell viability, and DNA protection against nucleases. Some of these factors influence other factors adversely, and therefore, it is of critical importance that these factors are balanced. Recently, with the advancements in contemporary tools and techniques, trigger-responsive nanoparticles with the potential to overcome their intrinsic drawbacks have been developed. This review summarizes the mechanisms and limitations of cationic gene transporters. In addition, it covers various triggers, such as light, enzymes, magnetic fields, and ultrasound (US), used to enhance the gene transfer efficiency of trigger-responsive gene transporters in cancer cells. Furthermore, the challenges associated with and future directions in developing trigger-responsive gene transporters for anticancer therapy are discussed briefly.
Collapse
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Saji Uthaman
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Chong Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Korea.
| |
Collapse
|
35
|
Ai X, Mu J, Xing B. Recent Advances of Light-Mediated Theranostics. Theranostics 2016; 6:2439-2457. [PMID: 27877246 PMCID: PMC5118606 DOI: 10.7150/thno.16088] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/26/2016] [Indexed: 12/13/2022] Open
Abstract
Currently, precision theranostics have been extensively demanded for the effective treatment of various human diseases. Currently, efficient therapy at the targeted disease areas still remains challenging since most available drug molecules lack of selectivity to the pathological sites. Among different approaches, light-mediated therapeutic strategy has recently emerged as a promising and powerful tool to precisely control the activation of therapeutic reagents and imaging probes in vitro and in vivo, mostly attributed to its unique properties including minimally invasive capability and highly spatiotemporal resolution. Although it has achieved initial success, the conventional strategies for light-mediated theranostics are mostly based on the light with short wavelength (e.g., UV or visible light), which may usually suffer from several undesired drawbacks, such as limited tissue penetration depth, unavoidable light absorption/scattering and potential phototoxicity to healthy tissues, etc. Therefore, a near-infrared (NIR) light-mediated approach on the basis of long-wavelength light (700-1000 nm) irradiation, which displays deep-tissue penetration, minimized photo-damage and low autofluoresence in living systems, has been proposed as an inspiring alternative for precisely phototherapeutic applications in the last decades. Despite numerous NIR light-responsive molecules have been currently proposed for clinical applications, several inherent drawbacks, such as troublesome synthetic procedures, low water solubility and limited accumulation abilities in targeted areas, heavily restrict their applications in deep-tissue therapeutic and imaging studies. Thanks to the amazing properties of several nanomaterials with large extinction coefficient in the NIR region, the construction of NIR light responsive nanoplatforms with multifunctions have become promising approaches for deep-seated diseases diagnosis and therapy. In this review, we summarized various light-triggered theranostic strategies and introduced their great advances in biomedical applications in recent years. Moreover, some other promising light-assisted techniques, such as photoacoustic and Cerenkov radiation, were also systemically discussed. Finally, the potential challenges and future perspectives for light-mediated deep-tissue diagnosis and therapeutics were proposed.
Collapse
Affiliation(s)
- Xiangzhao Ai
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Jing Mu
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Bengang Xing
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 117602
| |
Collapse
|
36
|
Pollum M, Jockusch S, Crespo-Hernández CE. Increase in the photoreactivity of uracil derivatives by doubling thionation. Phys Chem Chem Phys 2016; 17:27851-61. [PMID: 26439833 DOI: 10.1039/c5cp04822b] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability of 4-thiouracil to strongly absorb UVA radiation and to populate a reactive triplet state in high yield has enabled its use as a versatile photocrosslinker for nearly 50 years. In this contribution, we present a detailed spectroscopic and photochemical investigation of the 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil series in an effort to further advance this chemistry and to scrutinize the photoreactivity of 2,4-dithiouracil. Our results reveal that excitation of 2,4-dithiouracil leads to intersystem crossing to the triplet manifold in 220 ± 40 fs, which enables the population of the reactive triplet state with near unity yield (ΦT = 0.90 ± 0.15) and ultimately leads to a ca. 50% singlet oxygen generation (ΦΔ = 0.49 ± 0.02)-one of the highest singlet oxygen yields reported to date for a photoexcited thiobase. In addition, the long-lived triplet state of 2,4-dithiouracil reacts efficiently with the nucleic acid base adenine 5'-monophosphate through a direct, oxygen-independent photocycloaddition mechanism and at a rate that is at least 3-fold faster than that of 4-thiouracil under equal conditions. The new physico-chemical insights reported for these RNA-thiobase derivatives are compared to those of the DNA and RNA bases and the DNA-thiobase derivatives. Furthermore, the strong near-visible absorption and increased photoreactivity measured for 2,4-dithiouracil lays a solid foundation for developing RNA-targeted photocrosslinking and phototherapeutic agents that are more effective than those currently available.
Collapse
Affiliation(s)
- M Pollum
- Department of Chemistry and Center for Chemical Dynamics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
37
|
Kim J, Kim H, Kim WJ. Single-Layered MoS2-PEI-PEG Nanocomposite-Mediated Gene Delivery Controlled by Photo and Redox Stimuli. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1184-1192. [PMID: 26389712 DOI: 10.1002/smll.201501655] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/07/2015] [Indexed: 05/28/2023]
Abstract
Stimuli-responsive gene delivery systems maximize therapeutic efficacy by controlling the cytosolic conveyance and rate of effective gene release. We present herein a hybrid nanocomposite composed of a 2D nanomaterial, MoS2, modified by attaching two polymers (polyethylenimine (PEI) and polyethylenglycol (PEG)) via disulfide bonds. This MoS2-PEI-PEG nanocomposite interacts with DNA by electrostatic interaction, and accordingly forms a nanosized complex with high stability. Photothermal conversion of MoS2 nanosheet is employed in order to induce photothermally triggered endosomal escape upon the near infrared light irradiation. After endosomal escape, polymers are detached from the MoS2 nanosheet by the intracellular reducing agent, glutathione (GSH), resulting in effective gene release from the nanocomposite. This sequential process initiated by external and internal stimuli remarkably enhances gene delivery efficiency by effective endosomal escape and gene release without severe cytotoxicity. Our rationally designed MoS2 nanocomposite provides a spatiotemporally controllable platform to deliver genetic material into cells.
Collapse
Affiliation(s)
- Jinhwan Kim
- Department of Chemistry and Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Hyunwoo Kim
- Department of Chemistry and Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Won Jong Kim
- Department of Chemistry and Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
38
|
Li X, Yue X, Wang J, Liang X, Jing L, Lin L, Yang Y, Feng S, Qian Y, Dai Z. Prussian blue nanoparticle-loaded microbubbles for photothermally enhanced gene delivery through ultrasound-targeted microbubble destruction. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-015-0988-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Gharatape A, Davaran S, Salehi R, Hamishehkar H. Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. RSC Adv 2016. [DOI: 10.1039/c6ra18760a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gold nanoparticle mediated photothermal therapy in future medicine.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology
- School of Advanced Medical Science
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Soodabeh Davaran
- Drug Applied Research Center and Department of Medicinal Chemistry
- Faculty of Pharmacy
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Roya Salehi
- Research Center for Pharmaceutical Nanotechnology and Department of Medical Nanotechnology
- School of Advanced Medical Science
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center
- Tabriz University of Medical Science
- Tabriz
- Iran
| |
Collapse
|
40
|
Photocontrolled Intracellular RNA Delivery Using Nanoparticles or Carrier–Photosensitizer Conjugates. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 139:101-19. [DOI: 10.1016/bs.pmbts.2015.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Dateki M, Imamura O, Arai M, Shimizu H, Takishima K. A novel strategy for selective gene delivery by using the inhibitory effect of blue light on jetPRIME-mediated transfection. Biotechnol Bioeng 2015; 113:1560-7. [DOI: 10.1002/bit.25906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/18/2015] [Accepted: 12/09/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Minori Dateki
- Department of Biochemistry; National Defense Medical College; Tokorozawa 359-8513 Japan
| | - Osamu Imamura
- Department of Biochemistry; National Defense Medical College; Tokorozawa 359-8513 Japan
| | - Masaaki Arai
- Department of Biochemistry; National Defense Medical College; Tokorozawa 359-8513 Japan
| | - Hidehisa Shimizu
- Research Faculty of Agriculture; Division of Applied Bioscience; Hokkaido University; Sapporo Japan
| | - Kunio Takishima
- Department of Biochemistry; National Defense Medical College; Tokorozawa 359-8513 Japan
| |
Collapse
|
42
|
Chen H, Di Y, Chen D, Madrid K, Zhang M, Tian C, Tang L, Gu Y. Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules. NANOSCALE 2015; 7:8884-97. [PMID: 25913201 DOI: 10.1039/c5nr00473j] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A polyelectrolyte microcapsule-based, cancer-targeting, and controlled drug delivery system has been developed as a multifunctional theranostic agent for synergistic cancer treatment. This new system, called FA-MC@GNR, is composed of folic acid (FA)-modified, multi-layered, hollow microcapsules loaded with gold nanorods (GNRs), and undergoes thermal degradation under near infrared (NIR) light. Either an NIR dye (MPA) or anti-cancer drug (doxorubicin, DOX) was loaded into the microcapsules via physical adsorption, yielding FA-MC@GNRs/MPA or FA-MC@GNRs/DOX, both of which exhibit no obvious toxicity, high stability, and remarkably improved tumor-targeting capabilities in vivo. Utilizing the strong NIR absorption of FA-MC@GNRs/DOX, we demonstrate the system's ability to simultaneously elicit photothermal therapy and controlled chemotherapy, achieving synergistic cancer treatment both in vitro cellular and in vivo animal experiments. Our study presents a new type of multifunctional micro-carrier for the delivery of chemotherapeutic drugs and photothermal agents, which has been shown to be an effective therapeutic approach for combined cancer treatment.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Xiang, Gulou District, Nanjing 210009, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Rai S, Singh H, Priyakumar UD. Binding to gold nanoclusters alters the hydrogen bonding interactions and electronic properties of canonical and size-expanded DNA base pairs. RSC Adv 2015. [DOI: 10.1039/c5ra04668h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Structural perturbations, in terms of size expansion and metal binding, lead to exciting electronic properties which can be exploited in designing novel nano-electronic devices.
Collapse
Affiliation(s)
- Sandhya Rai
- Center for Computational Natural Science and Bioinformatics
- International Institute of Information Technology
- Hyderabad
- India
| | - Harjinder Singh
- Center for Computational Natural Science and Bioinformatics
- International Institute of Information Technology
- Hyderabad
- India
| | - U. Deva Priyakumar
- Center for Computational Natural Science and Bioinformatics
- International Institute of Information Technology
- Hyderabad
- India
| |
Collapse
|
44
|
Photo-dependent protein biosynthesis using a caged aminoacyl-tRNA. Bioorg Med Chem Lett 2014; 24:5369-72. [DOI: 10.1016/j.bmcl.2014.10.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/01/2014] [Accepted: 10/17/2014] [Indexed: 12/11/2022]
|
45
|
Li XD, Liang XL, Ma F, Jing LJ, Lin L, Yang YB, Feng SS, Fu GL, Yue XL, Dai ZF. Chitosan stabilized Prussian blue nanoparticles for photothermally enhanced gene delivery. Colloids Surf B Biointerfaces 2014; 123:629-38. [DOI: 10.1016/j.colsurfb.2014.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/19/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
|
46
|
Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional Nanomaterials for Phototherapies of Cancer. Chem Rev 2014; 114:10869-939. [DOI: 10.1021/cr400532z] [Citation(s) in RCA: 1846] [Impact Index Per Article: 184.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Kai Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
47
|
Marcélis L, Van Overstraeten-Schlögel N, Lambermont J, Bontems S, Spinelli N, Defrancq E, Moucheron C, Kirsch-De Mesmaeker A, Raes M. Light-Triggered Green Fluorescent Protein Silencing in Human Keratinocytes in Culture Using Antisense Oligonucleotides Coupled to a Photoreactive Ruthenium(II) Complex. Chempluschem 2014. [DOI: 10.1002/cplu.201402212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Abstract
Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.
Collapse
Affiliation(s)
- Da Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
49
|
Murayama S, Kos P, Miyata K, Kataoka K, Wagner E, Kato M. Gene Regulation by Intracellular Delivery and Photodegradation of Nanoparticles Containing Small Interfering RNA. Macromol Biosci 2014; 14:626-31. [DOI: 10.1002/mabi.201300393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/22/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Shuhei Murayama
- Pharmaceutical Biotechnology; Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-University; Butenandtstrasse 5-13 Munich Germany
- Graduate School of Pharmaceutical Sciences and GPLLI Program; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Molecular Imaging Center; National Institute of Radiological Sciences; 4-9-1 Anagawa Inage-ku Chiba 263-8555 Japan
| | - Petra Kos
- Pharmaceutical Biotechnology; Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-University; Butenandtstrasse 5-13 Munich Germany
| | - Kanjiro Miyata
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Kazunori Kataoka
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Department of Materials Engineering, Graduate School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656 Japan
| | - Ernst Wagner
- Pharmaceutical Biotechnology; Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-University; Butenandtstrasse 5-13 Munich Germany
| | - Masaru Kato
- Graduate School of Pharmaceutical Sciences and GPLLI Program; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
50
|
Kim H, Kim WJ. Photothermally controlled gene delivery by reduced graphene oxide-polyethylenimine nanocomposite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:117-26. [PMID: 23696272 DOI: 10.1002/smll.201202636] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/08/2013] [Indexed: 05/19/2023]
Abstract
Externally stimuli-triggered spatially and temporally controlled gene delivery can play a pivotal role in achieving targeted gene delivery with maximized therapeutic efficacy. In this study, a photothermally controlled gene delivery carrier is developed by conjugating low molecular-weight branched polyethylenimine (BPEI) and reduced graphene oxide (rGO) via a hydrophilic polyethylene glycol (PEG) spacer. This PEG-BPEI-rGO nanocomposite forms a stable nano-sized complex with plasmid DNA (pDNA), as confirmed by physicochemical studies. For the in vitro gene transfection study, PEG-BPEI-rGO shows a higher gene transfection efficiency without observable cytotoxicity compared to unmodified controls in PC-3 and NIH/3T3 cells. Moreover, the PEG-BPEI-rGO nanocomposite demonstrates an enhanced gene transfection efficiency upon NIR irradiation, which is attributed to accelerated endosomal escape of polyplexes augmented by locally induced heat. The endosomal escaping effect of the nanocomposite is investigated using Bafilomycin A1, a proton sponge effect inhibitor. The developed photothermally controlled gene carrier has the potential for spatial and temporal site-specific gene delivery.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, 790-784, Korea; Center for Self-assembly and Complexity, Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yusung-gu, Daejeon, 305-811, Korea
| | | |
Collapse
|