1
|
Fataftah M, Wilson DWN, Mathe Z, Gerard TJ, Mercado BQ, DeBeer S, Holland PL. Inserting Three-Coordinate Nickel into [4Fe-4S] Clusters. ACS CENTRAL SCIENCE 2024; 10:1910-1919. [PMID: 39463842 PMCID: PMC11503493 DOI: 10.1021/acscentsci.4c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024]
Abstract
Metalloenzymes can efficiently achieve the multielectron interconversion of carbon dioxide and carbon monoxide under mild conditions. Anaerobic carbon monoxide dehydrogenase (CODH) performs these reactions at the C cluster, a unique nickel-iron-sulfide cluster that features an apparent three-coordinate nickel site. How nature assembles the [NiFe3S4]-Feu cluster is not well understood. We use synthetic clusters to demonstrate that electron transfer can drive insertion of a Ni0 precursor into an [Fe4S4]3+ cluster to assemble higher nuclearity nickel-iron-sulfide clusters with the same complement of metal ions as the C cluster. Initial electron transfer results in a [1Ni-4Fe-4S] cluster in which a Ni1+ ion sits outside of the cluster. Modifying the Ni0 precursor results in the insertion of two nickel atoms into the cluster, concomitant with ejection of an iron to yield an unprecedented [2Ni-3Fe-4S] cluster possessing four three-coordinate metal sites. Both clusters are characterized using magnetometry, electron paramagnetic resonance (EPR), Mössbauer, and X-ray absorption spectroscopy and supported by DFT computations that are consistent with both clusters having nickel in the +1 oxidation state. These results demonstrate that Ni1+ is a viable oxidation state within iron-sulfur clusters and that redox-driven transformations can give rise to higher nuclearity clusters of relevance to the CODH C cluster.
Collapse
Affiliation(s)
- Majed
S. Fataftah
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Daniel W. N. Wilson
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zachary Mathe
- Max
Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Theodore J. Gerard
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Patrick L. Holland
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
2
|
Grunwald L, Abbott DF, Mougel V. Gauging Iron-Sulfur Cubane Reactivity from Covalency: Trends with Oxidation State. JACS AU 2024; 4:1315-1322. [PMID: 38665672 PMCID: PMC11040707 DOI: 10.1021/jacsau.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
We investigated room-temperature metal and ligand K-edge X-ray absorption (XAS) spectra of a complete redox series of cubane-type iron-sulfur clusters. The Fe K-edge position provides a qualitative but convenient alternative to the traditional spectroscopic descriptors used to identify oxidation states in these systems, which we demonstrate by providing a calibration curve based on two analytic methods. Furthermore, high energy resolution fluorescence detected XAS (HERFD-XAS) at the S K-edge was used to measure Fe-S bond covalencies and record their variation with the average valence of the Fe atoms. While the Fe-S(thiolate) covalency evolves linearly, gaining 11 ± 0.4% per bond and hole, the Fe-S(μ3) covalency evolves asystematically, reflecting changes in the magnetic exchange mechanism. A strong discontinuity manifested for superoxidation to the all-ferric state, distinguishing its electronic structure and its potential (bio)chemical role from those of its redox congeners. We highlight the functional implications of these trends for the reactivity of iron-sulfur cubanes.
Collapse
Affiliation(s)
- Liam Grunwald
- Department
of Chemistry and Applied Biosciences (D-CHAB), Swiss Federal Institute of Technology Zürich (ETHZ), Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Daniel F. Abbott
- Department
of Chemistry and Applied Biosciences (D-CHAB), Swiss Federal Institute of Technology Zürich (ETHZ), Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Victor Mougel
- Department
of Chemistry and Applied Biosciences (D-CHAB), Swiss Federal Institute of Technology Zürich (ETHZ), Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
3
|
Solomon JB, Liu YA, Górecki K, Quechol R, Lee CC, Jasniewski AJ, Hu Y, Ribbe MW. Heterologous expression of a fully active Azotobacter vinelandii nitrogenase Fe protein in Escherichia coli. mBio 2023; 14:e0257223. [PMID: 37909748 PMCID: PMC10746259 DOI: 10.1128/mbio.02572-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE The heterologous expression of a fully active Azotobacter vinelandii Fe protein (AvNifH) has never been accomplished. Given the functional importance of this protein in nitrogenase catalysis and assembly, the successful expression of AvNifH in Escherichia coli as reported herein supplies a key element for the further development of heterologous expression systems that explore the catalytic versatility of the Fe protein, either on its own or as a key component of nitrogenase, for nitrogenase-based biotechnological applications in the future. Moreover, the "clean" genetic background of the heterologous expression host allows for an unambiguous assessment of the effect of certain nif-encoded protein factors, such as AvNifM described in this work, in the maturation of AvNifH, highlighting the utility of this heterologous expression system in further advancing our understanding of the complex biosynthetic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Joseph B. Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Department of Chemistry, University of California, Irvine, California, USA
| | - Yiling A. Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Kamil Górecki
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Robert Quechol
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Andrew J. Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Department of Chemistry, University of California, Irvine, California, USA
| |
Collapse
|
4
|
Ribbe MW, Górecki K, Grosch M, Solomon JB, Quechol R, Liu YA, Lee CC, Hu Y. Nitrogenase Fe Protein: A Multi-Tasking Player in Substrate Reduction and Metallocluster Assembly. Molecules 2022; 27:molecules27196743. [PMID: 36235278 PMCID: PMC9571451 DOI: 10.3390/molecules27196743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
The Fe protein of nitrogenase plays multiple roles in substrate reduction and metallocluster assembly. Best known for its function to transfer electrons to its catalytic partner during nitrogenase catalysis, the Fe protein is also a key player in the biosynthesis of the complex metalloclusters of nitrogenase. In addition, it can function as a reductase on its own and affect the ambient reduction of CO2 or CO to hydrocarbons. This review will provide an overview of the properties and functions of the Fe protein, highlighting the relevance of this unique FeS enzyme to areas related to the catalysis, biosynthesis, and applications of the fascinating nitrogenase system.
Collapse
Affiliation(s)
- Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
- Correspondence: (M.W.R.); (Y.H.)
| | - Kamil Górecki
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Mario Grosch
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Joseph B. Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Robert Quechol
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Yiling A. Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Correspondence: (M.W.R.); (Y.H.)
| |
Collapse
|
5
|
Abstract
Synthetic iron-sulfur cubanes are models for biological cofactors, which are essential to delineate oxidation states in the more complex enzymatic systems. However, a complete series of [Fe4S4]n complexes spanning all redox states accessible by 1-electron transformations of the individual iron atoms (n = 0-4+) has never been prepared, deterring the methodical comparison of structure and spectroscopic signature. Here, we demonstrate that the use of a bulky arylthiolate ligand promoting the encapsulation of alkali-metal cations in the vicinity of the cubane enables the synthesis of such a series. Characterization by EPR, 57Fe Mössbauer spectroscopy, UV-visible electronic absorption, variable-temperature X-ray diffraction analysis, and cyclic voltammetry reveals key trends for the geometry of the Fe4S4 core as well as for the Mössbauer isomer shift, which both correlate systematically with oxidation state. Furthermore, we confirm the S = 4 electronic ground state of the most reduced member of the series, [Fe4S4]0, and provide electrochemical evidence that it is accessible within 0.82 V from the [Fe4S4]2+ state, highlighting its relevance as a mimic of the nitrogenase iron protein cluster.
Collapse
|
6
|
Bigness A, Vaddypally S, Zdilla MJ, Mendoza-Cortes JL. Ubiquity of cubanes in bioinorganic relevant compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Mise K, Masuda Y, Senoo K, Itoh H. Undervalued Pseudo- nifH Sequences in Public Databases Distort Metagenomic Insights into Biological Nitrogen Fixers. mSphere 2021; 6:e0078521. [PMID: 34787447 PMCID: PMC8597730 DOI: 10.1128/msphere.00785-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Nitrogen fixation, a distinct process incorporating the inactive atmospheric nitrogen into the active biological processes, has been a major topic in biological and geochemical studies. Currently, insights into diversity and distribution of nitrogen-fixing microbes are dependent upon homology-based analyses of nitrogenase genes, especially the nifH gene, which are broadly conserved in nitrogen-fixing microbes. Here, we report the pitfall of using nifH as a marker of microbial nitrogen fixation. We exhaustively analyzed genomes in RefSeq (231,908 genomes) and KEGG (6,509 genomes) and cooccurrence and gene order patterns of nitrogenase genes (including nifH) therein. Up to 20% of nifH-harboring genomes lacked nifD and nifK, which encode essential subunits of nitrogenase, within 10 coding sequences upstream or downstream of nifH or on the same genome. According to a phenotypic database of prokaryotes, no species and strains harboring only nifH possess nitrogen-fixing activities, which shows that these nifH genes are "pseudo"-nifH genes. Pseudo-nifH sequences mainly belong to anaerobic microbes, including members of the class Clostridia and methanogens. We also detected many pseudo-nifH reads from metagenomic sequences of anaerobic environments such as animal guts, wastewater, paddy soils, and sediments. In some samples, pseudo-nifH overwhelmed the number of "true" nifH reads by 50% or 10 times. Because of the high sequence similarity between pseudo- and true-nifH, pronounced amounts of nifH-like reads were not confidently classified. Overall, our results encourage reconsideration of the conventional use of nifH for detecting nitrogen-fixing microbes, while suggesting that nifD or nifK would be a more reliable marker. IMPORTANCE Nitrogen-fixing microbes affect biogeochemical cycling, agricultural productivity, and microbial ecosystems, and their distributions have been investigated intensively using genomic and metagenomic sequencing. Currently, insights into nitrogen fixers in the environment have been acquired by homology searches against nitrogenase genes, particularly the nifH gene, in public databases. Here, we report that public databases include a significant amount of incorrectly annotated nifH sequences (pseudo-nifH). We exhaustively investigated the genomic structures of nifH-harboring genomes and found hundreds of pseudo-nifH sequences in RefSeq and KEGG. Over half of these pseudo-nifH sequences belonged to members of the class Clostridia, which is supposed to be a prominent nitrogen-fixing clade. We also found that the abundance of nitrogen fixers in metagenomes could be overestimated by 1.5 to >10 times due to pseudo-nifH recorded in public databases. Our results encourage reconsideration of the prevalent use of nifH as a marker of nitrogen-fixing microbes.
Collapse
Affiliation(s)
- Kazumori Mise
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Hokkaido, Japan
| | - Yoko Masuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hideomi Itoh
- National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Hokkaido, Japan
| |
Collapse
|
8
|
Structural analysis of the reductase component AnfH of iron-only nitrogenase from Azotobacter vinelandii. J Inorg Biochem 2021; 227:111690. [PMID: 34929539 DOI: 10.1016/j.jinorgbio.2021.111690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022]
Abstract
Biological nitrogen fixation, the conversion of atmospheric dinitrogen into bioavailable ammonium, is exclusively catalyzed by the enzyme nitrogenase that is present in nitrogen-fixing organisms, the diazotrophs. So far, three different nitrogenase variants, encoded in their corresponding, distinct gene clusters, have been found in nature. Each one of these consists of a catalytic dinitrogenase component and a unique, ATP-dependent reductase, the Fe protein. The three variant nitrogenases differ in the composition of the active site and contain either molybdenum, vanadium or only iron in the dinitrogenase component. Here we present the 2.0 Å resolution crystal structure of the ADP-bound reductase component AnfH of the iron-only nitrogenase from the model diazotroph Azotobacter vinelandii. A comparison of this structure with the ones reported for the two other Fe protein homologs NifH and VnfH in the ADP-bound state shows that all are adopting the same conformation. However, cross-reactivity assays with the three nitrogenase homologs revealed AnfH to be compatible with iron-only nitrogenase and to a lesser degree with the vanadium-containing enzyme, but not with molybdenum nitrogenase.
Collapse
|
9
|
Abstract
Nitrogenase is the only enzyme capable of reducing N2 to NH3. This challenging reaction requires the coordinated transfer of multiple electrons from the reductase, Fe-protein, to the catalytic component, MoFe-protein, in an ATP-dependent fashion. In the last two decades, there have been significant advances in our understanding of how nitrogenase orchestrates electron transfer (ET) from the Fe-protein to the catalytic site of MoFe-protein and how energy from ATP hydrolysis transduces the ET processes. In this review, we summarize these advances, with focus on the structural and thermodynamic redox properties of nitrogenase component proteins and their complexes, as well as on new insights regarding the mechanism of ET reactions during catalysis and how they are coupled to ATP hydrolysis. We also discuss recently developed chemical, photochemical, and electrochemical methods for uncoupling substrate reduction from ATP hydrolysis, which may provide new avenues for studying the catalytic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Hannah L Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
10
|
Jasniewski AJ, Lee CC, Ribbe MW, Hu Y. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Chem Rev 2020; 120:5107-5157. [PMID: 32129988 PMCID: PMC7491575 DOI: 10.1021/acs.chemrev.9b00704] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is most commonly associated with the molybdenum-iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two "alternative nitrogenase" systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
11
|
Van Stappen C, Decamps L, Cutsail GE, Bjornsson R, Henthorn JT, Birrell JA, DeBeer S. The Spectroscopy of Nitrogenases. Chem Rev 2020; 120:5005-5081. [PMID: 32237739 PMCID: PMC7318057 DOI: 10.1021/acs.chemrev.9b00650] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Nitrogenases are responsible for biological nitrogen fixation, a crucial step in the biogeochemical nitrogen cycle. These enzymes utilize a two-component protein system and a series of iron-sulfur clusters to perform this reaction, culminating at the FeMco active site (M = Mo, V, Fe), which is capable of binding and reducing N2 to 2NH3. In this review, we summarize how different spectroscopic approaches have shed light on various aspects of these enzymes, including their structure, mechanism, alternative reactivity, and maturation. Synthetic model chemistry and theory have also played significant roles in developing our present understanding of these systems and are discussed in the context of their contributions to interpreting the nature of nitrogenases. Despite years of significant progress, there is still much to be learned from these enzymes through spectroscopic means, and we highlight where further spectroscopic investigations are needed.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Laure Decamps
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Ragnar Bjornsson
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Justin T. Henthorn
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
12
|
Abstract
As the only enzyme currently known to reduce dinitrogen (N2) to ammonia (NH3), nitrogenase is of significant interest for bio-inspired catalyst design and for new biotechnologies aiming to produce NH3 from N2. In order to reduce N2, nitrogenase must also hydrolyze at least 16 equivalents of adenosine triphosphate (MgATP), representing the consumption of a significant quantity of energy available to biological systems. Here, we review natural and engineered electron transfer pathways to nitrogenase, including strategies to redirect or redistribute electron flow in vivo towards NH3 production. Further, we also review strategies to artificially reduce nitrogenase in vitro, where MgATP hydrolysis is necessary for turnover, in addition to strategies that are capable of bypassing the requirement of MgATP hydrolysis to achieve MgATP-independent N2 reduction.
Collapse
|
13
|
Rettberg LA, Wilcoxen J, Jasniewski AJ, Lee CC, Tanifuji K, Hu Y, Britt RD, Ribbe MW. Identity and function of an essential nitrogen ligand of the nitrogenase cofactor biosynthesis protein NifB. Nat Commun 2020; 11:1757. [PMID: 32273505 PMCID: PMC7145814 DOI: 10.1038/s41467-020-15627-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/19/2020] [Indexed: 01/24/2023] Open
Abstract
NifB is a radical S-adenosyl-L-methionine (SAM) enzyme that is essential for nitrogenase cofactor assembly. Previously, a nitrogen ligand was shown to be involved in coupling a pair of [Fe4S4] clusters (designated K1 and K2) concomitant with carbide insertion into an [Fe8S9C] cofactor core (designated L) on NifB. However, the identity and function of this ligand remain elusive. Here, we use combined mutagenesis and pulse electron paramagnetic resonance analyses to establish histidine-43 of Methanosarcina acetivorans NifB (MaNifB) as the nitrogen ligand for K1. Biochemical and continuous wave electron paramagnetic resonance data demonstrate the inability of MaNifB to serve as a source for cofactor maturation upon substitution of histidine-43 with alanine; whereas x-ray absorption spectroscopy/extended x-ray fine structure experiments further suggest formation of an intermediate that lacks the cofactor core arrangement in this MaNifB variant. These results point to dual functions of histidine-43 in structurally assisting the proper coupling between K1 and K2 and concurrently facilitating carbide formation via deprotonation of the initial carbon radical. NifB is a radical SAM enzyme involved in the biosynthesis of the Mo-nitrogenase cofactor, which is responsible for the ambient conversion of N2 to NH3. Here, the authors identify and uncover the function of a His43 residue as an essential nitrogen ligand of NifB in cofactor biosynthesis.
Collapse
Affiliation(s)
- Lee A Rettberg
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Jarett Wilcoxen
- Department of Chemistry, University of California, Davis, CA, 95695, USA.,Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Andrew J Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
| | - R David Britt
- Department of Chemistry, University of California, Davis, CA, 95695, USA.
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA. .,Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA.
| |
Collapse
|
14
|
Van Stappen C, Thorhallsson AT, Decamps L, Bjornsson R, DeBeer S. Resolving the structure of the E 1 state of Mo nitrogenase through Mo and Fe K-edge EXAFS and QM/MM calculations. Chem Sci 2019; 10:9807-9821. [PMID: 32055350 PMCID: PMC6984330 DOI: 10.1039/c9sc02187f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/03/2019] [Indexed: 11/21/2022] Open
Abstract
Biological nitrogen fixation is predominately accomplished through Mo nitrogenase, which utilizes a complex MoFe7S9C catalytic cluster to reduce N2 to NH3. This cluster requires the accumulation of three to four reducing equivalents prior to binding N2; however, despite decades of research, the intermediate states formed prior to N2 binding are still poorly understood. Herein, we use Mo and Fe K-edge X-ray absorption spectroscopy and QM/MM calculations to investigate the nature of the E1 state, which is formed following the addition of the first reducing equivalent to Mo nitrogenase. By analyzing the extended X-ray absorption fine structure (EXAFS) region, we provide structural insight into the changes that occur in the metal clusters of the protein when forming the E1 state, and use these metrics to assess a variety of possible models of the E1 state. The combination of our experimental and theoretical results supports that formation of E1 involves an Fe-centered reduction combined with the protonation of a belt-sulfide of the cluster. Hence, these results provide critical experiment and computational insight into the mechanism of this important enzyme.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max-Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , NRW , Germany . ;
| | - Albert Thor Thorhallsson
- Max-Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , NRW , Germany . ;
| | - Laure Decamps
- Max-Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , NRW , Germany . ;
| | - Ragnar Bjornsson
- Max-Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , NRW , Germany . ;
| | - Serena DeBeer
- Max-Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , NRW , Germany . ;
| |
Collapse
|
15
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part V. Nitrogenases. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Planar three-coordinate iron sulfide in a synthetic [4Fe-3S] cluster with biomimetic reactivity. Nat Chem 2019; 11:1019-1025. [PMID: 31611632 PMCID: PMC6858550 DOI: 10.1038/s41557-019-0341-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/19/2019] [Indexed: 11/25/2022]
Abstract
Iron-sulfur clusters are emerging as reactive sites for the reduction of small-molecule substrates. However, the four-coordinate iron sites of typical iron-sulfur clusters rarely react with substrates, implicating three-coordinate iron. This idea is untested because fully sulfide-coordinated three-coordinate iron is unprecedented. Here we report a new type of [4Fe-3S] cluster featuring an iron center with three bonds to sulfides. Although a high-spin electronic configuration is characteristic of other iron-sulfur clusters, the planar geometry and short Fe–S bonds lead to a surprising low-spin electronic configuration at the three-coordinate Fe center as determined by spectroscopy and ab initio calculations. In a demonstration of biomimetic reactivity, the [4Fe-3S] cluster reduces hydrazine, a natural substrate of nitrogenase. The product is the first example of NH2 bound to an iron-sulfur cluster. Our results demonstrate that three-coordinate iron supported by sulfide donors is a plausible precursor to reactivity in iron-sulfur clusters like the FeMoco of nitrogenase.
Collapse
|
17
|
Rettberg LA, Stiebritz MT, Kang W, Lee CC, Ribbe MW, Hu Y. Structural and Mechanistic Insights into CO 2 Activation by Nitrogenase Iron Protein. Chemistry 2019; 25:13078-13082. [PMID: 31402524 DOI: 10.1002/chem.201903387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/06/2019] [Indexed: 11/09/2022]
Abstract
The Fe protein of nitrogenase catalyzes the ambient reduction of CO2 when its cluster is present in the all-ferrous, [Fe4 S4 ]0 oxidation state. Here, we report a combined structural and theoretical study that probes the unique reactivity of the all-ferrous Fe protein toward CO2 . Structural comparisons of the Azotobacter vinelandii Fe protein in the [Fe4 S4 ]0 and [Fe4 S4 ]+ states point to a possible asymmetric functionality of a highly conserved Arg pair in CO2 binding and reduction. Density functional theory (DFT) calculations provide further support for the asymmetric coordination of O by the "proximal" Arg and binding of C to a unique Fe atom of the all-ferrous cluster, followed by donation of protons by the proximate guanidinium group of Arg that eventually results in the scission of a C-O bond. These results provide important mechanistic and structural insights into CO2 activation by a surface-exposed, scaffold-held [Fe4 S4 ] cluster.
Collapse
Affiliation(s)
- Lee A Rettberg
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Martin T Stiebritz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Wonchull Kang
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA.,Department Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| |
Collapse
|
18
|
Chu CH, Yen CY, Chen BW, Lin MG, Wang LH, Tang KZ, Hsiao CD, Sun YJ. Crystal structures of HpSoj-DNA complexes and the nucleoid-adaptor complex formation in chromosome segregation. Nucleic Acids Res 2019; 47:2113-2129. [PMID: 30544248 PMCID: PMC6393308 DOI: 10.1093/nar/gky1251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/10/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023] Open
Abstract
ParABS, an important DNA partitioning process in chromosome segregation, includes ParA (an ATPase), ParB (a parS binding protein) and parS (a centromere-like DNA). The homologous proteins of ParA and ParB in Helicobacter pylori are HpSoj and HpSpo0J, respectively. We analyzed the ATPase activity of HpSoj and found that it is enhanced by both DNA and HpSpo0J. Crystal structures of HpSoj and its DNA complexes revealed a typical ATPase fold and that it is dimeric. DNA binding by HpSoj is promoted by ATP. The HpSoj–ATP–DNA complex non-specifically binds DNA through a continuous basic binding patch formed by lysine residues, with a single DNA-binding site. This complex exhibits a DNA-binding adept state with an active ATP-bound conformation, whereas the HpSoj–ADP–DNA complex may represent a transient DNA-bound state. Based on structural comparisons, HpSoj exhibits a similar DNA binding surface to the bacterial ParA superfamily, but the archaeal ParA superfamily exhibits distinct non-specific DNA-binding via two DNA-binding sites. We detected the HpSpo0J–HpSoj–DNA complex by electron microscopy and show that this nucleoid-adaptor complex (NAC) is formed through HpSoj and HpSpo0J interaction and parS DNA binding. NAC formation is promoted by HpSoj participation and specific parS DNA facilitation.
Collapse
Affiliation(s)
- Chen-Hsi Chu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Cheng-Yi Yen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Bo-Wei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Lyu-Han Wang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Kai-Zhi Tang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
19
|
Structural Analysis of a Nitrogenase Iron Protein from Methanosarcina acetivorans: Implications for CO 2 Capture by a Surface-Exposed [Fe 4S 4] Cluster. mBio 2019; 10:mBio.01497-19. [PMID: 31289188 PMCID: PMC6747716 DOI: 10.1128/mbio.01497-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This work reports the crystal structure of a previously uncharacterized Fe protein from a methanogenic organism, which provides important insights into the structural properties of the less-characterized, yet highly interesting archaeal nitrogenase enzymes. Moreover, the structure-derived implications for CO2 capture by a surface-exposed [Fe4S4] cluster point to the possibility of developing novel strategies for CO2 sequestration while providing the initial insights into the unique mechanism of FeS-based CO2 activation. Nitrogenase iron (Fe) proteins reduce CO2 to CO and/or hydrocarbons under ambient conditions. Here, we report a 2.4-Å crystal structure of the Fe protein from Methanosarcina acetivorans (MaNifH), which is generated in the presence of a reductant, dithionite, and an alternative CO2 source, bicarbonate. Structural analysis of this methanogen Fe protein species suggests that CO2 is possibly captured in an unactivated, linear conformation near the [Fe4S4] cluster of MaNifH by a conserved arginine (Arg) pair in a concerted and, possibly, asymmetric manner. Density functional theory calculations and mutational analyses provide further support for the capture of CO2 on MaNifH while suggesting a possible role of Arg in the initial coordination of CO2 via hydrogen bonding and electrostatic interactions. These results provide a useful framework for further mechanistic investigations of CO2 activation by a surface-exposed [Fe4S4] cluster, which may facilitate future development of FeS catalysts for ambient conversion of CO2 into valuable chemical commodities.
Collapse
|
20
|
DeRosha DE, Arnet NA, Mercado BQ, Holland PL. A [2Fe-1S] Complex That Affords Access to Bimetallic and Higher-Nuclearity Iron-Sulfur Clusters. Inorg Chem 2019; 58:8829-8834. [PMID: 31247861 DOI: 10.1021/acs.inorgchem.9b01212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small, coordinatively unsaturated iron-sulfur clusters are conceived as building blocks for the diverse set of shapes of iron-sulfur clusters in biological and synthetic chemistry. Here we describe a synthetic method for preparing [2Fe-1S] clusters containing two iron(II) ions, which are supported by a relatively unhindered β-diketiminate supporting ligand. The [2Fe-1S] cluster can be isolated in the presence of trimethylphosphine, and the compound with one PMe3 on each iron(II) ion has been crystallographically characterized. The PMe3 ligands may be removed with B(C6F5)3 to give a spectroscopically characterized species with solvent ligands. This species is a versatile synthon for [2Fe-2S], [4Fe-3S], and [10Fe-8S] clusters. Crystallographic characterization of the 10Fe cluster shows that it has all iron(II) ions, and the core has two [4Fe-4S] cubes that share a face in a novel arrangement. This cluster also has two iron sites that are coordinated to solvent donors, suggesting the potential for using this type of cluster for reactivity in the future.
Collapse
Affiliation(s)
- Daniel E DeRosha
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06511 , United States
| | - Nicholas A Arnet
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06511 , United States
| | - Brandon Q Mercado
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06511 , United States
| | - Patrick L Holland
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06511 , United States
| |
Collapse
|
21
|
Lee CC, Stiebritz MT, Hu Y. Reactivity of [Fe 4S 4] Clusters toward C1 Substrates: Mechanism, Implications, and Potential Applications. Acc Chem Res 2019; 52:1168-1176. [PMID: 30977994 DOI: 10.1021/acs.accounts.9b00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
FeS proteins are metalloproteins prevalent in the metabolic pathways of most organisms, playing key roles in a wide range of essential cellular processes. A member of this protein family, the Fe protein of nitrogenase, is a homodimer that contains a redox-active [Fe4S4] cluster at the subunit interface and an ATP-binding site within each subunit. During catalysis, the Fe protein serves as the obligate electron donor for its catalytic partner, transferring electrons concomitant with ATP hydrolysis to the cofactor site of the catalytic component to enable substrate reduction. The effectiveness of Fe protein in electron transfer is reflected by the unique reactivity of nitrogenase toward small-molecule substrates. Most notably, nitrogenase is capable of catalyzing the ambient reduction of N2 and CO into NH4+ and hydrocarbons, respectively, in reactions that parallel the important industrial Haber-Bosch and Fischer-Tropsch processes. Other than participating in nitrogenase catalysis, the Fe protein also functions as an essential factor in nitrogenase assembly, which again highlights its capacity as an effective, ATP-dependent electron donor. Recently, the Fe protein of a soil bacterium, Azotobacter vinelandii, was shown to act as a reductase on its own and catalyze the ambient conversion of CO2 to CO at its [Fe4S4] cluster either under in vitro conditions when a strong reductant is supplied or under in vivo conditions through the action of an unknown electron donor(s) in the cell. Subsequently, the Fe protein of a mesophilic methanogenic organism, Methanosarcina acetivorans, was shown to catalyze the in vitro reduction of CO2 and CO into hydrocarbons under ambient conditions, illustrating an impact of protein scaffold on the redox properties of the [Fe4S4] cluster and the reactivity of the cluster toward C1 substrates. This reactivity was further traced to the [Fe4S4] cluster itself, as a synthetic [Fe4S4] compound was shown to catalyze the reduction of CO2 and CO to hydrocarbons in solutions in the presence of a strong reductant. Together, these observations pointed to an inherent ability of the [Fe4S4] clusters and, possibly, the FeS clusters in general to catalyze C1-substrate reduction. Theoretical calculations have led to the proposal of a plausible reaction pathway that involves the formation of hydrocarbons via aldehyde-like intermediates, providing an important framework for further mechanistic investigations of FeS-based activation and reduction of C1 substrates. In this Account, we summarize the recent work leading to the discovery of C1-substrate reduction by protein-bound and free [Fe4S4] clusters as well as the current mechanistic understanding of this FeS-based reactivity. In addition, we briefly discuss the evolutionary implications of this discovery and potential applications that could be developed to enable FeS-based strategies for the ambient recycling of unwanted C1 waste into useful chemical commodities.
Collapse
Affiliation(s)
- Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Martin T. Stiebritz
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
22
|
Wenke BB, Spatzal T, Rees DC. Site-Specific Oxidation State Assignments of the Iron Atoms in the [4Fe:4S] 2+/1+/0 States of the Nitrogenase Fe-Protein. Angew Chem Int Ed Engl 2019; 58:3894-3897. [PMID: 30698901 PMCID: PMC6519357 DOI: 10.1002/anie.201813966] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 12/05/2022]
Abstract
The nitrogenase iron protein (Fe-protein) contains an unusual [4Fe:4S] iron-sulphur cluster that is stable in three oxidation states: 2+, 1+, and 0. Here, we use spatially resolved anomalous dispersion (SpReAD) refinement to determine oxidation assignments for the individual irons for each state. Additionally, we report the 1.13-Å resolution structure for the ADP bound Fe-protein, the highest resolution Fe-protein structure presently determined. In the dithionite-reduced [4Fe:4S]1+ state, our analysis identifies a solvent exposed, delocalized Fe2.5+ pair and a buried Fe2+ pair. We propose that ATP binding by the Fe-protein promotes an internal redox rearrangement such that the solvent-exposed Fe pair becomes reduced, thereby facilitating electron transfer to the nitrogenase molybdenum iron-protein. In the [4Fe:4S]0 and [4Fe:4S]2+ states, the SpReAD analysis supports oxidation states assignments for all irons in these clusters of Fe2+ and valence delocalized Fe2.5+ , respectively.
Collapse
Affiliation(s)
- Belinda B. Wenke
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - Thomas Spatzal
- Howard Hughes Medical InstituteCalifornia Institute of TechnologyPasadenaCA91125USA
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - Douglas C. Rees
- Howard Hughes Medical InstituteCalifornia Institute of TechnologyPasadenaCA91125USA
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| |
Collapse
|
23
|
Wenke BB, Spatzal T, Rees DC. Site‐Specific Oxidation State Assignments of the Iron Atoms in the [4Fe:4S]
2+/1+/0
States of the Nitrogenase Fe‐Protein. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Belinda B. Wenke
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Thomas Spatzal
- Howard Hughes Medical InstituteCalifornia Institute of Technology Pasadena CA 91125 USA
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Douglas C. Rees
- Howard Hughes Medical InstituteCalifornia Institute of Technology Pasadena CA 91125 USA
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
24
|
Abstract
Metalloproteins are challenging objects if we want to investigate their chemical reactivity with theoretical approaches such as density functional theory (DFT). The complexity of these biomolecules often requires us to find a compromise between accuracy and feasibility, one that is tailored to the questions we set out to answer. In this chapter, we discuss computational approaches to studying chemical reactions in metalloproteins and how to utilize the information hidden in homologous proteins.
Collapse
Affiliation(s)
- Martin T Stiebritz
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
25
|
Crystallization of Nitrogenase Proteins. Methods Mol Biol 2018. [PMID: 30317480 DOI: 10.1007/978-1-4939-8864-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nitrogenase is the only known enzymatic system capable of reducing atmospheric dinitrogen to ammonia. This unique reaction requires tightly choreographed interactions between the nitrogenase component proteins, the molybdenum-iron (MoFe)- and iron (Fe)-proteins, as well as regulation of electron transfer between multiple metal centers that are only found in these components. Several decades of research beginning in the 1950s yielded substantial information of how nitrogenase manages the task of N2 fixation. However, key mechanistic steps in this highly oxygen-sensitive and ATP-intensive reaction have only recently been identified at an atomic level. A critical part in any mechanistic elucidation is the necessity to connect spectroscopic and functional properties of the component proteins to the detailed three-dimensional structures. Structural information derived from X-ray diffraction (XRD) methods has provided detailed atomic insights into the enzyme system and, in particular, its active site FeMo-cofactor. The following chapter outlines the general protocols for the crystallization of Azotobacter vinelandii (Av) nitrogenase component proteins, with a special emphasis on different applications, such as high-resolution XRD, single-crystal spectroscopy, and the structural characterization of bound inhibitors.
Collapse
|
26
|
|
27
|
Moula G, Matsumoto T, Miehlich ME, Meyer K, Tatsumi K. Synthesis of an All-Ferric Cuboidal Iron-Sulfur Cluster [Fe III4 S 4 (SAr) 4 ]. Angew Chem Int Ed Engl 2018; 57:11594-11597. [PMID: 29775229 DOI: 10.1002/anie.201803679] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 11/11/2022]
Abstract
An unprecedented, super oxidized all-ferric iron-sulfur cubanoid cluster with all terminal thiolates, Fe4 S4 (STbt)4 (3) [Tbt=2,4,6-tris{bis(trimethylsilyl)methyl}phenyl], has been isolated from the reaction of the bis-thiolate complex Fe(STbt)2 (2) with elemental sulfur. This cluster 3 has been characterized by X-ray crystallography, zero-field 57 Fe Mössbauer spectroscopy, cyclic voltammetry, and other relevant physico-chemical methods. Based on all the data, the electronic ground state of the cluster has been assigned to be Stot =0.
Collapse
Affiliation(s)
- Golam Moula
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan),
| | - Tsuyoshi Matsumoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Matthias E Miehlich
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058, Erlangen, Bavaria, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058, Erlangen, Bavaria, Germany
| | - Kazuyuki Tatsumi
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan),
| |
Collapse
|
28
|
Moula G, Matsumoto T, Miehlich ME, Meyer K, Tatsumi K. Synthesis of an All-Ferric Cuboidal Iron-Sulfur Cluster [FeIII
4
S4
(SAr)4
]. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Golam Moula
- Research Center for Materials Science; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8602 Japan),
| | - Tsuyoshi Matsumoto
- Institute of Transformative Bio-Molecules (WPI-ITbM); Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8601 Japan
| | - Matthias E. Miehlich
- Department of Chemistry and Pharmacy; Inorganic Chemistry; Friedrich-Alexander-University Erlangen-Nürnberg (FAU); Egerlandstrasse 1 91058 Erlangen Bavaria Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy; Inorganic Chemistry; Friedrich-Alexander-University Erlangen-Nürnberg (FAU); Egerlandstrasse 1 91058 Erlangen Bavaria Germany
| | - Kazuyuki Tatsumi
- Research Center for Materials Science; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8602 Japan),
| |
Collapse
|
29
|
Abstract
Although the nitrogen-fixing enzyme nitrogenase critically requires both a reductase component (Fe protein) and a catalytic component, considerably more work has focused on the latter species. Properties of the catalytic component, which contains two highly complex metallocofactors and catalyzes the reduction of N2 into ammonia, understandably making it the “star” of nitrogenase. However, as its obligate redox partner, the Fe protein is a workhorse with multiple supporting roles in both cofactor maturation and catalysis. In particular, the nitrogenase Fe protein utilizes nucleotide binding and hydrolysis in concert with electron transfer to accomplish several tasks of critical importance. Aside from the ATP-coupled transfer of electrons to the catalytic component during substrate reduction, the Fe protein also functions in a maturase and insertase capacity to facilitate the biosynthesis of the two-catalytic component metallocofactors: fusion of the [Fe8S7] P-cluster and insertion of Mo and homocitrate to form the matured [(homocitrate)MoFe7S9C] M-cluster. These and key structural-functional relationships of the indispensable Fe protein and its complex with the catalytic component will be covered in this review.
Collapse
|
30
|
Artz JH, Zadvornyy OA, Mulder DW, King PW, Peters JW. Structural Characterization of Poised States in the Oxygen Sensitive Hydrogenases and Nitrogenases. Methods Enzymol 2017; 595:213-259. [PMID: 28882202 DOI: 10.1016/bs.mie.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The crystallization of FeS cluster-containing proteins has been challenging due to their oxygen sensitivity, and yet these enzymes are involved in many critical catalytic reactions. The last few years have seen a wealth of innovative experiments designed to elucidate not just structural but mechanistic insights into FeS cluster enzymes. Here, we focus on the crystallization of hydrogenases, which catalyze the reversible reduction of protons to hydrogen, and nitrogenases, which reduce dinitrogen to ammonia. A specific focus is given to the different experimental parameters and strategies that are used to trap distinct enzyme states, specifically, oxidants, reductants, and gas treatments. Other themes presented here include the recent use of Cryo-EM, and how coupling various spectroscopies to crystallization is opening up new approaches for structural and mechanistic analysis.
Collapse
Affiliation(s)
- Jacob H Artz
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Oleg A Zadvornyy
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - David W Mulder
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - Paul W King
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States.
| |
Collapse
|
31
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Activation and reduction of carbon dioxide by nitrogenase iron proteins. Nat Chem Biol 2016; 13:147-149. [PMID: 27893704 DOI: 10.1038/nchembio.2245] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/16/2016] [Indexed: 01/24/2023]
Abstract
The iron (Fe) proteins of molybdenum (Mo) and vanadium (V) nitrogenases mimic carbon monoxide (CO) dehydrogenase in catalyzing the interconversion between CO2 and CO under ambient conditions. Catalytic reduction of CO2 to CO is achieved in vitro and in vivo upon redox changes of the Fe-protein-associated [Fe4S4] clusters. These observations establish the Fe protein as a model for investigation of CO2 activation while suggesting its biotechnological adaptability for recycling the greenhouse gas into useful products.
Collapse
|
33
|
Chen QL, Zhou ZH. Interaction between molybdate and histidine and its reduction to molybdenum(V) dimer. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Tan ML, Perrin BS, Niu S, Huang Q, Ichiye T. Protein dynamics and the all-ferrous [Fe4 S4 ] cluster in the nitrogenase iron protein. Protein Sci 2015; 25:12-8. [PMID: 26271353 PMCID: PMC4815322 DOI: 10.1002/pro.2772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 01/09/2023]
Abstract
In nitrogen fixation by Azotobacter vinelandii nitrogenase, the iron protein (FeP) binds to and subsequently transfers electrons to the molybdenum–FeP, which contains the nitrogen fixation site, along with hydrolysis of two ATPs. However, the nature of the reduced state cluster is not completely clear. While reduced FeP is generally thought to contain an [Fe4S4]1+ cluster, evidence also exists for an all‐ferrous [Fe4S4]0 cluster. Since the former indicates a single electron is transferred per two ATPs hydrolyzed while the latter indicates two electrons could be transferred per two ATPs hydrolyzed, an all‐ferrous [Fe4S4]0 cluster in FeP is potenially two times more efficient. However, the 1+/0 reduction potential has been measured in the protein at both 460 and 790 mV, causing the biological significance to be questioned. Here, “density functional theory plus Poisson Boltzmann” calculations show that cluster movement relative to the protein surface observed in the crystal structures could account for both measured values. In addition, elastic network mode analysis indicates that such movement occurs in low frequency vibrations of the protein, implying protein dynamics might lead to variations in reduction potential. Furthermore, the different reductants used in the conflicting measurements of the reduction potential could be differentially affecting the protein dynamics. Moreover, even if the all‐ferrous cluster is not the biologically relevant cluster, mutagenesis to stabilize the conformation with the more exposed cluster may be useful for bioengineering more efficient enzymes.
Collapse
Affiliation(s)
- Ming-Liang Tan
- Department of Chemistry, Georgetown University, Washington, District of Columbia, 20057
| | - B Scott Perrin
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Shuqiang Niu
- Department of Chemistry, Georgetown University, Washington, District of Columbia, 20057
| | - Qi Huang
- Department of Chemistry, Georgetown University, Washington, District of Columbia, 20057
| | - Toshiko Ichiye
- Department of Chemistry, Georgetown University, Washington, District of Columbia, 20057.,Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
35
|
Scott A, Pelmenschikov V, Guo Y, Yan L, Wang H, George SJ, Dapper CH, Newton WE, Yoda Y, Tanaka Y, Cramer SP. Structural characterization of CO-inhibited Mo-nitrogenase by combined application of nuclear resonance vibrational spectroscopy, extended X-ray absorption fine structure, and density functional theory: new insights into the effects of CO binding and the role of the interstitial atom. J Am Chem Soc 2014; 136:15942-54. [PMID: 25275608 PMCID: PMC4235365 DOI: 10.1021/ja505720m] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Indexed: 01/21/2023]
Abstract
The properties of CO-inhibited Azotobacter vinelandii (Av) Mo-nitrogenase (N2ase) have been examined by the combined application of nuclear resonance vibrational spectroscopy (NRVS), extended X-ray absorption fine structure (EXAFS), and density functional theory (DFT). Dramatic changes in the NRVS are seen under high-CO conditions, especially in a 188 cm(-1) mode associated with symmetric breathing of the central cage of the FeMo-cofactor. Similar changes are reproduced with the α-H195Q N2ase variant. In the frequency region above 450 cm(-1), additional features are seen that are assigned to Fe-CO bending and stretching modes (confirmed by (13)CO isotope shifts). The EXAFS for wild-type N2ase shows evidence for a significant cluster distortion under high-CO conditions, most dramatically in the splitting of the interaction between Mo and the shell of Fe atoms originally at 5.08 Å in the resting enzyme. A DFT model with both a terminal -CO and a partially reduced -CHO ligand bound to adjacent Fe sites is consistent with both earlier FT-IR experiments, and the present EXAFS and NRVS observations for the wild-type enzyme. Another DFT model with two terminal CO ligands on the adjacent Fe atoms yields Fe-CO bands consistent with the α-H195Q variant NRVS. The calculations also shed light on the vibrational "shake" modes of the interstitial atom inside the central cage, and their interaction with the Fe-CO modes. Implications for the CO and N2 reactivity of N2ase are discussed.
Collapse
Affiliation(s)
- Aubrey
D. Scott
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | | | - Yisong Guo
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lifen Yan
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Hongxin Wang
- Department
of Chemistry, University of California, Davis, California 95616, United States
- Physical
Biosciences Division, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Simon J. George
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Christie H. Dapper
- Department
of Biochemistry, Virginia Polytechnic Institute
& State University, Blacksburg, Virginia 24061, United States
| | - William E. Newton
- Department
of Biochemistry, Virginia Polytechnic Institute
& State University, Blacksburg, Virginia 24061, United States
| | - Yoshitaka Yoda
- Research
and Utilization Division, SPring-8/JASRI, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yoshihito Tanaka
- SR
Materials Science Instrumentation Unit, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Stephen P. Cramer
- Department
of Chemistry, University of California, Davis, California 95616, United States
- Physical
Biosciences Division, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Rupnik K, Lee CC, Wiig JA, Hu Y, Ribbe MW, Hales BJ. Nonenzymatic synthesis of the P-cluster in the nitrogenase MoFe protein: evidence of the involvement of all-ferrous [Fe4S4](0) intermediates. Biochemistry 2014; 53:1108-16. [PMID: 24520862 PMCID: PMC3970913 DOI: 10.1021/bi401699u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
P-cluster in the nitrogenase MoFe protein is a [Fe8S7] cluster and represents the most complex FeS cluster
found in Nature. To date, the exact mechanism of the in vivo synthesis of the P-cluster remains unclear. What is known is that
the precursor to the P-cluster is a pair of neighboring [Fe4S4]-like clusters found on the ΔnifH MoFe protein, a protein expressed in the absence of the nitrogenase
Fe protein (NifH). Moreover, incubation of the ΔnifH MoFe protein with NifH and MgATP results in the synthesis of the
MoFe protein P-clusters. To improve our understanding of the mechanism
of this reaction, we conducted a magnetic circular dichroism (MCD)
spectroscopic study of the [Fe4S4]-like clusters
on the ΔnifH MoFe protein. Reducing the ΔnifH MoFe protein with Ti(III) citrate results in the quenching
of the S = 1/2 electron paramagnetic
resonance signal
associated with the [Fe4S4]+ state
of the clusters. MCD spectroscopy reveals this reduction results in
all four 4Fe clusters being converted into the unusual, all-ferrous
[Fe4S4]0 state. Subsequent increases
of the redox potential generate new clusters. Most significantly,
one of these newly formed clusters is the P-cluster, which represents
approximately 20–25% of the converted Fe concentration. The
other two clusters are an
X cluster, of unknown structure, and a classic [Fe4S4] cluster, which represents approximately 30–35% of
the Fe concentration. Diamagnetic FeS clusters may also have
been generated but, because of their low spectral intensity, would
not have been identified. These results demonstrate that the nitrogenase
P-cluster can be generated in the absence of NifH and MgATP.
Collapse
Affiliation(s)
- Kresimir Rupnik
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70808, United States
| | | | | | | | | | | |
Collapse
|
38
|
Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 2014; 114:4041-62. [PMID: 24467365 PMCID: PMC4012840 DOI: 10.1021/cr400641x] [Citation(s) in RCA: 991] [Impact Index Per Article: 99.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Brian M Hoffman
- Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States
| | | | | | | | | |
Collapse
|
39
|
Abstract
The generalized cluster type [M4(μ3-Q)4L n ] x contains the cubane-type [M4Q4] z core unit that can approach, but typically deviates from, perfect Td symmetry. The geometric properties of this structure have been analyzed with reference to Td symmetry by a new protocol. Using coordinates of M and Q atoms, expressions have been derived for interatomic separations, bond angles, and volumes of tetrahedral core units (M4, Q4) and the total [M4Q4] core (as a tetracapped M4 tetrahedron). Values for structural parameters have been calculated from observed average values for a given cluster type. Comparison of calculated and observed values measures the extent of deviation of a given parameter from that required in an exact tetrahedral structure. The procedure has been applied to the structures of over 130 clusters containing [Fe4Q4] (Q = S2-, Se2-, Te2-, [NPR3]-, [NR]2-) units, of which synthetic and biological sulfide-bridged clusters constitute the largest subset. General structural features and trends in structural parameters are identified and summarized. An extensive database of structural properties (distances, angles, volumes) has been compiled in Supporting Information.
Collapse
Affiliation(s)
- Lay Ling Tan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | | | | |
Collapse
|
40
|
Mitra D, George SJ, Guo Y, Kamali S, Keable S, Peters JW, Pelmenschikov V, Case DA, Cramer SP. Characterization of [4Fe-4S] cluster vibrations and structure in nitrogenase Fe protein at three oxidation levels via combined NRVS, EXAFS, and DFT analyses. J Am Chem Soc 2013; 135:2530-43. [PMID: 23282058 DOI: 10.1021/ja307027n] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Azotobacter vinelandii nitrogenase Fe protein (Av2) provides a rare opportunity to investigate a [4Fe-4S] cluster at three oxidation levels in the same protein environment. Here, we report the structural and vibrational changes of this cluster upon reduction using a combination of NRVS and EXAFS spectroscopies and DFT calculations. Key to this work is the synergy between these three techniques as each generates highly complementary information and their analytical methodologies are interdependent. Importantly, the spectroscopic samples contained no glassing agents. NRVS and DFT reveal a systematic 10-30 cm(-1) decrease in Fe-S stretching frequencies with each added electron. The "oxidized" [4Fe-4S](2+) state spectrum is consistent with and extends previous resonance Raman spectra. For the "reduced" [4Fe-4S](1+) state in Fe protein, and for any "all-ferrous" [4Fe-4S](0) cluster, these NRVS spectra are the first available vibrational data. NRVS simulations also allow estimation of the vibrational disorder for Fe-S and Fe-Fe distances, constraining the EXAFS analysis and allowing structural disorder to be estimated. For oxidized Av2, EXAFS and DFT indicate nearly equal Fe-Fe distances, while addition of one electron decreases the cluster symmetry. However, addition of the second electron to form the all-ferrous state induces significant structural change. EXAFS data recorded to k = 21 Å(-1) indicates a 1:1 ratio of Fe-Fe interactions at 2.56 Å and 2.75 Å, a result consistent with DFT. Broken symmetry (BS) DFT rationalizes the interplay between redox state and the Fe-S and Fe-Fe distances as predominantly spin-dependent behavior inherent to the [4Fe-4S] cluster and perturbed by the Av2 protein environment.
Collapse
Affiliation(s)
- Devrani Mitra
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Perrin BS, Ichiye T. Characterizing the effects of the protein environment on the reduction potentials of metalloproteins. J Biol Inorg Chem 2013; 18:103-10. [PMID: 23229112 PMCID: PMC3567609 DOI: 10.1007/s00775-012-0955-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/18/2012] [Indexed: 11/26/2022]
Abstract
The reduction potentials of electron transfer proteins are critically determined by the degree of burial of the redox site within the protein and the degree of permanent polarization of the polypeptide around the redox site. Although continuum electrostatics calculations of protein structures can predict the net effect of these factors, quantifying each individual contribution is a difficult task. Here, the burial of the redox site is characterized by a dielectric radius R(p) (a Born-type radius for the protein), the polarization of the polypeptide is characterized by an electret potential ϕ(p) (the average electrostatic potential at the metal atoms), and an electret-dielectric spheres (EDS) model of the entire protein is then defined in terms of R(p) and ϕ(p). The EDS model shows that for a protein with a redox site of charge Q, the dielectric response free energy is a function of Q(2), while the electret energy is a function of Q. In addition, R(p) and ϕ(p) are shown to be characteristics of the fold of a protein and are predictive of the most likely redox couple for redox sites that undergo different redox couples.
Collapse
Affiliation(s)
- Bradley Scott Perrin
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227
| | - Toshiko Ichiye
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227
| |
Collapse
|
42
|
Cotelesage JJ, Pushie MJ, Grochulski P, Pickering IJ, George GN. Metalloprotein active site structure determination: Synergy between X-ray absorption spectroscopy and X-ray crystallography. J Inorg Biochem 2012; 115:127-37. [DOI: 10.1016/j.jinorgbio.2012.06.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 11/30/2022]
|
43
|
Blank MA, Lee CC, Hu Y, Hodgson KO, Hedman B, Ribbe MW. Structural models of the [Fe4S4] clusters of homologous nitrogenase Fe proteins. Inorg Chem 2011; 50:7123-8. [PMID: 21718019 PMCID: PMC3143205 DOI: 10.1021/ic200636k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The iron (Fe) proteins of molybdenum (Mo)-, vanadium (V)-, and iron (Fe)-only nitrogenases are encoded by nifH, vnfH, and anfH, respectively. While the nifH-encoded Fe protein has been extensively studied over recent years, information regarding the properties of the vnfH- and anfH-encoded Fe proteins has remained scarce. Here, we present a combined biochemical, electron paramagnetic resonance (EPR) and X-ray absorption spectroscopy (XAS) analysis of the [Fe(4)S(4)] clusters of NifH, VnfH, and AnfH of Azotobacter vinelandii . Our data show that all three Fe proteins contain [Fe(4)S(4)] clusters of very similar spectroscopic and geometric structural properties, although NifH differs more from VnfH and AnfH with regard to the electronic structure. These observations have an interesting impact on the theory of the plausible sequence of evolution of nitrogenase Fe proteins. More importantly, the results presented herein provide a platform for future investigations of the differential activities of the three Fe proteins in nitrogenase biosynthesis and catalysis.
Collapse
Affiliation(s)
- Michael A. Blank
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, CA 94025
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, CA 94025
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| |
Collapse
|
44
|
Perrin BS, Ichiye T. Fold versus sequence effects on the driving force for protein-mediated electron transfer. Proteins 2011; 78:2798-808. [PMID: 20635418 DOI: 10.1002/prot.22794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Electron transport chains composed of electron transfer reactions mainly between proteins provide fast efficient flow of energy in a variety of metabolic pathways. Reduction potentials are essential characteristics of the proteins because they determine the driving forces for the electron transfers. As both polar and charged groups from the backbone and side chains define the electrostatic environment, both the fold and the sequence will contribute. However, although the role of a specific sequence may be determined by experimental mutagenesis studies of reduction potentials, understanding the role of the fold by experiment is much more difficult. Here, continuum electrostatics and density functional theory calculations are used to analyze reduction potentials in [4Fe-4S] proteins. A key feature is that multiple homologous proteins in three different folds are compared: six high potential iron-sulfur proteins, four bacterial ferredoxins, and four nitrogenase iron proteins. Calculated absolute reduction potentials are shown to be in quantitative agreement with electrochemical reduction potentials. Calculations further demonstrate that the contribution of the backbone is larger than that of the side chains and is consistent for homologous proteins but differs for nonhomologous proteins, indicating that the fold is the major protein factor determining the reduction potential, whereas the specific amino acid sequence tunes the reduction potential for a given fold. Moreover, the fold contribution is determined mainly by the proximity of the redox site to the protein surface and the orientation of the dipoles of backbone near the redox site.
Collapse
Affiliation(s)
- Bradley Scott Perrin
- Department of Chemistry, Georgetown University, Box 571227, Washington, District of Columbia 20057-1227, USA
| | | |
Collapse
|
45
|
Abstract
Nitrogenase is the enzyme responsible for biological reduction of dinitrogen (N(2)) to ammonia, a form usable for life. Playing a central role in the global biogeochemical nitrogen cycle, this enzyme has been the focus of intensive research for over 60 years. This chapter provides an overview of the features of nitrogenase as a background to the subsequent chapters of this volume that detail the many methods that have been applied in an attempt to gain a deeper understanding of this complex enzyme.
Collapse
Affiliation(s)
- Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA.
| | | | | |
Collapse
|
46
|
|
47
|
Deng L, Bill E, Wieghardt K, Holm RH. Cubane-type Co4S4 clusters: synthesis, redox series, and magnetic ground states. J Am Chem Soc 2009; 131:11213-21. [PMID: 19722678 PMCID: PMC3170832 DOI: 10.1021/ja903847a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recent demonstration that the carbene cluster [Fe(4)S(4)(Pr(i)(2)NHCMe(2))(4)] (9) is an accurate structural and electronic analogue of the fully reduced cluster of the iron protein of Azotobacter vinelandii nitrogenase, including a common S = 4 ground state, raises the issue of the existence and magnetism of other [M(4)S(4)L(4)](z) clusters, none of which are known with transition metals other than iron. The system CoCl(2)/Pr(i)(3)P/(Me(3)Si)(2)S/THF assembles [Co(4)S(4)(PPr(i)(3))(4)] (3), which is converted to [Co(4)S(4)(Pr(i)(2)NHCMe(2))(4)] (5) upon reaction with carbene. The clusters support the redox series [3](1-/0/1+) and [5](0/1+/2+); monocations (4, 6) have been isolated by chemical oxidation. Redox potentials and substitution reactions indicate that the carbene is the more effective electron donor to tetrahedral Fe(II) and Co(II) sites. Clusters 3-6 have the same overall cubane-type geometry as 9. Neutral clusters 3 and 5 have an S = 3 ground state. As with the S = 4 state of 9 with local spins S(Fe) = 2, the septet spin state can be described in terms of the coupling of three parallel and one antiparallel spins S(Co) = 3/2. The octanuclear clusters [Co(8)S(8)(PPr(i)(3))(6)](0,1+) were isolated as minor byproducts of the formation and chemical oxidation of 3. The clusters exhibit a rhomb-bridged noncubane (RBNC) structure, whereas clusters with the Fe(8)S(8) core possess edge-bridged double-cubane (EBDC) stereochemistry. There are two structural solutions for the M(8)S(8) core in the form of topological isomers whose stability may depend on valence electron count. A conceptual model for the RBNC <--> EBDC interconversion is presented. (Pr(i)(2)NHCMe(2) = C(11)H(20)N(2) = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene).
Collapse
Affiliation(s)
- Liang Deng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Eckhard Bill
- Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany
| | - Karl Wieghardt
- Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany
| | - R. H. Holm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
48
|
Chakrabarti M, Deng L, Holm RH, Münck E, Bominaar EL. Mössbauer, electron paramagnetic resonance, and theoretical studies of a carbene-based all-ferrous Fe4S4 cluster: electronic origin and structural identification of the unique spectroscopic site. Inorg Chem 2009; 48:2735-47. [PMID: 19326927 DOI: 10.1021/ic802192w] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well established that the cysteinate-coordinated [Fe(4)S(4)] cluster of the iron protein of nitrogenase from Azotobacter vinelandii (Av2) can attain the all-ferrous core oxidation state. Mössbauer and electron paramagnetic resonance (EPR) studies have shown that the all-ferrous cluster has a ground-state spin S = 4 and an effective 3:1 site symmetry in the spin structure and (57)Fe quadrupole interactions. Recently, Deng and Holm reported the synthesis of [Fe(4)S(4)(Pr(i)(2)NHCMe(2))(4)],(2) (1; Pr(i)(2)NHCMe(2) = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) and showed that the all-ferrous carbene-coordinated cluster is amenable to physicochemical studies. Mössbauer and EPR studies of 1, reported here, reveal that the electronic structure of this complex is strikingly similar to that of the protein-bound cluster, suggesting that the ground-state spin and the 3:1 site ratio are consequences of spontaneous distortions of the cluster core. To gain insight into the origin of the peculiar ground state of the all-ferrous clusters in 1 and Av2, we have studied a theoretical model that is based on a Heisenberg-Dirac-van Vleck Hamiltonian whose exchange-coupling constants are a function of the Fe-Fe distances. By combining the exchange energies with the elastic deformation energies in the harmonic approximation, we obtain for a T(2) distortion a minimum with spin S = 4 and a C(3v) core structure in which one iron is unique and three irons are equivalent. This minimum has all of the spectroscopic and structural characteristics of the all-ferrous clusters of 1 and Av2. Our analysis maps the unique spectroscopic iron site to a specific site in the X-ray structure of the [Fe(4)S(4)](0) core both in complex 1 and in Av2.
Collapse
Affiliation(s)
- Mrinmoy Chakrabarti
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
49
|
Groysman S, Holm RH. Biomimetic chemistry of iron, nickel, molybdenum, and tungsten in sulfur-ligated protein sites. Biochemistry 2009; 48:2310-20. [PMID: 19206188 PMCID: PMC2765533 DOI: 10.1021/bi900044e] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomimetic inorganic chemistry has as its primary goal the synthesis of molecules that approach or achieve the structures, oxidation states, and electronic and reactivity features of native metal-containing sites of variant nuclearity. Comparison of properties of accurate analogues and these sites ideally provides insight into the influence of protein structure and environment on intrinsic properties as represented by the analogue. For polynuclear sites in particular, the goal provides a formidable challenge for, with the exception of iron-sulfur clusters, all such site structures have never been achieved and few have even been closely approximated by chemical synthesis. This account describes the current status of the synthetic analogue approach as applied to the mononuclear sites in certain molybdoenzymes and the polynuclear sites in hydrogenases, nitrogenase, and carbon monoxide dehydrogenases.
Collapse
Affiliation(s)
- Stanislav Groysman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - R. H. Holm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
50
|
Affiliation(s)
- Eckard Münck
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Street, Pittsburgh, PA 15213, USA
| | - Emile L. Bominaar
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Street, Pittsburgh, PA 15213, USA
| |
Collapse
|